Integrated High Voltage GaN Solutions

100W High Power Factor Soft Switched Synchronous Buck

350 W Solar Microinverter featuring Wide Bandgap Technology

250W GaN-Based Totem Pole Bridgeless PFC Design

100 W High Power Factor Soft Switched Synchronous Buck

Introduction and Proposed Design

GaN SiP Ideal for Resonant Topologies

Advanced flyback controller designed for LED Lighting Applications

Operation, Results, and Additional Designs

Introduction and Proposed Design for a 100 W High PF, SIB solution

Key Design Considerations for LED Lighting Applications

The ease of use of GaN SiP technology allows high efficiency and high switching frequencies in the system while maintaining a small form factor

The THD Optimizer block, integrated in the analog controller, allows low input current harmonic distortion, crucial for LED drivers

The ZVS operation ensures high efficiency and lower radiation footprint

Block Diagram

Board Pictures

GaN SiP reduces the form factor of the design and reduces switching losses vs. Silicon solutions

MasterGaN is an advanced power SiP integrating a gate driver and two e-mode GaN transistors in a half-bridge configuration

The MASTERGAN1L features UVLO protection on VCC, preventing the power switches from operating in low efficiency or dangerous conditions

Why power density matters?

More power in less space

Board area and weight are becoming limiting factors as power demands increase

Reducing size and weight can **cut the total cost of ownership** by making **installation** and **maintenance** both **easier and quicker**

Portability needs high power density

Smart GaN: Integrating GaN with driver

Higher efficiency

Reduced power losses, reduced power consumption, exceeding the most stringent energy requirements

Higher power density

Higher switching speed to reduce systems size and cost

Faster go-to-market

Packaged solution simplifies the design, with a higher level of performance

life.augmented

Product Portfolio by L3 Sub Class: Integrated smart GaNs

One package Many Power GaN HEMT for half bridge configuration MasterGaN3 MasterGaN2 MasterGaN5 MasterGaN4 MasterGaN4L MasterGaN1 MasterGaN1L Up to 200 W Up to 200 W Up to 500W Up to 45 W Up to 65 W Up to 100 W **Up to 500W** $225 + 450 \text{ m}\Omega$ $150 + 225 \,\mathrm{m}\Omega$ $450 + 450 \text{ m}\Omega$ $225 + 225 \text{ m}\Omega$ $225 + 225 \text{ m}\Omega$ $150 + 150 \text{ m}\Omega$ $150 + 150 \text{ m}\Omega$ Low consumption Low consumption Mass Mass Mass Mass Mass Mass Mass production production production production production production production

life.augmented

MasterGaN-L

Half-bridge GaN + gate driver optimized for high frequency

Mass production

600 V HB driver		ISI Hastercould Frank in the second s	Compact	 2 power GaNs in symmetric half-bridge configuration Embedded gate drivers with integrated bootstrap diode Optimized performance at high switching frequency Higher efficiency at medium-low load (minimized losses)
for GaN	terGaN-L		Robust	 Optimized operation in burst mode (fast wake up) UVLO protection on the lower driving section Interlocking function to avoid cross-conduction conditions Over temperature protection
Comparison Low power consumption	MasterGaN1 1mA	MasterGaN1L 0.8mA	Easy Design	 Same GQFN 9x9 mm² package of MasterGaN Input pins extended range 3.3 to 15 V with hysteresis and pull-down allows easy interfacing with MCU, DSP units or Hall effect sensors Dedicated pin for shutdown functionality Accurate internal timing match
Min Ton time	~4us 120ns	~50ns		

life.augmented

MasterGaN-1L

GaN SiP optimized for resonant topology

	MasterGaN1L
VDS	600V
RDS _{ON}	150 mΩ
IDS _{MAX} (@25C)	10 A

Compact	 Integrated power GaNs Embedded gate driver easily supplied by the integrated bootstrap diode Optimized Ton delay to work at higher frequency and higher efficiency with low load in resonant topology
Robust	 The interlocking function avoids cross-conduction conditions Over temperature protection
Easy Design	 Smart solution in GQFN 9x9 mm² package Input pins extended range 3.3 to 15 V with hysteresis and pull-down allows easy interfacing with microcontrollers, DSP units or Hall effect sensors Dedicated pin for shutdown functionality Accurate internal timing match

MasterGaN block diagram

MasterGaN main topologies

Single stage HPF controller for LED lighting

High efficiency and high power factor QR controller

Noise free operation across output level and dimming

Low distortion in all operating conditions

HPF QR Flyback controller with Valley Locking and THD Optimizer

Mass production

Key applications

- LED Drivers up to 180W
- High performance Power Supplies

Valley Locking and Skipping

 Digital engine able to control valley jumping strategy to allow converter running in noise free mode and minimizing power switch losses for all power levels.

