
November 2012 Doc ID 16846 Rev 4 1/28

AN3117
Application note

Using the STM8L05xxx/15xxx, STM8L162xx,
 STM8AL31xx/3Lxx DMA controller

Introduction
This application note describes how to use the direct memory access (DMA) controller of
the STM8L05xxx/15xxx, STM8L162xx and STM8AL31xx/3Lxx devices. Table 1 shows the
STM8 products covered by this application note.

The DMA controller, the STM8™ core and the memory system contribute to provide a high
data bandwidth and to develop very low latency response time software.

This application note also describes how to take full advantage of these features and ensure
correct response times for different peripherals and subsystems.

Note: All examples and explanations in this document are based on the STM8L05x/STM8L15x/
STM8L16x/STM8AL31x/STM8AL3Lx standard peripheral library and the SSTM8L05xx,
STM8L15xx, STM8L162x, STM8AL31xx and STM8AL3Lxx microcontroller family reference
manual (RM0031). Please check the available resources of your product when using the
examples shown in this document.

Table 1. Applicable products

Product family Part numbers

Microcontrollers

– STM8L05xxx
– STM8L151C2//F2/G2/K2, STM8L151C3/F3/G3/K3
– STM8L151x4, STM8L151x6, STM8L151x8
– STM8L152x4, STM8L152x6, STM8L152x8
– STM8L162M8, STM8L162R8
– STM8AL313x, STM8AL314x, STM8AL316x
– STM8AL3L4x, STM8AL3L6x

www.st.com

http://www.st.com

Contents AN3117

2/28 Doc ID 16846 Rev 4

Contents

1 DMA controller description . 6

1.1 DMA main features . 6

1.2 Peripherals supported by DMA . 7

2 Performance considerations . 10

2.1 DMA latency . 10

2.2 Data bus bandwidth . 11

3 Programming the DMA using the standard peripheral library 12

3.1 Configuring the DMA peripheral to transfer data 12

3.1.1 Configuring the DMA channels . 13

3.1.2 Selecting the channel request source . 14

3.1.3 Enabling the DMA transfers . 16

3.1.4 Configuring the arbitration delay . 16

3.2 Supervising the DMA transfer . 16

3.2.1 Method 1: Current data counter . 16

3.2.2 Method 2: Flags/interrupts . 17

4 DMA programming examples . 18

4.1 Memory to peripheral transfer example: transferring
waveform data from Flash memory to DAC . 18

4.2 Peripheral to memory transfer example 1: transferring data
from the ADC to the RAM via multi channel acquisitions 19

4.3 Peripheral to memory transfer example 2: transferring data
from the USART to the RAM . 20

4.4 DMA transfer examples in low power mode . 21

4.4.1 DMA transfer example in Wait for event (WFE) mode 21

4.4.2 DMA transfer example in Wait for interrupt (WFI) mode 22

4.5 DMA transfer example with TIM1 in Burst mode 22

4.6 DMA channel priority transfer example . 23

4.6.1 Transfer example case 1: hardware priority configuration of DMA
channels . 23

4.6.2 Transfer example case 2: software priority configuration 1 of the DMA
channels . 24

AN3117 Contents

Doc ID 16846 Rev 4 3/28

4.6.3 Transfer example case 3: software priority configuration 2 of the DMA
channels . 25

5 Revision history . 27

List of tables AN3117

4/28 Doc ID 16846 Rev 4

List of tables

Table 1. Applicable products . 1
Table 2. Peripherals served by DMA and channel allocations (medium+ and high density devices). 7
Table 3. Peripherals served by DMA and channel allocations (medium density devices) 8
Table 4. DMA_lnit parameters . 13
Table 5. DMA request configuration functions from the communication peripheral side 14
Table 6. Communication peripheral DMA channel allocations . 14
Table 7. Timer DMA request sources and channel allocations. 15
Table 8. DMA flags . 17
Table 9. RAM buffers and timer registers at t = t0 . 23
Table 10. Example case1: priority configuration of the DMA channels. 23
Table 11. Results of example case 1 . 24
Table 12. Example case 2: priority configuration of the DMA channels . 24
Table 13. Results of example case 2 . 25
Table 14. Example case 3: priority configuration of the DMA channels . 25
Table 15. Results of example case 3 . 26
Table 16. Document revision history . 27

AN3117 List of figures

Doc ID 16846 Rev 4 5/28

List of figures

Figure 1. Bus system and peripherals supporting DMA. 9
Figure 2. Configuring the DMA peripheral to transfer data . 12
Figure 3. Transferring data from Flash memory to DAC . 18
Figure 4. Transferring data from the ADC to the RAM via multi channel acquisition 19
Figure 5. Transferring data from the USART to the RAM . 20
Figure 6. DMA transfer example in WFE mode . 21
Figure 7. DMA transfer example with TIM1 in Burst mode . 22
Figure 8. Example case 1: DMA channel data transfers as a function of time. 23
Figure 9. Example case 2: DMA channel data transfers as a function of time. 24
Figure 10. Example case 3: DMA channel data transfers as a function of time. 25

DMA controller description AN3117

6/28 Doc ID 16846 Rev 4

1 DMA controller description

The STM8L05xxx/15xxx, STM8L162xx, STM8AL31xx/3Lxx DMA controller is a system
peripheral used for transferring data between the local memory and the main memory
without the intervention of the central processor unit (CPU).

