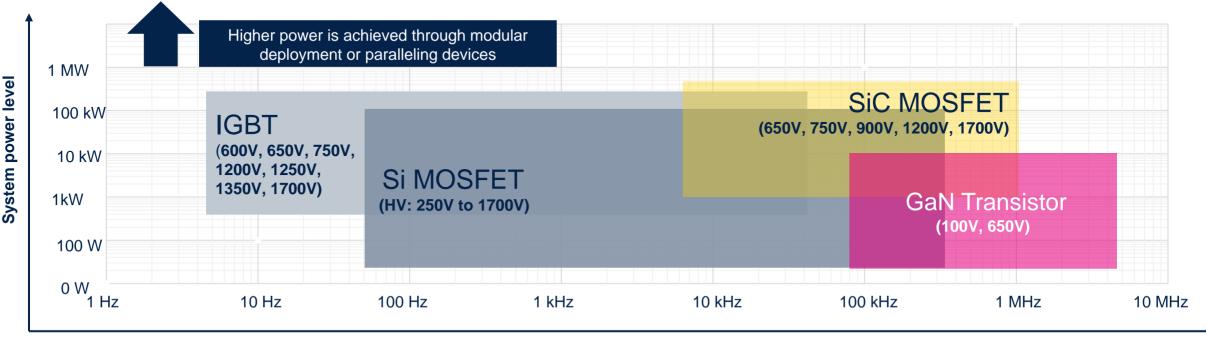
Next Generation Power Discretes and Packages

Technology Overview

Silicon MOSFETs

Wide Bandgap Transistors - SiC

Wide Bandgap Transistors - GaN


IGBTs and IPM

Power Modules

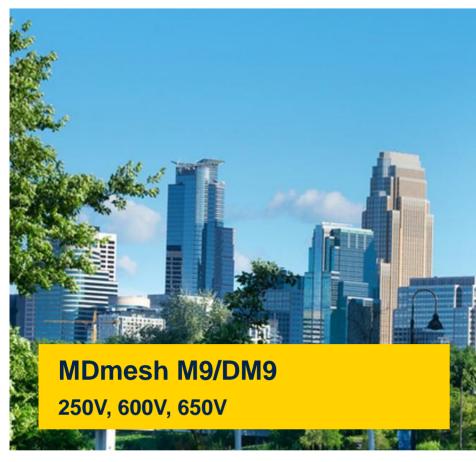
STPOWER

Silicon and Wide-bandgap Power Technology Positioning

Operating frequency

Technology	Features	Ideal for
Si HV MOSFET (>200V)	Medium-high power up to several kW, high voltage, high trequency	
IGBT	Very high power, high voltage, medium frequency up to 50 kHz	HV motor control, H.A., UPS, welding, induction heating, main traction,
SIC MOSFET	Very high power, high voltage, high frequency, high temperature	High power DC/DC, UPS, charging station, main traction inverters, OBC,
GaN Transistor	Medium-high power up to several kW, very high frequency > 80 kHz	SMPS, Telecom Power, DC/DC, OBC, PV inverters, LiDAR,

High-voltage Silicon MOSFETs


MDmesh: the most complete product portfolio for industrial & multisegment systems

- APA		M2/DM2	Balanced cost & performance for a broad range of power applications	400 V, 500 V, 600 V, 650 V
		M6/DM6	Superjunction technology for high efficiency in resonant converters and soft-switching applications	600 V, 650 V
Contraction of the second			HIIII I CAR AND	
		M5	Outstanding R _{DS(on)} in high-power PFC and compact solutions	550 V, 650 V
	New	M9/DM9	Enables higher power density and efficiency	250 V, 600 V, 650 V
		K5/DK5	First superjunction technology > 1000 V for very high voltage applications	800 V, 900 V, 950 V, 1050 V, 1200 V, 1500 V, 1700 V
	New	K6	Industry's lowest R _{DS(on)} in the very high voltage market. Suitable for very high voltage range	800 V, 950 V, 1050 V, 1200 V, 1500 V, 1700 V

STPOWER High Voltage Silicon MOSFETs M9/DM9 – The Next Step Forward

The most complete product portfolio for high power and efficiency systems



- Best FOM $R_{DS(on)} \times Q_g$ in the market
- Step forward in hard switching and soft switching
- DM9 FAST diode embedded version available
- Wider product portfolio

Why choosing M9/DM9?