THD Optimizer

 ST proprietary IP embedded to minimize input current distortion (THD_i) and maximize power factor (PF)

Maximum Power Control - MPC

This digital engine allow constant output power for whole input voltage range

Fast circuit start-up

High level of integration which embeds 800V start-up structure to allow system start-up in only 250ms

Secondar Side Regulation

- Features ٠
 - Input voltage: 90 265 V_{RMS}, f: 45-66Hz
 - Output voltage 60 V / 833 mA
 - High power factor, Low THD
 - Efficiency > 50% in stand-by ($P_{OUT} = 240$ mW)
 - 4 points (25%, 50%, 75%, 100%) > 91%
 - Frequency foldback for noise free operation
 - $T_{AMB-MAX} = 60^{\circ}C$
 - Open load voltage limiting (< 65 V)
 - Short-circuit protection with auto restart
 - NTC overtemperature protection for switching MOSFET ٠
 - Safety: Acc. To EN60065 ٠
 - EMI: Acc. To EN55022 conducted emissions ٠

Vac

EVLHV101SSR50W Schematic

EVLHV101PSR50W

Load Regulation

 $\overline{\mathbb{N}}$

EVLHV101PSR50W – PF and THD

PF

EVLHV101PSR50W – EMI performance

EMI tests 115V~, Vo=60V & Io=833mA

EMI tests 230V~ , Vo=60V@833mA

Block diagram

T

THD Optimizer

- Our proprietary THD Optimizer⁽¹⁾ minimizes input AC current distortion and maximizes Power Factor, regardless of transformer set-up.
- The distortion method used for THD optimization, along with the Valley locking technique, enables high power factor at full and intermediate loads.
- Valley locking and the THD optimizer circuit ensure even distribution of current at intermediate loads, without any sudden jumps.

Valley Locking IP

- Reducing the switching frequency at light load can improve the efficiency, power factor, and THD of the QR Flyback.
- In order to avoid random valley jumping, the Valley Locking IP is implemented, and the number of jumping valley remains constant until a significant modification of output power (or input voltage) occurs. As a result:
 - input THDi is minimized at intermediate load
 - audible noise is avoided
 - output variable is smoothly regulated

Maximum Power Control - MPC

- The **THD Optimizer** block lets the average value of the OPTO or FB value to be proportional to input power and input voltage.
- An internal **Maximum Power Control** (**MPC**) block generates an internal reference value that is derived from input voltage.
- Such method lets the topology to absorb from input source a **Maximum Power that is independent from input voltage and input shape**.
- At overloading occurrence, the IC does not take any action, but simply limits the delivered power to MPC level.

Protection summary

- VCC UVLO (VCC_low) with adaptive level to prevent any operation with insufficient driving voltage. Example ensure voltage level for safe gate driving and internal signal processing.
- Maximum Power Control (MPC) with +/-10% accuracy of Pout limitation (excluding external component tolerance).
- Secondary side **UVP** with timed shut-down when Vout = 15% of PSR regulation level.
- Over Temperature Protection (**OT**) on a single fault for generic Fault condition.
- Second level **OCP** to prevent damages due:
 - · secondary side rectifier short circuit
 - transformer saturation or flux runaway

Protection summary

Configurable **input OVP** and **Brown Out** over 5 different presets:

