‘— AN5056
’l life.augmented Application note

Integration guide for the X-CUBE-SBSFU
STM32Cube Expansion Package

Note:

Note:

Introduction

The X-CUBE-SBSFU Secure Boot and Secure Firmware Update solution allows the update of the
STM32 microcontroller built-in program with new firmware versions, adding new features and
correcting potential issues. The update process is performed in a secure way to prevent unauthorized
updates and access to confidential on-device data.

The Secure Boot (Root of Trust services) is an immutable code, always executed after a system reset.
It checks STM32 static protections, activates STM32 runtime protections, and then verifies the
authenticity and integrity of user application code before every execution to make sure that invalid or
malicious code cannot be run.

The Secure Firmware Update application receives the firmware image via a UART interface with the
Ymodem protocol. It checks its authenticity, and the integrity of the code before installing it. The
firmware update is done on the complete firmware image, or only on a portion of the firmware image.
Examples can be configured to use asymmetric or symmetric cryptographic schemes with or without
firmware encryption. They are provided:

. for single-slot configuration to maximize firmware image size

. for dual-slot configuration to ensure safe image installation and enable over-the-air firmware
update capability commonly used in loT devices.

For a complex system with multiple firmware such as protocol stack, middleware, and user application,
the firmware image configuration can be extended up to three firmware images.

The secure key management services provide cryptographic services to the user application through
the PKCS #11 APIs (KEY ID-based APIs) that are executed inside a protected and isolated
environment. User application keys are stored in the protected and isolated environment for their
secured update: authenticity check, data decryption, and data integrity check.

STSAFE-A110 is a tamper-resistant secure element (Hardware Common Criteria EAL5+ certified)
used to host X509 certificates and keys and perform verifications used for firmware image
authentication during Secure Boot and Secure Firmware Update procedures.

The X-CUBE-SBSFU user manual (UM2262) explains how to get started with

X-CUBE-SBSFU and details SBSFU functionalities. This application note describes how to adapt X-
CUBE-SBSFU and integrate it with the user’s application; It answers such questions as:

o How to port X-CUBE-SBSFU onto another board?

o How to tune the X-CUBE-SBSFU configuration to fit the user’'s needs?

How to generate a new firmware encryption key?

How to debug X-CUBE-SBSFU?

How to adapt to SBSFU?

How to adapt the user’s application?

Throughout this application note, the IAR Embedded Workbench® IDE is used as an example to
provide guidelines for project configuration. Secure Boot and Secure Firmware Update applications
are referred to as SBSFU.

The single-slot configuration is demonstrated in examples named 1_Image.

The dual-slot configuration is demonstrated in examples named 2_Images.

December 2021 AN5056 Rev 8 1/49

www.st.com

http://www.st.com

Contents AN5056

Contents
1 Generalinformation i 6
2 Relateddocuments i iiiiiiiiiiiiiinnnns 8
3 Porting X-CUBE-SBSFU onto anotherboard 9
3.1 Hardware adaptation 9
3.2 Memory mapping definition 10
3.2.1 SBSFU region definition parameters 13
3.2.2 Firmware image slot definition parameters 14
3.2.3 Project-specific linkerfiles 16
3.24 Multiple image configuration, 17
3.3 Dual-core adaptation 18
4 SBSFU configuration i 20
4.1 Featurestobeconfigured i 20
4.2 Cryptographic scheme selection 21
4.3 Security configuration 22
4.4 Development or production mode configuration 25
5 Generating a cryptographickey o, 27
5.1 Generating a new firmware AES encryptionkey 27
5.2 Generating a new public/private ECDSA pair of keys
for firmware verification 27
5.3 STM32WB Series specificities 28
54 KMS specificities 29
55 STSAFE-A110 specificities, 30
6 Tips fordebugging i 31
6.1 Compiler optimizationslevel 31
6.2 Memory mapping adaptation 31
6.3 Debugging SECoreBin 32
7 Adapting SBSFU e 34

2/49 AN5056 Rev 8 ‘Yl

AN5056 Contents
71 Implementing a new cryptographic scheme for SBSFU 34
7.2 Optimizing memory mappingt 36

7.3 How to activate interruption management inside the firewall isolated
environment 38
7.4 How to improve boottime 39
8 Adapting the user application it 40
8.1 How to make an application SBSFU compatible 40
8.2 Use of Flash memory to storeuserdata 43
8.3 Changing the firmware download function in the user application 44
8.4 How to change the firmware version 45
8.5 How to validate a firmwareimage 45
9 Revision history i i it ittt e eennnns 47
1S7] AN5056 Rev 8 3/49

List of tables AN5056

List of tables

Table 1. List Of @CrONymMS 6
Table 2. List Of terms 6
Table 3. SBSFU code-size reduction 36
Table 4. Document revision history 47
4/4 AN5056 Rev 8 "_l

AN5056

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

Figure 19.

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.

3

SBSFU project structure 9
Memory mapping example (NUCLEO-L476RG). i 10
Linker file architecture. 11
Mapping constraints with MPU isolation (NUCLEO-GO71RB example)............... 12
Mapping constraints for user application execution 12
SBSFU regions (NUCLEO-L476RG mapping_sbsfu.icf) 13
Firmware image slot definitions (NUCLEO-L476RG mapping_fwimg.icf). 14
Firewall configuration constraint on dual bank products. 15
Firewall configuration afterbankswap i 15
SECoreBin specificlinkerfile 16
SBSFU specificlinkerfile 16
UserApp specific linker file (NUCLEO-L476RG example) 17
Multiple image configuration. e 18
STM32H7 Series dual-core adaptation. 19
SBSFU configuration 21
Switching the cryptographicscheme 22
STM32L4 Series and STM32L0 Series security configuration (app_sfu.h) 23
STM32F4 Series, STM32F7 Series and STM32L1
Series security configuration (app_sfu.h) 23
STM32GO0 Series, STM32G4 Series, and STM32H7 Series
security configuration (app_sfu.h). 24
STM32WB Series security configuration (app_sfu.h)........ 24
Option Bytes management 26
New firmware encryption-Key e 27
New private/public KEYS e 28
Key ProViSIONINgGo 29
KMS specificities. e 30
STSAFE-A110 pairing KeYSo e e e 30
Compiler optimizations e 31
Memory mapping adaptations 32
Checkingthe WRP protection. i 32
Debugging inside SECoreBin 33
User’s cryptographic scheme implementation 34
Example of memory mapping optimization on NUCLEO-GO71RB -2 images 37
IDE adaptations 38
Boot time. 39
Vector table position update (NUCLEO-L476RG example) 40
User application binary filelength. 41
IDE adaptations 41
Free Flash pages (NUCLEO-L476RG example) 43
UserApp firmware download overview i e 44
Firmware version change 45
Validation menu e 46
AN5056 Rev 8 5/5

General information

ANS5056

6/49

General information

Table 1 and Table 2 present the definitions of acronyms and terms that are relevant for a
better understanding of this document.

Table 1. List of acronyms

Acronym Description
AES Advanced encryption standard
DAP Debug access port
ECDSA Elliptic curve digital signature algorithm
GCM AES Galois/counter mode
HAL Hardware abstraction layer
IDE Integrated development environment
FWALL Firewall
MPU Memory protection unit
OTFDEC On-the-fly decryption
PEM Privacy enhanced mail
PCROP Proprietary code readout protection
RDP Readout device protection
SB Secure Boot
SE Secure Engine
SFU Secure Firmware Update
SBSFU Secure Boot and Secure Firmware Update
UART Universal asynchronous receiver/transmitter
WRP Write protection
Table 2. List of terms
Term Description

Firmware image

An executable binary image run by the device as a user application.

Firmware header

Bundle of meta-data describing the firmware image to be installed. It contains
firmware information and cryptographic information.

mbedTLS

mbed implementation of the TLS and SSL protocols and the respective
cryptographic algorithms.

sfb file

Binary file packing the firmware header and the firmware image.

3

AN5056 Rev 8

AN5056 General information

The X-CUBE-SBSFU Secure Boot and Secure Firmware Update Expansion Package runs
on STM32 32-bit microcontrollers based on the Arm®@) Cortex®-M processor.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and or elsewhere.

3

AN5056 Rev 8 7/49

Related documents AN5056

2

8/49

Related documents

o nn -

o

1.
12.
13.
14.
15.

16.

17.

