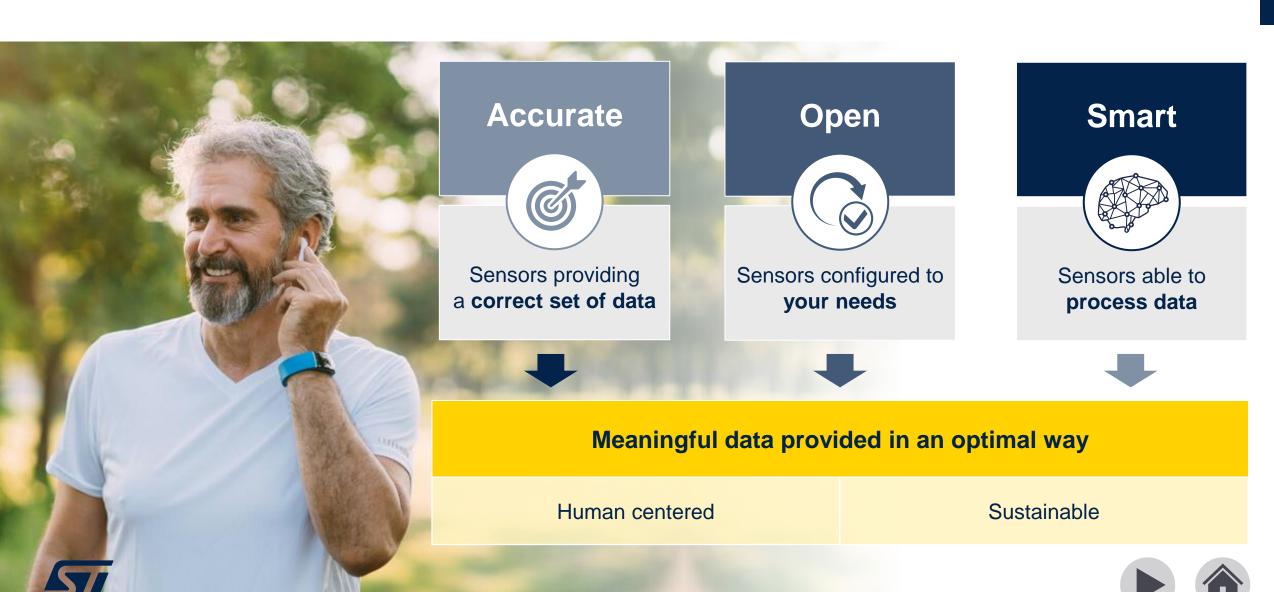


Sensor solutions for human machine interface

Smart motion sensors

Inertial measurement unit for TWS applications


Pison's neural gesture control

Goertek's production ready smart ring

Key attributes of MEMS sensors

Bringing intelligence at the edge

Embedded features

Pre programmed embedded features and finite state machine (FSM) for motion tracking

- Best-in-class low-power sensors
- Advanced pedometer, significant motion and tilt detection, free-fall, wake-up, 6D / 4D orientation, click and double click
- Sensor fusion low power

Machine learning core

In-sensor classification engine based on decision tree logic

- Extremely low-power sensors
- Increased accuracy with a better context detectability
- Offloading of the main processor, improving system efficiency

Intelligent sensor processing unit

ISPU for

Highly specialized DSP for machine learning and processing

- Ultra-low power consumption at system level, thanks to optimized data transfer
- High-processing capability with Al-enabled programmable core
- Comprehensive ecosystem

Sensor hub feature, enabling connection of external standard sensors

Low power sensor fusion for always-on applications

Plug & play solution for edge processing

High performance and high-accuracy

Static accuracy(1): 0.5, 1.5, 1.5 deg

Low dynamic accuracy⁽¹⁾: 0.7, 0.5, 0.5 deg

Calibration time⁽²⁾:0.8 s

Orientation stabilization time: 0.7 s

Extra power: 30 µA @ 120 MHz

Ultra-low power operation

50% power reduction vs. external MCU⁽³⁾ processing

⁽²⁾ Time required to reach steady state

³⁾ Same sensor fusion software library running on STM32L476RG cortex M4 @ 65 uA (120Hz ODR)

Adaptive self configuration (ASC)

The device automatically **reconfigure itself**, based on the actual context, maximizing the **system efficiency**.

MLC and FSM detect the context without the need of additional data processing

ASC allows to independently configure gyroscope and accelerometer

In-sensor processing with MLC and FSM

Machine learning core

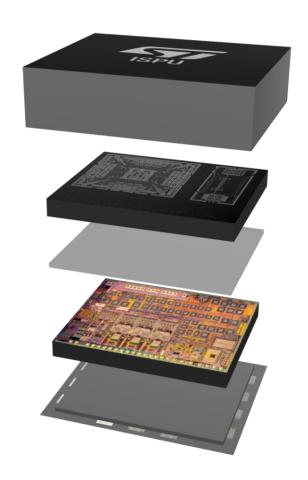
Activity tracking

Input	Labeled sensor data with features
Logic	Machine learning based logic
Output	Pattern classification using a decision tree

Finite state machine

Gesture recognition

Input	Sensor samples data
Logic	Event-/trigger-based logic using thresholds/timers
Output	Event detection using commands and conditions