Tau _{CFGn} (μs)	CFG	iOVP	BrOut	K _{HV}	DC Det.	I _{BLEED} @ iOVP	Mains voltage range	Typ. Vin range
30 µs 45 µs	CFG1	ON	Low	High	Low	ON	Universal	90 Vac \div 305 Vac
100 µs 140 µs	CFG2 (*)	OFF	OFF	Low	Low	N.A.	Extended	> 80 V ÷ 400 Vac
300 µs 410 µs	CFG3	ON	High	High	High	ON	European	180 Vac ÷ 305 Vac
860 µs 1.2 ms	CFG4	OFF	Low	Low	Low	N.A.	Extended	90 Vac \div 400 Vac
> 2.05 ms	CFG5	ON	Low	High	Low	OFF	Universal	90 Vac \div 305 Vac

Brownout protection (BOP)

T

General FAULT pin protection

- If the FAULT pin voltage gets lower than V_{FLT-OFF} threshold or the pin is left floating, the IC stops operation and enters low consumption mode.
 - A hysteresis is provided that allows operation resuming when the pin voltage is sensed higher than V_{FLT-ON} (>V_{FLT-OFF}).
 - A precise internal current source I_{FLT-BIAS} allows managing an overtemperature protection using an external NTC.
 - In case the pin functionality is not used, a 33 k Ω resistor is needed from the pin to ground.

Symbol	Pin/Block	Parameter	Test condition	Min.	Тур.	Max.	Unit
FAULT pin c	haracteristics	1	-				
V _{FLT-OFF}	FAULT	FAULT pin disable threshold	Falling edge [^{trackFLT}]	740	800	860	mV
V _{FLT-ON}	FAULT	FAULT pin enable threshold	Rising edge [trackFLT]	790	850	910	mV
I _{FLT-BIAS}	FAULT	FAULT pin biasing current	FAULT = GND	45	50	55	μA
V _{FLT-OPEN}	FAULT	FAULT pin open detection voltage	Active mode	2.6	2.7	2.8	V

Primary Side Regulation

- Features ٠
 - Input voltage: 90 265 V_{RMS}, f: 45-66 Hz
 - Output voltage 60 V / 833 mA
 - High power factor, Low THD
 - Efficiency > 50% in stand-by ($P_{OUT} = 240$ mW)
 - 4 points (25%, 50%, 75%, 100%) > 91%
 - Frequency foldback for noise free operation
 - $T_{AMB-MAX} = 60^{\circ}C$
 - Open load voltage limiting (< 65 V)
 - Short-circuit protection with auto restart
 - NTC overtemperature protection for switching MOSFET ٠
 - Safety: Acc. To EN60065 ٠
 - EMI: Acc. To EN55022 conducted emissions ٠

Vac

Secondary side regulation configuration

T

Primary side regulation configuration

The GaN Based SIB converter showed significant performance improvements vs. a similar Si solution

A 100W SIB converter was implemented with constant current and constant voltage feedback to evaluate the performance vs. a similar solution based on HV Si MOSFETs

The advanced analog controller simplifies and optimizes ZVS implementation for high efficiency and optimal power quality of input current

SIB topology is suitable for non-isolated LED lighting applications

7-1/

Experimental results from this prototype demonstrate the effectiveness of GaN technology across the entire operating profile

Some waveforms

On the left, we see the full envelop of Inductor current.

- the inductor current (yellow trace) together with the gate control signal of the low-side device (cyan trace) and HB node (VHB) of the converter operating with an input of 230V RMS and output of 57V at 1.6A. The effect of the modulated delay time as a function of the input voltage can be appreciated by looking at the negative portion of the inductor current.
- The waveforms on right side shows the ZVS operation of the LS GaN HEMT, where it can be observed that HB node voltage (green trace) falls to zero before the gate control voltage is applied to the LS GaN HEMT. It can also be noticed that the inductor current (yellow trace) has a negative value during this transition.

Some waveforms

- Above waveform shows the output current (yellow trace) containing a low frequency ripple along with the output voltage (pink trace) for the power supply running in the same conditions.
- Waveform above is the input current (yellow trace) shown along the input AC voltage (pink trace) when the converter is operating at 230VAC_RMS.