User manual Getting started with STM32CubeH7 for STM32H7 Series (UM2204)
User manual Getting started with STM32CubeG4 for STM32G4 Series (UM2492)
User manual Getting started with STM32CubelL0 for STM32L0 Series (UM1754)

User manual Getting started with STM32CubelL 1 MCU Package for STM32L1 Series
(UM1802)

User manual Getting started with STM32CubeWB for STM32WB Series (UM2550)

User manual Getting started with STM32CubelL4 for STM32L4 Series and STM32L4+
Series (UM1860)

User manual Getting started with STM32CubeF4 MCU Package for STM32F4 Series
(UM1730)

User manual Getting started with STM32CubeF7 MCU Package for STM32F7 Series
(UM1891)

User manual Getting started with STM32CubeGO0 for STM32G0 Series (UM2303)

User manual Getting started with the X-CUBE-SBSFU STM32Cube Expansion
Package (UM2262)

User manual Development guidelines for STM32Cube Expansion Packages (UM2285)
User manual Development checklist for STM32Cube Expansion Packages (UM2312)
User manual STM32CubeProgrammer software description (UM2237)

STM32 Cortex®-M4 MCUs and MPUs programming manual (PM0214)

STM32F7 Series and STM32H?7 Series Cortex®-M7 processor programming manual
(PM0253)

Cortex®-Mo+ programming manual for STM32L0, STM32G0, STM32WL and
STM32WB Series (PM0223)

Datasheet for STSAFE-A110 Authentication, state-of-the-art security for peripherals
and loT devices (DS12911)

3

AN5056 Rev 8

ANS5056

Porting X-CUBE-SBSFU onto another board

3 Porting X-CUBE-SBSFU onto another board

X-CUBE-SBSFU supplements the STM32Cube™ software technology, making portability
across different STM32 microcontrollers easy. It comes with a set of examples implemented
on given STM32 boards that are useful starting points to port the X-CUBE-SBSFU onto
another STM32 board. The NUCLEO-L476RG and NUCLEO-L432KC boards are used as
examples in this document.

3.1 Hardware adaptation

A few changes are needed to adapt X-CUBE-SBSFU to another board:

1.
2.

GPIO configuration for UART communication with the host PC (In sfu_low_level.h file)

Flash configuration: NUCLEO-L432KC gives an example of a single-bank Flash
interface whereas NUCLEO-L476RG is dual-bank based (In sfu_low_level.c file)

Button configuration: NUCLEO-L476RG gives an example based on the push button
whereas NUCLEO-L432KC simulates a virtual button with a GPIO (In app_hw.h file)

Tamper GPIO pin configuration (In sfu_low_level _security.h file)
DAP - Debug port configuration (In sfu_low_level_security.h file)

12C bus configuration for communication with STSAFE-A110
(In stsafea_service_interface.c file of
B-L4S51-I0T01A\Applications\2_Images STSAFE\2 Images SECoreBin).

Figure 1 presents the SBSFU project structure together with the location of the files where
porting changes are expected.

Figure 1. SBSFU project structure

NUCLEO-L432KC
=) NUCLEO-L476RG
=] Applications

B | 2_Images

O-&-8-&

5 2_Images_SBSFU/ Platform-agnostic part: this is the applicative part of the bootloader

Core
EWARM

/ and firmware image management procedures
MDK-ARM

SBSFU

.
Wi = -

- readmetxt lea sfu_low_level.c
2_lmages_SECoreBin &(sfu_low_levelh
2_lmages_UserApp
Linker_Common [ﬁ_{ sfu_low_level_flash.c

Platform hardware configuration such as user button

Platform-dependent part: low-level services

&]’ sfu_low_level_flash.h
['4‘“{ sfu_low_level_security.c
=3 .
h{ sfu_low_level_security.h

[A Flash modification must also be reported into SECoreBin and UserApp low-level interfaces]

3

AN5056 Rev 8 9/49

Porting X-CUBE-SBSFU onto another board

ANS5056

3.2 Memory mapping definition

As already highlighted in the X-CUBE-SBSFU user manual (Refer to [10]), a key aspect is
the placement of all elements inside the Flash memory of the device:

Secure Engine: protected environment to manage all critical data and operations.
SBSFU: Secure Boot and Secure Firmware Update
Active slot: this slot contains active firmware (Firmware header with firmware)

Download slot: this slot stores downloaded firmware (Firmware header with encrypted
firmware) to be installed at the next reboot

Swap area: Flash memory area used to swap the content of active and download slots
during the installation process

Figure 2 presents the Flash memory mapping illustrated by the NUCLEO-L476RG example.

Figure 2. Memory mapping example (NUCLEO-L476RG)

0x08000000

Slot Dwl #1

Slot Active #1

O0x080FFFFF

SBSFU vector table

Secure Engine

SE interface

SBSFU

Download image header

Firewall overlapping constraint

Active Image header

Active image

Swap area

Free for user data

intvect_start
SE_Code_region_ROM_start

SE_Code_region_ROM_end / SE_IF_region_ROM_start
SE_IF_region_ROM_end / SB_region_ROM_start

SB_region_ROM_end /SLOT_Dwl_1_start
SLOT_Dwl_1_start + SFU_IMG_IMAGE_OFFSET

SLOT_Dwi_1_end

SLOT_Active_1_start
SLOT_Active_1_start + SFU_IMG_IMAGE_OFFSET

SLOT_Active_1_end / SWAP_start

SWAP_end

10/49

AN5056 Rev 8

3

ANS5056

Porting X-CUBE-SBSFU onto another board

3

The linker file definitions shared between the three projects (SECoreBin, SBSFU, UserApp)
are grouped in the Linker_Common folder as presented in Figure 3:

e mapping_fwimg.icf. contains firmware image definitions such as active slots, download
slots, and swap area

e mapping_sbsfu.icf. contains SBSFU definitions such as SE_Code region,
SE_Key region,and SE_IF region

e mapping_export.h: export the symbols from mapping_sbsfu.icf and mapping_fwimg.icf
to the SBSFU applications

Each region can be extended when adding more code is needed or shifted to another
address as long as the resulting security settings satisfy security requirements.

Figure 3. Linker file architecture

- | Applications

. B | 2_Images
2_Images_SBSFU
2_lmages_SECoreBin
2_Images_UserApp
Linker_Common

=- | EWARM

{é{ mapping_export.h

: _J mapping_fwimg icf
| | mapping_sbsfu icf

=l stm321476xx_flash.icf
= stm321476xx_flash.icf
=| stm321476xx_flash.icf

(1 - -

Linker file definitions shared by all 3 projects

The security peripheral configuration (RDP, WRP, PCROP, FWALL, secure user memory if
available for the series) is automatically computed based on the SBSFU linker symbols
except for MPU configuration due to the following constraints:

e each MPU region base address must be a multiple of the MPU region size.
e each MPU region can be divided into 8 sub-regions to adjust the size.

The mapping constraints with MPU isolation are illustrated in Figure 4.

AN5056 Rev 8 11/49

Porting X-CUBE-SBSFU onto another board

ANS5056

Figure 4. Mapping constraints with MPU isolation (NUCLEO-G071RB example)

sfu_low_level_security.h

#define
$define
#define
#define
$define
#define
#define
$define
#define

MPU REGION NUMBER7

| PROTECT_MPU_EX REGION_PRIV_RO

SFU_PROTECT MPU_E 7 MPU_INSTRUCTION_ACCESS_ENABLE
SFY PROTECT MPU_EX MPU_TEX_LEVELO
SFU_PROTECT MPU_EX MPU_ACCESS_NOT_BUFFERABLE

SFU PROTECT MPU EXEC SE C MPU_ACCESS CACHEABLE

32 Kbytes = 0x80

0xc0=1100 0000 (6 sub-regions out of 8)
0x8000/ 8 * 6 = 0x6000 (24 Kbytes)

00

3
33

mapping_sbsfu icf

/* Aligned SE End at the end of the 1st 24Kbytes of flash, MPU prot

eghignlisglarion constraints */
=|0x0800SFFE;

define exported symbol _ ICFEDIT SE Code_region ROM end

/* Aligned SBSFU end at the end of the lst €4Kbytes of FLASH, MPU protection isolation constraints */

= J0x0800FFFF;

define exported symbol _ ICFEDIT_SB_region ROM end

sfu_low_level_security.h

—

0x00 = 0000 0

64 Kbytes = 0x10000

0x10000/ 8 * 8 = 0x10000 (64 Kbytes)

000 (8 sub-regions out of 8)

#define
#define
$define
$define
#define
#define
#define
$define
#define

SFU_P

OTECT_MPU_FLASHEXE RGNV MPU_REGION_NUMBER3
SEU_P! it el

START ZLASE

SFU_PROTECT_MPU_ _PERM MPU REGION PRIV RO URO
SFU_PROTECT_MPU_FLASHEXE_EXECV MPU_INSTRUCTION_ACCESS_ENABLE
SFU_PROTECT_MPU_FLASHEXE_TEXV MPU_TEX LEVELO
SFU_PROTECT MPU_FLASHEXE B MPU_ACCESS_BUFFE
SFU_PROTECT_MPU_FLASHEXE_C CESS_NOT_C

Another typical use case is the MPU configuration of the active-slot region to authorize user
application execution. Figure 5 shows how to respect the MPU constraints on NUCLEO-
LO73RZ.

