#### Smart sensors for transportation

Automotive motion sensors for smart driving

Finite State Machine and Machine Learning Core

Use cases and demo (Stationary / Motion / Jack detection)

**GitHub examples, evaluation kits** 



## Automotive sensors for smart driving

#### 6 axis IMU and Accelerometers



Miniaturization and low power features

Stability and low noise contribution

High accuracy and linearity over temperature and time

Embedded smart features, including Machine Learning algorithms





## **MEMS** Application Examples



Motion MEMS sensors







## 3-axis Accelerometers for smart driving



- High and flat bandwidth
   Low noise (< 2.4 mg<sub>RMS</sub>)

#### 2.5 x 2.5 x 0.86 mm

- FS ±4g / ±8g
- TDM time-division multiplexing interface

#### • Cur Cons: 0.67 µA @3 V @1.6Hz

and drops

• FS: ±2g / ±4g

2 x 2 x 0.93 mm

- ODR 1.6 Hz to 100 Hz
- LGA package



## 6-axis IMU for smart driving

Auto NON-SAFETY

Low Power Modes

Core (MLC)

Embedded Finite State Machine

(FSM) and Machine Learning

#### Navigation & In-Vehicle Infotainment



High stability



#### 2.5 x 3 x 0.86 mm

- Extended temp. range: -40 °C to 105 °C
- Low power mode:
  - Accelerometer 32 µA (typ)
  - Combo 520 µA (typ)

#### ADAS – Chassis & safety

life.auamented



- Combo 520 µA (typ)
- Offered with specific library to be compatible for ASIL-B systems

AVAR: Allan Variance ARW: Angular Random Walk BI: Bias Instability





## Finite State Machine and Machine Learning Core

#### FSM & MLC description and use cases



FSM & MLC are embedded in the sensor

Process & analyze new data using trained model

Enable low power applications





### **Finite State Machine**

FSM is an in-sensor behavioral model composed of a finite number of states and transitions between states





## Machine Learning Core

MLC is an in-sensor classification engine based on a decision tree logic





## From a low power sensor to a low power system

## FSM & MLC enable low power data processing and reduced interactions with MCU





- Higher computation power at sensor level
- Lower power consumption at system level

## Example of sensors MLC programming

Energy saving by running MLC on sensor vs. MCU / AP, unique features such as vehicle stationary versus moving condition

#### How it works in 5 simple steps and with an intuitive use case:





## Use case demo implementation

#### **Demo: Low power MLC implementation**

1. Vehicle is stationary: no movement



2. Vehicle is moving forward / backward



3. Vehicle is being jacked up



#### How is this achieved?

MLC implementation using data from accelerometer and gyro

- Accelerometer and Gyroscope running at 26 Hz (low power mode)
- MLC at 26 Hz: 1 decision tree, 3 outputs

**Total Current Consumption**: ~475 uA Model Performance: 97.02% accuracy, RMSE error of 0.1386

In real use case scenarios MLC detection logic can run while the vehicle is turned off









## Demo setup & tools



life.auamente

#### MLC on ST's GitHub Automotive use case examples

**Tow detection** 

Detection with MLC filters

Front/back wheel lift



S

- Detection with MLC filters
- Logic is monitoring motion and stationary status
- Detections for all three axes



# Forward/backward lift with flatbed MLC Features: Mean on bandpass XL individual axis Peak-to-peak on XL individual axis Zero-crossing on XL MLC Output: 0 = No event 4 = Front/back wheel lift 8 = Forward and backward lift with

individual axis

Logic is monitoring for two different vehicle towing styles:

Sensors configuration: 520 uA, MLC 3.1 uA

#### Sensors configuration 11.5 uA, MLC 3.1 uA

flatbed



•

٠

٠



## Evalboards based on mother board STEVAL-MKI109V3 and GUI



**Unico Graphical User Interface** Device selection, configuration and evaluation No Unico 9.0.0.0 These Interestings for 192115 days Physics, employees a speed TYLE HETTERS LINKER completent, Hagretterels CHURCH WAT WAT A DWALLS printmential approximit This and store through Name Starting Houldan TTYNE ARE CRUZED ARE CONTRACTOR TWO IS AND TAKES CREATE THEY ARE SHOULD SERVICE CHAR HAT THON I CAMEDOO Comparate with the nutlehoard Ended Automatic Part Description Streets Salest David