Table of results- 100% Load

S.no	NLED	Vac	V_led	I_led	Pout	Pin	PF	Ithd	Efficienc Y
1		120	28.9	1.62	46.82	51.0936	0.989	9.7	91.64
2	9	230	28.9	1.63	47.11	51.2688	0.965	11.2	91.89
3		277	28.97	1.65	47.8	52.0824	0.92	15.2	91.78
4		120	38.14	38.14	61.41	65.7516	0.99	8.2	93.4
5	12	230	38.07	1.6	60.91	64.7484	0.974	9.68	94.07
6		277	38.07	1.6	60.91	65.1888	0.965	11.4	93.44
7		120	47.37	1.58	74.84	79.5336	0.984	10	94.1
8	15	230	47.44	1.59	75.43	79.746	0.99	7.7	94.59
9		277	47.52	1.61	76.51	80.8632	0.977	9.4	94.62
4		120	55.92	1.38	77.17	81.5808	0.986	12.1	94.59
5	18	230	56.7	1.61	91.29	96.0948	0.99	7.79	95
6	1	277	56.67	1.59	90.11	95.3208	0.978	8.3	94.53

Key take aways:

- THD •
 - THD < 15% @230V •
 - THD stays <20 though the load voltage variations ٠
- Efficiency ٠
 - Average Efficiency 93.6% •
 - Average Efficiency @230V is 93.9% ٠
- PF>0.95 throughout full input output range. •

Efficiency vs Vin ac with Gan SIP

95.5

9 LEDS

150

V_{AC RMS 200}

16

14

12

6

4

100

% ⊈10

Table of results- 100% Load

S.no	NLED	Vac	V_led	I_led	Pout	Pin	PF	Ithd	Efficienc Y
1		120	27.15	0.8	21.72	23.664	0.99	9.2	91.78
2	9	230	27.69	1	27.69	30.84	0.895	18.8	89.79
3		277	28.2	1.24	34.97	38.6892	0.86	19.4	90.39
4		120	35.94	0.808	29.04	30.9012	0.988	12.7	93.98
5	12	230	35.95	0.802	28.83	30.726	0.917	17.15	93.83
6		277	36.03	0.82	29.54	31.6968	0.818	22.3	93.2
7		120	45.08	0.812	36.6	38.7264	0.985	12.99	94.51
8	15	230	45.09	0.812	36.61	38.6808	0.947	14.5	94.65
9		277	45.04	0.802	36.12	38.4204	0.882	19.2	94.01
4		120	53.71	0.808	43.4	45.606	0.982	15.7	95.16
5	18	230	53.68	0.806	43.27	45.564	0.96	11.7	94.97
6		277	53.64	0.797	42.75	45.2112	0.913	14.5	94.56

THD vs Vin ac

GaN vs Si MOSFET performance

- The peak efficiency of the GaN-based converter is 95.1% while the silicon-based one reaches 94%. The efficiency gain is present across the entire operating profile (Fig. 18) resulting in lower operating junction temperatures for the GaN-based solution. The reduced output capacitance of the GaN transistors and the slightly lower on-state resistance enable higher efficiency.
- The efficiency difference could be further increased by optimizing the operating current of peripheral circuits and the magnetic components.

Summary

- The solution presented here is the design and implementation of a 100W Synchronous Inverse Buck (SIB) converter for LED drivers, with a wide input voltage range, High Power Factor (HPF) and high efficiency.
- The proposed converter is based on a High Voltage GaN HEMT SiP and a novel advanced Quasi-Resonant (QR) analog controller with Power Factor Correction (PFC) control.
- The SIB is controlled to achieve Zero Voltage Switching (ZVS) for both the power switches.
- The analog controller includes a "THD Optimizer" block, which ensures low I_{THD}, a crucial factor for offline LED drivers.
- In the SIB, the High-Side (HS) switch always switches under ZVS, but the Low-Side (LS) switch operates in hard switching. The solution here
 exploits the zero current detection and power device turn-on delay feature of the dedicated analog controller to add ZVS for the LS GaN
 transistor. The GaN SiP technology enables high-efficiency and high switching frequencies, while maintaining a small form factor.
- The thermal characterization was performed by loading the converter at 100W with 230V_{AC_RMS} input, with an open frame and ambient temperature of 25° C. The maximum temperature on the GaN SiP was recorded at 78.5°C without any cooling fan or heat sink. Image on the right shows the case temperature of the GaN SiP with a small heat sink placed on the bottom side of the PCB.