Figure 5. Mapping constraints for user application execution

S /* Active slot #1 (36 Kboytes) */
define exported symbol _
define exported symbol _ ICFEDIT_SLOT_Active_l_end__ =w®
2 define exported symbol __ ICFEDIT_SLOT_Active_ 1 header_ =

ICFEDIT_SLOT_Active_1_starc__ = 0x08020000;

__ICFEDIT_SLOT_Active_l_start

]

| 0x08020000 is multiple of 0x10000 (64 Kbytes) |

mapping_fwimg.icf

sfu_low_level_security.

EEEE
134 * MPU configuration for UserApp execution
135 N
3 * @brief Region € & 7 able the execution of the active slots
* MPU constraint = Re L base address should be aligned on Region size
L oy
B/
* Region definition : fro
* Remove execution capabi 2 A000 with region 7
#define APD_PROTECT MPU AREA ACTIVE SLOT_START [SLOT_ACIIVE L SIART
h gdefine APP_PROTECT MPU_AREA_ACTIVE_SLOT_SI2Z [MPU_REGION S
#define APP_PROTECT MPU_AREA ACTIVE_SLOT PERM PO RICIOUIN TRIT =T
#define APP_PROTECT_MPU_AREA ACTIVE_SLOT MPU _INSTRUCTION_ACCESS_ENABLE
#define APP_ —HE— AR AR T o QxE0U /*!< €4 Kbytes / 8 * § ==> 40 Kbytes */
gdefine APP_RROTECT_MPU_AREA_H (SLOT_ACTIVE_l_START + SLOT_SIZE (SLOT_ACTIVE_1)) h
gdefine APP_JROTECT MPU_AREA H MPU_REGION_SIZE_4KB
#define APP_JROTECT MPU_AREA_HID! MPU_REGION_FULL_ACCESS
gdefine APP_RROTECT_MPU_AREA_H MPU_INSTRUCTION ACCESS_DISABLE
gdefine APP_HROTECT MPU AREA H Q00U Lil< Bll subregio activaced +/ v

| OxEQ : 5 first sub-regions configured |

| Remove execution capability from 0x08029000 to 0X02A000)

12/49

AN5056 Rev 8

3

AN5056 Porting X-CUBE-SBSFU onto another board

3.21 SBSFU region definition parameters

Figure 6 presents the parameters in file mapping_sbsfu.icf that are used for the
configuration of the SBSFU regions.

Figure 6. SBSFU regions (NUCLEO-L476RG mapping_sbsfu.icf)

f/* SE Code region protected by firewall */ N\
define exported symbol _ ICFEDIT SE Code region ROM start 0x08000200;
define exported symbol _ ICFEDIT SE CallGate region ROM start _ ICFEDIT SE Code region ROM start + 4;

define exported symbol _ ICFEDIT_SE_CallGate Region ROM End | __ICFEDIT SE Code region ROM start _ + OxFF;

/* SE key region protected by firewall */
define exported symbol _ ICFEDIT SE Key region ROM start
define exported symbol _ ICFEDIT SE Key region ROM end

_ ICFEDIT SE CallGate Region ROM End__ + 1;
_ ICFEDIT SE Key region ROM start _ + OXFF;:

/* SE Startup: call before enabling firewall */

define exported symbel _ ICFEDIT SE_Startup_region ROM start
define exported symbol _ ICFEDIT_SE Code_nokey_region ROM start_
\define exported symbol _ ICFEDIT SE Code region ROM end

= _ ICFEDIT SE Key region ROM end + 1;
__ICFEDIT_SE_Startup_region ROM start__ + 0x100;
__ICFEDIT SE_Startup region ROM start _ + 0x4BFF;

/

= Offsets allow auto-adjustment when updating a size: SBSFU code setting
the protections takes it into account.
It is user’s responsibility to verify the protection during product validation.

= Absolute values used in case of constraints (as for MPU configuration on
STM32F4, STM32F7, STM32G0, STM32G4, STM32L1 and STM32H7).

—_ 2 Region start addresses must be 256-byte aligned
e (except SE_CcallGate).

/* SE IF ROM: used to locate Secure Engine interface code out of firewall */
define exported symbol _ ICFEDIT_SE_IF region ROM start = _ ICFEDIT SE Code region ROM end _ + 1;
define exported symbol _ ICFEDIT SE_IF region ROM end = _ ICFEDIT SE IF region ROM start + Ox4FF;

/* SBSFU Code region */
define exported symbol _ ICFEDIT SB_region_RCM start
define exported symbol _ ICFEDIT_SB_region ROM end

__ICFEDIT_SE_IF_region ROM end + 1;
0x0800FFFF;

3

AN5056 Rev 8 13/49

Porting X-CUBE-SBSFU onto another board

ANS5056

3.2.2 Firmware image slot definition parameters
Figure 7 presents the parameters in file mapping_fwimg.icf that are used for the
configuration of the image regions.
Figure 7. Firmware image slot definitions (NUCLEO-L476RG mapping_fwimg.icf)
Slot Dwl #1
- Same size for the active and download slots
Active Image header [- Multiple of swap size
Slot Active #1 Active image
Swap area L At least the size of the max sector size
/* Slots must be aligned on 2048 bytes (0x800) */]
7% swap (8 kbytes) *
define exported symbol _ ICFEDIT_SWAP_start___ = Ox080F0000:
define exported symbol _ ICFEDIT_SWAP_end = OxO080F1FFF:
/* Active slot #1 (424 kbytes) */
define erpomved simbol —ICEEDIT SLOT Aotive i snd — = Ox0SOZFTEE)
:Z:i:: ::iz:z:d symbol [_ICFEDIT_SLOT_Acc.Lve_l_h.eadex_= _ICFEDIT_’SLOT_Achve_l_scart_:]
/* Dwl slot #1 (424 kbytes) */
define exported symbol _ ICFEDIT_SLOT_Dwl_1_start__ = Ox08010000;
define exported symbol ICFEDIT SLOT Dwl 1 end = OxOlB079f£fLf,;
/* Slots not configured */ » Header located inside active slot
S0 ateins TIESTIIO TYIEI T icreorr oror aceive 2 scare - 0%00000000.
21 define exported symbol ICFEDIT_ SLOT Active 2 end = 0x00000000;
= define exported symbol 71CE‘EDITisLOTiAc\:,Lve737headezi: gzgggggggg
22 32222 §§§Z§§Z: i;’:ﬁi :§§zgizﬁigiﬁzzix;ijgi;j* — 0x00000000;
25 define exported symbol __ICFEDIT_SLOT_Dwl_2 _ start___ = 0x00000000;
el iorin cxporcca sumbol ICEEDIT SrOT Dwi s scart. Z 0x00000000;
28 define exported symbol __ ICFEDIT SLOT Dwl_S_end - 0x00000000;
Compliance with SBSFU constraints requires that the following conditions are met:
e Slots areas must be aligned on the Flash sector size, which is 2048 bytes (0x800) for
devices in the STM32L4 Series.
e The minimum size of SWAP is 4 Kbytes and at least equal to the size of the largest
sector.
e The size of active and download slots must be multiple of the SWAP size.
e The sizes of active and download slots must be equal, except when using the partial
update feature.
In some configurations (External Flash with OTFDEC, multiple image configuration) the
header must be located outside the active slot in its own Flash memory sector to remain
protected inside the isolated environment.
For STM32L4 dual-bank Flash memory devices, firewall specific constraints are:
e Firewall code segment must be in bank1, firewall non-volatile data (Including the
header of the active slot) segment must be in bank2.
e The non-volatile data segment must overlap the firewall code segment to ensure that
secrets are always protected even if the banks are swapped.
Figure 8: Firewall configuration constraint on dual bank products and Figure 9: Firewall
configuration after bank swap illustrate the firewall configuration on the NUCLEO-
L476RG and the consequences when banks are swapped.
14/49 AN5056 Rev 8 Kys

ANS5056

Porting X-CUBE-SBSFU onto another board

Figure 8. Firewall configuration constraint on dual bank products

0x08000000 - -,

Slot Dwl #

B Download image header

O0x0807FFFF --\.-

Bank 1

SE interface
SBSFU

5

Bank 2

FWALL
NVdata

Free for SE
(under FWALL
protection)

I Full ovelap between FWALL NVdata and code

Full overlap between WRP and FWALL NVdata I

Active image header

\\...