Once the DMA registers have been configured, large blocks of data can be transferred at
high speed between peripherals and a memory, or from one memory location to another.
Moving data with the DMA keeps CPU resources free for other operations and allows
computation and data transfer concurrency.

This is especially useful in real-time computing applications where not stalling the CPU
during concurrent operations is critical, and when data processing and transfer must be
performed in parallel to achieve sufficient throughput.

1.1 DMA main features
● Four DMA channels shared among several peripherals

● Three transfer directions

– Peripheral to memory

– Memory to peripheral

– Memory to memory

● Hardware and software channel priorities which allow arbitration

● Programmable number of “data to be transferred” (up to 255 data blocks)

● Capability to increment and decrement memory addressing mode

● Optional interrupt on half transactions and end of transactions

● Two transfer block sizes (8-bit and 16-bit data) which are programmable by software.

● Circular buffer management (auto-reload mode)

● Capability to suspend and to resume DMA transfers

● Capability to operate in Low power modes (Wait for interrupt or Wait for event)

Each channel is assigned to a unique peripheral (data channel) at a given time. Peripherals
connected to the same DMA channel (see Table 3) cannot be used simultaneously when the
DMA controller is active.

The DMA controller performs direct memory transfers by sharing the address and data bus
with the STM8 core. The DMA request may stop CPU access to the bus for some bus
cycles, for example, when the CPU and DMA are targeting the same destination (memory or
peripheral).

The arbitration between DMA and CPU is performed inside the STM8 core. Refer to the
STM8 core description for further information.

AN3117 DMA controller description

Doc ID 16846 Rev 4 7/28

1.2 Peripherals supported by DMA
The different peripherals supporting DMA transfers are listed in Table 2 and Table 3. The
peripherals served by the DMA and the bus system structure are represented in Figure 1.

Note: 1 ADC1 can be mapped on each of the four channels: depending on the
SYSCFG_RMPCR1[1:0] bits (please refer to the ADC chapter and the SYSCFG registers
chapter in the RM0031 reference manual). The default mapping is Channel 0.

2 TIM4 can be mapped on each of the four channels: depending on the
SYSCFG_RMPCR1[3:2] bits (please refer to the Timer chapter and the SYSCFG registers
chapter in the RM0031 reference manual). The default mapping is Channel 3.

3 DAC is not present in STM8L05xxx devices.

Table 2. Peripherals served by DMA and channel allocations (medium+ and high
density devices)

Peripheral
DMA Ch.0

request source
DMA Ch.1

request source
DMA Ch.2 request

source
DMA Ch.3 request

source

ADC1 (1) EOC EOC EOC EOC

SPI1 SPI1_RX SPI1_TX

I2C I2C_RX I2C_TX

USART1 USART1_TX USART1_RX

DAC
DAC_CH2TRIG

(Note 3)
DAC_CH1TRIG

(Note 3)

TIM2 TIM2_CC1 TIM2_U TIM2_CC2

TIM3 TIM3_U TIM2_CC1 TIM3_CC2

TIM1 TIM1_CC3 TIM1_CC4

TIM1_U

TIM1_CC1

TIM1_COM

TIM1_CC2

USART2 USART2_TX USART2_RX

USART3 USART3_TX USART3_RX

SPI2 SPI2_RX SPI2_TX

TIM5 TIM5_U TIM5_CC1 TIM5_CC2

AES AES_IN AES_OUT

TIM4(2) TIM4_U TIM4_U TIM4_U TIM4_U

DMA controller description AN3117

8/28 Doc ID 16846 Rev 4

Note: 1 ADC1 can be mapped on each of the four channels: depending on the
SYSCFG_RMPCR1[1:0] bits (please refer to the ADC chapter and the SYSCFG registers
chapter in the RM0031 reference manual). The default mapping is Channel 0.

2 TIM4 can be mapped on each of the four channels: depending on the
SYSCFG_RMPCR1[3:2] bits (please refer to the Timer chapter and the SYSCFG registers
chapter in the RM0031 reference manual). The default mapping is Channel 3.

Table 3. Peripherals served by DMA and channel allocations (medium density
devices)

Peripheral
DMA Ch.0

request source
DMA Ch.1 request

source
DMA Ch.2 request

source
DMA Ch.3

request source

ADC1 EOC EOC EOC EOC

SPI1 – RX TX –

I2C1 RX – – TX

USART1 – TX RX –

DAC – – – TRIG

TIM1 CC3 CC4 TIM1_U/CC1/COM CC2

TIM2 CC1 TIM2_U - CC2

TIM3 TIM3_U CC1 CC2 -

TIM4 TIM4_U TIM4_U TIM4_U TIM4_U

AN3117 DMA controller description

Doc ID 16846 Rev 4 9/28

Figure 1. Bus system and peripherals supporting DMA

1. Peripherals available on medium+ and high density devices only. AES available on STM8L162xx only.

2. Not available on STM8L05xxx devices.

The DMA is able to transfer data from the memory to a peripheral.

● For regular DMA channels (0, 1 and 2), data transfer can be from (or to) a part of the
RAM memory (see note1).

● For memory DMA channel (channel 3), 2 cases are available:

a) When a peripheral-to-memory or memory-to-peripheral transfer is performed, the
memory areas can be all addressable areas (see note 2).

b) When a memory-to-memory transfer is performed, the source memory areas are
all addressable areas (see note 2), while the destination memory areas are the
first 8 Kbytes (see note 3).

