

Advanced Power Technology For High Efficiency And High-**Density Power Conversion**

Justin Tang

Agenda

Power Discrete Solution Technology Portfolio Overview

High voltage power MOSFET	Low voltage power MOSFET	IGBT	Power bipolar	Hi-Rel & Space	SCR	Triac
				R-H	_	
Planar and MDmesh* 250 V to 1700 V	STripFET* -100 V to 200 V	IGBT 600/650 V, 1200 V	Power bipolar 15 V to 1700 V	Rad-hard bipolar and MOSFET 60 V, 200 V	400 V to 1200 V 0.25 A to 80 A I _{GT} 5 μA to 50 mA	600 V to 1200 V 0.8 A to 40 A, I _{GT} 3 mA to 50 mA
Power RF	Intelligent power module	Power module	Silicon carbide	GaN FET	Silicon carbide	Diodes
RF		**************************************	SIC L	Ħ		
LDMOS, DMOS 28 V, 1000 V	SLLIMM* 500 V, 600 V	ACEPACK* 650 V, 1200 V	SiC MOSFET 650 V, 1200 V	GaN-on-Si 100 V, 650 V (In development)	SiC DIODE 650 V, 1200 V	Schottky 15 V to 200 V FERD 45 V to 100 V Ultrafast 200 V to 1200 V

* registered and/or unregistered trademarks of STMicroelectronics International NV or its affiliates in the EU and/or elsewhere

HV MOSFET & Advanced Packaging

High voltage MOSFET series superjunction MDmesh* and STMESH trench

Focus applications

TV SMPS, fast chargers, adapters LED lighting, microinverters	EV-Car/Charging	LED driver, LED lighting, auxiliary	
Servers	, telecom data centers, 5G power stations, solar, medical, motor control	SMPS, EV-car, medical	

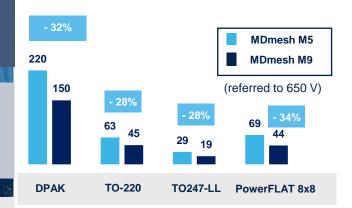
Jan 2024

is a registered and/or unregistered trademark of STMicroelectronics International NV or its affiliates in the EU and/or elsewhere.
 ** under development

High-voltage silicon MOSFETs

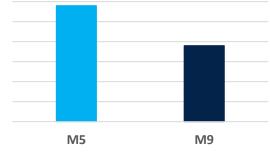
MDmesh: the most complete product portfolio for industrial & multisegment systems

	Balanced cost & performance for a broad range of	400 V, 500 V,
M2/DM2	power applications	600 V, 650 V,
M6/DM6	Superjunction technology for high efficiency in resonant converters and soft-switching applications	600 V, 650 V
M5	Outstanding R _{DS(on)} in high-power PFC and compact solutions	550 V, 650 V
M9/DM9	Enables higher power density and efficiency	250 V, 600 V, 650 V
K5/DK5	First superjunction technology > 1000 V for very high voltage applications	800 V, 900 V, 950 V, 1050 V, 1200 V, 1500 V, 1700 V
K6	Industry's lowest R _{DS(on)} in the very high voltage market. Suitable for very high voltage range	800 V, 950 V, 1050 V, 1200 V, 1500 V, 1700 V
\times		6 Latest lines


MDmesh M9/DM9 series

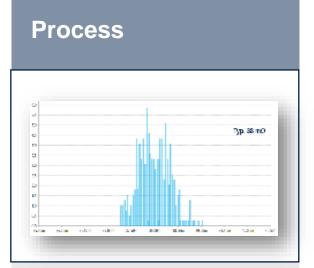
250, 600, and 650 V MDmesh M9/DM9 superjunction MOSFETs for highest application efficiency

Impressive ultralow FoM $(R_{DS(on)} \times Q_g)$ enables increased power levels and higher power density for more compact solutions

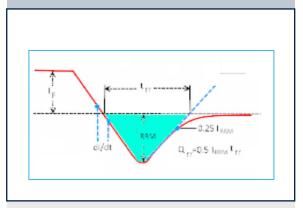

Improvement hard and soft switching and higher system ruggedness with fast embedded diode