0x08080000

Slot Active #1

- OxO80FFFFF

Figure 9. Firewall configuration after bank swap

0x08080000 - -

Slot Dwl 1

[Downioze mege neacer |

Bank 1

SE interface
SBSIFU

SYSCFG_MEMRMP / FB_MODE =1
= Flash Bank2 mapped at 0x0800 0000

Bank 2

FWALL
NVdata

FWALL
code

Free for SE
(under FWALL
protection)

o

FWALL configuration
follow address swap

I Keys remains under FWALL protection I

Active image header

Swap

Ox0BOFFFFF __\K

_/

\

j_

0x08000000

Slot Active #1

_ Ox0807FFFF

3

For the STM32G0 Series, STM32G4 Series, and STM32H7 Series, one constraint exists:
the header of the active slot must be mapped just after the SBSFU code to be protected by
the secured memory.

The SFU_IMAGE_OFFSET value depends on the STM32 microcontroller series:

. For the STM32L4 Series, STM32L0 Series, STM32L1 Series, STM32WB Series, and
STM32F4 Series, the default value is used: 512 bytes.

e Forthe STM32F7 Series and STM32H7 Series: 1024 bytes.
(With the Cortex®-M7, the vector table must be aligned on 1024 bytes).

e For the STM32GO0 Series: 2048 bytes.
The secure user memory end address is aligned on the Flash sector size.

e For the STM32G4 Series: 4096 bytes.
The secure user memory end address is aligned on the Flash sector size.

e For the STSAFE-A variant: 2048 bytes.
The image header has a 2048-byte length to include X509 certificates.

AN5056 Rev 8

15/49

Porting X-CUBE-SBSFU onto another board AN5056

Note: For series with MPU-based isolation or firewall-based isolation, the MPU constraint on the
active-slot configuration must be verified as illustrated in Figure 5.

3.23 Project-specific linker files

SECoreBin places critical code and data such as secrets, as illustrated in Figure 10.

Figure 10. SECoreBin specific linker file

14 do not initialize { section .noinit, section BOOTINFC DATA};
15 define block SE VECTCR with alignment = 512 {readonly section .intvec };

SRR R AR AR AR R AR R A RN E R A AR AR AR R AR AR R A RN AR R A RN AR I AR AR AR R AR NARR A RN AR KA RAL [

18 /= placement instructions L7
20 place at address mem: ICFEDIT SE CallGate region ROM start { readonly section .SE CallGate Code };
21 [place at address mem: ICFEDIT SE Eey region ROM start {readonly section .5E Eey Data }:]—
22 place at address mem: ICFEDIT SE Startup region ROM start { readonly section .5E Startup Code};
23 place in 5E ROM region {readonly, block SE VECTOR}:

24 place in 3E RAM region {readwrite, section BOOTINFO DATA}:

1 section .SE_Key_Data:CODE \

2 EXPORT SE_ReadKey

| SE_ReadKey

4 PUSH {R4-R7}

S MOV R4, #0xdsdf

& MOVT R4, #8xSfdd

7 MOVW RS, #Bxa54b
MAVT RS #AvEF50

sekeys SBSFU secrets/

The SBSFU linker file is in charge of SBSFU application placement that includes SECoreBin
binary as shown in Figure 11.

Figure 11. SBSFU specific linker file

/ !

I* placement instructions */

/**/

place at address mem:_ ICFEDIT intvec_start { readonly section .intvec }; . Bi ted b
(‘place at address mem:__ICFEDIT_SE_CallGate_region_ROM_start__{ readonly section SE_CORE_Bin }/| Inary generated by

place in SE_IF_ROM _region {section .SE_IF_Code}; SECoreBin project

place in SB_ROM_region {readonly };

place in SB_SRAM1_region { readwrite, block CSTACK, block HEAP };

3

16/49 AN5056 Rev 8

AN5056 Porting X-CUBE-SBSFU onto another board
UserApp must be configured to run in the active slot (Slot active start address with
SFU IMG IMAGE OFFSET) as illustrated in Figure 12 where SFU_IMG IMAGE OFFSET is
512 bytes for the STM32L4 Series.
Figure 12. UserApp specific linker file (NUCLEO-L476RG example)
/*-3pecials-*/ * UserApp must be configured to
define exported symbol _ ICFEDIT intvec start_ = _ ICFEDIT SLOT Active 1 start_ + 513; run from active 5|0t start
f*-Memory Regions-*/ address + SFU_IMG_OFFSET
ictine swabol ICPEDIT reqion ROt ond. = IFEDIT 10T Anrive Leud_ : (512 for STM32L4 Series)
define symbol _ TCFEDIT region RAM start = _ ICFEDIT_SE_region R&M end + 1; . PrOtECted RAM (FWALL!
define symbol _ ICFEDIT region RAM end = Ox20017FFF; MPU(W)) used by SE cannot be

{

pad_to 16;

/* to make sure the binary size is a multiple of the AES block size (16 bytes) and L4 flash I’E-used
writing unit (8 bytes) */
define root section aes_block padding with alignment=1§&

udatad "Force Alignment™: « Firmware size should be

place in ROM region { readonly, last section aes_block padding };

multiple of AES block size and
flash writing unit

1. Depends on the STM32 microcontroller Series.

3.24

3

Multiple image configuration

Up to three active slots (SFU_NB_MAX_ACTIVE _IMAGE) and three download slots
(SFU_NB_MAX _DWL_AREA) can be configured.

During the installation process, the active slot is identified with the SFU magic tag inside the
firmware image header (SFU1, SFU2, or SFU3). Depending on firmware compatibility
constraints, if the simultaneous firmware installation is not required, a single download slot
can be configured for the three active slots to optimize the memory footprint.

At boot, after verification of the authenticity and integrity of all firmware images, SBSFU
jumps into the active firmware image located inside the MASTER_SLOT in priority.

As a constraint, all the headers must be grouped in a single area to be protected inside the
isolated environment. Each header must be located in its own Flash memory sector.

Figure 13 shows the example of the multiple-image configuration provided in
2_Images_ExtFlash of the B-L475E-IOTO1A board.

AN5056 Rev 8 17/49

Porting X-CUBE-SBSFU onto another board AN5056

Figure 13. Multiple image configuration

app_sfuh *°

Internal flash External flash
A SBSFU vecior table Download Image header #1
Secure Engine
SE interiace
SBSFU
Bank1
Active image #2

%

{ Firewall overlapping constraint

headers grouped
into FWALL NVdata

Active image header#2
Active Image header#1

Free

Bank2
Active image #1

3.3 Dual-core adaptation

For the STM32H7 Series dual-core products, it is mandatory to disable the CM4 boot while
the SBSFU is running (On CM7).

Thus, once the authentication and the integrity of all firmware images are verified by the
SBSFU, the user application starting on CM7 can trigger the boot of CM4.

As an example, to port applications provided for NUCLEO-H753Z1 on NUCLEO-H755ZI-Q,
the following modifications are needed as shown in Figure 14:

1. Modify the IDE configuration by adding STM32H755xx and CORE_CM7 defined
symbols.

2. Change the supply configuration from LDO to SMPS in SystemClock_Config() function.
Disable the Cortex M4 boot: BCM4 bit from option byte must be unchecked.

4. Addin SFU_LL_SECU_CheckFlashConfiguration() function the control of the BCM4 bit
state.

5. Add in the UserApplication project, the trigger of CM4 boot.

w

3

18/49 AN5056 Rev 8

AN5056 Porting X-CUBE-SBSFU onto another board

Options for node "Project” x|
static void SystemClock_Config(void)
=]
Category: Factory Setings RCC_ClkIn}:TthDe; Rcc_clkln;ts:ruc::
General Options.] Mukifiles Compilation RCC_OscInitTypeDef RCC_OscInitStruct;
Static Analysis DiscaatlUraread Pubhes HAL StatusTypeDef ret = HAL_OK;
Runtime Checking .
MISRAC:1998 Encodings Extra Options main.c ; >tion updac STRET]
Assembler Language 1 Language 2 Code Optimizations Output B
Output Converter st Preprocessor Disgnostics MISRAC 2004 (SBSFU, UserApp) HAL_PWREx_ConfigSupply (PWR_DIRECT_SMPS_SUPPLY) :]
Custom Build
Build Actions [0 ignore standard include diractories
Linker Addtional include dreciores: (one perine)
Debugger SPROJ_DIRS\ \Inc ~ [STM32CubeProgrammer
Snlator SPROU_DIRS\ \..\"\.\..\.\Drivers\CMSIS\Device\ST\STM32]
caot SPROJZDIRS\. .\ \.\.\. \Drivers\STM32H7xe_HAL_Driverln . ~f 3
CMSIS DAP SPROJ_DIRS\.\..\.\.\..\. \\Drivers\BSP\S TM32H7oc_Nucleo_ STM32
608 Server SPROJ_DIRS\ \..\. \\.\ \Drivers\BSPComponents\Common v
Liet/TTAGEt Preinclude fie:
3ink/) Trace]
TEStaleris ! Unchecked : CM4 boot disabled
> 4
Muink cutput o R4 Bewa Checked : CM4 boot enabled
cessor 3
e Cesear o e Unchecked : CM7 boot disabled
p Checked CM7 boot enabled
Third-Party Driver Generat [2]
TIMSPFET
TIXDS
Eo SFU_E: SFU_LL_SECU_CheckFlashC n (FLASH_(tTypeDes *psFlashOptionBytes)
SFU_ErrorStatus e_rec_status = SFU_ERROR:
‘ ster
sfu_low_level_security.c if ((paEl BCantig 403 o RANK BINBIEL B.SiAR BANX DISABLE) &6
- - - ‘(psi‘laah(}pbiunEytes*>lTSERCnnf)q & OB_BCM4_ENABLE) = cB_amu_Msmﬂ.E)}
printf ("
< =", +pUserAppld) ;
):
main.c
E Trigger CM4 boot */
3 SET_BIT(RCC->GCR, RCC_GCR_BOOT_C2):

