W life.augmented AN4430

Application note

Designing an NFC Android Application for M24SR and M24LR devices

February 2014

Introduction

This application note explains how to build an Android application to be associated with
STMicroelectronics NFC products belonging to M24SR and MLR series.

This application note is a guide to implement a customer dedicated android application to
exchange data between android devices and ST NFC Dynamic tag or ST NFC transceiver;
it's mostly based on literature accessible from web and more specifically from Android
developer web site.

Before demonstrating how to implement a simple NFC android application, a short Android
Application overview is done by highlighting main Android application concepts. In a second
part an introduction to NFC Application reader is done by using the NFC android API. The

last section explains how to implement android solution to use enhanced features from ST
products.

DoclD025722 Rev 1 1/42

www.st.com

http://www.st.com

Contents AN4430

Contents
€] L7 7 6
Reference Documentsttt iiinnaannnnnnennns 7
1 Android Application Overview iiiiiinnnnnnnn 8
1.1 About Android Operating System 8
1.2 Android System: Component architectureview 8
1.21 Android architecture overview 8
1.2.2 Android APl . . 9
1.3 Android Application Introduction o L. 10
1.3.1 Applicationfundamentals L 10
1.3.2 Application components 11
1.3.3 Intents and Intentfilters 11
2 How to create an Android Application for ST dual memories 16
2.1 Development environment 16
211 Prerequisites e 16
2.2 NFC Android APl 17
2.21 Android.nfc Package 17
2.3 Create anew projectwitheclipse 19
2.4 Setup Android Manifestfile 21
241 NFC permission i 21
242 NFCfeature 21
243 Intent filtering settings 21
2.5 Android NFC Activities implementation 23
251 Import NFC packages, 23
252 NFC Adapter and foreground Dispatch 24
253 Intents and NFC objects treatment 24
254 Final AndroidManifest.xmlfile 27
255 Final MainActivity classfile 28
3 How to use ST NFC package to implement HW enhanced features .. 30
3.1 Enhanced M24SR feature use case — CCFile addressing 30
3.2 Enhanced M24LR features Study — Read / Write 15693 Tag 36

2/42 DoclID025722 Rev 1 ‘Yl

AN4430 Contents

4 Revision history i i ittt e eennns 41

3

DoclD025722 Rev 1 3/42

List of tables AN4430

List of tables
Table 1. Document revision history 41
4/42 DoclID025722 Rev 1 ‘Yl

AN4430

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

3

Android diagram 9
Android revision with corresponding APl levels 10
Activity Java skeleton 12
Activity life CyCle 13
General structure manifest 15
Tag Dispatch Strategy e 19
Start Project Wizard 19
New Android Application Wizard e 20
New Android Application Settings. 20

DoclD025722 Rev 1 5/42

Glossary AN4430

Glossary

IDE: Integrated Development environment
ADT: Android Development Tools

NFC: Near Field Communication

APK: android application package

ADB: Android Debug Bridge

AAPT: Android Asset Packaging Tool

Ul: User Interface

RTD: Record Type Definition

RATS: Request For Answer To Select

PPS: Protocol and Parameter Selection

6/42 DoclD025722 Rev 1

3

AN4430 Reference Documents

Reference Documents

ST-M24SR products datasheets from www.st.com
ST-M24LR products datasheets from www.st.com
Android reference web site

ISO/IEC 7816-4: Identification cards — Integrated circuit Cards - Organization, security and
commands for interchange

ISO/IEC 14443: Identification cards -- Contactless integrated circuit cards
ISO/IEC 15693: Contactless integrated circuit cards -- Vicinity cards

3

DoclD025722 Rev 1 7/42

http://www.st.com
http://www.st.com

Android Application Overview AN4430

1.1

1.2

1.2.1

8/42

Android Application Overview

About Android Operating System

“Android is an operating system based on the Linux kernel, and designed primarily for
touchscreen mobile devices such as smartphones and tablet computers. Initially developed
by Android, Inc., which Google backed financially and later bought in 2005, Android was
unveiled in 2007 along with the founding of the Open Handset Alliance: a consortium of
hardware, software, and telecommunication companies devoted to advancing open
standards for mobile devices. The first publicly available smartphone running Android, the
HTC Dream, was released on October 22, 2008.”@)

Android System: Component architecture view

Android architecture overview

Basically android has the following layers (see Figure 1)
e Application written in java executing in Dalvik — (the aim of the current application note)
e Framework services and libraries written mostly in java
e Native library, daemons and services written in C or C++
e The Linux kernel which includes as every operating system:
— Drivers for hardware,
— Networking,
— File system
— Inter-process-communication

a. Definition from Wikipedia

3

DoclD025722 Rev 1

AN4430 Android Application Overview
Figure 1. Android diagram
APPLICATIONS
Contacts Phone
APPLICATION FRAMEWORK
= Telephony Resource Locateon Metification
et L I"‘InlEm;g_Ef Manager H:lnagerl Manager
LIBRARIES ANDROID RUNTIME |
Surface Manager Media SQLite Core Libraries i
Framework
|
OpenGL | ES FreeType WebKit Michine
SGL SSL libe —_——
LINUX KERMNEL
Keypad Driver WiFi Driver f?rﬁr?elss MHI_F:;‘:E:EM
NFC features can easily be mapped on this architecture.
NFC phone has to be NFC capable with an HW NFC chips controlled by a NFC driver
provided by the chip constructor. This driver is running in the Linux kernel with super user
rights. Upon this driver a NFC stack also provided by the chip constructor or by the phone
constructor located in libraries layers ensures interfacing between driver low level layer and
android stack which implements the android API in application framework and more
specifically the NFC Android APl overviewed later on in this application note.
1.2.2 Android API

3

Android API is the upper software layer exposed to the developer. This API is based on the
core Java APIs and consists of a set of packages defining classes that ease the use of
android feature and the device components. This API is built with multiple packages like:

e Widget — Ul components,

e Telephony — cell network, call, GSM, CDMA
e Media — audio, video

e Content — content providers,

e Database — SQLLite

e XML - SAX, pull parser

e Hardware — camera, sensor, usb, nfc

[]

As Android is in constant development phase, packages are still improved by the android
consortium, new features are added. Therefore, as some feature appears, API version

DoclD025722 Rev 1 9/42

Android Application Overview AN4430

defined a set of available features, meaning that some features are not available for lower
API revision. As example NFC functionality appears at APl level 9 restricted to NDEF
message access and has been improved since this API revision. Figure 2 Android revision
with corresponding API levels shows the whole android revision and the associated API
levels.

Figure 2. Android revision with corresponding API levels

Android SDK Manager - E@ﬂ—hj

Packages Tools

SDK Path: Ch\dev\adt-bundle-windows-x86_64-20130917\=dk
Packages

MName APL Rev. Status
Tools
. Android 4.4 (AP119)
o Android 4.3 (AP118)
. Android 4.2.2 (API17)
" Android 4.1.2 (AP116)
. Android 4.0.3 (API15)
" Android 4.0 (AP114)
. Android 3.2 (API13)
o Android 3.1 (API12)
. Android 3.0 (API11)
" Android 2.3.3 (AP110)
.2 Android 2.2 (API8)
2 Android 2.1 (APIT)
2 Android 1.6 (API4)
2 Android 1.5 (API 3)
Extras

4 1] 3

Show: |¥|Updates/Mew |¥|Installed Obsolete Select Mew or Updates Install & packages...
Sort by: @ API level Repository Deselect All Delete & packages...