EVL012LED: High voltage 200 W LED driver

ŀ	Parameter	Value													
In	put mains range	90V~277Vac, frequency 45~65Hz 120~430Vdc													
Out	put Voltage range	36~56Vdc													
Fu	Ill load efficiency	94.5% @ 230Vac													
Maxi	mum output power	200W													
No loa	d mains consumption	< 500mW													
3 in	1 dimming function	1 ~ 10V, 10V PWM signal or resistance													
	Dimensions	200 x 55 x 15 mm (L x W x H)													
	PCB	Double layer, 35um, F4R													
	Efficiency vs	s. Output Power													
96.00															
94.00															
92.00															
90.00 📀															
°) 88.00 ≳															
86.00															
ë ₩ 84.00															
82.00															
	0.00 50.00	100.00 150.00 200.00 Pout [W]													

EVL011A150ADP: High voltage 150 W LED driver

Thermal Map at Full Load

115 Vac, 60Hz

350 W Solar Microinverter featuring Wide Bandgap Technology

Benefits of Wide Bandgap Technology

Introduction and Proposed Design

System Output and Efficiency

Other GaN Designs to fit your application

Wide Bandgap Technology offers many benefits vs. Si

The realized benefits of GaN technology is key for renewable energy customers and users

A GaN SiP Solution enables high efficiency crucial for renewable energy applications

The input pins extended range on the GaN SiP allows easy interfacing with analog controllers, microcontrollers, and DSP units

This integrated design minimized board space ideal for high power density

Why power density matters?

The benefits of GaN

Wider bandgap is the key!

- Higher breakdown voltage
- Higher current density
- Higher switching speeds
- Lower on-resistance

Benefits of GaN for power electronics

- Higher switching frequencies
- Higher efficiency
- Higher power density
- System downsizing
- Higher integration

life.augmented

Wide bandgap trends vs technology adoption

- In Consumer, GaN crossed the Chasm in 2020-2021 on the push of fast chargers rapid growth and now started to be deployed to other AC/DC.
- System in Package with embedded drivers/controllers (MASTERGAN, VIPerGaN) will contribute to adoption due to simplicity of integration.

 Early
 Early
 Late
 Laggards

GaN value proposition

Higher efficiency

Reduced power losses, reduced power consumption, exceeding the most stringent energy requirements

Higher power density

Higher switching speed to reduce systems size and cost

Reinventing power

Intrinsic properties of GaN will push for new system design opportunities

Greener World

Smaller Products

Smarter Design

Smart GaN: integrating GaN with driver

Product Portfolio by L3 Sub Class: Integrated smart GaNs

MasterGaN6/MasterGaN7 – MasterGaN evolution

Advanced power solution integrating a gate driver and two enhancement mode GaN transistors in half-bridge configuration

MasterGa

ES available

MasterGaN block diagram

MasterGaN main topologies

Introduction and Proposed design of a GaN based Solar microinverter

Microinverters are often used as an alternative to string inverters to perform the DC to AC power conversion at solar panel level in residential PV panel systems

A solar microinverter helps maximize energy yield and mitigate problems related to partial shading, dirt, or single PV panel failures

A microinverter is composed of a DC-DC converter implementing MPPT and DC-AC inverter to shape current and voltage for injection into the AC grid

The demo design is based on two power stages: an interleaved isolated boost DC-DC converter and a DC-AC converter with a GaN SiP as the power stage

Micro-inverter block diagram

Micro-inverter Reference Design

Key Features

- DC-AC 2-stage micro-inverter for 250W PV application
- MasterGaN6/7 daughter card integration
- First stage DC-DC; Second stage DC-AC
- · First stage based on Interleaved boost topology
- Second stage based on 2 MasterGaN6 daughter cards
- Bi-polar modulation scheme based on Advanced Timer for inverter stage
- Higher switching frequency (Tested up to 150kHz for secondary side)
- Measured efficiency of MasterGaN6 DC-AC stage 97.3%
- Design files available in Altium

Main Products

- Integrated System-in-Package MasterGaN6/7
- Gate Drivers PM8834
- Power Discrete STH310N10F7-2, STPSC12065G-TF
- DCDC Buck Regulators L4971
- LDO ST732
- Controller STM32F103
- Analog Op-amps TSV911, TS3011
- Isolation STISO620