3

Slots configuration may be adapted to manage two firmware images, one dedicated to CM7
and the other one dedicated to CM4. Refer to 3.2.4 Multiple image configuration for more

details.

AN5056 Rev 8 19/49

SBSFU configuration AN5056

4 SBSFU configuration

41 Features to be configured
X-CUBE-SBSFU supports:

20/49

2 modes of operation: dual and single slot configurations
3 cryptographic schemes using symmetric and asymmetric cryptographic operations
2 cryptographic middleware:

— STMicroelectronics middleware: X-CUBE-CRYPTOLIB library integrated into the
1_Image and 2_Images variants.

— Third-party middleware: mbedTLS (Open-source code) cryptographic services.
Examples are provided for the 32L496GDISCOVERY, B-L475E-IOTO1A,
32F413HDISCOVERY, 32F769IDISCOVERY, P-NUCLEO-WB55, and NUCLEO-
H753ZI Nucleo boards in the 2_Images_OSC variant.

STSAFE-A110 secure element used to host X509 certificates and keys. An example is
provided for the B-L4S5I-IOT01A board in the 2 _Images STSAFE variant.

KMS middleware. An example is provided for the B-L475E-IOTO1A and B-L4S5I-
IOTO1A boards in the 2_Images_KMS variant.

External Flash memory with on-the-fly decryption (OTFDEC). An example is provided
for the STM32H7B3I-DK board in the 2_Images_ExtFlash variant using a specific
cryptographic scheme with AES-CTR firmware encryption.

External Flash memory without on-the-fly decryption (OTFDEC). An example is
provided for the STM32H750B-DK board in the 2_Images_ExtFlash variant. Active
slot, as well as download slot, are mapped in an external Flash memory, thus firmware
confidentiality cannot be ensured.

External Flash memory without on-the-fly decryption (OTFDEC). An example is
provided for the B-L475E-IOT01A board in the 2 _Images_ExtFlash variant. A specific
installation process without swap is selected SFU_NO_SWAP to ensure confidentiality
by keeping the download slot always encrypted.

External Flash memory without on-the-fly decryption (OTFDEC). An example is
provided for the STM32WB5MM-DK board in the 2_Images_ExtFlash variant.
Download slot, as well as backup slot, is mapped in an external Flash memory. A
specific installation process without swap is selected SFU_NO_SWAP to ensure
confidentiality by keeping both slots always encrypted. More details are provided in the
Appendix H of the user manual Getting started with the X-CUBE-SBSFU STM32Cube
Expansion Package (UM2262).

3

AN5056 Rev 8

AN5056 SBSFU configuration

The configuration possibilities go beyond these options through compilation switches:
e Local loader can be removed to reduce the memory footprint (Dual slots only).
e Verbose switch can be activated to make debugging easier.

e Debug mode can be disabled (No more printf on the terminal during SBSFU execution)
to reduce the memory footprint.

e Security IPs can be turned off to make debugging easier.

e Installation process with firmware image validation. A rollback on the previous firmware
image is triggered at the next reset if the firmware image has not been validated by the
user application.

e Multiple image configuration for a complex system with multiple firmware such as
protocol stack, middleware, and user application.

e Interruption management inside the firewall isolated environment for applications
requiring low latency on interruption handling.

Figure 15 presents the SBSFU configuration solutions with the related files and compilation

switches.
Figure 15. SBSFU configuration
« Mode of Operation &-[| Applcations
s . " 2_lmages —» X-CUBE-CRYPTOLIB
* More a choice than a configuration &l Applcations 2mages_KMS —» KMS

2_Images_0SC —» mbedTLS
2_Images_STSAFE —» STSAFE

#-F-FH-#

+ Different projects are provided = ———" 1_image
I

i 2_Images
=] Applications

B 2_Images_SECoreBin I: ;_:mage
2 # _Images
E; Binary ® 2_lmages_ExtFlash —» external flash
. . & | EWARM
« Compiler switches & | e

o se_crypto_configh #define SECBOOT_ECCDSA_WITH_AES128_CBC_SHA256

i se_crypto_bootloaderh [~ #define SECBOOT_ECCDSA_WITHOUT_ENCRYPT_SHA256
+ Cryptographic scheme — " 5/ . aef metadatah #define SECBOOT_AES128_GCM_AES128_GCM_AES128_GCM

= 2_Images_SBSFU IDE preprocessor compiler directive

Core - IT_MANAGEMENT

EWARM }//{ - ENABLE_IMAGE_STATE_HANDLING
M

MDK-ARI ~ #define SFU_DEBUG_MODE
SBSFU ~ #define SFU_VERBOSE_DEBUG_MODE
#define SECBOOT_USE_LOCAL_LOADER

+ SBSFU application features / E B[] Aep
. #define SECBOOT_DISABLE_SECURITY_IPS

y
T el appsfuh 9 e SFU_NO_SWAP
i o sfu_boot.c | syefine SFU_NB MAX_ACTIVE_IMAGE 3U

. fu_bocth | #define SFU_NB_MAX_DWL_AREA 3U

[- [+

4.2 Cryptographic scheme selection

X-CUBE-SBSFU is delivered with three cryptographic schemes using both asymmetric and

symmetric cryptography:

e ECDSA asymmetric cryptography for firmware verification and AES-CBC symmetric
cryptography for firmware decryption

e ECDSA asymmetric cryptography for firmware verification without firmware encryption.
e AES-GCM symmetric cryptography for both firmware verification and decryption

The selection among these schemes is done using the SECBOOT CRYPTO SCHEME
compilation switch as depicted in Figure 16.

3

AN5056 Rev 8 21/49

SBSFU configuration AN5056

Figure 16. Switching the cryptographic scheme

4 §= 2 Images
i= 2_Images_SBSFU
4 5= 2_Images_SECoreBin
& Binary
> = EWARM

“&Inc —

[n se_crypto_bootloader.h
> [0 se_crypto_configh

SBSFU needs to know if it works with|CLEARJor ENCRYPTED images
=> app_sfu.h and se_crypto_config.h must be consistent

» #define SFU_IMAGE_PROGRAMMING_TYPE SFU_ENCRYPTED_ IMAGE

Note: For the B-L4S5I-I0OT01A STSAFE and KMS variants, the
SECBOOT_X509 ECDSA _WITHOUT_ENCRYPT_SHA256 cryptographic scheme is
selected.

For the external Flash memory variant with on-the-fly decryption (OTFDEC), the
SECBOOT_ECCDSA WITH _AES128 CTR_SHA256 cryptographic scheme is selected.

4.3 Security configuration

The SBSFU example is delivered with STM32 security protection configuration allowing
protection secrets against both outer and inner attacks.

STM32 security peripherals can be deactivated independently as per the user’s decision to
achieve a different protection level (For example with STM32L4 Series devices, firewall and
PCROP allow the activation of protections against inner attacks). Any STM32 security
configuration modification requires a security protection evaluation at the system product
level to ensure that protections are well set according to product constraints and
specifications.

During the development phase, the disabling of all IPs may be required for making
debugging easier.

Figure 17 shows the various security configuration solutions available in file app_sfu.h for
the STM32L4 Series and STM32L0 Series.