Telecom data centers Solar and energy storage systems

250, 600, 650 V MDmesh M9/DM9 series features

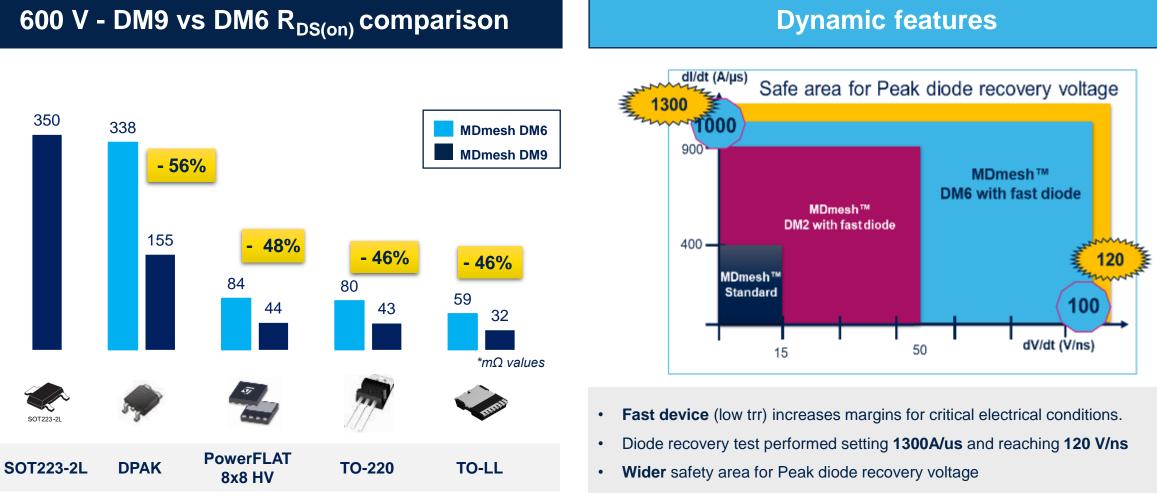


- Very low R_{DS(on)} per area
- Suitable for Hard switching topologies
- Best choice for resonant high power density systems

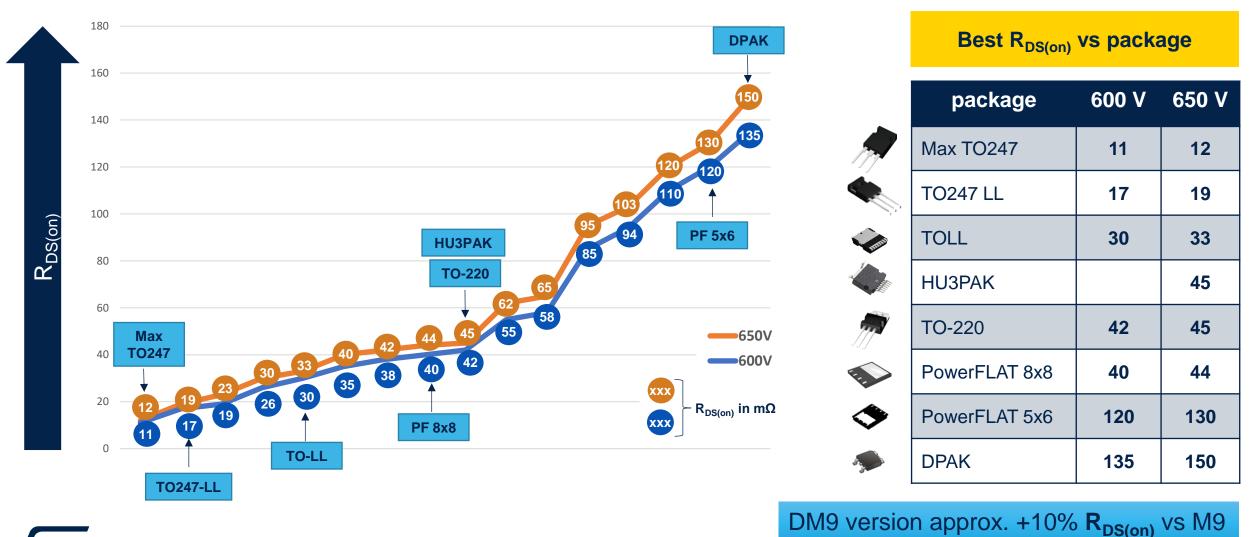


- Reducing switching energy losses
- Reducing switching time
- Increasing switching frequency

- Reduced V_{TH} spread <1 V
- Reduced I_{GSS} leakage
- Higher V_{GS} AMR (±30 V)


Robustness

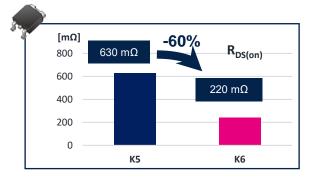
- Static dV/dt up to 120 V/ns
- dv/dt ruggedness up to 50 V/ns (M9)
- dv/dt ruggedness up to 120 V (DM9)
- di/dt ruggedness up to 1300 A/µs (DM9)


MDmesh DM9 Fast Series

11/1/2024

MDmesh M9/DM9 Scalable RDS(on)

Jan 2024


800–950 V* MDmesh K6 series

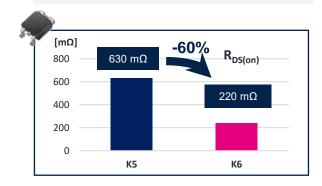
MDmesh K6 superjunction MOSFETs for very-high-voltage applications

Perfect for LED lighting applications and auxiliary SMPS based on flyback topology.