Note: 1 For medium and medium+ density devices, 2-Kbyte RAM memory is accessible (between
0x0000 and 0x07FF). 
For high density devices, 4-Kbyte RAM memory is accessible (between 0x0000 and
0x0FFF).

2 Source memory addressable areas are comprised between 0x0000 and 0xFFFF for
medium density devices and between 0x0000 and 0x17FFF for high density devices.

3 Destination memory addressable areas are comprised between 0x0000 and 0x1FFF, which
corresponds to the RAM and the Data EEPROM.

MS30984V1

STM8 core RAM memory

Program and
Flash memory

DMA1

 Ch.1

DMA1 rq1
DMA1 rq2
DMA1 rq3
DMA1 rq4

S
lave

S
lave

S
lave

M
aster

S
ystem

 bus

Peripheral bus

RAM bus

Program bus

DMA1 bus

Peripherals supporting DMA

ADC1 DAC

SPI1 I2C1 USART1

TIM1 TIM2 TIM3 TIM4

Ch.2

Ch.3

Ch.4

Arbiter

TIM5 1)

SPI2 1) USART2 USART3

AES
1) 1)

1)
2)

Performance considerations AN3117

10/28 Doc ID 16846 Rev 4

2 Performance considerations

The DMA controller performs direct memory transfers by sharing the address and data bus
with the STM8™ core. DMA requests may stop CPU accesses to the bus during some bus
cycles, when the CPU and the DMA are both targeting memory and peripheral. The
arbitration is performed inside the STM8 core.

In addition, the DMA controller can signal to the STM8 core that the current access must
have priority over the CPU. There are two ways to do this:

● The application specifies the timeout duration (number of wait cycles starting from the
latest request) by configuring TO[5:0] bits in the DMA_GCSR register. The DMA then
waits until this timeout has elapsed before requesting from the core a high priority
access to the bus.

● The application configures a channel so that it always takes priority over the CPU.

Refer to Section 4.6: DMA channel priority transfer example for more details.

2.1 DMA latency
Three operations are required to perform a DMA data transfer from peripheral to RAM (for
example SPI reception):

1. DMA request arbitration and address computation

2. Reading data from the peripheral (DMA source)

3. Writing loaded data in RAM (DMA destination)

When transferring data from RAM to peripheral (for example SPI transmission), the
operations are performed in the opposite order:

1. DMA request arbitration and address computation

2. Reading data from RAM memory (DMA source)

3. Writing data to the peripheral

The service time per channel for 8-bit data transfer, tS, is given by the equation below:

tS tA tACC tRAM+ +=

where:

● tA is the arbitration and address computation time

tA = 1 system clock cycle

● tACC is the peripheral access time

tACC = 1 system clock cycle

● tRAM is the RAM read or write access time

tRAM = 1 system clock cycle

As a result, the total latency for 8-bit data transfer is 3 system clock cycles.

AN3117 Performance considerations

Doc ID 16846 Rev 4 11/28

The service time per channel for 16-bit data transfer, tS, is given by the equation below:

tS tA tACC16 tRAM16+ +=

where:

● tA is the arbitration and address computation time

tA = 1 system clock cycle

● tACC16 is the peripheral access time

tACC16 = 2 system clock cycles

● tRAM16 is the RAM read or write access time

tRAM16 = 2 system clock cycles

As a result, the total latency for 16-bit data transfer is 5 system clock cycles.

When the DMA is idle, it compares the priorities of all pending DMA requests (software and
hardware priorities, in this order). The highest priority channel is served and the DMA jumps
to execute the second operation. While a channel is being served (operation 2 or 3
ongoing), no other channel can be served whatever its priority.

As a result, when a DMA transfer is on going, the DMA latency for the highest priority
channel is the sum of the ongoing transfer time (without the arbitration phase) and the
transfer time for the next DMA channel to be served (highest pending priority).

2.2 Data bus bandwidth
When the DMA has priority over the CPU, the maximum data transfer rate is obtained with
16-bit data transfers at 16 MHz. Two bytes are transferred in 5 clock cycles, which makes a
transfer rate of 6.4 Mbytes/s.

For 8-bit data transfers, the maximum rate is 1 byte in 3 clock cycles, that is transfer rate of a
5.3 Mbytes/s.

The data rate is reduced when the CPU takes priority over the DMA for RAM and peripheral
accesses.

Programming the DMA using the standard peripheral library AN3117

12/28 Doc ID 16846 Rev 4

3 Programming the DMA using the standard peripheral
library

The STM8L05x/STM8L15x/STM8L16x/STM8AL31x/STM8AL3Lx standard peripheral
library is an easy-to-use complete firmware package consisting of device drivers for all the
standard device peripherals. It is available for download, together with this application note,
from the STMicroelectronics website: http://www.st.com/mcu/familiesdocs-120.html.

Each device driver includes a set of functions covering full peripheral functionality. The DMA
driver provides the user with an easy way to configure and supervise the DMA peripheral.

3.1 Configuring the DMA peripheral to transfer data
To configure the DMA peripheral to transfer data, three mandatory steps (steps 1, 2, and 4)
and one optional step (step 3) are required. These steps are described in Figure 2. The user
can adapt these steps to suit his application.