3

22/49 AN5056 Rev 8

AN5056 SBSFU configuration

Figure 17. STM32L4 Series and STM32L0 Series security configuration (app_sfu.h)

/I #define SECBOOT_DISABLE_SECURITY_IPS /*I< Disable all security IPs at once when activated */
#if Idefined(SECBOOT_DISABLE_SECURITY_IPS)/

define SFU_WRP_PROTECT_ENABLE

define SFU_RDP_PROTECT_ENABLE

define SFU_PCROP_PROTECT_ENABLE

#define SFU_FWALL_PROTECT_ENABLE

#define SFU_TAMPER_PROTECT_ENABLE Trust

define SFU_DAP_PROTECT_ENABLE /

#define SFU_DMA_PROTECT ENABLE

define SFU_IWDG_PROTECT_ENABLE Trust

#define SFU_MPU_PROTECT_ENABLE . —

define SFU_MPU_USERAPP_ACTIVATION Trust + Verify the integrity,
#endif e ————— authenticity of the

Trust user application

« Protects RAM and
Flash at runtime

« Execution allowed

only inside the chain
of trust

RDP-L2
DAP/TAMPER

» Protects the code enabling
the MPU/Firewall

Protects the code
considered trusted

» Protects part of the Flash

* Disable external access
» Protects boot options
» Lock option bytes

+ WRP

+ PCROP

* BFB2

MSv51250V3

Figure 18 shows the various security configuration solutions available in file app_sfu.h for
the STM32F4 Series, STM32F7 Series, and STM32L1 Series.

Figure 18. STM32F4 Series, STM32F7 Series and STM32L1
Series security configuration (app_sfu.h)

/[#define SECBOOT_DISABLE_SECURITY_IPS /*I< Disable all security IPs at once when activated */
#if Idefined(SECBOOT_DISABLE_SECURITY_IPS)/

#define SFU_WRP_PROTECT_ENABLE

#define SFU_RDP_PROTECT_ENABLE

#define SFU_TAMPER_PROTECT ENABLE G)
#define SFU_DAP_PROTECT_ENABLE Trust]
#define SFU_DMA_PROTECT_ENABLE ﬂ_ _________)
#define SFU_IWDG_PROTECT_ENABLE Trust
#define SFU_MPU_PROTECT_ENABLE

#endif Trust + Verify the integrity

and authenticity of
the User Application

* Protects RAM and
Flash at runtime
(secure enclave for
critical data &

« Execution allowed
only inside the chain

RDP-L2

DAP | TAMPER) of trust operations) when
« Protects the code enabling SBSFU or UserApp
Disable external the MPU is running
Isable external access + Protects the code
* Protects boot options considered trusted
* Lock Option Bytes « Protects part of the Flash

+« WRP
* nDBANK (STM32F7)
« nBFB2 (STM32L1)

3

AN5056 Rev 8 23/49

SBSFU configuration AN5056

Figure 19 shows the various security configuration solutions available in file app_sfu.h for
the STM32WB Series.

Figure 19. STM32G0 Series, STM32G4 Series, and STM32H7 Series
security configuration (app_sfu.h)

/#define SECBOOT_DISABLE_SECURITY_IPS /*I< Disable all security IPs at once when activated */

#if !defined(SECBOOT_DISABLE_SECURITY_IPS)/
#define SFU_WRP_PROTECT_ENABLE
#define SFU_RDP_PROTECT_ENABLE
#define SFU_PCROP_PROTECT_ENABLE RS s
#define SFU_TAMPER_PROTECT_ENABLE []
#define SFU_DAP_PROTECT_ENABLE H]

#define SFU_DMA_PROTECT_ENABLE Trust Saussesceds
#define SFU_IWDG_PROTECT ENABLE /’
fdefine SFU_MPU_PROTECT_ENABLE Trust - Vertty the inteqri
#idefine SFU_SECURE_USER PROTECT ENABLE ety ot

#endif Trust User Application

* Protects RAM and
Trust WRP Flash at runtime

+ Execution allowed (secure enclave for
RDP-L2 FCROF only inside the chain critical data &
DAP /| TAMPER of trust operations) when Seclislisay
+ Protects the code enabling memory

SBSFU is running

) the MPU
« Disable external access + Protects the code SBSFU and the
« Protects boot options considered trusted _secrets are
] isolated from the
* Lock Option Bytes « Protects part of the Flash user application
« WRP
» PCROP

« Secure memory
+ BOOT_LOCK (STM32G0 and STM32G4)
+ DBANK (STM32G4)

Figure 20 shows the various security configuration solutions available in file app_sfu.h for
the STM32WB Series.

Figure 20. STM32WB Series security configuration (app_sfu.h)

/l#define SECBOOT_DISABLE_SECURITY_IPS /*I< Disable all security IPs at once when activated */
#if !defined(SECBOOT_DISABLE_SECURITY_IPS)/
#define SFU_WRP_PROTECT_ENABLE
#define SFU_RDP_PROTECT_ENABLE
#define SFU_TAMPER_PROTECT_ENABLE
#define SFU_DAP_PROTECT_ENABLE
#define SFU_DMA_PROTECT_ENABLE
#define SFU_IWDG_PROTECT_ENABLE M4 core M0+ core
#define SFU_MPU_PROTECT_ENABLE
#define SFU_MPU_USERAPP_ACTIVATION
#endif

Trust

Trust

Trust « Verify the integrity,

authenticity of the [
Trust « Execution allowed user application
RDP-L2 only inside the chain
DAP / TAMPER of frust
« Protects the code enabling

the MPU

« Protects the code
« Protects boot options considered trusted

« Lock Option Bytes « Protects part of the Flash
*« WRP

T

« Disable external access

3

24/49 AN5056 Rev 8

AN5056 SBSFU configuration
4.4 Development or production mode configuration
The first step before any code modification is often to configure the SBSFU project in
development mode to enable IDE debugging facilities and add SBSFU debug traces:
1. Deactivate all security protections: SFU_xxx PROTECT ENABLE
2. Deactivate SFU_FINAL SECURE LOCK ENABLE
3. Activate SFU_FWIMG BLOCK ON_ABNORMAL ERRORS MODE
4. Activate SECBOOT OB DEV_MODE
5. Optionally, activate the verbose mode: SFU_VERBOSE DEBUG_MODE. For details about
the impact on mapping, refer to Section 6.2: Memory mapping adaptation.
At the end of the development phase, the SBSFU project must be configured in production
mode for the final release:
1. Activate all required security protections: SFU_xxx PROTECT ENABLE
2. Deactivate verbose mode: SFU_VERBOSE DEBUG_ MODE
3. Deactivate SFU FWIMG BLOCK ON ABNORMAL ERRORS MODE
4. Deactivate SECBOOT OB _DEV_MODE
5. Activate SFU FINAL SECURE LOCK ENABLE to configure the RDP level 2. On
STM32H7 Series, the secure user memory is also configured when
SFU FINAL SECURE LOCK ENABLE is enabled.
6. Deactivate SFU_DEBUG_MODE to remove all prints of SBSFU that can be valuable
information for an attacker.
Read Protection Level 2 is mandatory to achieve the highest level of protection and to
implement a Root of Trust. It is the user’s responsibility to activate it in the final SW to be
programmed during the product manufacturing stage.
In production mode, the Secure Boot checks the Option Byte values (RDP, WRP, PCROP,
Secure user memory) and blocks execution in case a wrong configuration is detected.
Depending on the platform, a few other Option Bytes must be configured such as:
e BFB2 disabled for STM32L4 Series and STM32L0 Series devices with dual-bank Flash
e nDBANK enabled for STM32F7 Series
e nBFB2 enabled for STM32L1 Series
e BOOT_LOCK enabled for STM32G0Series and STM32G4 Series
e DBANK disabled on STM32G4 Series and B-L4S5I-IOT0O1A board
Caution: Option Bytes must be configured to the production mode values using

3

STM32CubeProgrammer (STM32CubeProg), just after programming the software during
the production stage. If this is not done, the device remains unsecured. Refer to [13] for the
way to use STM32CubeProgrammer.

AN5056 Rev 8 25/49

SBSFU configuration

ANS5056

Figure 21 shows how Option Bytes are managed at SBSFU startup:

Figure 21. Option Bytes management

Power on / Reset

A

Read RDP-Level
RDP-TLevel 2 /\ RDP-Level Oor1

Check the protections Check the protections

Matching the settings

Not matching|the settings

Development mode ?

Execution stopped Execution started (SECHOCH *Oh; Dif MCDE
while (1);

Not matching the settings

disabled enabled

Set the protections

26/49 AN5056 Rev 8

3

AN5056

Generating a cryptographic key

5

5.1

Generating a cryptographic key

Generating a new firmware AES encryption key

Key generation and firmware encryption are performed automatically during the compilation
process with the prebuild.bat and postbuild.bat scripts (Refer to [710] for a detailed
description of the build process).