Industry's best $R_{DS(on)}$ for 800 V voltage range, enables designers to increase the power density system for more compactness solution

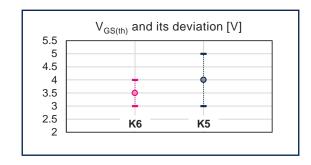
Lighting applications Auxiliary SMPS and e-metering

MDmesh K6 Breakthrough on SJ technology

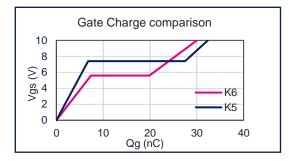

Key features

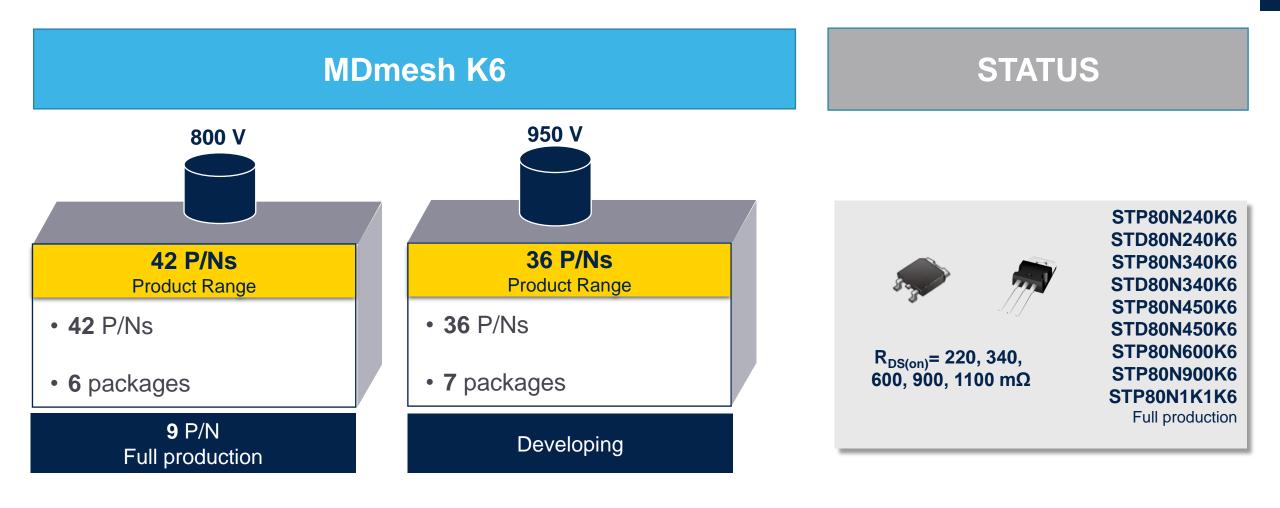
Benefits:

life.augmented


- More compactness solution
- Height board reduction

Benefits:


- · Lower driving voltage
- Idle reduced losses
- Tighter tolerance



Benefits:

- Higher efficiency
- Lower power losses

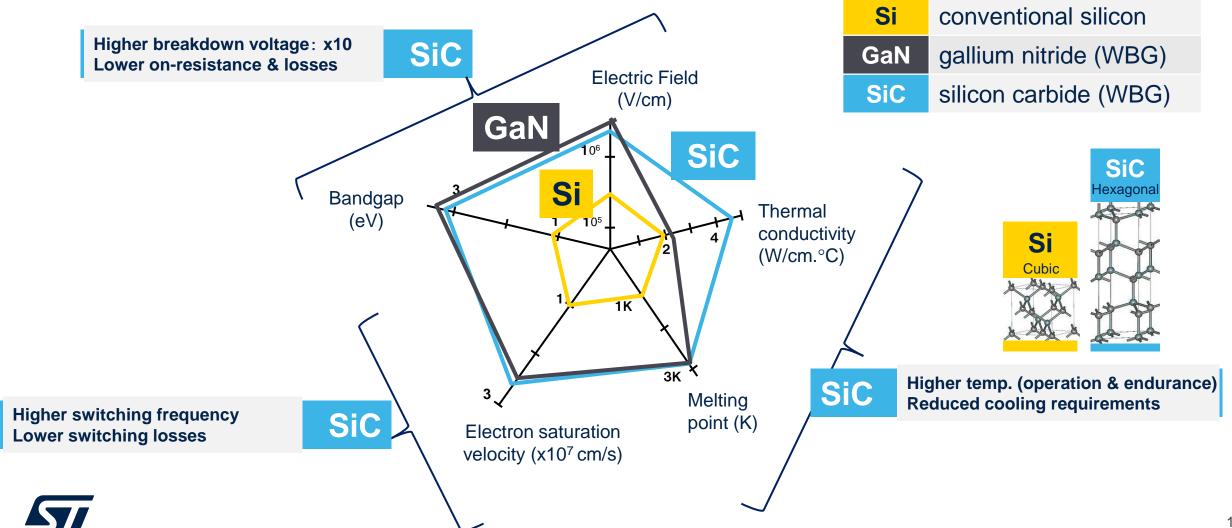
MDmesh K6

Package roadmap

Continuously improving power density and thermal performance

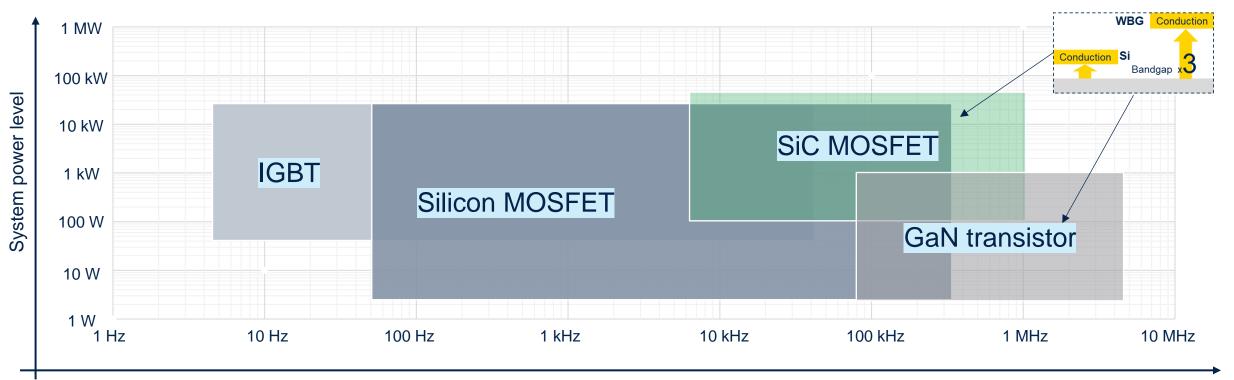
New high thermal efficiency surface mounting packages

AEC-Q101 eligible; samples available soon



February '24

SiC MOSFET

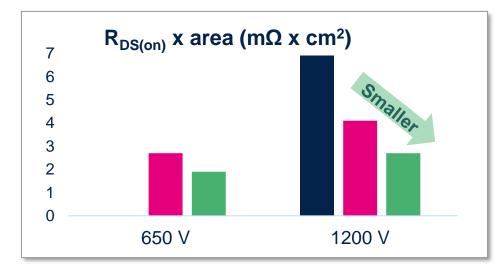

Wide-bandgap (WBG) figures of merit

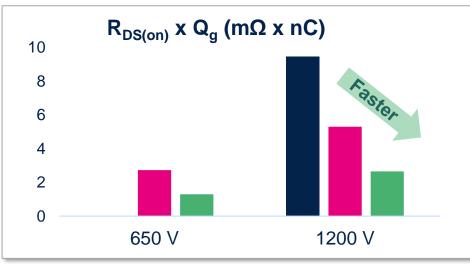
life.augmented

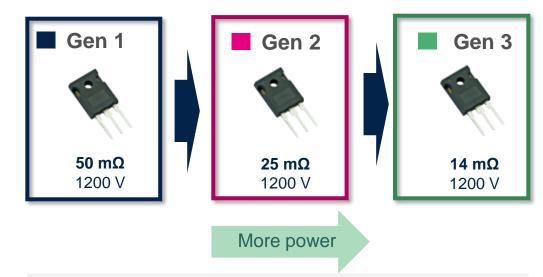
Silicon, SiC, and GaN power semiconductor positioning

Higher power levels can be achieved with modules or paralleling

Operating frequency


SiC MOSFET range


High voltage and fast switching for high density applications


Gen1	Optimized Ron and Tj for motor drive applications	1200–1700 V
Gen2	Balanced Ron and Qg for a broad range of automotive & industrial applications	650 V, 1200 V, 2200 V
Gen3	Ultrafast series optimizing Ron and Qg for very high frequency applications	650 V, 750 V, 900 V, 1200 V
SiC VHV 2200 V*	Very high voltage SiC extend the advantages of SiC technology to higher voltage ranges	2200 V

* industrial grade

SiC MOSFET advances in figures of merit

Improvement in MOSFET generations

- Lower Ron x area → lower Ron for a given chip size or smaller chip size for a given Ron, higher current capability, lower conduction losses → higher power achievable in power module with the same form factor
- Lower Ron x Qg → lower switching losses, higher frequency (reduced board)