V) €
w

Done loading packages.

1.3 Android Application Introduction

1.3.1 Application fundamentals

Android application is primarily written in java programming language. Source code is
converted to java class files by the Java compiler. Then, Android SDK converts these Java
classes into optimized Dalvik executable file(s) (.dex suffix). Using the AAPT tool, Dex files
and application project related resources are packaged into an APK: android package,
which is an archive file with an “.apk” suffix. The APK generated file self contains all the
contents of an android application. The resulting APK file can be deployed to an Android
device by either the ADB tool in developing step or by the google android store once the
final application is published in release mode. The APK package is used by the Android
powered devices to install the application with a unique user and group ID. Each application
file is private to this generated user and other applications cannot access this file.

When launched by the operating system, the application runs, in its own process, upon its
own Dalvik virtual machine and is totally isolated from other running applications. In this
way, each application has access only to the components that it requires to do its work.
However, applications can share data between themselves either by giving the same Linux

10/42 DocID025722 Rev 1 ‘Yl

AN4430

Android Application Overview

1.3.2

1.3.3

3

user ID to the application which needs to share data like a file, or by requesting permission
to access device data such as camera’s data, SMS data, and so on. Data request is done
via an Android component that handles the sharing of the data as a service or a content
provider. The permissions are granted at the installation time by the android permission
system. Permission can be automatically granted, rejected or asked to the user. By this way
the android system implements the principle of least privilege.

Application components

Android applications are written using application components. Application Android strategy
is to be able to share application resources among all application installed on an Android
device. In this way application can publish its resources so they can be used by other
applications. Android system allows to automatically instantiate the Java object owner of the
desired component. This approach implies in a first hand that application simply request to
Android system to start the desired component within the application that contain it, and in
the second hand Android applications don’t have an single entry point but rather get
components that the system can instantiate on demand.

Android components can be categorized in 4 main families:
e Activities

e Services

e Broadcast receivers

e Content providers

The 3 last families are shortly described in this application note as they are note deeply
used to demonstrate the NFC implementation use case.

Those components are asynchronously activated by messages called intents. On intent,
Android system finds the right component to respond to it and instantiates it if necessary by
a request from a content resolver method call.

Intents and Intent filters

Intent overview

Intent is a messaging object used to request an action from a component to other one and
then to facilitate communication between components. Intents are used on Android System
to:

e Start an activity

e Start a service

. Deliver a broadcast

Structure of intent implicitly defines the two intent types:

e Explicit intent: specifies the component to start by name. Typically use to start a
component from the same application as the component caller.

e Implicit intent: declares a general action to perform without giving a component to start.
Caller doesn’t know the name of the capable component. Android system is then in
charge to find the appropriate component able to answer the caller request. Android
system looks for intent listed in the component’s intent filters declares in the manifest
file. If several components are identified, Android System displays a selectable list to
let the final user to decide which component to use.

DoclD025722 Rev 1 11/42

Android Application Overview AN4430

12/42

Intent filters

Intent filters are xml structured definition stored with the component declaration in the
android manifest file (detailed later on in this application note). This structure is attached to a
component definition and declares the intent(s) the component is able to receive to perform
action. By this way, user makes possible for other application to start an activity component
with a defined intent. Likewise, if component activity declaration doesn’t have an intent filter
declaration the activity is only start from its application owner.

Activities

Activity is a component belonging to an application and described in the android manifest of
the application it belongs to. The activity may provide a (partial) screen with which the user
can interact with. Application is usually composed by several activities that are loosely
bound to each other. One activity is declared as the main activity which launched on the
application start. This main property is declared in the application manifest.xml file.

Each activity from the started application can start other activity, which present a new screen
to the user. Every time a new activity is started it is put in a stack and the previous one put in
stopped state while the Android system keeps the activity in a stack abiding to the basic
“last in, first out” stack mechanism also called back stack. When the current activity is
finished (action ended, back button pressed) it is popped from the back stack and destroy,
the activity on the top of the back stack is then resumed.

Activities life cycle

Activity life cycle is handled with callback methods that the system calls when the activity
transition between various states. Each activity developer implements must inherit for
Activity class (or an existing subclass of it).

Figure 3. Activity Java skeleton

public class ExampleActivity extends Activity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
// The activity is being created.
}
@Override
protected void onStart () {
super.onStart () ;
// The activity is about to become visible.
}
@Override
protected void onResume () {
super.onResume () ;
// The activity has become visible (it is now "resumed") .
}
@Override
protected void onPause () {
super.onPause () ;
// Another activity is taking focus (this activity is about to be
"paused") .
}
@Override
protected void onStop () {
super.onStop () ;
// The activity is no longer visible (it is now "stopped")
}
@Override
protected void onDestroy () {
super.onDestroy () ;
// The activity is about to be destroyed.

3

DoclD025722 Rev 1

AN4430

Android Application Overview

3

Figure 4 is an activity skeleton to show which callback method set has to be implemented to

handle the fundamental lifecycles methods. Taken together, those callbacks define the

entire life cycle of an activity managed by the android system. The same figure shows that
developer can manage three different nested loops in the activity life cycle

e Entire lifetime: Bound within the onCreate() and onDestroy() calls, activity should setup
or release resources on onCreate() and onDestroy() system call respectively.

e Visible lifetime: Bound within onStart() and onStop() calls, user can see the activity on-
screen and the required resources by the activity have to be maintains.

e Foreground lifetime: Bound within the onResume() and onPause() calls, user can

interact with the activity’s screen.

Figure 4. Activity life cycle

User navigates
to the activity

S I

I" App process |
\ Killed .

1

need memory

Apps with higher priority

Activity
launched

}

onCreate()

.

onStart() B —

}

onResumes() -

.

{ Activity
running
—l— 4
Another activity comes
nto the foreground

v

|
The activity is
no longer visible

v

User returns
to the activity

onPausel))

onRestart()
'

User navigates
to the activity

J

onStop()

I
The activity is finishing or
being destroyed by the system

v

onDestroy()

DoclD025722 Rev 1

13/42

Android Application Overview AN4430

14/42

Activity screen

Activity can directly managed is own graphic interface by implementing graphical object in a
static way. To provide more flexibility, android propose a dedicated graphic object called
Fragment. Fragment represents a behavior or a portion of graphic user interface in an
activity. Multiple fragments can be combined in a single activity to facilitate reuse, screen
adaption. Fragment is always embedded in an activity and follows the activity lifecycle.

Broadcast receiver

Broadcast receiver is a component in charge to respond to the system-wide broadcast
announcement like a screen turn off message, a low battery message and so on.

Services

Services are application components which perform long-running operation in background
without providing any user interface. Service runs while the application is still alive
independently the user switches to other activity (from the same application) to other
application.

Content providers

Due to security system used by Android system, Content Providers is the component class
in charge to provide mechanisms for defining data security. They are standard interface to
ensure data sharing between components which not run in the same process. Application
can manipulate its own set of data and store it in file system, SQLite data base or external
storage like SD. Other application can access and modify this set of data by querying it
through the content provided implemented by the data owner application.

Content provider is a part of an application and is in charge to centralized data access from
other foreign components. It can also provide its own Ul for working with the data it
provides. To get deeper understanding on content provider, reader can refer itself to
literature from web and more specifically on ‘calendar provider’ and ‘contact provider’ from
Android developer web site.