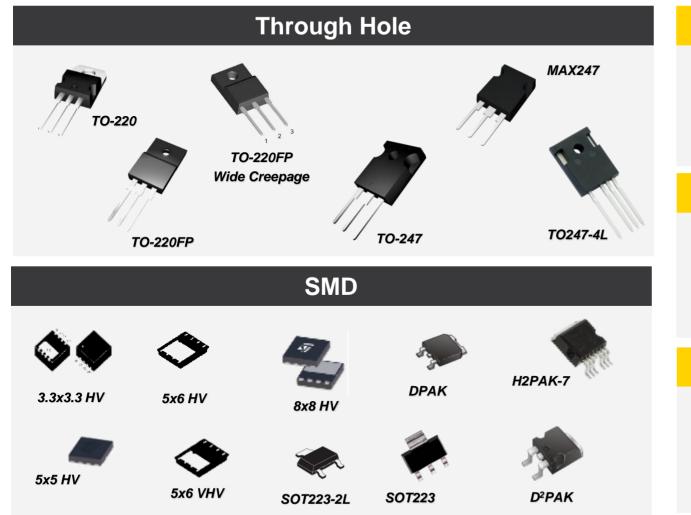
- Only one technology for both hard (PFC) and soft switching (LLC)
- Higher power level and higher efficiency in the same package
- Increasing power density while providing smaller package
- Improved system ruggedness with applying new production processes
- Better electrical parameters, allowing more safety to the system

800 – 950 V MDmesh K6 Series

MDmesh K6 superjunction MOSFETs for very-high-voltage applications

Perfect for LED lighting applications and auxiliary SMPS based on flyback topology.

Industry's best $R_{DS(on)}$ for 800 V voltage range, enables designers to increase the power density system for more compactness solution


CONTRACTOR DESCRIPTION OF TAXABLE PARTY OF TAXAB

Lighting applications Auxiliary SMPS and e-metering

E III IIII

High Voltage Power MOSFET Packages

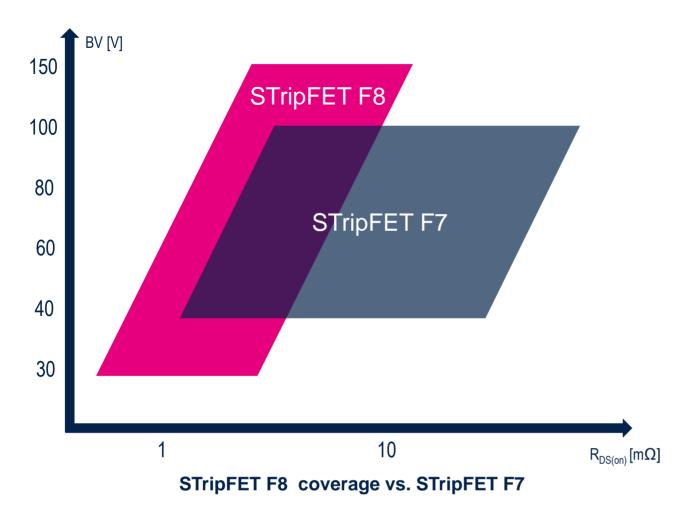
ACEPACK SMIT package

- Top side cooling package
- Several topologies can be realized
- Very high thermal dissipation
- Kelvin source pin enables higher efficiency
- Automotive graded

HU3PAK package

- Top side cooling package
- Higher creepage distance
- Very high thermal dissipation
- Kelvin source pin enables higher efficiency
- Automotive graded

TO-LL package


- Compactness
- Higher power density
- Reliability at high VDSS rating
- Kelvin source pin enables higher efficiency
- High creepage (distance 2.7 mm)

New Stripfet F8 for Low Voltage Silicon MOSFEts F8 technology enabling efficiency and power density