Figure 2. Configuring the DMA peripheral to transfer data

ai17417

Step 1: Clock configuration

- Enable the DMA clock (CLK_PeripheralClockConfig(CLK_DMA1, ENABLE))

- Enable the PPP clock (CLK_PeripheralClockConfig(CLK_PPP, ENABLE))

Step 2: DMA configuration

- Configure the DMA channel (DMA_Init function)

- Enable the DMA channel (DMA_Cmd function)

- Enable the DMA interrupts (DMA_ITConfig function) (optional)

- Configure the timeout function (DMA_SetTimeOut function) (optional)

- Enable the global DMA function (DMA_GlobalCmd function)

Step 3: DMA channel assignment

- Change the PPP assignment to the DMA channel
(SYSCFG_REMAPDMAChannelConfig function)

Note: this step is optional. It can be used only for the ADC and TIM4

Step 4: PPP configuration

- Configure the PPP peripheral (PPP_Init and/or PPP_Config ...)

- Enable the DMA transfers and select the DMA request source (PPP_DMACmd function)

- Enable the PPP peripheral (PPP_Cmd function)

http://www.st.com/mcu/familiesdocs-120.html
http://www.st.com/mcu/familiesdocs-120.html

AN3117 Programming the DMA using the standard peripheral library

Doc ID 16846 Rev 4 13/28

Note: PPP refers to a peripheral that supports DMA transfers, such as ADC1, DAC, USARTx
(x=1...3), I2C, SPIx (x=1;2), TIMx(x=1...5) and AES.

3.1.1 Configuring the DMA channels

The DMA driver provides the DMA_Init() function which can be used to configure all DMA
channels.

DMA_Init(DMA_Channelx. /* select Channel to be configured */
DMA_Memory0BaseAddr,/* RAM memory Base Address */
DMA_PeripheralMemory1BaseAddr,

/* (case1) Peripheral base address for
memory to peripheral transfer
(case2) Memory base address for
memory to memory transfer (this
feature exist only in Channel 3 */

DMA_BufferSize, /* number of transactions */
DMA_DIR, /* Direction of the transfer */
DMA_Mode, /* simple or circular transfer. */
DMA_MemoryIncMode, /* memory increment mode */
DMA_Priority, /* software priority */
DMA_MemoryDataSize); /* number of transfers */

Table 4 describes the DMA_lnit function parameters and their corresponding parameter
types.

Note: Refer to the stm8l15x_dma.h file for more details about the DMA functions and their
parameters.

Table 4. DMA_lnit parameters

Parameter name Parameter type

DMA_Channelx DMA_Channel_TypeDef

DMA_Memory0BaseAddr uint16_t

DMA_PeripheralMemory1BaseAddr uint16_t

DMA_BufferSize uint8_t

DMA_DIR DMA_DIR_TypeDef

DMA_Mode DMA_Mode_TypeDef

DMA_MemoryIncMode DMA_MemoryIncMode_TypeDef

DMA_Priority DMA_Priority_TypeDef

DMA_MemoryDataSize DMA_MemoryDataSize_TypeDef

Programming the DMA using the standard peripheral library AN3117

14/28 Doc ID 16846 Rev 4

3.1.2 Selecting the channel request source

USARTx, SPIx, I2C1

Each communication peripheral (USARTx (x=1..3), SPIx (x=1,2) and I2C1) has two event
request sources: one for transmission (TX) and one for reception (RX).

Selection of the desired DMA request is performed by the driver of the communication
peripheral. Table 5 describes the DMA request configuration functions. Table 6 lists the
DMA channel allocation for the appropriate communication peripheral.

Note: Refer to the stm8l15x_spi.h, stm8l15x_usart.h, and stm8l15x_i2c.h files for further details
about the SPI_DMACmd(), USART_DMACmd(), and I2C_DMACmd() functions and their
parameters.

Digital-to-analog convertor (DAC)

A DAC channel DMA request is generated when a software or hardware trigger occurs while
the trigger feature and the DAC DMA feature are enabled (using DAC_Init() and the
DAC_DMACmd() functions). The DAC channel DMA request remains set until a DAC
channel DMA acknowledge comes from the DMA controller. The DAC DMA request
indicates that DAC data holding registers have been transferred to the DAC data output
registers.

Table 5. DMA request configuration functions from the communication peripheral
side

Peripheral Function Description

USARTx USART_DMACmd()
Enables or disables the USART DMA requests. The
USARTx (x= 1...3) TX or RX requests are selected
independently.

SPIx SPI_DMACmd()
Enables or disables the SPI DMA requests. The SPIx (x= 1,
2)TX or RX requests are selected independently.

I2C1 I2C_DMACmd()
Enables or disables the I2C DMA requests. Both I2C1 TX
and RX requests are selected.

Table 6. Communication peripheral DMA channel allocations

Peripheral RX request TX request

USART1 DMA Ch.2 DMA Ch.1

USART2 DMA Ch.3 DMA Ch.0

USART3 DMA Ch.2 DMA Ch.1

 SPI1 DMA Ch.1 DMA Ch.2

 SPI2 DMA Ch.0 DMA Ch.3

 I2C1 DMA Ch.0 DMA Ch.3

AN3117 Programming the DMA using the standard peripheral library

Doc ID 16846 Rev 4 15/28

Analog-to-digital convertor (ADC)

ADC requests can be activated or deactivated by programming the DMA control feature
(using the ADC_DMACmd() function).