Application Manifest

Associated to every android application, developer must join an xml application descriptor
file call AndroidManifest.xml. This file located in the application root directory gives a Java
package name for the application used as a unique identifier for the application. Manifest file
lists the permission the application requires to do its job and the minimum android API level
the application requires to be fully functional. It also describes components (ie. Services,
activity, broadcast receiver, content provider) belonging to the application. Each component
declaration gets a java class name which implements the component, a set of properties like
a list of intent messages handled by the component.

Structure of the manifest file

Manifest file is a hierarchy file as show in General structure manifest figure where child
hierarchy must be followed. Element at the same level is generally not ordered.

As manifest file is a key file in android application conception it's recommended the reader
refers to the android manifest documentation.

3

DoclD025722 Rev 1

AN4430

Android Application Overview

3

Figure 5. General structure manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest>

<uses-permission />
<permission />
<permission-tree />
<permission-group />
<instrumentation />
<uses-sdk />
<uses-configuration />
<uses-feature />
<supports-screens />
<compatible-screens />
<supports-gl-texture />

<application>

<activity>
<intent-filter>
<action />
<category />
<data />
</intent-filter>
<meta-data />
</activity>

<activity-alias>
<intent-filter> . . . </intent-filter>
<meta-data />

</activity-alias>

<service>
<intent-filter> . . . </intent-filter>
<meta-data/>

</service>

<receiver>
<intent-filter> . . . </intent-filter>
<meta-data />

</receiver>

<provider>
<grant-uri-permission />
<meta-data />
<path-permission />

</provider>

<uses-library />

</application>

</manifest>

DoclD025722 Rev 1 15/42

How to create an Android Application for ST dual memories AN4430

2

2.1

211

16/42

How to create an Android Application for ST dual
memories

Development environment

In order to implement an android application, developer has to setup his own development
environment to be able to edit the source code, build it with the right tool chain, and flash the
application to the embedded targeted system (i.e. the mobile phone running the android
operating system)

Prerequisites

Operating system computer from where the application is generated must belong to the
following families:

e Windows XP (32 bits), Windows Vista (32 to 64 bits), Windows 7 (32 to 64 bits)
e Mac OS X 10.5.8 or later (restricted to x86 solutions)
e Ubuntu (8.04 or later) Linux (with GNU C lib 2.7 or later)

Development environment:

e Eclipse 3.6.2 (Helios) or greater with included Eclipse JDT plugin
e Java Development Kit 6

e Android SDK: Provides to the android application developers the Android API libraries
and tools necessary to build, test, trace and debug applications. Here is the list of the
main repositories in android SDK:

— SDK Tools: contains tools for debugging and testing.
— SDK Platforms tools: contains platform-dependent tools

— Documentation: offline copy of the android platforms APls downloaded on
developer’s station.

— SDK Platforms: store the SDK platform (for each version of android) — SDK
platforms can be downloaded on demand by the developer.

— System Images: system images (such as for ARM, x86,..) derivate by each
android version to let developer to test his application on a specific android system
using an emulator.

— Source code for android SDK: source code of each android version (to be
downloaded on demand by the developer according to the android version he’s
working with.

— Samples for SDK: collection of samples provided by Google.
— Google APIs: SDK add-on that provides both a platform and a system image.

e Android development tools (ADT) plugin (recommendation to fasten developments
steps): This plugin has been designed to give a powerful, integrated environment in
which to build android applications by extending the capabilities of Eclipse (IDE).

It's highly recommended to use eclipse with ADT installed as this solution is the fastest way
to get started. This solution eases the task to setup a new application project, to build the
final application in debug or release mode. During the pure development activity developers
are also supported by various integration tools and enhanced XML editor.

DocID025722 Rev 1 ‘Yl

AN4430

How to create an Android Application for ST dual memories

2.2

2.2.1

3

For more information about how to install and use eclipse or ADT according to its own
development station, reader can refer to Android developer web site.

NFC Android API

From Android point of view, NFC is a set of short-range wireless technologies requiring a
distance of 4 cm or less to initiate a connection. User can exchange small payload of data
between NFC capable android phone and an external solution (in our cast ST-M24SR or
ST-M24LR products). Many of the android APIs are based around the NFC Forum standard
called NDEF (NFC Data Exchange Format). To get further information on NDEF
specification reader as to refer itself NDEF specification publicly accessible from NFC
Forum web site.

Android APl is then able to handle 3 modes of operation:
e Reader/writer mode — mode treated in this application note
e P2P mode — not currently addressed in this application

e Card emulation mode allowing the NFC device to act as an NFC Card and be
addressed by an external NFC reader (not treat in the current application note).

Android.nfc Package

This package which appears with the APl 9 and enhanced by the next API revision gives the
access to the Near Field Communication functionality on NFC capable Android. This
package helps developer to easily read or write NDEF messages on an external NDEF
compliant NFC Tag.

Main class of the Android.nfc package

e NfcAdapter

This class maps the local android phone’s NFC adapter. NfcAdapter is then the entry
point to perform NFC operations. Developer has to call the getDefaultAdapter() to
retrieve the default NFC adapter.

e NfcManager

This class offers the NFC high level manager service used to obtain the instance of the
NfcAdapter. The instance can be retrieved by the call of getSystemService(String) with
NFC_SERVICE string given in parameter.

e NdefMessage and NdefRecord

NdefMessage class represents the NDEF data message object implementation while
NdefRecord class represents the NDEF records carrying the NDEF message. Those
classes can be mapped on the NDEF NFC Forum specification. To construct a NDEF
message developer has to use the NdefMessage([byte]) call from a binary data that is
parsed by android APl on NdefMessage creation. If the developer expects to use typed
data he may call NdefMessage(NderRecord, NdefRecords,....). NdefRecord object is
created according to type of record message developer wants to store in NDefMessage
(ie: RTD_TEXT, RTD_URI, RTD_SMART_POSTER, ..). RTD (Record Type Definition)
are specified by the NFC Forum and can be retrieving from their web site.

e NfcEvent

Object used to wraps information associated with an NFC event usually included in
callbacks from NfcAdapter. NfcEvent must be preferred to parameters in the

DoclD025722 Rev 1 17/42

How to create an Android Application for ST dual memories AN4430

NfcAdapter’s callback in order to keep backward compatibility as fields and parameter
may be added in the next API releases.

Tag

This class implements the Tag that has been discovered (when a Tag is presented to
the android phone’s NFC field). This object is immutable as it represents the state of
the Tag at the time it has been discovered. This object is used to retrieve the tag ID
(getlD() call) and the properties of the Tag like the supported technologies (getTecList()
call).

A new tag object is created every time a tag is discovered even if it is the same physical tag.
Developer must then ensure to always use the latest tag discovered to perform specific
action like TagTechnology interface manipulation.

When a tag is discovered, android system creates a tag object, store it in an intent message
and requests for a startActivity with the created intent in parameter.

Depending on the tag characteristics and on the installed applications a four stage dispatch
solution is used to select the most appropriate activity to handle the current detected tag
(see Figure 6 Tag Dispatch Startegy). Android system executes each stage in order and
complete dispatch as soon as a single matching activity is found.