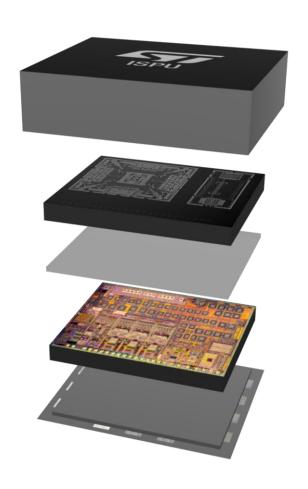
Intelligent sensor processing unit

The ISPU is a fully integrated digital signal processor (DSP) that is optimized for sensor data processing and can run even complex Al algorithms

Ultralow power consumption at system level, thanks to optimized data transfer

High processing capability with Al-enabled programmable core (machine learning and neural network)

Easily programmable in C language or with commercial and opensource Al models



Intelligent sensor processing unit

The ISPU is a fully integrated digital signal processor (DSP) that is optimized for sensor data processing and can run even complex AI algorithms

Small area: enhanced 32-bit RISC Harvard architecture

Full precision
Floating-point unit

Fast interrupt response 4 cycles vs 15 (Cortex®)

RAM based40 KB (program + execution)

Binary neural network convolution accelerator

Frequency/output data rate 5 MHz / 3.33 kHz – 10 MHz / 6.66 kHz

IMU for TWS LSM6DSV16BX

LSM6DSV16BX is a unique IMU: 6x IMU plus wide bandwidth accelerometer, embedded features and analog front end input for user interface (Qvar)

Compatible with I3C interface and audio interfaces (TDM, I2S)

Sensor fusion low power (SFLP), finite state machine (FSM) and machine learning core (MLC), adaptive self configuration (ASC)

Device and FSM / MLC configurations available on GitHub

Wide-band accelerometer

Ready to differentiate the user voice from the environment?

Voice activity detection (VAD)

LSM6DSV16BX detect voice using AI

Wake up the system (MCU and microphones) only when necessary (i.e. when the user start to talk)

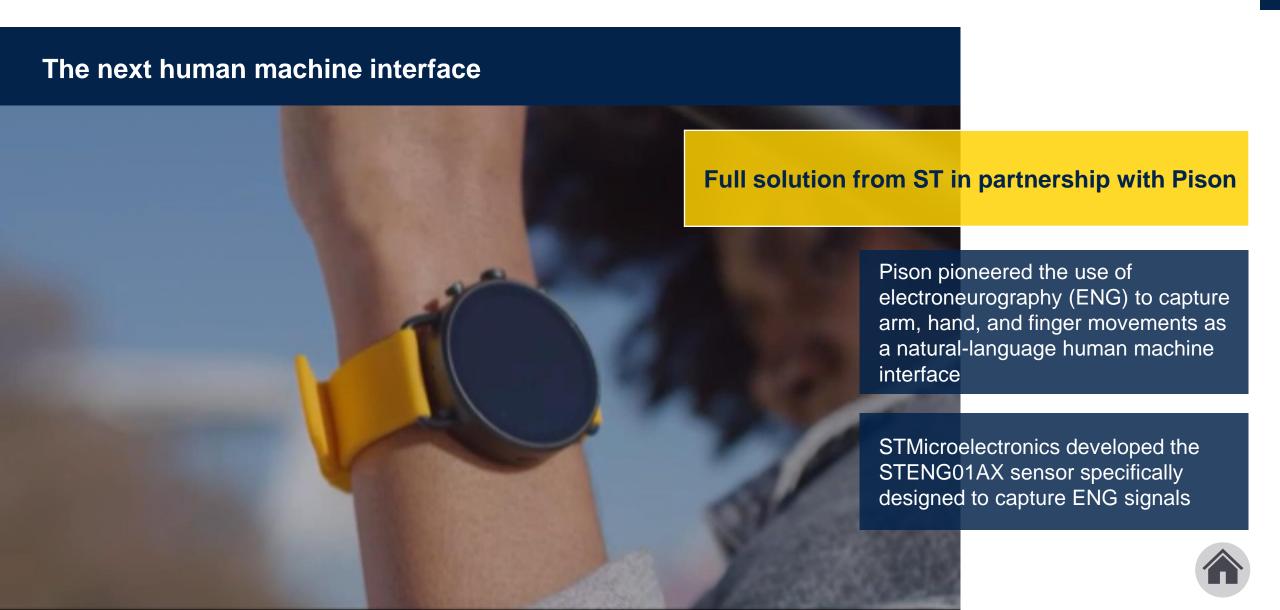
Embedded MLC process accelerometer signal to detect the user voice

Low power edge processing for triggering software keyword recognition.

Software keywords examples available

Context awareness detection in TWS applications

* Power consumption values related to MLC & FSM only


Adding intelligence in the edge with MLC and FSM

Neural gesture control

Production ready smart ring

Interface through motion

Goertek is a vertically integrated company focusing on components and products manufacturing for wearable, viewable and hearable among many applications

Smart gestures implemented in STMicroelectronics' latest IMU LSM6DSV16X with machine learning core:

- finger pinch
- slide left and right
- wrist flip left and right