As soon as an ADC end of conversion is detected, the ADC_EOC request is sent to the
DMA, informing it that data are ready to be transferred.

By default, ADC1 is connected to DMA channel 3. However, this assignment can be
remapped using the system configuration driver SYSCFG_REMAPDMAChannelConfig()
function.

Note: Refer to the stm8l15x_syscfg.h file for further details about the
SYSCFG_REMAPDMAChannelConfig() function and its parameters.

Timers

General procedure for all timers: DMA single mode

Timer DMA requests can be independently activated/deactivated by programming the DMA
control feature (using the TIMx_DMACmd() functions where x =1, 2, 3 or 4).

Table 7 describes the timer DMA request sources and channel allocations.

Specific TIM1 feature: DMA Burst mode

The DMA can work in Burst mode with TIM1. In this mode, the DMA can transfer a block of
data from/to a block of TIM1 registers. To configure Burst mode, use the STM8L15xxx TIM1
driver TIM1_DMAConfig() function.

Specific TIM4 feature: DMA channel affectation

For flexibility reasons, a DMA transfer from/to TIM4 can be remapped to any DMA channel
(0, 1, 2 or 3).

By default, TIM4 is connected to DMA channel 0, however, this assignment can be changed
using the system configuration driver SYSCFG_REMAPDMAChannelConfig() function.

Note: Refer to stm8l15x_syscfg.h file for further details about the
SYSCFG_REMAPDMAChannelConfig() function and its parameters.

Table 7. Timer DMA request sources and channel allocations

Timer Update request
Capture Compare requests COMmutation

requestCC1 CC2 CC3 CC4

TIM1 DMA Ch.2 DMA Ch.2 DMA Ch.3 DMA Ch.0 DMA Ch.1 DMA Ch.2

TIM2 DMA Ch.1 DMA Ch.0 DMA Ch.3

TIM3 DMA Ch.0 DMA Ch.1 DMA Ch.2

TIM4 All DMA channels

TIM5 DMA Ch.0 DMA Ch.2 DMA Ch.3

Programming the DMA using the standard peripheral library AN3117

16/28 Doc ID 16846 Rev 4

3.1.3 Enabling the DMA transfers

After configuring the DMA channels, the user should do the following:

1. Enable the corresponding DMA channel transfer (using the DMA_Cmd() function).

DMA_Cmd(DMA_Channelx, ENABLE);

2. Enable the global DMA channel transfers (using the DMA_GmobalCmd() function).

DMA_GlobalCmd(ENABLE);

Once the DMA request is enabled, the DMA transfer starts.

3.1.4 Configuring the arbitration delay

Arbitration between the DMA and CPU is performed inside the STM8 core. The DMA
controller can inform the STM8 core that the current access should have priority over the
CPU.

The DMA waits until the configured timeout (using the DMA_SetTimeOut() function) has
elapsed before requesting from the core a high priority access to the system bus. One
timeout duration is equal to one CPU cycle.

When the timeout delay is programmed to 0, it means there is no timeout. Once a request is
served, the DMA immediately asks the CPU for a high priority access to the system bus.

3.2 Supervising the DMA transfer

3.2.1 Method 1: Current data counter

A DMA transfer consists of a single read/write operation from/to a data block. It cannot be
interrupted.

A DMA transaction consists of a complete DMA read and write operation of a given number
of data blocks. They can be divided into single transfers.

A data block consists of either 8-bits or 16-bits of data depending on the size of the block
that has been programmed.

The number of transfers is indicated by the DMA_BufferSize parameter that the user
chooses during DMA channel initialization (using the DMA_Init() function).

The DMA driver provides a function which returns the current data counter.

By reading the current data counter, using the DMA_GetCurrDataCounter() function, the
user learns the number of remaining transfers.

AN3117 Programming the DMA using the standard peripheral library

Doc ID 16846 Rev 4 17/28

3.2.2 Method 2: Flags/interrupts

The DMA peripheral provides two flags for each channel which are shown in Table 8.

If enabled as interrupt (using the DMA_ITConfig() function), each of the above flags can
generate an interrupt which alerts the user of the transaction status (using the
DMA_GetFlagStatus() / DMA_GetITStatus() functions). As both flags are cleared by
software, they must be cleared after their corresponding channel transfer (using
DMA_ClearFlag() / DMA_ClearITPendingBit() functions).

Table 8. DMA flags

Flag Description

HTIF Half transfer interrupt flag

TCIF Transfer complete interrupt flag

DMA programming examples AN3117

18/28 Doc ID 16846 Rev 4

4 DMA programming examples

All the examples described below use the STM8L05x/STM8L15x/STM8L16x/STM8AL31x/
STM8AL3Lx standard peripheral library and are provided in the firmware package
associated with this application note.

4.1 Memory to peripheral transfer example: transferring
waveform data from Flash memory to DAC
This example uses the DAC peripheral to generate a signal (stored in a Flash memory
buffer) using DMA memory to peripheral mode.

Figure 3. Transferring data from Flash memory to DAC

The DMA event is provided by the external hardware DAC trigger (TIM4_TRGO). Each time
the external DAC trigger occurs, the DMA transfers data from the Flash memory buffer to the
DAC data holding registers.

Since the DMA is configured in circular mode, the DAC is triggered periodically by TIM4.
The DMA transfer from the Flash memory buffer to the DAC is repeated indefinitely.