18/42

Stage 1 — Foreground Activity dispatch: a foreground activity which has called
NfcAdapter.enableForegroundDispatch(...) is given the priority. This call is generally
done in the onResume() activity state callback. To release this priority developer has to
call NfcAdapter.disableForegroundDispatch(Activity) generally in Pause() activity state
callback.

Stage 2 — NDEF data dispatch: If the discovered tag contains at least an NDEF
message with a first Record with URI, SmartPoster or MimeData type Android system
call a startActivity() with ACTION_NDEF_DISCOVERED intent. Android System will
then look for a component ACTION_NDEF_DISCOVERED handling capable. If most
that one component is find, Android System requests to user to select the
application/component to launch to treat the pending intent. If none component is
register to handle this kind of intent dispatch move to stage 3.

Stage 3 — Tag Technology dispatch: Android System call a startActivity() with
ACTION_TECH_DISCOVERED and look for a component capable to handle current
tagTechnology. If any component is register to handle at least one technology
supported by the tag Android System goes to Stage 4.

Stage 4 — Fall-back dispatch: Android System call a startActivity() with
ACTION_TAG_DISCOVERED and look for a component capable to handle current
intent.

3

DoclD025722 Rev 1

AN4430 How to create an Android Application for ST dual memories
Figure 6. Tag Dispatch Strategy
Activity registered to
NDEF Formatted Tag ——» NDEF_DISCOVERED —»- handle Y
NDEF_DISCOVERED?
! !
Unmapped or Non- Activity registered to Intent delivered to
NDEF Formatted Tag — | TECH_DISCOVERED . handle ——Yes—¥ Activity
TAG_DISCOVERED?
A
FNOQ
Activity registered to
TAG_DISCOVERED —» handle L Yes—
TAG_DISCOVERED?
2.3 Create a new project with eclipse

3

Once the development environment is installed (eclipse with ADT and Android SDK)

developer has to create his project by starting Eclipse IDE and select File/New/Project to

open the suitable create project wizard (Figure 7 Start Project Wizard

Figure 7. Start Project Wizard

& New Project l 5] |
Select a wizard F—
Wizards:

2% Java Project
Java Project from Existing Ant Buildfile
L2 Plug-in Project

» = General

s = Android

» = CVS

> [= Java

> [Plug-in Development

s = SVN

» = Bxamples

e
Ix?/' < Back MNext = Finish

|8

Then select Android/Android Application project and click on Next button to open the “New

Android Application” wizard (Figure 8). In the text edit widget ApplicationName enter

myFirstNFCApp. “Project Name” and “Package name” text edits are automatically filled.

DoclD025722 Rev 1

19/42

How to create an Android Application for ST dual memories

AN4430

20/42

Figure 8. New Android Application Wizard

8

£ New Android Application [af x|
New Android Application f \
@ Enter an application name (shown in launcher)
Application Name: @
Project Name: @
Package Name:@
Minimum Required SDK:6| API8: Android 2.2 (Froyo) -
Target SDK: 0| AP 18: Android 43 (elly Bean) -
Compile With: AP119: Android 4.4 -
Theme:ﬁ[HoIo Light with Dark Action Bar v]
.\ < Back MNext = Finish Cancel
?

Set the minimum Required SDK to API 11, Target SDK to API 14, and compile with to at
least API14, then press Next several times until the project is created (Figure 9). Ensure that
the Android API level14 SDK is installed on the developing station. Once the project is
created, build it to ensure that whole project creation settings are valid. If the build is
successful at this step, developer can start/debug myfirstnfcapp application on USB
connected android mobile phone to ensure that the application is correctly built.

Figure 9. New Android Application Settings

% Mew Android Application L@ﬂ—hj

New Android Application f \
1, The application name for most apps begins with an uppercase letter

Application Mame: & myFirstNFCApp
Project Name:® myFirstNFCApp

Package Name:& com.example.myfirstnfcapp

Minimum Required SDK:8[API11: Android 3.0 (Honeycomb) -
Target SDK:9 | APL14: Android 4.0 (iceCreamSandwich) -

Compile With:0| AP 14: Android 4.0 (lceCreamSanduwich) -
Theme:@[HoIo Light with Dark Action Bar V]

Choose a target APIto compile your code against, from your installed SDKs. This is typically the most recent
wversion, or the first version that supports all the APIs you want to directly access without reflection.

-]

@j < Back][Mext = Finish

DoclD025722 Rev 1

3

AN4430

How to create an Android Application for ST dual memories

24

2.4.1

2.4.2

243

3

Setup Android Manifest file

Once the project creation first step is completed, to use NFC functionality, developer has to
configure properly the android application settings in the AndroidManifest.xml.

NFC permission

In order to use NFC capability, application must request the NFC permission. To do so, this
request must be specified in the manifest file by the following declaration:

<uses-permission android:name="android.permission.NFC" />

NFC feature
Specify that the application uses NFC by adding the following declaration:

<uses-feature
android:name="android.hhardware.nfc"
android:required="true" />

In this way, the application is known as not functional if the NFC feature is not available on
the android device.

Intent filtering settings

As seen in the application overview section, component can be declared to be NFC intent
handler capable. To do so, an intent filter must be declared. Actually the application
identified by com.example.myfirstnfcapp in the manifest file is composed by a single
component which is an activity. This activity known as the main activity already has an intent
filter declaration:

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

This intent filter is declared specifically for main activity component to let Android System to
know which activity component to start on user request.

As the application get a single activity and as NFC intent can be handled in this main activity
we may declares a new intent filter to handle NDEF message when TAG is discovered.

In case activity component has to manage every kind of NDEF message we may add the
following intent filter declaration (solution that we keep for our source code example):

<intent-filter>
<action android:name="android.nfc.action.NDEF_DISCOVERED"/>
</intent-filter>

DoclD025722 Rev 1 21/42

How to create an Android Application for ST dual memories AN4430

22/42

Complementary intent-filter

Android system also lets developer to refine the kind of intent he wants to act on. Keeping
the NDEF_DISCOVERED message, developer may want to only manage with a MIME type
of text/plain:

<intent-filter>
<action android:name="android.nfc.action.NDEF_DISCOVERED"/>
<category android:name="android.intent.category.DEFAULT"/>
<data android:mimeType="text/plain” />

</intent-filter>

or wants to act on certain URI in the form of http://www.st.com:
<intent-filter>
<action android:name="android.nfc.action.NDEF_DISCOVERED"/>
<category android:name="android.intent.category.DEFAULT"/>
<data android:scheme="http"
android:host="www.st.com"/>
</intent-filter>

In case developer wants the activity component been activated on
ACTION_TECH_DISCOVERED intent, he must write a XML file to be store in res/xml folder.
Name of the file is what the developer wish (ex: nfc_tech_filter.xml). This file lists the
technology supported by the component within a tech-list set as follows:

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
<tech-list>
<tech>android.nfc.tech.IsoDep</tech>
<tech>android.nfc.tech.NfcA</tech>
<tech>android.nfc.tech.NfcB</tech>
<tech>android.nfc.tech.NfcF</tech>
</tech-list>
</resources>

Once the XML NFC filter resources is created, the intent-filter on
ACTION_TECH_DISCOVERED is:
<intent-filter>

<action android:name="android.nfc.action.TECH _DISCOVERED"/>
</intent-filter>

<meta-data android:name="android.nfc.action.TECH _DISCOVERED"
android:resource="@xml/nfc_tech_filter" />

The component activity will be then started by the Android system once a tag is discovered
with IsoDep, NfcA, NfcB or Nfcf capabilities. (Note that if the detected TAG gets a NDEF
message in and if a component is registered to treat NDEF intent the current application will
never receive the ACTION_TECH_DISCOVERED intent.)