STPOWER SiC MOSFET Product families and applications

Breakdown voltage									
650 V		750 V/900 V		1200 V		1700 V	2200 V		
Series									
G2	G3	G3	G1	G2	G3	G1	VHV		
On-state resistance									
18 mΩ to 67 mΩ	14-55 mΩ	11 mΩ	52 mΩ to 520 mΩ	25 mΩ to 75 mΩ	15 mΩ to 70 mΩ	1 Ω and 65 mΩ	31 mΩ		
Focus applications									
OBC & DC-DC Renewable energy Power supply Industrial drives	Traction OBC & DC-DC High density power supply	Traction inverter OBC & DC-DC High density power supply	Photovoltaic Power supply	OBC & DC-DC Inverter Charging stations Industrial drives	Traction inverter OBC & DC-DC HF power supply	DC-DC Power supply Renewable energy	DC-DC Power supply Renewable energy		

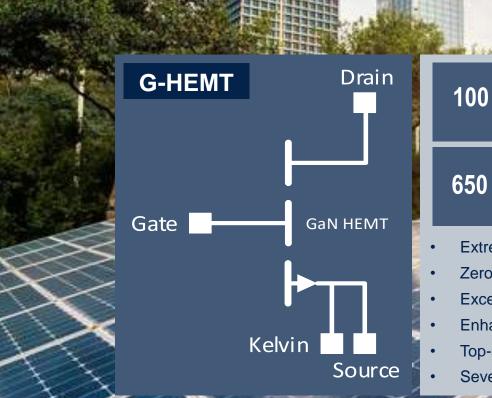
SiC MOSFET package technologies

PowerFLAT 8x8 STD & DSC	TO-LL	H2PAK-7L	HU3PAK	ACEPACK SMIT	HiP247 (3 ,4, long leads)	STPAK	Bare dice
	and and	WERE	Tana				
	:	Surface mounti	Through- hole	Special pack	age solutions		
Very thin (<1 mm) Well accepted in power conversion Dual side cooling option Leadless Industrial domain	 2.4 mm (max) thickness Good Rthj-a performance Leadless Industrial domain Kelvin source for optimized driving Good thermal dissipation 	AG qualified at 175°C Kelvin source for optimized driving High runner for automotive customers	AG qualified at 175°C Top side cooling Kelvin source for optimized driving Very good thermal dissipation	AG qualified at 175°C Isolated top side cooling Suitable for different configurations (HB, dual die, etc.) High power Modular approach	AG qualified at 200°C Very common industry standard Kelvin source option for optimized driving High creepage version (1700 V) in development	Unique solution for traction inverter AG qualified at 200°C Very high thermal dissipation efficiency Sense pin for optimized driving Multisintered package	WLBI & KGD T&R or RWF options Compliant with the most stringent automotive quality requirements

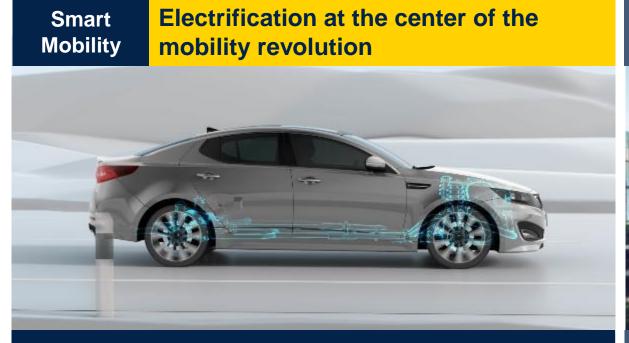
SiC Gen 3 MOSFETs in TO-LL

Designed for high-speed phase, high power, and more efficient server and telecom power systems

			an all				And Andrew
	V _{DS} [V]	R _{DS} (on) typ @ 25ºC [Ω], Vgs=18 V	Package	P/N	Eng. Samples	MAT 30	
		0.040	TO-LL	SCT040TO65G3	Available	Achieved	
	650 V	0.055	TO-LL	SCT055TO65G3	Available	Q4 2024	
	030 V	0.027	TO-LL	SCT027TO65G3	Available	Q4 2024	
		0.014	TO-LL	SCT014TO65G3	Available	Q4 2024	With Kelvin sourc
						Suitable to	o be driven at Vgs=1
7/1 2000							


STPOWER GaN products

PowerGaN range for various applications


Adapters, solar & energy, server & telecom SMPS, motor drives, and automotive electrification

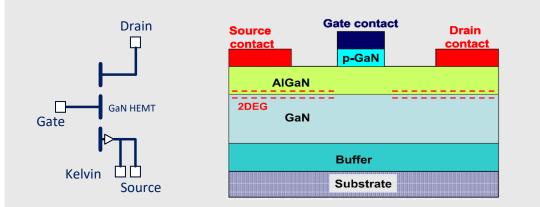
400.14	F	lds(on)	typ - n	nΩ				
100 V	1.2	1.8	4.5	4.5 7.5		11.5		
Rds(on) typ - mΩ								
650 V	14	30	49	75	125	290		

- Extremely low capacitances
 - Zero Qrr
 - Excellent FoM (R_{DS} x Qgd)
 - Enhanced back-end technology to minimize parasitic contributions
 - Top-side cooling package to improve thermal behavior
- Several package form factors