STripFET™ F8 Value proposition

Enhance competitiveness in 12V and 48V systems: improvement up to -35% R_{DS(on)} x Area, and new packages

Excellent $R_{\text{DS(on)}}$ performance in all the breakdown voltage ranges

New sub-m Ω devices at 40V in PowerFLAT 5x6 mm package

Extend the breakdown voltage range from 40V - 100V (F7) to **30V - 150V** (F8)

Automotive and Industrial Applications For SiC MOSFET

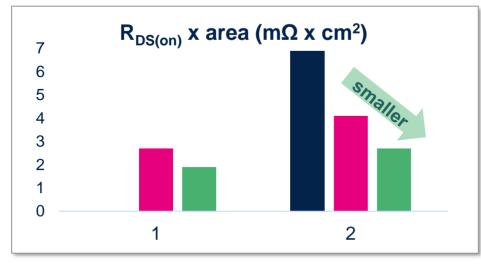
- Global CO2 emission reduction
- Smaller and lighter power unit form factor
- Better inverter efficiency
- Extra mileage / lower battery cost

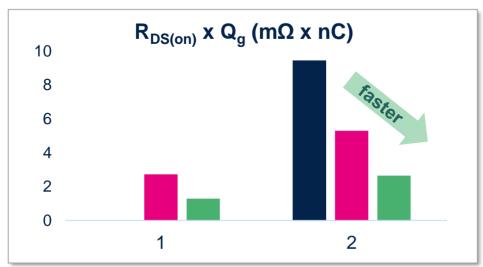
Car electrification Traction inverter On-board charger DC/DC converter

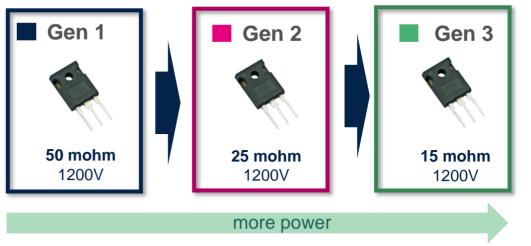
High-end industrial

Better efficiency Smaller form factor Lower TCO vs. silicon

- Solar inverter
- Energy storage
- Power supply
- Charging station
- Welding
- Drives




SiC MOSFET Series


High voltage and fast switching for high density applications

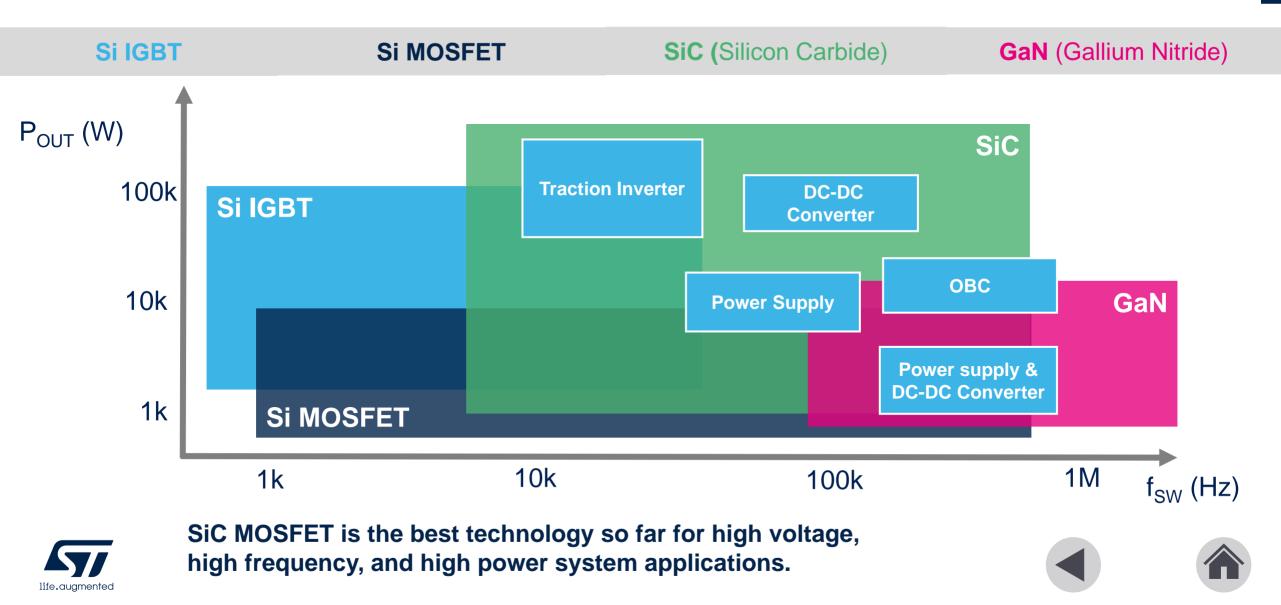
	Gen1	Optimized $R_{DS(on)}$ and T_j for motor drive applications	1200 V – 1700 V
6	Gen2	Balanced $R_{DS(on)}$ and Q_g for a broad range of automotive & industrial applications	650 V, 1200 V, 2200 V
	- Aller		
New	Gen3	Ultrafast series optimizing R _{DS(on)} vs. Q _g trade off for very high frequency	650 V, 750 V, 900 V, 1200 V
		applications and automotive grade qualified	
	SiC VHV	Very high voltage SiC extends the advantages of SiC technology to higher	2200 V
	2200 V*	voltage ranges	
		* industrial grade	