The code for this example is provided in the STM8L05x/STM8L15x/STM8L16x/STM8AL31x/
STM8AL3Lx standard peripheral library package.

Flash m
em

ory

DAC

DMA1

Channel 3
Data 01 L
Data 02 H

DAC_RDHRH
DAC_RDHRL

D
AC

 request

Data n H

Data 02 L

Data n L

DMA
source

DMA
destination DAC_OUT

DAC_trigger

System
busProgram bus

Peripheral bus

ai17418

Data 01 H DMA1 bus

AN3117 DMA programming examples

Doc ID 16846 Rev 4 19/28

4.2 Peripheral to memory transfer example 1: transferring data
from the ADC to the RAM via multi channel acquisitions
This example uses the ADC peripheral to convert two ADC input voltage channels in scan
mode using DMA.

Figure 4. Transferring data from the ADC to the RAM via multi channel acquisition

The DMA event is provided by the ADC_EOC event. Each time the ADC completes the
conversion of the first input channel, it sends the end of conversion request to the DMA. As
soon as the DMA receives the request, it transfers the ADC data register value to the RAM
buffer (position 01). During this time, the ADC completes the conversion of the second input
channel and sends another end of conversion request to DMA. This request enables the
transfer of the ADC data register values to the RAM buffer (position 02).

Since the ADC is configured in continuous mode and the DMA is configured in circular
mode, ADC acquisition and transfer to the RAM are repeated indefinitely.

The code for this example is provided in the STM8L05x/STM8L15x/STM8L16x/STM8AL31x/
STM8AL3Lx standard peripheral library package.

R
A

M
 m

em
ory

ADC

DMA1

Data 01 L
Data 02 H

ADC_DRH

A
DC

 request

Data 02 L

DMA
destination

ADC AIN_3

System
busRAM bus

Peripheral bus

DMA
source ADC_DRL

Data 01 H DMA1 bus

ADC AIN_24

P
eripheral bus

ai17419b

Channel 0

DMA programming examples AN3117

20/28 Doc ID 16846 Rev 4

4.3 Peripheral to memory transfer example 2: transferring data
from the USART to the RAM
This example uses the DMA peripheral in circular mode to transfer data from the USARTx
peripheral to the RAM memory. When a character is received by USARTx, it is transferred to
a specific RAM buffer using the DMA.

Figure 5. Transferring data from the USART to the RAM

The DMA event is provided by the USART_RX.

The code for this example is provided in the STM8L05x/STM8L15x/STM8L16x/STM8AL31x/
STM8AL3Lx standard peripheral library package.

Note: USART DMA Channel RX can be DMA channel 2 or DMA channel 3 respectively for
USART1 and USART2.

R
A

M
 m

em
ory

USARTx

USART DMA1

hannelC RX

USARTx_DR

DMA
destination

System
busRAM bus

Peripheral bus

DMA
source

ai17420c

Data 01 DMA1 bus

P
eripheral bus

Data 02
Data 03
Data 04 U

S
A

R
Tx request

AN3117 DMA programming examples

Doc ID 16846 Rev 4 21/28

4.4 DMA transfer examples in low power mode

4.4.1 DMA transfer example in Wait for event (WFE) mode

This example uses the DMA peripheral in circular mode to transfer data from the USARTx
peripheral to the RAM memory. When the user sends a character using USARTx, it is
transferred to a specific RAM buffer using the DMA.

Figure 6. DMA transfer example in WFE mode

The DMA event is provided by the USARTx_RX.

After configuring USART DMA Channel RX to transfer 4 bytes of data from the USARTx
data register to a RAM buffer, the MCU enters WFE mode.

As long as no “DMA transfer complete” event has occurred, the MCU is in WFE mode. As
soon as the “DMA transfer complete” event occurs, the MCU returns to Run mode and
executes a specific action (activate/deactivate LEDs) depending on the data in the RAM
buffer. The MCU is then returned to WFE mode by software. Since USART DMA Channel
RX is configured in circular mode, the same procedure is repeated indefinitely.

The code for this example is provided in the STM8L05x/STM8L15x/STM8L16x/STM8AL31x/
STM8AL3Lx standard peripheral library package.

Note: USART DMA Channel RX can be DMA channel 2 or DMA channel 3 respectively for
USART1 and USART2.

GPIO

STM8 core

R
A

M
 m

em
ory

USARTx

Channel RX

U
SAR

Tx R
X

request

DMA
source

System
bus

DMA1 bus

ai17421c

char 01
char 02
char 03
char 04

DMA
destination

USART DMA1

USARTx_DR

RAM bus

Peripheral bus

LEDs

Peripheral bus

DMA programming examples AN3117

22/28 Doc ID 16846 Rev 4

4.4.2 DMA transfer example in Wait for interrupt (WFI) mode

This example uses the DMA peripheral to transfer data in exactly the same way as the WFE
example. The difference is that the treatment (LED activation/deactivation depending on the
data in the RAM buffer) is performed by the DMA transfer complete interrupt routine, without
returning to the main program.

The code for this example is provided in the STM8L05x/STM8L15x/STM8L16x/STM8AL31x/
STM8AL3Lx standard peripheral library package.