3

DoclD025722 Rev 1

AN4430

How to create an Android Application for ST dual memories

2.5

2.5.1

3

In case developer expects his component is instantiate on ACTION_TAG_DISCOVERED
intent he must simply declare the following intent filter in the AndroidManifest.xml file:

<intent-filter>
<action android:name="android.nfc.action.TAG_DISCOVERED"/>
</intent-filter>

Android NFC Activities implementation

As seen in previous sections, application is a set of components from different kind of family
(ie. activities, services,..). Components may be started from intents sent by the Android
System or from the application itself. In this case, the component known as the main one is
started by the application upon user’s start application request.

Once the activities has been declares with the associated intent filters in the
androidManifest.xml file activity has to be implemented by a corresponding Java Class. In
the studied case, developer has to implement the lifecycle activity callback, the NFC intent
handling functionalities, and finally the NFC message treatment.

Here is the provided implementation of the MainActvity automatically generated during
project creation, referenced in the AndroidManifest.xml file that developer has to upgrade to

support NFC feature.
package com.example.myfirstnfcapp;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;

Import NFC packages

In order to support NFC functionality, developer imports NFC android packages first. With
Eclipse IDE it can be automatically done while developer uses new objects.

import android.nfc.NdefMessage;
import android.nfc.NfcAdapter;

DoclD025722 Rev 1 23/42

How to create an Android Application for ST dual memories AN4430

2.5.2

2.5.3

24/42

NFC Adapter and foreground Dispatch

Involving with NFC sub system requires retrieving the reference of the NFC adapter. In
onCreate() callback developer grabs a reference to the NFC adapter:

Add a new class member to the activity class. This mAdapter reference allows to listening
the tag being scanned:

NfcAdapter mAdapter;

Retrieve the default NFC adapter on component creation:
mAdapter = NfcAdapter.getDefaultAdapter(this);

In order to declare the application to grab NFC intents and to answer to all NFC intent while
the activity is running (see activity lifecycle stage1) NFC dispatch capabilities has to be
called in onResume() and disabled in onpause() callbacks.
@0verride
public void onResume() {

super.onResume();

PendingIntent intent = PendingIntent.getActivity(this, 0, new Intent(this,
getClass()).addFlags(Intent.FLAG ACTIVITY SINGLE TOP), ©);

NfcAdapter.getDefaul tAdapter(this).enableForegroundDispatch(this,intent, null,
null);
}

@verride
protected void onPause() {
super.onPause();
if (NfcAdapter.getDefaultAdapter(this) != null)
NfcAdapter.getDefaul tAdapter(this) .disableForegroundDispatch(this);
}

With the previous enableForegroundDispatch(), activity is declared as a grabber of whole
NFC intents while the activity is in foreground state. It's possible to add filter to only grab
specific NFC intents like ACTION_TAG_DISCOVERED ones. In onResume() call back, it
may then possible to declare a filter and configure the default NfcAdapter with:

PendingIntent pendingIntent = PendingIntent.getActivity(this, 0,
new Intent(this,
getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 9);

IntentFilter tagtoHandle = new IntentFilter(NfcAdapter.ACTION TAG DISCOVERED);
IntentFilter[] filters = new IntentFilter[] { tagtoHandle };

mAdapter.enableForegroundDispatch(this, pendingIntent, filters, null);

Intents and NFC objects treatment

If the MainActivity has been started by the Android System on NFC intent, the activity has to
retrieve the intent and treat it.

This can be done on activity creation (onCreate() callback call) by the following
implementation:

3

DoclD025722 Rev 1

AN4430

How to create an Android Application for ST dual memories

3

Intent intent = getIntent();
String action = intent.getAction();
// Manage Intent in case the intent activate the application (automated

launch)
// check AndroidManifest.xml
if (NfcAdapter.ACTION NDEF DISCOVERED.equals(action)) {
process(intent); // call private method to treat the intent
// storing NDEF Data
}

If a new NFC tag is detected during the MainActivity life (ie.:Activity is already in a started
state) and as activity is in launched mode set to "singleTop" ,the new intent is sent to the
activity which is in a foreground state and the onNewIntent(Intent) callback is called by the
system. Then onNewIntent(intent) callback can be overridden as following:

@Override
public void onNewIntent(Intent intent) {
String action = intent.getAction();
if (NfcAdapter.ACTION _NDEF _DISCOVERED.equals(action)) {
process(intent);

}

At this stage the activity is setup to start on NDEF intent from the System, to grab NDEF
intent while it still alive. The last action the activity must perform is to treat the received
NDEF message according the activity is designed to. Received NDEF intent carrying all the
Tag information parsed by low HW/SW layers.

DoclD025722 Rev 1 25/42

How to create an Android Application for ST dual memories AN4430

26/42

Below is an example on how to handle NDEF message recorded by the Android NFC stack.
Developer may upgrade this method to fit his own implementation needs:

private void process(Intent intent)

{

Parcelable[] parcelabled =
intent.getParcelableArrayExtra(NfcAdapter.EXTRA NDEF MESSAGES);

if (parcelabled != null)

{

// notify user that a NDEF tag is discovered and processed.

Toast.makeText(getApplicationContext(), "NDEF TAG DETECTED",
Toast.LENGTH_LONG) . show() ;

//retrieving the whole NDEF message detected from the current tag discovered
from the NFC field

NdefMessage[] ndefmsg = new NdefMessage[parcelabled.length];

for (int i = ©; i < parcelabled.length; i++) {
ndefmsg[i] = (NdefMessage) parcelabled[i];

// log records from first NDEF message
for (int i=0; i<ndefmsg[0@].getRecords().length;i++)

{
// log the NDEF record TNF value / type and payload
Log.d("NDEF Intent process",ndefmsg[@].getRecords()[i].toString());
}
}
return;

3

DoclD025722 Rev 1

AN4430 How to create an Android Application for ST dual memories

254 Final AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com. example.myfirstnfcapp"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="11"
android:targetSdkVersion="19" />

<uses-permission android:name="android.permission.NFC" />

<uses-feature
android:name="androtid. hardware.nfc"
android:required="true" />

<application
android:allowBackup="true"
android:icon="@drawable/ic_Launcher"
android: label="@string/app_name"
android: theme="@style/AppTheme" >
<activity
android:name="com.example.myfirstnfcapp.MainActivity"”
android: label="@string/app name" >
<intent-filter>
<action android:name="androtid.intent.action.MAIN" />
<category android:name="androtid. intent.category. AUNCHER" />
</intent-filter>
<intent-filter>
<action android:name="android.nfc.action.\NDEF_DISCOVERED"/>
</intent-filter>

</activity>
</application>

</manifest>

3

DoclD025722 Rev 1 27142

How to create an Android Application for ST dual memories AN4430

2.5.5 Final MainActivity class file

package com.example.myfirstnfcapp;

import java.io.IOException;

import android.app.Activity;
import android.app.PendingIntent;
import android.content.Intent;
import android.nfc.NdefMessage;
import android.nfc.NfcAdapter;
import android.os.Bundle;

import android.os.Parcelable;
import android.util.log;

import android.view.Menu;

import android.widget.Toast;

public class MainActivity extends Activity {

NfcAdapter mAdapter;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mAdapter = NfcAdapter.getDefaultAdapter(this);

Intent intent = getIntent();
String action = intent.getAction();
// Manage Intent in case the intent activate the application (automated launch)
// check AndroidManifest.xml
if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action)) {
process(intent); // call private method to treat the intent
//storing NDEF Data

}

@Override
public void onNewIntent(Intent intent) {
String action = intent.getAction();
if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action)) {
process(intent);

}

3

28/42 DoclD025722 Rev 1

AN4430 How to create an Android Application for ST dual memories

private void process(Intent intent)

{

Parcelable[] parcelabled =
intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

if (parcelabled != null)

{

// notify user that a NDEF tag is discovered and processed.