Schematic and layout – Available in Altium Designer

Interleaved DC-DC Stage

Interleaved DC-DC Stage Gate driving signals

FW generated using CubeMx

 $\delta_{min} = 50\%$, $\delta_{max} = 70\%$

DC-DC Startup waveform at 55% duty cycle

File	Ed	dit Util	lity Hel	р																							Tektro	nix
Wave	form	View																									Add Nev	v
			Ū.						_ :																	150	Cursors C	allout
											 	·····			 											100 V 50 V	Measure S	earch
•																										-50 V	Results Table	Plot
																										-100 V -150 V		
-2 s			0's		2's [.]		4's		<u> </u>	6's			8 s		· · · 1	0 s [.]			12 s		14 s			16 s		-200 V		lore
Horizo	ntal Zoo	om Scale 20	0.00 ms/div		(100.00x z	oom) Ve	rtical Zoom	+		1.00x zoom																×	Meas 1	1
A C3	V: 22	0.112 V																								200 V	Frequency µ':	
	ļ	<u>.</u>																								150 V	Low amplitu Meas 2	ide
	Δv: 2 Δv/Δt	220.354 V .t: 21.70 kV/	s																							100 V	Positive Duty	y Cycle
											. /															50 V	Low amplitu	ıde
B C3	v: 5.7	758 V							:																	0 V	DVM DC	3
											Δt· 10	152 ms														-50 V	10.87 V	
											1/∆t: 9	98.50 Hz														-100 V	Peak-to-Peal	k 2
										t:	5.54872	6 s	<u> </u>													-150 V	μ': 1.144 V Meas 4	
											- C-	5.538574	s ·													-200 V	Amplitude	
	5.4	46 s	5	5.48 s		5.50 s		5.5	2 s		5.54			5.56 s			5.58 s			5.60 s		5.62 s			5.64	1 s	μ': 1.144 V Meas 5	2
																										· 20 V	RMS	,
																										15 V		
																										10 V		
																										5 V		
C 4																										0 V		
																										-5 V		
																										-10 V		
																										-15 V		
																										-20 V		
		cl. o)				:																			
Ch 1 2 V/div	7 Bw	Ch 2 2 V/div	Ch 3 50 V/div 1 MΩ 20 MHz	Ch 4 5 V/div 종 8 20 MHz	Math 1 1 V/div Ch3 - C	/ Ch4											Add New Math	Add New Ref	Add New Bus	Horizontal 2 s/div SR: 62.5 kS/ BL: 1 25 Mr	20 s 16 µs/p	t	er _/ 1.	6 V	Acq Auto Sam	usition o, An ple: 12 bits	alyze	p 2023

Interleaved DC-DC Stage Vds during startup

Vpeak is less than 115V for < 10ms @18Vdc

25degC ambient 2.5kohm resistance at output

DC-AC power stage with MGaN6 Daughter cards

- Bipolar PWM driven by STM32F103ZET6
- L1HS and L2LS Driven together
- L2HS and L1LS Driven together

life.augmente

Frequency, Dead time and Modulation Index – Configurable via firmware

The System showed strong performance, greater than 97% efficiency

The results show strong system efficiency and thermal performance

82-85 degrees Celsius at 350 W with heatsink on both daughter cards

DC-AC waveforms look optimal for microinverter performance

DC-AC waveforms

$$f_{AC} = 60Hz$$
$$f_{sw} = 100kHz$$

 $f_{AC} = 50Hz$ $f_{sw} = 100kHz$

DC-AC thermal measurements

- > 90 deg C at 250 W without heatsink
- 82-85 deg C at 350 W with heatsink on both daughter cards
- ~12-15 deg C deltaT with/without heatsink at similar operating conditions
- Temperatures cross 90 deg C at 150 kHz, 250 ns at 100 W

With/without heatsink @ Pin = 25W

Without heatsink @ Pin = 200W

With heatsink @ Pin = 350W

DC-AC efficiency measurements

WT1030M – Digital Power Meter

Peak efficiency = 97.3% After line filter inductors on AC side Filter inductor design > 10 years old. Needs optimization