SiC MOSFET Advances In Technology Figure of Merits

Improvement over MOSFET generations

Lower R_{DS(on)} x Area:

- ✓ For a discrete MOSFET, it enables lower R_{DS(on)} for a given chip size or smaller chip size for a given R_{DS(on)}, higher current capability, lower conduction losses.
- ✓ For a power module, it means higher power achievable with the same form factor.
- Lower R_{DS(on)} x Q_g:
 - Lower switching losses and higher frequency (reduced board size).



SiC MOSFET Package Technologies

PowerFLAT 8x8 STD & DSC	TO-LL	H2PAK-7L	НИЗРАК	ACEPACK SMIT	HiP247 (3 ,4, long leads)	STPAK	Bare Die
57	and and	Constant of the second	TIM				
		Surface mountin	g		Through-hole	Special pack	age solutions
 Industrial domain Very Thin (< 1mm) Well accepted in power conversion Dual side cooling option Leadless 	 Industrial domain 2.4mm(max) thickness Good Rthj-a performance Leadless Kelvin source for optimized driving Good thermal dissipation 	 Automotive qualified at 175°C Kelvin Source for optimized driving High runner for Automotive customers 	 Automotive qualified at 175°C Top side cooling Kelvin Source for optimized driving Very good thermal dissipation Specifically designed for OBC, DC-DC Converter 	 Automotive qualified at 175°C Isolated Top side cooling Suitable for different configurations (HB, dual-die, etc.) High Power Modular Approach 	 Automotive qualified at 200°C Very common Industry standard Kelvin Source option for optimized driving High creepage version (1200V and 1700V) in development 	 Automotive qualified at 200°C Unique solution for traction inverter Very High thermal dissipation efficiency Sense pin for optimized driving Multi-sintered package 	 WLBI & KGD T&R or RWF options Compliant with the most stringent Automotive Quality Requirements

Power Semiconductors Positioning vs. Key Applications

The Main Trends In PowerGaN

Electrification at the center of the mobility revolution

Applications

- Traction inverters
- DC-DC converters
- On-board chargers
- Wireless chargers

Maximizing efficiency and consolidating renewable energy generation

- SMPS and LED lighting
- 5G & datacenter power supplies
- Solar and energy storage
- Charging stations

.....