Toast.makeText(getApplicationContext(), "NDEF TAG DETECTED",
Toast.LENGTH_LONG) .show();

//retrieving the whole NDEF message detected from the current tag discover«
from the NFC field

NdefMessage[] ndefmsg = new NdefMessage[parcelabled.length];

for (int i = @; i < parcelabled.length; i++) {
ndefmsg[i] = (NdefMessage) parcelabled[i];

// log records from first NDEF message
for (int i=0; i<ndefmsg[@].getRecords().length;i++)

// log the NDEF record TNF value / type and payload
Log.d("NDEF Intent process",ndefmsg[@].getRecords()[i].toString());

}
}
return;
}
@Override

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;

}

@Override

public void onResume() {

super.onResume();

PendingIntent intent = PendingIntent.getActivity(this, 0, new Intent(this,
getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE _TOP), 0);

NfcAdapter.getDefaultAdapter(this).enableForegroundDispatch(this,intent, null,
null);

}

@Override

protected void onPause() {

super.onPause();

if (NfcAdapter.getDefaultAdapter(this) != null)
NfcAdapter.getDefaultAdapter(this).disableForegroundDispatch(this);

}

3

DoclD025722 Rev 1 29/42

How to use ST NFC package to implement HW enhanced features AN4430

3

3.1

30/42

How to use ST NFC package to implement HW
enhanced features

Customer may want to use enhanced feature provided by ST-M24SR or ST-M24LR. As
these features are not NDEF dedicated our out of NFC Forum scope or not yet provided by
Android API, user may address discovered NFC Tag through Android NFC technology API
and with dedicated protocol defined by ST (or customer in case of transceiver addressing
use case).

These study examples are extracted from dedicated ST product android application. These
applications are downloadable from ST web site as Android application itself or as Android
Application source code.

Enhanced M24SR feature use case — CCFile addressing

NFC android Application developer may want to read the CC file stored in each NFC Type 4
Tag. Android API doesn’t provide a high level interface to address this kind of file. Developer
has to address specific nfc.technology provided by android to send 7816-4 commands to
access this specific file.

Once a tag is discovered from the NFC field, intent is grabbed by the current foreground
activity. With this intent, a rawTag which is the software representation of the state of the
physical tag detected by the NFC field is extractable by the following call:

Tag rawTag = intent.getParcelableExtra(NfcAdapter.EXTRA TAG);

If the Tag type is identified as a NFC Forum Tag Type 4 by the decodeTagType() method,
physical tag in the NFC field gets a CCFile. Developer has to request it through a sequence
of commands to be able to read it. These commands are listed in the ST-M24SR datasheet
downloadable from the ST web site.

3

DoclD025722 Rev 1

AN4430 How to use ST NFC package to implement HW enhanced features

private static NfcTagTypes decodeTagType (Tag pTag) {
NfcTagTypes 1Type = NfcTagTypes.NFC_TAG_TYPE_UNKNOWN;
List<String> 1TechList = Arrays.asList(pTag.getTechList());
String nfcTechPrefixStr = "android.nfc.tech.";
// Try the Ndef technology
Ndef 1NdefTag = Ndef.get(pTag);
if (INdefTag != null) {
if (INdefTag.getType().equals(Ndef.NFC FORUM TYPE 1)) {
1Type = NfcTagTypes.NFC _TAG TYPE 1;
} else if (INdefTag.getType().equals(Ndef.NFC_FORUM TYPE 2)) {
1Type = NfcTagTypes.NFC_TAG_TYPE_2;
} else if (INdefTag.getType().equals(Ndef.NFC_FORUM TYPE_3)) {
1Type = NfcTagTypes.NFC_TAG_TYPE_3;
} else if (1NdefTag.getType().equals(Ndef.NFC_FORUM TYPE 4)) {
if (1TechList.contains(nfcTechPrefixStr+"NfcA")) {
1Type = NfcTagTypes.NFC_TAG_TYPE_4A;
} else if (1TechList.contains(nfcTechPrefixStr+"NfcB")) {
1Type = NfcTagTypes.NFC_TAG_TYPE 4B;
}

}
} else {

// Try the IsoDep technology
IsoDep lIsoDepTag = IsoDep.get(pTag);
if (1IsoDepTag != null) {
if (1TechList.contains(nfcTechPrefixStr+"NfcA")) {
1Type = NfcTagTypes.NFC_TAG_TYPE 4A;
} else if (1TechList.contains(nfcTechPrefixStr+"NfcB")) {
1Type = NfcTagTypes.NFC_TAG_TYPE_4B;
}

} else {

// Try the underlying technologies

if (1TechList.contains(nfcTechPrefixStr+"NfcA")) {
1Type = NfcTagTypes.NFC_TAG TYPE_A;

} else if (1TechList.contains(nfcTechPrefixStr+"NfcB")) {
1Type = NfcTagTypes.NFC_TAG_TYPE_B;

} else if (1TechList.contains(nfcTechPrefixStr+"NfcF")) {
1Type = NfcTagTypes.NFC _TAG TYPE_F;

} else if (1TechList.contains(nfcTechPrefixStr+"NfcV")) {
1Type = NfcTagTypes.NFC_TAG TYPE_V;

}

}

return 1Type;

}

At this stage physical tag is supposed to be available in the NFC field. The anti-collision,
RATS, PPS sequences are already done and the Tag is accessible in read or write mode.

To select the TAG and set it in an accessible mode Android Application sends to the tag an
Application To Select command defined in 7816-4 specification. To do so, the Tag rawTag
can be mapped to an IsoDep android object in order to send a synchronous ATS command
to the physical tag. The defined command is sent to the tag by using the

3

DoclD025722 Rev 1 31/42

How to use ST NFC package to implement HW enhanced features AN4430

IsoDep.tranceive(byte[]) command. Application then waits for the corresponding answer
(answer codes are listed and defined in both 7816-4 specification and in M24SR datasheet).

private static final byte[] NdefSelectAppliFrame = new byte[] { (byte) ox00, (byte) oxA4,
(byte) ox@4, (byte) ox00, (byte) 0xo7,

(byte) oxD2, (byte) ox76, (byte) ox00,
(byte) 0x@0,

(byte) 0x85, (byte) 0x01, (byte) oxo1};

// request ATS
public int requestATS()

{
byte[] transcieveAnswer = new byte[] { (byte) ox01 };
if (isoDepCurrentTag == null)
isoDepCurrentTag = IsoDep.get(this.currentTag);
if (isoDepCurrentTag == null)
{
return 0;
}
int cpt = o;
while ((transcieveAnswer[@] == 1 || transcieveAnswer[@] == (byte)oxAA) &&
cpt <= 1)
{
try {
if (!isoDepCurrentTag.isConnected())
{
isoDepCurrentTag.connect();
}

//isoDepCurrentTag.setTimeout(20);
transcieveAnswer =
isoDepCurrentTag.transceive(NdefSelectAppliFrame);

if (transcieveAnswer[@] == (byte) 0x90 && transcieveAnswer[1] ==
(byte) ox00)
{

return 1;

cpt++;
return 0;
}
} catch (TaglLostException e) {
// Auto-generated catch block
e.printStackTrace();
throw new RuntimeException("fail", e);
} catch (IOException e) {
// Auto-generated catch block
e.printStackTrace();
throw new RuntimeException("fail", e);

}

}
return 0;
} // End of ATS request

3

32/42 DoclD025722 Rev 1

AN4430

How to use ST NFC package to implement HW enhanced features

3

If the transceiveAnswer is equal to 0x9000 then the current physical tag is in application
select mode and the tag file structure can be addressed.