Figure 22 shows the few steps to modify the firmware encryption key of active slot #1. The
same applied to active slot #2 or #3:

1. Change the key value in file OEM_KEY_COMPANY1_keys AES xxx.bin

2. Compile SECoreBin: prebuild.bat is executed and se_key.s is generated

3. Compile UserApp: postbuild.bat is executed and UserApp is encrypted

Figure 22. New firmware encryption-key

=] 2_lmages

B
=

&

] 2_lmages_SBSFU
5] 2_Images_SECoreBin
= Binary

[&f ECCKEY1tt

0 nonce.bin 9 . W B
{40 OEM_KEY_COMPANY1_key_AES_CBCbin | AES (symmetric) keys in “binary” format
t 0 OEM_KEY_COMPANY1_key_AES_GCM bin _\ﬁ (AES CBC or AES GCM)

2_Images_SECoreBin
Binary _\\
Sonem

lef cypton update T
{%] postbuild bat
[%] prebuild bat
L] Project dep

[E] OEM_KEY_COMPANY1_key_AES_CBC.bin EJ
‘ OEM_KEY_COMPANY2

—p se_keys
generation
s EE;;:I:R =] i 2_Im;g::'_UserApp
HovT B T SBSFU_UserApp bin
o © — e
ﬁg\j.: gi encryption
MOVW R4
5e7key-5 MOVT R4, # :ZS?
5.2 Generating a new public/private ECDSA pair of keys

3

for firmware verification

As for the AES encryption key, the public key (SE_ReadKey Pub ()) is automatically
modified when the private key (ECCKEY1.txt) is changed.

Figure 23 shows the few steps to modify the private and public keys for ECDSA asymmetric
cryptography firmware verification of the active slot #1. The same applied for active slot #2
or #3:

1. Change the key value in file ECCKEY1.txt
2. Compile SECoreBin: prebuild.bat is executed and se_key.s is generated
3. Compile UserApp: postbuild.bat is executed and UserApp is encrypted

AN5056 Rev 8 27149

Generating a cryptographic key AN5056

Figure 23. New private/public keys

=) 2_Images
® 2_Images_SBSFU
= 2_lmages_SECoreBin
=] Binary 3 . .
[&f ECCKEY10t Private ECDSA (asymmetric) key in PEM format

0 nonce bin

>0 OEM_KEY_COMPANY1_key_AES_CBC bin
0 OEM_KEY_COMPANY1_key_AES_GCM.bin

! ﬁ update ECCKEY1 txt

Baseline : sbsfu_master

=] 2_Images_SECoreBin
23] Binary

{ed cryptotxt
{Z] postbuild bat
{Z] prebuild bat
|] Project.dep
—_— se_keys

“generation

EXPORT SE_ReadRey_Pub
SE_ReadRey_Pub
PUSH (R1-
MovW R1, #
MovT R
MOVW R
MovT R
MOVW R3,
MOVT R3, #

B 2_Images_UserApp
= Binary
SBSFU_UserApp bin

+“—p | | UserApp sfb

éncryption

se_key.s

5.3 STM32WB Series specificities

For STM32WB Series, the AES encryption key is not processed through the prebuild.bat
script but is provisioned into the M0+ core. The provisioning process is described in
SECoreBin/readme.txt.

Another way to provision the AES key is to use the recent STM32CubeProgrammer release.
Since V2.5.0, MO+ key provisioning is available as Firmware Upgrade Service (FUS).

First, connect to the bootloader USB interface:

1. nBOOT1 and nSWBOOTO are checked.

2. Correct boot mode is selected by setting Boot0 pin to VDD:

a) With a P-NUCLEO-WB55 Nucleo board: The jumper is ON between CN7.5 (VDD)
and CN7.7 (Boot0).

b) With an STM32WB5MM-DK Discovery board: A jumper is ON on CN13(VDD-
Boot0) after pin header soldering and another jumper selects ‘USB MCU’ on JP2.

3. AUSB cable is connected to the USB_USER interface.
4. The power is ON (Unplug/plug USB cable is connected to ST-LINK).

Then, the function Key provisioning of Firmware Upgrade Services panel is allowed as
shown in Figure 24.

3

28/49 AN5056 Rev 8

AN5056 Generating a cryptographic key

Figure 24. Key provisioning

‘m STM32CubeProgrammer

M "‘

ST
Cube nme

File path Ca\gitwb_v1.9.0\Firmware\Projects\STM32WB_Copro_Wireless_Binaries\STM32WBSx\stm32wb5x_BLE_Stack_light_fw.bin - m

Start address | 0x080D5000

First install

Verify download

Start stack after upgrade

Firmware Upgrade
Authentication Key :
User Key:
File path 16\P-NUCLEO-WBS55 Nucleo\Applications\2_Images\2_Images_SECoreBin\Binary\OEM_KEY_COMPANY1_key_AES_CBCbir| | ~ m
Simple -

54 KMS specificities

With KMS middleware integration, SBSFU keys are no longer stored in a section under
PCROP protection. They are stored inside the KMS code as static embedded keys.

Figure 25 shows an example of the firmware encryption key modification of active slot #1.
The same applied for active slot #2 or #3:

1. Change the key value in file OEM_KEY_COMPANY1_keys AES xxx.bin

2. Compile SECoreBin: prebuild.bat is executed and kms_platf_objects_config.h is
generated

3. Compile UserApp: postbuild.bat is executed and UserApp is encrypted

The same process is applied for firmware ECDSA verification key, BLOB AES encryption
key, and BLOB ECDSA verification key.

3

AN5056 Rev 8 29/49

Generating a cryptographic key AN5056

5.5

30/49

Figure 25. KMS specificities

B-| | 2_images
- | 2_Images_SBSFU
B | 2 Images_SECoreBin
i E-| | Binary
~{f ECCKEY1 et
80 nonce bin

4% GEM KEY COMPANYI key AF5 CEChm | AES (symmetric) keys in “binary” format
1448 OEMKEY_COMPANT! ey AES GCMbin| _ (AES CBC or AES GCM)
2_images_SECoreBin o

[OEM_KEY_COMPANY1_key_AES_CBC bin E1
I 1 OEM_KEY COMEANYZ

Binary update T
EWARM

[| BLATSEOTO!
settings
o] cryptobd
: 23; jl;ﬁ_uh]ems_cnnhgh E2-[Z e Uneri
eneration @ : i . B | Binay
g L % peslauldbat | [SBSFU_UserApp tin
’ < 7 Userronsie
encryption
ez CE(A_E(EY_TYFE, Sizeuf(CK_KEY_TYFE}, EKE(_A_ES,
a3 CXA_VALUE, s , D

kms_platf_objects_config.h

STSAFE-A110 specificities

As explained in Appendix G of the UM2262, STM32 and STSAFE-A110 must be
provisioned with pairing keys and X509 certificates.
STSAFE-A110 provisioning process is described in STSAFE_Provisioning/readme.xt.

Figure 26 shows an example of pairing-key provisioning:
1. STSAFE-A110 provisioning with default pairing keys

2. Update STSAFE_PAIRING_keys.bin accordingly
3. Compile SECoreBin: prebuild.bat is executed and se_key.s is generated.

Figure 26. STSAFE-A110 pairing keys

STSAFE-A110 provisioning with default keys

o 286 % if (Init_Perso(&stsafea handle, [DEFAULT KEYS] NULL) == CK)

{
printf{"Perso OK \r\n");

STSAFE_Provisioning\Srcimain.c

2_Images_STSAFE
2_Images_KMS_Blob
2_Images_SBSFU

2_Images_SECoreBin

Zimages_Userfpp update file with default keys value
B-| | Linker_Common
El- | STSAFE_Provisioning o
B] B
i) STSAFE_PAIRING keys.bin

-1 STSAFE_PAIRING keys bin >

Offsec(02 03 04 05 0 0D OE OF Decoded text

[mapufw->2»1tig
77 77 88 88 ..""33DDUUELwN""

233445 -y
2 22 33 33 44 44 55 35 66 &6

B+ | 2_lmages_SECoreBin
L@ | Binay

ol bt generation _ .
postbuild bat SEiRe_ad_{eyiPaulng
i 4 FUSH {R1-RS}
prebuild bat < .5
5 MOVW R1, #0x
: || Project dep : i
i 3 MOVT RI1,
fn [sekeys . 6

MOVW R2, #
MOVT R2, #

se_key.s

3

AN5056 Rev 8

ANS5056

Tips for debugging

6

6.1

6.2

Caution:

3

Tips for debugging

Compiler optimizations level

Projects are delivered with the highest level of compiler optimizations turned on for size
aspects. Such optimizations can make the debug complex. Changing the compiler
optimization level possibly impacts memory mapping.