• Motor control and appliances

Focus product: SGT65R65AL

p-GaN G-HEMTTM transistor – 49 m Ω

Product attributes

- Typ 49 m Ω effective R_{DS}(on) @ 25°C
- 650 V DC, 750 V peak
- 25A DC
- 85 pF Coss
- 3 pF Crss
- 1.8 V threshold voltage
- 5.4 nC gate charge
- 0 nC reverse recovery charge

Applications

- Game console PSU
- Adapters
- LED lighting

PowerFLAT 5x6 HV

- 1 mm max thickness
- Fixed form factor
- Kelvin source for optimized driving
- Easy to drop in vs standard solution
- Well accepted in power conversion
- Industrial qualification

Focus product: SGT120R65AL

p-GaN G-HEMT[™] transistor – 75 mΩ

Product Attributes

- Typ 75 mΩ Effective RDS(on) @ 25°C
- 650V DC, 750 V peak
- 15A DC
- 50 pF Coss
- 0.9 pF Crss
- 1.8V Threshold Voltage
- 3 nC Gate Charge
- 0 nC Reverse Recovery Charge

Applications

- Game console PSU
- Adapters
- LED lighting

PowerFLAT 5x6 HV

- 1mm max thickness
- Fixed form factor
- Kelvin Source for optimized driving
- Easy to drop in vs standard solution
- Well accepted in power conversion
- Industrial qualification

Gate driver for G-HEMT[™] devices

What to know about G-HEMT[™] (p-GaN)

G-HEMT[™]

- p-GaN is a true enhancement-mode normally off device
- Voltage driven. Driver charges/discharges C_{ISS}
- Max V_{GS} ratings = -10 V, 7V
- Driving Voltage = 5 6 V
- Negative driving voltage (i.e. -3V) can be used to improve immunity to gate ringing/cross conduction and turn-off losses
- Easy slew rate control by R_q
- Kelvin pin to reduce common source inductance (CSI) effect
- Much lower Q_q than other technologies: lower drive loss
- No DC gate drive current required

Advantages of GaN

	Characteristics	Features	Benefits	
Wide bandgap (3.4 eV) Material	High critical electric Field E _{cr}	Shorter drift region for the same BV (cost reduction)		
	Low intrinsic carrier concentration $(n_i = 1.9 \times 10^{-10})$	Lower leakage current		
	Piezo polarization nature (high channel concentration without intentional doping)	High electron mobility in the channel up to 2000 cm ² /Vs	 Lower on-state resistance Lower conduction losses 	
Technology properties	High electron mobility in the channel up to 2000 cm ² /Vs	 Higher system efficiency 		
	Heterostructure based device	Fast switching	Enabler for high frequency hard switching applications reducing the size of the passive components (cost reduction of the system)	
	Possibility to grow GaN on Si substrate	Cheaper technology compared to SiC or Diamond	Cost reduction of the system	

Trench Gate Field IGBTs Series Positioning

Trench Field Stop IGBTs High Switching Frequency Conversion

600V V series

- V_{CESAT}: 1.8 V 1.85 V
- Current capability: 20A to 80A in discrete pkg
- Available also in bare die
- W or W/O co-pack fast diode
- $T_J max = 175^{\circ}C$

STGWA60V60DWFAG

First Hybrid IGBT with SiC diode Available in production

650V HB series

- V_{CESAT} : 1.6 V 1.65 V
- Current capability: 20A to 80A in discrete pkg
- Available also in bare die
- W or W/O co-pack fast diode
- T₁ max = 175°C

650V HB2 series

- Low V_{CESAT} : 1.55 1.65 V
- Current capability: 15 to 100A in discrete pkg
- Available also in bare die
- Different diode options
- T₁ max = 175°C

HB2 series in TO-247-4 50, 75, 100A Available in production

1200V H series


- V_{CESAT} : 2.1 V
- Current capability: 15 to 75A in discrete package
- Available also in bare die
- t_{SC} of 5 µs at T_J = 150°C, Vcc ≤ 600V
- T_J max = 175°C