In the same way activity can send the specific command to address the CCfile. CCFile is
known to get a standardized ID: 0xE103. To get the CCFile, application sends the following
message sequence:

Select the file with the ID 0xE103
Read the file size of the CCFile
Read the binary of size previously request which is corresponding to the file.

private static final byte[] (CSelect = new byte[] {(byte) &x20, (byte) &xM,
(byte) 0x00, (byte) &C, (byte) o2,
(byte) oxEl, (byte) @@3 };

p.b]_'i.c{iﬂt requestCCSelect()
byte[] transcieveAnswer = new byte[] { (byte) @@l };
if (iscDepQurrentTag = null)
isoDepCurrentTag = IsaDep.get(this.currentTag);
int cpt = 0;

vhile ((transcievefnswer[@] = 1 || transcievefnswer[0] = (byte)exAd) &&
pt <= 1)
{
try {
if (!iscDepCurrentTag.isConnected())
{
iscDepCurrentTag. connect();
iscDepCurrentTag. setTimeout (20);
}
transcievefnswer = iscDepCurrentTag. transceive(CCoelect);

if (transcievefnswer[@] = (byte) 0x90 & transcievefnswer[1l] =
(byte) &x00) .

}
else

{

retumn 1;

pt;
retun 0;
}
} catch (I0Exception e) {
// Auto-generated catch block
e.printStackTrace();
throw new RuntimeException("fail”, e);
}

}
return ©;
} // End of request(CSelect

DoclD025722 Rev 1 33/42

How to use ST NFC package to implement HW enhanced features AN4430

private static final byte[] CCReadlLength = new byte [] {(byte) ex00, (byte) oxBo,

(byte) @x00, (byte) ox00, (byte)
ox02};

public int requestCCReadLength()

{
byte[] transcieveAnswer = new byte[] { (byte) oxol };
if (isoDepCurrentTag = null)
isoDepCurrentTag = IsoDep.get(this.currentTag);
int cpt = 0;
int CCLength = o;
while ((transcieveAnswer[@] = 1 || transcieveAnswer[0] = (byte)oxAA) &
cpt <= 1)
{
try {
if (!isoDepCurrentTag.isConnected())
{
isoDepCurrentTag. connect();
isoDepCurrentTag. setTimeout (20);
}
transcieveAnswer = isoDepCurrentTag.transceive(CCReadLength);
if (transcieveAnswer[2] = (byte) 0x90 && transcieveAnswer[3] =
(byte) €xe0)
{
(CLength = (int)((transcieveAnswer[@] & OxFF)<<8) +
(int) (transcieveAnswer[1]80xFF);
return CCLength;
}
else
{
cpt++;
return ©;
}
} catch (IOException e) {
// Auto-generated catch block

e.printStackTrace();
throw new RuntimeException("fail", e);

}

}
return ©;
} // End of CCReadlLength request

3

34/42 DoclD025722 Rev 1

AN4430 How to use ST NFC package to implement HW enhanced features

private static final byte[] readBinary = new byte [] {(byte) @x00, (byte) oxBo,
(byte) exeo, (byte) 0xe0, (byte) ox0e};

private int requestReadBinary(int size, byte [] buffer)
{

byte[] transcieveAnswer = new byte[] { (byte) ox00 };
if (isoDepCurrentTag = null)

isoDepCurrentTag = IsoDep.get(this.currentTag);
int cpt = 0;
byte[] readand = new byte[readBinary.length];

System.arraycopy(readBinary, ©, readend, @, readBinary.length);
readcmd[4] = (byte) (size & OxFF);

try {
if (!isoDepCurrentTag.isConnected())
{
isoDepCurrentTag. connect();
isoDepCurrentTag. setTimeout(20);
}

transcieveAnswer = isoDepCurrentTag.transceive(readend);

if (transcieveAnswer[size] == (byte) ox90 &
transcieveAnswer[size+l] == (byte) 0x00)

{
System.arraycopy(transcieveAnswer, ©, buffer, 0,
size);
return 1;
}
else
{
cpt++;
return o;
} catch (IOException e) {
// Auto-generated catch block
e.printStackTrace();
throw new RuntimeException(“fail”, e);
}
}

At this stage, the whole CC file is stored in the buffer set in requestReadBinary’s parameter.
Current activity may then parse the buffer to fill a CCFile structured object:

_CCHandler = new stnfccchandler(CCBinary);

3

DoclD025722 Rev 1 35/42

How to use ST NFC package to implement HW enhanced features AN4430

3.2

36/42

With St object stnfcchandler constructor:

public stnfccchandler(byte[] buffer)
{

mcclength = (short) ((buffer[0]<<8 &XxFF) + (buffer[1]8&xFF));

mcamappingver = (short) (buffer[2]80xFF);

mmaxbytesread = (short) ((((short)buffer[3])<<8 &xFF) +
(((short)buffer[4])8exFF));

mmaxbyteswritten = (short) ((((short)buffer[5])<<8 &xFF) +
(((short)buffer[6])8exFF));

mnbTL\Blocks = 1;

mtfield = (short)buffer[7];

mlfield = (short)buffer[8];

mfieldId = (int)((buffer[9]8OxFF)<<8)+ (int)(buffer[10]80xFF);
mndeffilelength = (int)((buffer[11]80xFF)<<8) + (int)(buffer[12]8xFF);
mreadeaccess = (short)buffer[13];

mwriteaccess = (short)buffer[14];

Enhanced M24LR features Study — Read / Write 15693 Tag

ST M24LR products are ISO/IEC-15693 based product not natively supported by Android
System. On some Android Phone, if presented tag is NDEF formatted the Android system
may detect the tag and parse file stored inside. If tag is not formatted as a NDEF message,
developer can address the memory from the tag in raw addressing mode by sending to the
tag specific protocol commands defined by 15693-3 standard. For such an addressing
mode, developer implements the relevant android technology tag to handle ST-M24LR
products.

Let's show how to implement an activity able to read and write on this kind of tag.

As previous use case, developer retrieves the nfcAdapter and registers the activity to
receive NFCV tags events. In the NFC-V use case, intentFilter is declared in order the
activity received only the 15693 tag event by using the android NfcV technology (see
mfilters and mTechLists).