Main application trends for PowerGaN

Power &Maximizing efficiency & consolidatingEnergyrenewable energy generation

- Traction inverters
- DC-DC converters
- On-board chargers
- Wireless chargers



- SMPS and LED lighting
- 5G & datacenter power supplies
- Solar and energy storage
- Charging stations
- Motor control and appliances

ST GaN technology platforms

PowerGaN G-HEMT: e-mode HEMTs (intrinsically normally-off devices)

Partnership

- GaN power discrete & GaN IC platform
- 6-inch wafers GaN-on-Si
- 650 V normally-off based on p-GaN process for industrial

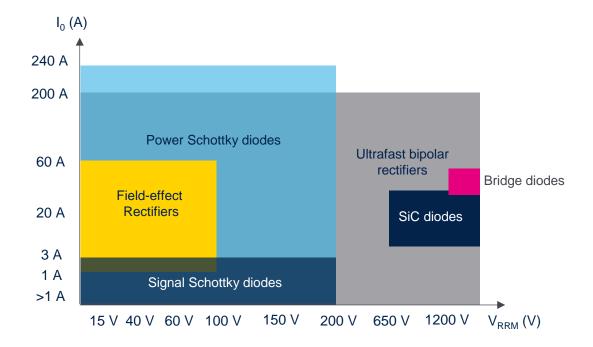
ST proprietary

- Tours (France) manufacturing
- 8-inch wafers GaN-on-Si
- 100 & 650 V normally-off based on p-GaN process for automotive

PowerGaN 650 V industrial product plan

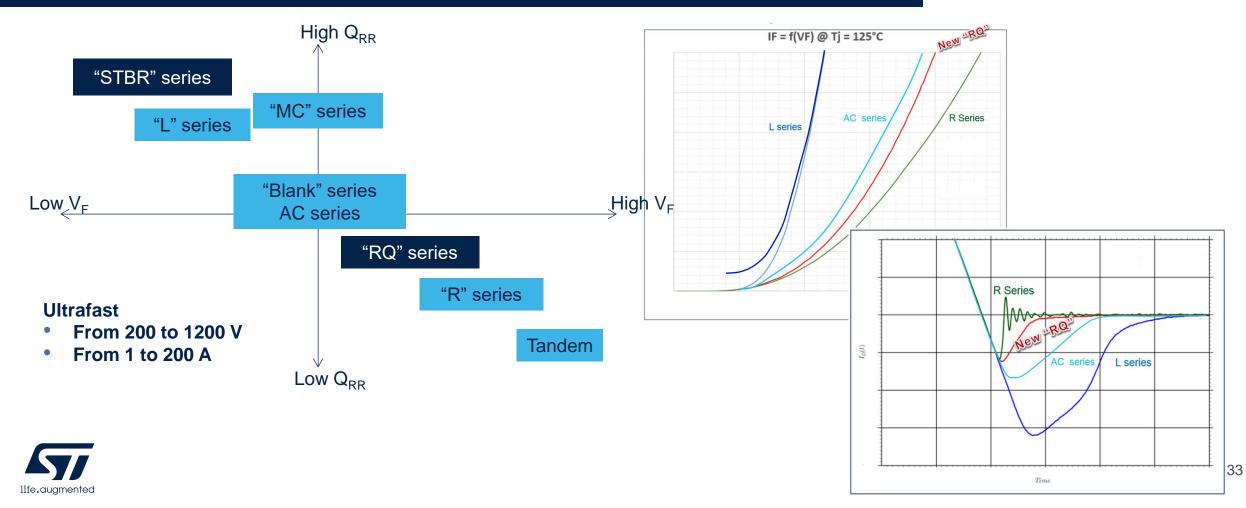
Series	MPN	Target electrical specifications			Package	Eng Samples	Qual Samples	SOP	
		I _D [A]	R _{DS} typ [mΩ]	Coss [pF]	Qg [nC]				
	SGT440R65BL	5	290	14	1	PowerFLAT 5x6	Q3 '24	Q4 '24	Q1 '25
	SGT190R65BL	12	125	20	2.2	PowerFLAT 5x6	Q3 '24	Q4 '24	Q1 '25
	SGT120R65AL	15	75	50	3	PowerFLAT 5x6	\checkmark	✓	\checkmark
	SGT110R65ALB	15	75	50	3	PowerFLAT 8x8	Q1 '24	Q2 '24	Q3 '24
	SGT65R65AL	25	49	85	5.4	PowerFLAT 5x6	~	✓	\checkmark
L	SGT65R65ALB	25	49	85	5.4	PowerFLAT 8x8	Q1 '24	Q2 '24	Q3 '24
	SGT65R65AKT	25	49	85	5.4	LFPAK 12x12 TSC	✓	Q1 '24	Q3 '24
G-HEM	SGT65R65AK	25	49	85	5.4	LFPAK 12x12 BSC	Q2 '24	Q3 '24	Q4 '24
G	SGT40R65ALB	40	30	130	9.3	PowerFLAT 8x8	Q2 '24	Q3 '24	Q4 '24
	SGT40R65ALD	40	30	130	9.3	PowerFLAT 8x8 DSC	Q4 '23	Q2 '24	Q4 '24
	SGT40R65AKT	40	30	130	9.3	LFPAK 12x12 TSC	✓	Q2 '24	Q3 '24
	SGT40R65AK	40	30	130	9.3	LFPAK 12x12 BSC	Q2 '24	Q3 '24	Q4 '24
	SGT20R65AKT	40	14	258	23	LFPAK 12x12 TSC	✓	Q2 '24	Q3 '24