STGYA50H120DF2 NEW STGYA75H120DF2

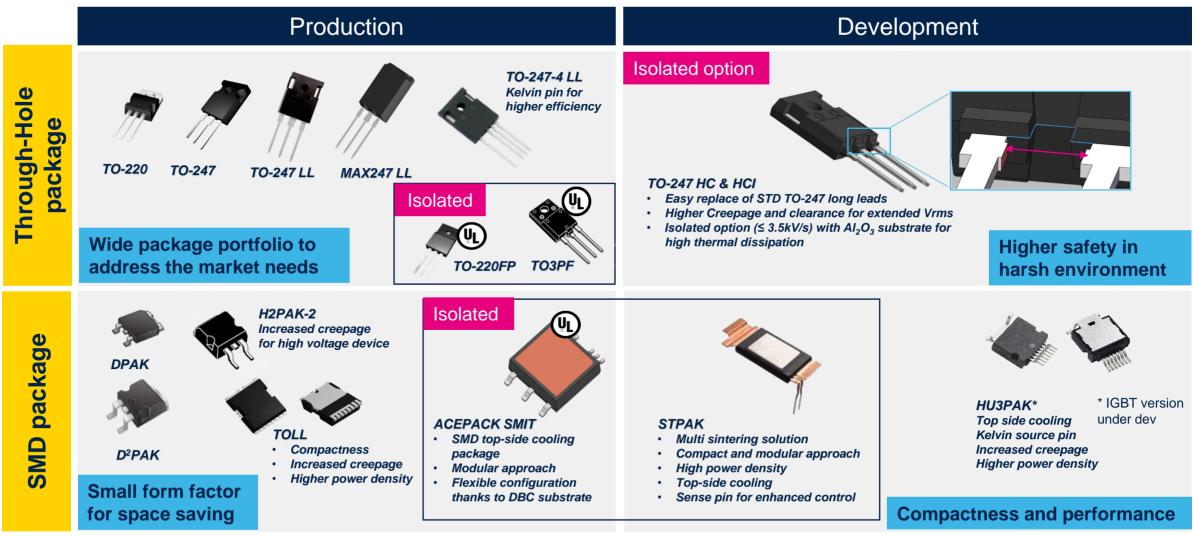
Trench Field Stop IGBTs The Right Solution For Motor Control