250 W GaN-Based Totem Pole Bridgeless PFC Design

Introduction and Proposed Design

Benefits of GaN Technology and Totem Pole Bridgeless PFC Topology

Results and Conclusions

Similar Designs and References

Topology

Introduction and Proposed Design

The Bridgeless topology eliminates the use of the input diodes and the losses associated with them

Control is based on an analog controller and external circuits

The solution uses quasi-fixed frequency in all operating conditions (CCM, DCM)

Block Diagram

- Slow Leg
 - Switched at line frequency
 - Uses high voltage Silicon FETs
- Fast Leg
 - Uses an integrated SiP with two 650V GaN FETs in a Half Bridge configuration, including the gate drivers
 - Switched at higher frequency than the slow leg based on the modulation generated by the PFC controller to regulate the line current
- The PFC controller naturally limits the harmonic content of the current drawn from the grid

Board Layout

Fast Leg board with GaN SiP

Benefits of Wide Bandgap Technology and Totem Pole Bridgeless PFC Technology

The Bridgeless Topology with GaN offers many key benefits

Bridgeless topologies simplify the design compared to traditional PFC circuits

The use of GaN creates lower on-resistance, small parasitic capacitance, decreasing system losses

Analog control can be a good option for cost sensitive applications

AC-DC Conversion Portfolio by Function

PFC Analog Control

PFC – Topologies & ICs Portfolio

The L4985A was used in this design, ideal for CCM operation

Motivation to adopt PFC

Input voltage Input current

Assuming same load power Higher RMS current Higher losses on mains Higher losses on

Depending on power level and application, standard IEC 61000-3-2 is mandatory

Ecosystem

To support Design in and shorten time to market

GaN SiP: MasterGaN

Why power density matters?

More power in less space

Board area and weight are becoming limiting factors as power demands increase

Reducing size and weight can **cut the total cost of ownership** by making **installation** and **maintenance** both **easier and quicker**

Portability needs high power density

Smart GaN: Integrating GaN with driver

Higher efficiency

Reduced power losses, reduced power consumption, exceeding the most stringent energy requirements

Higher power density

Higher switching speed to reduce systems size and cost

Faster go-to-market

Packaged solution simplifies the design, with a higher level of performance

MasterGaN – Riding the new wave of GaN Power

The world first solution combining 600 V half-bridge driver with GaN HEMT

STI Mastercan

One driver – Many scalable power size, pin to pin compatible for half bridge configuration

Compact	High power density 4x smaller vs Si solution High efficiency
Robust	Offline driver optimized for GaN HEMT for fast, effective and safe driving and layout simplification
Easy Design	Smart solution in GQFN 9 x 9 mm ² package Scalable power, pin to pin compatible

Product Portfolio by L3 Sub Class: Integrated smart GaNs

MasterGaN6/MasterGaN7 – MasterGaN evolution

Advanced power solution integrating a gate driver and two enhancement mode GaN transistors in half-bridge configuration

ES available

MasterGaN block diagram

MasterGaN main topologies

Results and Conclusions

The Gan based Totem Pole PFC design showed strong system efficiency and favorable THD

>97% efficiency, THD of less than 15% and close to unity power factor

The Totem Pole PFC limits the harmonic content of the current drawn from the power grid

This design highlights a GaN-based converter with compact size, high efficiency and optimal performance for analog control

System Waveforms

PWM signal generated by the analog controller is split into Fast Leg High Side and Fast Leg Low Side driving signals

Current was sensed using a shunt-resistor followed by a precision, isolated amplifier which was then rectified.

Power Factor and Output Voltage vs. Output Power

System Efficiency and Total Harmonic Distortion (THD)

- The converter showed efficiency >97%
- THD of less than 15% and close to unity power factor

Additional GaN SiP Power Supply Solutions

Versatile and Efficient Designs to fit your power supply needs

250W Resonant Power Supply with GaN for Industrial Power supply applications

350W Inverse Buck for offline LED lighting applications

Simplified boards to evaluate driving GaN SiPs

250 W Resonant demo board

EVLMG1-250WLLC 250 W resonant demo board based on MasterGAN1

Databrief available on the web

KEY APPLICATIONS

Ultra-fast and ultra-compact switchmode power for applications such as:

Industrial DC-DC applications

Consumer SMPS

250W Resonant Demo Board

- L6599A + MasterGaN1 + SRK2001
- Vout=24V lout=10A
- Freq switching ~250 kHz
- Dimension: 105 x 65 x 35 (H) mm

Benefits:

- Higher switching frequency compared to Si MOSFETs => smaller transformer
- Higher efficiency (~95%)
- No heatsink required for MasterGaN1 heat dissipation

High efficiency and small size for HV lighting

EVLMG4-500WIBCK: MASTERGAN4 350 W Inverse Buck demo board

Lower power losses eliminates need for heatsink

EVLMG4-500WIBCK

Three configuration has been considered and compared on 350W demo board connected to its lamp (high bay lamp):

- Silicon switch and Si Diode as rectifier
- Silicon switch and SiC diode as rectifier
- MASTERGAN4 synchronous rectified

MasterGaN - Ecosystem

Evaluation board & ecosystem available at

life.auamente

- Switch-mode power supplies
- Chargers and adapters
- High-voltage PFC
- DC-DC & DC-AC converters
- UPS systems
- Solar power

- Switch-mode power supplies
- Chargers and adapters
- High-voltage PFC
- DC-DC converters

- Switch-mode power supplies
- Chargers and adapters
- High-voltage PFC
- DC-DC & DC-AC converters

MASTERGAN vs Si solutions: efficiency comparison

lout = 0.7 A

- MASTERGAN4: ΔI = 3.10 %
- MOSFET + SiC: ΔI = 5.8 %
- MOSFET + Si: ΔI = 5.8 %

lout = 1.0 A

- MASTERGAN4: ΔI = 3.10 %
- MOSFET + SiC: ΔI = 4.56 %
- MOSFET + Si: ΔI = 4,89%

lout = 1.2 A

• MASTERGAN4: $\Delta I = 4\%$

No comparison with MOSFET, Because MOS temp. becomes too high without heatsink

Additional GaN SiP Power Design

Versatile and Efficient Designs to fit your power conversion needs

250W Resonant Power Supply with GaN for Industrial Power Supply Applications

350W Inverse Buck for LED Lighting Applications, 170W LCC Converter for Li-Ion battery chargers

Simplified evaluation boards to test GaN SiP halfbridge performance

170W LCC Converter Ideal for Li-Ion Battery Chargers

Introduction of GaN FETs Improves Reliability and System Efficiency

LCC Converter is designed properly to shape the gain curve appropriately to maintain highest possible efficiency

The design does not need the use of heatsinks and fans, allowing for a fully sealed charger and increased system reliability

GaN based solution shows significant efficiency and overall performance increases vs. Silicon solution

Prototype Design

The 170 W Prototype Design is very compact and does not require heatsinks when using GaN Power Stage

- The resonant controller is placed on the bottom of the PCB and is used to perform CC/CV control, can operate up to 700 kHz
- The two HB power stages (Si and GaN) are interchangeable on the board, allowing easy and reliable testing of both technologies

High efficiency and small size for HV lighting

EVLMG4-500WIBCK: MASTERGAN4 350 W Inverse Buck demo board

Lower power losses eliminates need for heatsink

EVLMG4-500WIBCK

Three configuration has been considered and compared on 350 W demo board connected to its lamp (high bay lamp):

- Silicon switch and Si Diode as rectifier
- Silicon switch and SiC diode as rectifier
- MASTERGAN4 synchronous rectified

MASTERGAN vs Si solutions: efficiency comparison

lout = 0.7 A

- MASTERGAN4: ΔI = 3.10 %
- MOSFET + SiC: ΔI = 5.8 %
- MOSFET + Si: ΔI = 5.8 %

lout = 1.0 A

- MASTERGAN4: ΔI = 3.10 %
- MOSFET + SiC: ΔI = 4.56 %
- MOSFET + Si: ΔI = 4,89%

lout = 1.2 A

• MASTERGAN4: $\Delta I = 4\%$

No comparison with MOSFET, Because MOS temp. becomes too high without heatsink

MasterGaN – ecosystem

Evaluation board & ecosystem available at <u>www.st.com/mastergan</u>