Packages for PowerGaN

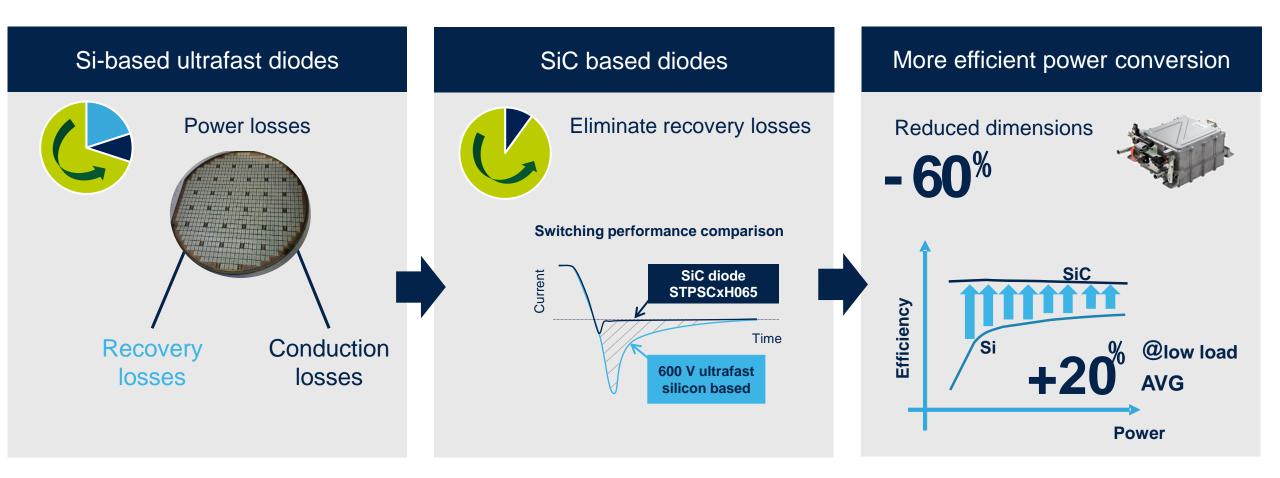

PowerFLAT 5x6 HV	PowerFLAT 8x8 BSC/DSC	LFPAK 12x12 TSC/BSC	New package
Qualified		COOCE TRANK	STPOWER
 In-house manufacturing Established package solution Flexible solution Multiple sources 	 Exposed metal on top side and bottom side Low package profile Cu clip technology Low operating temperature Creepage >3.5 mm 8 x 8 mm Kelvin source for optimized driving 	 Exposed metal on top side or bottom side Low profile Cu clip technology Lower operating temperature Creepage >3.5 mm Top-side or bottom-side cooling 12 x 12 mm Kelvin source for optimized driving 	 Manufactured in-house Exposed metal on top side and bottom side Low package profile Low operating temperature Flexible form factor Optimized for low voltage
Gaming & LED adapters lighting	Server and telecom power	OBC & DC-DC converters, solar energy, and server SMPS	OBC & DC-DC converters, server and telecom power

Diodes and rectifiers

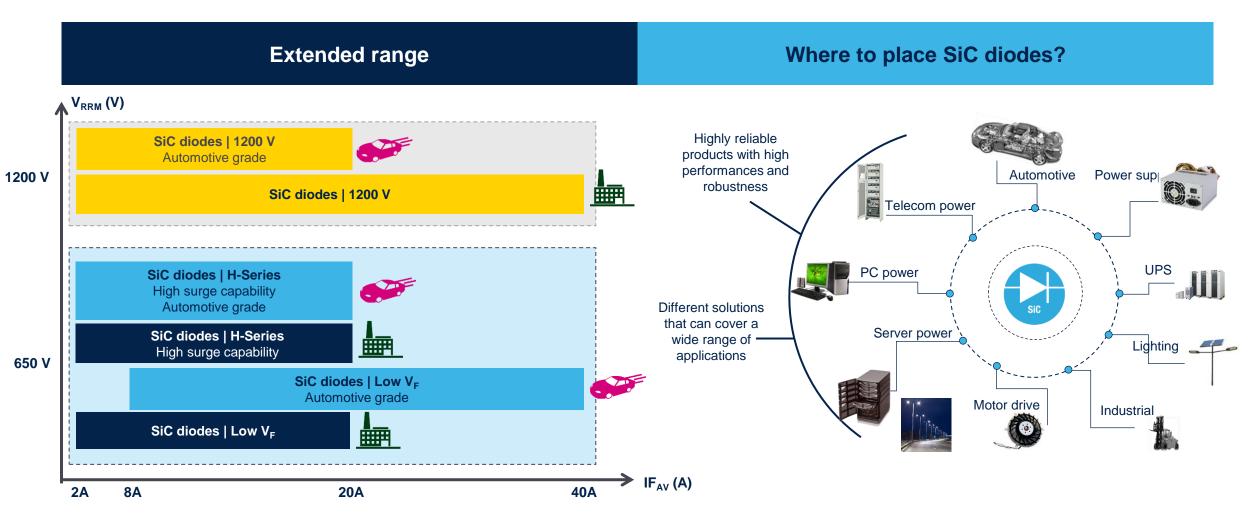
Diodes and rectifiers Product families for industrial applications