■ T₁ max = 175°C

■ T₁ max = 175°C

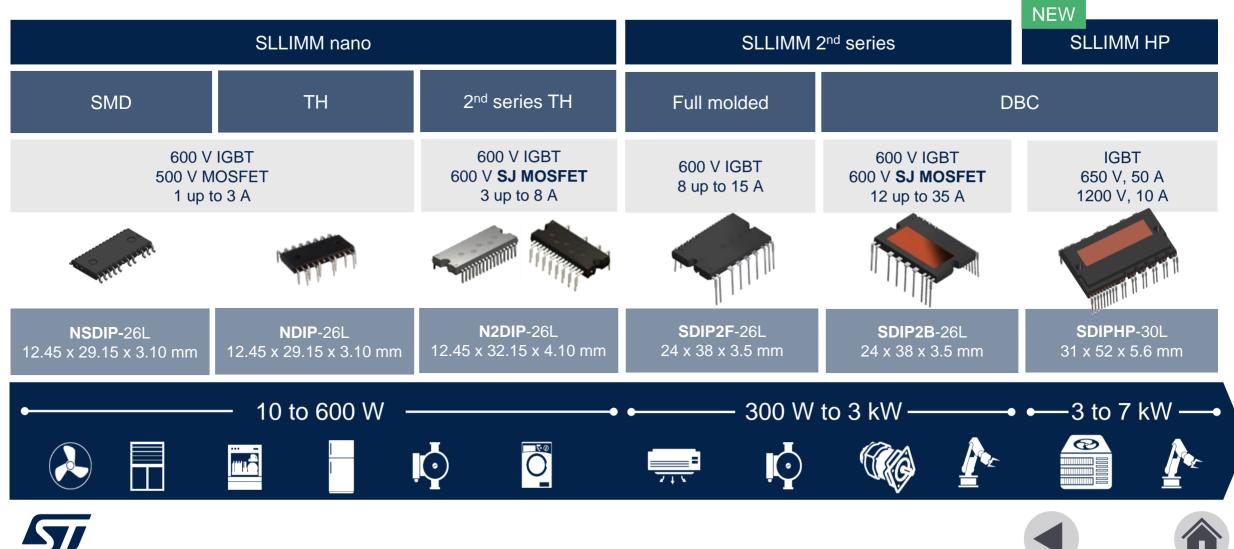
NEW

■ T_. max = 175°C


STGYA50M120DF3 Available

STG50M170F3D7/D8 Available

NEW



Package Overview for Discrete IGBT

SLLIMM: Small Low-Loss Intelligent Molded Module

life, augmented

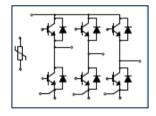
life.augmented

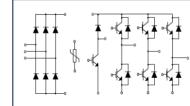
ACEPACK* Power Module Package Options

ACEPACK options	Package design	Key features	Configurations	Applications
ACEPACK 1 3kW to 15kW ACEPACK 2 10kW to 30kW	33.8 x 48 mm	 Silicon 100% produced and controlled by ST (SiC MOSFET, IGBT, and diodes) Compact design and cost-effective system approach for a plug & play system solution Configuration flexibility 2500Vrms electrical isolation 	 CIB SixPack Three level boost FourPack Half bridge 	
ACEPACK DMT-32 2kW to 10kW Under development	44x32x6 mm	 Silicon 100% produced and controlled by ST (SiC, MOSFET, IGBT, and diodes) Electrically insulated Top-side cooling Dual-in-line molded through-hole 	FourPackSixPackTotem pole	
ACEPACK DRIVE 120kW to 300kW		 750 - 1200V SiC MOSFET-based switch Improved light load performance for extended EV driving ranges Active metal bonding (AMB) substrate for enhanced thermal dissipation 3 different bus bar configuration options Extremely low energies dissipation Direct cooled Cu baseplate with pin fins 	• SixPack	
	* is a registered and/or unregistered traden	nark of		

* is a registered and/or unregistered trademark of STMicroelectronics International NV or its affiliates in the EU and/or elsewhere.

Focus on ACEPACK 1-2

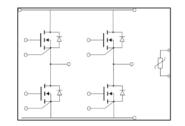


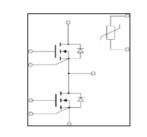

ACEPACK standard solutions with IGBT and diodes

ACEPACK standard solutions with SiC

ACEPACK Customized solutions with SiC or IGBT

Main Standard Configuration





Six pack

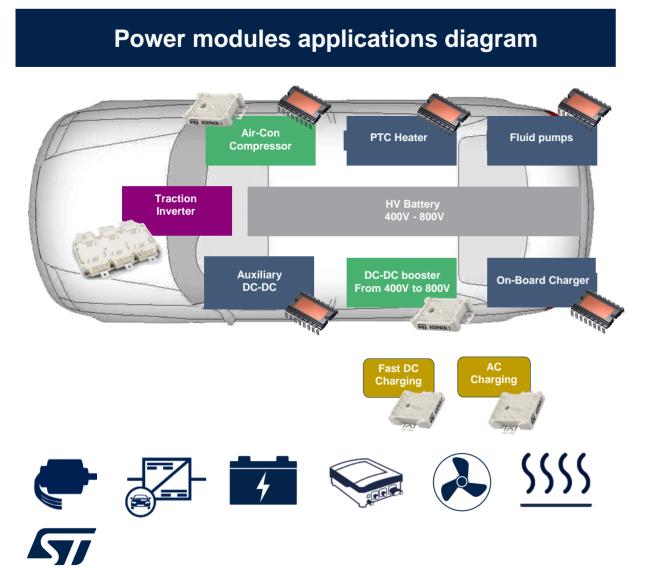
Converter Inverter

Three Level T-type Brake (CIB)

FourPack

Half Bridge

Combining semiconductor and package technologies for multiple design topologies tailored to customers' needs


- Several configurations (CIB, Six-pack, half bridge, FourPack, Three Level • T-type)
- High reliability and robustness, miniaturized power sideboard space •
- Simplified and stable screwing •
- Compact design and cost-effective system approach •
- Very high-power density •

Electric Vehicles Blocks Addressed By STPOWER Transistors

JMT-32 Domain

life.augmented

AirCon E-compressor	SixPack 3 – 10kW
On-board charger	TotemPole, FouPack 7 – 22kW
DC-DC converter	FourPack 4 – 10kW
Fluid Pumps	SixPack 3 – 5kW