Intent = PendingIntent.getActivity(this, @,new Intent(this,
()).addFlags(Intent.FLAG ACTIVITY SINGLE_TOP), @);
lter ndef = new IntentFilter(NfcAdapter.ACTION _TECH DISCOVERED);
mFilters = new IntentFilter[] {ndef,};
mTechLists = new String[][] { new String[] {

android.nfc.tech.NfcV.class.getName() } };
.enableForegroundDispatch(this, mPendingIntent, mFilters, mTechLists);
Once the activity is registered to handled NfcV tag intent, OnNewintent() callback system is

overridden to retrieve the tag’s information. Once the referenced tag is parsed from the
intent (tagFromintent Tag object) developer can send protocol command defined to physical

DocID025722 Rev 1 ‘Yl

AN4430 How to use ST NFC package to implement HW enhanced features

tag by the using the android API NfcV (we supposed that the tag is still in NFC field and that
the anti-collison process is already done by the embedded NFC stack).

@verride
protected void onNewIntent(Intent intent)
{
// Auto-generated method stub
super.onNewIntent(intent);
String action = intent.getAction();
if (NfcAdapter.ACTION TEGH DISCOVERED.equals(action))

{
Tag tagFromIntent = intent.getParcelableExtra(NfcAdapter.EXTRA TAG);

DataDevice dataDevice = (DataDevice)getApplication();
dataDevice. setCurrentTag(tagFromIntent);

byte[] GetSystemInfoAnswer =
*CCommand . SendGetSystemInfoCommandCustom(tagFromIntent, (DataDevice)getApplication());

if(DecodeGetSystemInfoResponse(GetSystemInfoAnswer))

{
Intent intentScan = new Intent(this, Scan.class);
startActivity(intentScan);

}

else

{
return;

}

}
}

3

DoclD025722 Rev 1 37142

How to use ST NFC package to implement HW enhanced features AN4430

S o K K SRR K KR KR KKK KK K SRR KKK SO KR KK KR KK KK KRR KR KRR KR oK KR Kk

function send an Get System Info command (©x02 ©x2B)
argument myTag is the intent triggered with the TAG_DISCOVERED

***/

tatic byte[] SendGetSystemInfoCommandCustom (Tag myTag, DataDevice ma)
oolean boolDeviceDetected = false;
'/ --- 1st Step : Inventory to detect 1 or 2 bytes address ---

yte[] UIDFrame = new byte[] { (byte) ox26, (byte) ox01, (byte) ox00 };
wyte[] response = new byte[] { (byte) OxAA };

IfcV nfcvTag = NfcV.get(myTag);

" Send Inventory request to the tag
'sponse = nfcvTag.transceive(UIDFrame);

‘Response gets the answer from the physical tag and the UID if successful
" INVENTORY HAS DETECTED DEVICE ... READING GET SYSTEM INFO

te[] GetSystemInfoFramelbytesAddress = new byte[2];
tSystemInfoFramelbytesAddress = new byte[] { (byte) ox02, (byte) 0x2B };

'sponse = nfcvTag.transceive(GetSystemInfoFramelbytesAddress);

‘parse response to identify Tag from the NFC field

Once the tag is identified as 15693 ST product is possible to read block or write block:

3

38/42 DoclD025722 Rev 1

AN4430 How to use ST NFC package to implement HW enhanced features

Read Example

// /
//* the function send an ReadSingle camend (0x@A ©x20) || (exe2 ox29)

//* exaple : StartAddress {0x@0, @x@2} NoOfBlockToRead : {ox@4}

//* the function will retum @4 blocks read fian address @022

//* According to the IS0-15693 maximum block read is 32 for the sare sector

// /

public static byte[] SendReadSingleBlockCommend (Tag myTag, byte[] StartAddress,
DataDevice ma)

{

byte[] response = new byte[] {(byte) @xeA};
byte[] ReadSingleBlockFrame;

ReadSingleBlockFrame = new byte[[{(byte) &2, (byte) &x20,
StartAddress[1]};

int errorOccured = 1;
while(errorOccured != 0)

{
i
NfcV nfovTag = NfcV.get(myTag);
nfovTag.close();
nfovTag.corect();
response = nfovTag. transceive(ReadSingleBlockFrame);
if(response[0] = (byte) @@ || response[0] = (byte) &@1)
errorOcaured = ©;
}
catch(Exception e)
{
}
}
retum response;

3

DoclD025722 Rev 1

39/42

How to use ST NFC package to implement HW enhanced features AN4430

40/42

Write Example
/7) e)) o o o) i
//* the function send an WriteSingle command (Ox@A @x21) || (@x@2 6x21)
//* the argument myTag is the intent triggered with the TAG DISCOVERED
//* example : StartAddress {0x00, 0x02} DataToWrite : {0x04 0x14 OxFF ©xB2}
//* the function will write {@x04 Ox14 OxFF OxB2} at the address 0002
public static byte[] SendhriteSingleBlockCommand (Tag myTag, byte[] StartAddress, byte[]
DataToWrite, DataDevice ma)
{
byte[] response = new byte[] {(byte) OxFF};
byte[] WriteSingleBlockFrame;

WriteSingleBlockFrame = new byte[]{(byte) ox02, (byte) @x21, StartAddress[1],
DataToWrite[@], DataToWrite[1], DataToWrite[2], DataToWwrite[3]};

int errorOccured = 1;
while(errorOccured != 0)
{
try
{
NfcV nfcvTag = NfcV.get(myTag);
nfcvTag.close();
nfcvTag. connect();
response = nfcvTag.transceive(WriteSingleBlockFrame);
if(response[@] == (byte) @x09 || response[@] == (byte) 0x01)
errorOccured = 0;
}

catch(Exception e)
{.}

return response;

3

DoclD025722 Rev 1

AN4430

Revision history

4

3

Revision history

Table 1. Document revision history

Date

Revision

Changes

14-Feb-2014

1

Initial release.

DoclD025722 Rev 1

41/42

AN4430

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

42/42 DocID025722 Rev 1 ‘Yl

	Glossary
	Reference Documents
	1 Android Application Overview
	1.1 About Android Operating System
	1.2 Android System: Component architecture view
	1.2.1 Android architecture overview
	1.2.2 Android API

	1.3 Android Application Introduction
	1.3.1 Application fundamentals
	1.3.2 Application components
	1.3.3 Intents and Intent filters
	Intent overview
	Intent filters
	Activities
	Activities life cycle
	Activity screen
	Broadcast receiver
	Services
	Content providers
	Application Manifest
	Structure of the manifest file

	2 How to create an Android Application for ST dual memories
	2.1 Development environment
	2.1.1 Prerequisites
	Development environment:

	2.2 NFC Android API
	2.2.1 Android.nfc Package
	Main class of the Android.nfc package

	2.3 Create a new project with eclipse
	2.4 Setup Android Manifest file
	2.4.1 NFC permission
	2.4.2 NFC feature
	2.4.3 Intent filtering settings
	Complementary intent-filter

	2.5 Android NFC Activities implementation
	2.5.1 Import NFC packages
	2.5.2 NFC Adapter and foreground Dispatch
	2.5.3 Intents and NFC objects treatment
	2.5.4 Final AndroidManifest.xml file
	2.5.5 Final MainActivity class file

	3 How to use ST NFC package to implement HW enhanced features
	3.1 Enhanced M24SR feature use case – CCFile addressing
	3.2 Enhanced M24LR features Study – Read / Write 15693 Tag
	Read Example
	Write Example

	4 Revision history