Industrial power conversion

- Digital power supply
- Server & storage power supply
- LED lighting
- Motor control in home/automation
- Medical
- Solar
- Charging stations
- UPS


Ultrafast rectifiers

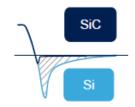
Ongoing R&D progress in our bipolar ultrafast rectifier diodes, illustrated by the latest 'RQ' soft diode series for resonant converters

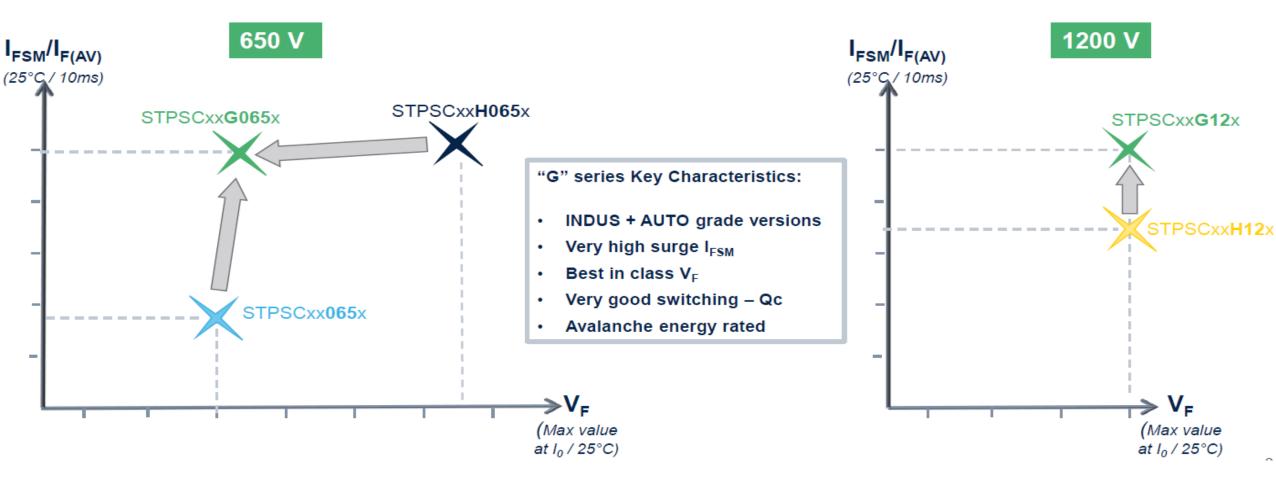


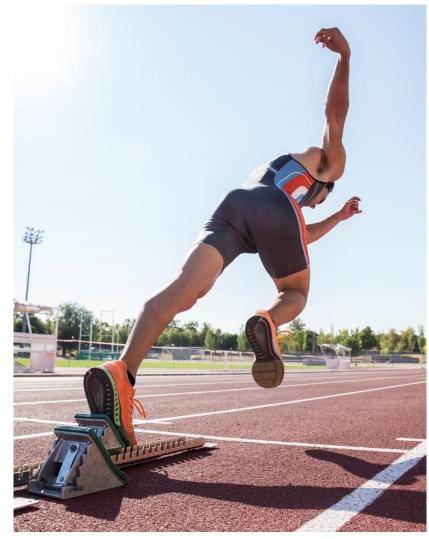
SiC diode technology Increase power conversion efficiency

SiC diode families

PowerFLAT 8x8 package 4, 6, 8, & 10 A (12 & 20 A in development)


PowerFLAT8x8: a less-than-1-mm thick package





G series: enhanced SiC diode performance

Key takeaways

- Very wide range of power discrete products
- SiC market leadership
- Comprehensive SiC options (bare die, discrete, STPAK, and power modules)
- Advanced package technology
- Continuous product development

Industrial Summit download center

ST Power & SPIN microsite (CN Only)

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