4.5 DMA transfer example with TIM1 in Burst mode

Figure 7. DMA transfer example with TIM1 in Burst mode

This example uses the DMA peripheral in Burst mode to transfer data from the RAM
memory to TIM1. TIM1 is configured in pulse width modulation (PWM) output mode and
DMA channel 2 is configured to transfer data from the RAM memory to the TIM1 registers
(TIM1_PSCRH, TIM1_PSCRL, TIM1_ARRH, TIM1_ARRL, TIM1_RCR, TIM1_CCR1H,
TIM1_CCR1L). The goal of this data transfer is to update simultaneously TIM1 channel 1
frequency and duty cycle when an EXTI event triggered by the key button occurs.

The code for this example is provided in the STM8L05x/STM8L15x/STM8L16x/STM8AL31x/
STM8AL3Lx standard peripheral library package.

R
A

M
 m

em
ory

TIM1

DMA1

Channel 2

TIM1_DMAR

DMA
source

System
busProgram bus

Peripheral bus

DMA
destination

ai17422

Data CR1 DMA1 bus
Data CR2

Data SMCR

Data ETR TIM
1 C

O
M

 request

Data OISR

P
eripheral bus

TIM1_CR1

TIM1_CR2

TIM1_SMCR

TIM1_ETR
...

TIM1_OISR

AN3117 DMA programming examples

Doc ID 16846 Rev 4 23/28

4.6 DMA channel priority transfer example
In the example below, the priority of the DMA channels changes which has an impact on the
transfers. All transfers are 8 bits in size and have a length of 1.

The DMA channels are configured to perform the following transfers:

● DMA channel 0: Transfer A: from RAM buffer 2 to TIM3 register

● DMA channel 1: Transfer B: from RAM buffer 1 to TIM2 register

● DMA channel 2: Transfer C: from TIM1 register to RAM buffer 1

● DMA channel 3: Transfer D: from TIM4 register to RAM buffer 2

Before starting any transfer, the RAM buffers and timer registers are initialized as shown in
Table 9.

4.6.1 Transfer example case 1: hardware priority configuration of DMA
channels

In this example, the priority of the channels is maintained at its default configuration: the
hardware priority acts and the software priority stays the same for all channels.

Figure 8. Example case 1: DMA channel data transfers as a function of time

Table 9. RAM buffers and timer registers at t = t0

Time RAM Buffer1 TIM1 ARRL TIM2 ARRL TIM3 ARRL TIM4 ARR RAM Buffer2

 t0 0x00 0x11 0x22 0x33 0x44 0x55

Table 10. Example case1: priority configuration of the DMA channels

DMA channel HW priority SW priority

Channel 0 Very high Low

Channel 1 High Low

Channel 2 Medium Low

Channel 3 Low Low

time
t0 t1 t2 t3 t4

ai17423

Hardware priority

Channel 0

Channel 1

Channel 2

Channel 3

Transfer A Transfer B Transfer C Transfer D

DMA programming examples AN3117

24/28 Doc ID 16846 Rev 4

Transfer results are shown in Table 11.

4.6.2 Transfer example case 2: software priority configuration 1 of the DMA
channels

In this example, the software priority of the channels is updated as shown in Table 12.

Figure 9. Example case 2: DMA channel data transfers as a function of time

Table 11. Results of example case 1

Time RAM Buffer1 TIM1 ARRL TIM2 ARRL TIM3 ARRL TIM4 ARR RAM Buffer2

 t0 0x00 0x11 0x22 0x33 0x44 0x55

 t1 - - - 0x55 - -

 t2 - - 0x00 - - -

 t3 0x11 - - - - -

 t4 - - - - - 0x44

Result 0x11 0x11 0x00 0x55 0x44 0x44

Table 12. Example case 2: priority configuration of the DMA channels

DMA channel HW priority SW priority

Channel 0 Very high Low

Channel 1 High High

Channel 2 Medium Very high

Channel 3 Low Medium

time
t0 t1 t2 t3 t4

ai17424

Hardware priority

Channel 0

Channel 1

Channel 2

Channel 3

Transfer C Transfer B Transfer D Transfer A

AN3117 DMA programming examples

Doc ID 16846 Rev 4 25/28

Transfer results are shown in Table 13.

4.6.3 Transfer example case 3: software priority configuration 2 of the DMA
channels

In this example, the software priority of the channels is updated as shown in Table 14

Figure 10. Example case 3: DMA channel data transfers as a function of time

Table 13. Results of example case 2

Time RAM Buffer1 TIM1 ARRL TIM2 ARRL TIM3 ARRL TIM4 ARR RAM Buffer2

 t0 0x00 0x11 0x22 0x33 0x44 0x55

 t1 0x11 - - - - -

 t2 - - 0x11 - - -

 t3 - - - - - 0x44

 t4 - - - 0x44 - -

Result 0x11 0x11 0x11 0x44 0x44 0x44

Table 14. Example case 3: priority configuration of the DMA channels

DMA channel HW priority SW priority

Channel 0 Very high Medium

Channel 1 High Very high

Channel 2 Medium High

Channel 3 Low Low

time
t0 t1 t2 t3 t4

ai17425

Hardware priority

Channel 0

Channel 1

Channel 2

Channel 3

Transfer B Transfer C Transfer A Transfer D

DMA programming examples AN3117

26/28 Doc ID 16846 Rev 4

Transfer results are shown in Table 15.

The code for this example is provided in the STM8L05x/STM8L15x/STM8L16x/STM8AL31x/
STM8AL3Lx standard peripheral library package.

Table 15. Results of example case 3

Time RAM Buffer1 TIM1 ARRL TIM2 ARRL TIM3 ARRL TIM4 ARR RAM Buffer2

 t0 0x00 0x11 0x22 0x33 0x44 0x55

 t1 - - 0x00 - - -

 t2 0x11 - - - - -

 t3 - - - 0x55 - -

 t4 - - - - - 0x44

Result 0x11 0x11 0x00 0x55 0x44 0x44

AN3117 Revision history

Doc ID 16846 Rev 4 27/28

5 Revision history

Table 16. Document revision history

Date Revision Changes

01-Feb-2010 1 Initial release

10-Sep-2010 2

Added “high density devices” information.
Added Table 2: Peripherals served by DMA and channel allocations
(medium+ and high density devices) on page 7
Added one paragraph below Figure 1: Bus system and peripherals
supporting DMA on page 9
Modified Section 3.1.1: Configuring the DMA channels on page 13
Added “high density devices” peripherals in Table 5: DMA request
configuration functions from the communication peripheral side on
page 14, Table 6: Communication peripheral DMA channel
allocations on page 14
Modified Figure 4: Transferring data from the ADC to the RAM via
multi channel acquisition on page 19, Figure 5: Transferring data
from the USART to the RAM on page 20, Figure 6: DMA transfer
example in WFE mode on page 21
Modified addresses where codes are available in Section 4.4.1: DMA
transfer example in Wait for event (WFE) mode on page 21,
Section 4.5: DMA transfer example with TIM1 in Burst mode on
page 22 and Section 4.6.3: Transfer example case 3: software
priority configuration 2 of the DMA channels on page 25

Modified Section : Introduction
Modified title of Table 2: Peripherals served by DMA and channel
allocations (medium+ and high density devices)
Modified Table 3: Peripherals served by DMA and channel
allocations (medium density devices)
Modified footnote under Figure 1: Bus system and peripherals
supporting DMA
Modified note under Figure 1: Bus system and peripherals
supporting DMA
Modified title of Section 3.1.2: Selecting the channel request source

21-Sep-2012 3
Added STM8L05xx products.
Added Table 1: Applicable products.

21-Nov-2012 4 Added STM8AL31xx and STM8AL3Lxx products.

AN3117

28/28 Doc ID 16846 Rev 4








Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Table 1. Applicable products
	1 DMA controller description
	1.1 DMA main features
	1.2 Peripherals supported by DMA
	Table 2. Peripherals served by DMA and channel allocations (medium+ and high density devices)
	Table 3. Peripherals served by DMA and channel allocations (medium density devices)
	Figure 1. Bus system and peripherals supporting DMA

	2 Performance considerations
	2.1 DMA latency
	2.2 Data bus bandwidth

	3 Programming the DMA using the standard peripheral library
	3.1 Configuring the DMA peripheral to transfer data
	Figure 2. Configuring the DMA peripheral to transfer data
	3.1.1 Configuring the DMA channels
	Table 4. DMA_lnit parameters

	3.1.2 Selecting the channel request source
	Table 5. DMA request configuration functions from the communication peripheral side
	Table 6. Communication peripheral DMA channel allocations
	Table 7. Timer DMA request sources and channel allocations

	3.1.3 Enabling the DMA transfers
	3.1.4 Configuring the arbitration delay

	3.2 Supervising the DMA transfer
	3.2.1 Method 1: Current data counter
	3.2.2 Method 2: Flags/interrupts
	Table 8. DMA flags

	4 DMA programming examples
	4.1 Memory to peripheral transfer example: transferring waveform data from Flash memory to DAC
	Figure 3. Transferring data from Flash memory to DAC

	4.2 Peripheral to memory transfer example 1: transferring data from the ADC to the RAM via multi channel acquisitions
	Figure 4. Transferring data from the ADC to the RAM via multi channel acquisition

	4.3 Peripheral to memory transfer example 2: transferring data from the USART to the RAM
	Figure 5. Transferring data from the USART to the RAM

	4.4 DMA transfer examples in low power mode
	4.4.1 DMA transfer example in Wait for event (WFE) mode
	Figure 6. DMA transfer example in WFE mode

	4.4.2 DMA transfer example in Wait for interrupt (WFI) mode

	4.5 DMA transfer example with TIM1 in Burst mode
	Figure 7. DMA transfer example with TIM1 in Burst mode

	4.6 DMA channel priority transfer example
	Table 9. RAM buffers and timer registers at t = t0
	4.6.1 Transfer example case 1: hardware priority configuration of DMA channels
	Table 10. Example case1: priority configuration of the DMA channels
	Figure 8. Example case 1: DMA channel data transfers as a function of time
	Table 11. Results of example case 1

	4.6.2 Transfer example case 2: software priority configuration 1 of the DMA channels
	Table 12. Example case 2: priority configuration of the DMA channels
	Figure 9. Example case 2: DMA channel data transfers as a function of time
	Table 13. Results of example case 2

	4.6.3 Transfer example case 3: software priority configuration 2 of the DMA channels
	Table 14. Example case 3: priority configuration of the DMA channels
	Figure 10. Example case 3: DMA channel data transfers as a function of time
	Table 15. Results of example case 3

	5 Revision history
	Table 16. Document revision history