Figure 27. Compiler optimizations

Categorny: Factory Settings
Multi-file Compilation
| General Options » T s
|Static Analysis Digcard Unused Publics
|Runtime Checking ‘ Language 1 | Language 2 | Code ‘ Optimizations | Output[List l Preproce: * | *
Assembler Level Enabled transformations:
Output Converter () None |7\Common subexpression elimination -
Custom Build ® Low [¥]Loop unrolling
Build Actions i | ion inlini
- ©® Medium Ezur:jctlon |r-1||n|ng
inker i v |Code motion =
Debugger @ [¥] Type-based alias analysis
Simulator = []Static clustering
Angel Ko sireconstaris wnsiruction scheduling |
CADI ["[Vectorization 2l

[A Possible impact on memory mapping]

Memory mapping adaptation

When changing the compiler optimizations level or activating the development mode with
the verbose compilation switch, the user may have to adapt the SBSFU memory mapping,
for instance reducing firmware image slots to avoid overlap.

The security peripheral configuration (RDP, WRP, PCROP, FWALL, secure user memory if
available for the series) is automatically computed based on the SBSFU linker symbols
except for the MPU configuration due to the constraints detailed in Section 3.2: Memory
mapping definition. Disabling temporarily the MPU protection can be an efficient workaround
for the debug.

Figure 28 depicts the 3 steps of the memory adaptation based on an example:

1. Identify the gap by analyzing the linker message: 0x1d9 bytes

2. Identify the concerned region by consulting the project.map file:
___ICFEDIT SB region ROM start

3. Apply the maodification in file mapping_sbsfu.icf: 0x300 bytes

AN5056 Rev 8 31/49

Tips for debugging AN5056

Figure 28. Memory mapping adaptations

Messages
Building configuration: Project- STM32L476RG_NUCLEO_2_Images_SBSFU
Updating build tree. o

sfu_error.c
(| Linking A
€3 ErorfLp011]: section placement failed
unable to allocate space for sections/blocks with a total estimated minimum size of 0x84d9 bytes (mex align 0x4) in <[0x08005500-0x0800d 7f]> (total uncommitted space 0x5300).
L €3 Error while running Linker)
Total number of errors: 1 |
Total number of wamings: 0 1 0x84d9 - 0x8300 = 0x1d9 bytes
La [Output [l | 812 _ ICFEDIT SB_region ROM end {Abs] B
'_ Project may - 813 0x0800d7EE Data Gb command line/config [3)]
D Prnjed out F: 814 __ICFEDIT_SB region ROM_start__ {Abs}]
815§ UxUSUUSSUd Data Gb command line/config [3] 7

Q

AN

25 /* SBSFU Code region */
26 define exported symbol _ ICFEDIT SB region ROM start _
27 define exported symbol _ ICFEDIT SB region ROM end

_ ICFEDIT SE_IF region ROM end__ + 1;

_ ICFEDIT SB region ROM start + 0x82FF|+ 0x300;|

mapping_sbsfu.icf

The impact of memory mapping adaptation on security peripheral configurations must be
checked even though it is automatically computed. For example, check the WRP
configuration using STM32CubeProgrammer (STM32CubeProg) as shown in Figure 29.

Figure 29. Checking the WRP protection

25 /* SBSFU Code region */
26 define exported symbol _ ICFEDIT SB region ROM start = _ ICFEDIT_SE_IF region ROM end + 17
27 define exported symbol _ ICFEDIT SB_region ROM end = _ ICFEDIT SB_region ROM start + Ox82FF |+ 0x300;
mapping_sbsfu.icf
. T oEN IS SeLmenE W
792 __ICFEDIT_SB_region_ROM_end__ {Abs}
[793 0x0800daff Data Gb command line/config [3]
794 _ ICFEDIT SB_rggion ROM start__ {Abs]
795 0x08005500 Data Gb command line/config [3]

Write Protection (Bank 1)
Name Value Description

WRPLA STRT Value| 00 Address| Ox8000000 The address of the first page of the Bank 1 WRP first area

R AENG- :\/B‘UE Oxlb Address| 0xB004800 The address of the last page of the Bank 1 WRP first area

The address of the first page of the Bank 1 WRP second area

WRP1B_STRT Value | Oxff Address 0x807f800

1 page added compared to initial settings

P
WRP1E_END Value| 0x0 Address| 0x8000000 The address of the last page of the Bank 1 WRP second area

[A Firmware image slot definitions may be reduced to avoid overlap]

6.3 Debugging SECoreBin

To debug inside SECoreBin, the SBSFU project option must be changed to load SECoreBin
symbols. This is performed in the debugger menu as presented in Figure 30:

e Browse to select file Project.out
e Set Offsetto 0
e Check the Debug info only box

3

32/49 AN5056 Rev 8

AN5056 Tips for debugging

Figure 30. Debugging inside SECoreBin

STM32L432KC_NUCLEOD_2 Images SBSFU ~
- | =y
iles
Options for node "Project” X
2®
] i
[
§ Category Factory Settings
S General Options
| static Analysis
Runtime Checking
CJC++ Compiler Setup Download Images Extra Options Multicore Plugins
Assembler
v :
Output Converter Download extra image
Custom Build Path: [\EWARM\STM32L432KC_NUCLEO\Exe}Project.oud] | .. |]
Build Actions
Linker Offset: |0 Debug info only
st ["1Download extra imaae

3

AN5056 Rev 8 33/49

Adapting SBSFU

ANS5056

7

Adapting SBSFU

71 Implementing a new cryptographic scheme for SBSFU
X-CUBE-SBSFU comes with some predefined cryptographic schemes (Refer to
Section 4.2: Cryptographic scheme selection on page 21). It is also possible to extend the
package with the user’s cryptographic scheme.
To implement a new cryptographic scheme for SBSFU, follow the steps illustrated in
Figure 31 and described below.
Figure 31. User’s cryptographic scheme implementation
B- 4 2_|ma.ges_SECOreBin
:: EI‘:J&:RM _ e No new API required, stick to the signatures
=-

Inc
by

se_crypto_bootloaderh
se_crypto_configh
se_def_metadatah -—
se_low_levelh

----- stm324ox_hal_corf h

B~ | MDK-ARM

= Src

by
se_crypto_bootloaderc 4 T —
se_low_levelc

o Update the preparation tools

B~ | 5TM32_Secure_Engine
-|j Core

Interface

Key

Ltilties
= KeyzAndimages
pyinstaller
EI win

prepareimage
A prepareimage.exe

readme txt
-l requirements bt

A

o Add your scheme, follow the naming rule

) o Update the metadata (FVW header)

o Implementthe code

o Update the IDE integration

B] 2_Images_SECoreBin

Binary
=5 EWARM L
[7] postbuild bat

| | Froject.ewd
| Project ewp
Project eww
| se_keys 4—
{%] SECBOOT_AES128_GCM_AES128_GCM_AES128_GCM bat
[Z] SECBOOT_ECCDSA_WITH_AES128_CBC_SHA256 bat

= T_SHA256 bat
{7= SECBOOT MY _CRYPTO_SCHEME bat)

34/49

Updating the code running on the device side:

1. Step 1: define a new value for SECBOOT CRYPTO_ SCHEME.

2. Step 2: look carefully at the signatures of the APls that the bootloader requires. The
cryptographic services must have the same signatures to avoid updating the SBSFU

code.

3. Step 3: define anew SE_FwRawHeaderTypeDef structure and respect the constraints
to remain compatible with the existing SBSFU code.

4. Step 4: implement the code of the cryptographic services in se_crypto_bootloader.c.

AN5056 Rev 8 ‘Yl

AN5056 Adapting SBSFU

Updating the tools running on the host side to prepare the keys and the
firmware image:

5. Step 5: update the preparation tools to support the new cryptographic scheme:
prepareimage.py, translate_key.py, and keys.py.
6. Step 6: update the IDE integration to generate the appropriate keys and firmware
image.
— A new batch file is required to call the preparation tools with the appropriate
commands; prebuild.bat copies this batch file to create postbuild.bat.

— prebuild.bat must be updated to take into account the new cryptographic scheme
and generate the proper keys and postbuild.bat.

AN5056 Rev 8 35/49

3

Adapting SBSFU

ANS5056

7.2

Optimizing memory mapping

Several options exist to reduce SBSFU code size to maximize the size of the user

application slot. Some of these options are summarized in Table 3.

Table 3. SBSFU code-size reduction

Option

Description / Consequence

Gain

Select 1-image variant

Download a new firmware image from the
user application is no more possible.

Slot size is doubled
vs. 2-image projects

Select AES-GCM symmetric

Shared symmetric key secret stored in the

image variant.

cryptographic scheme device. ~ 9 Kbytes
. No more information displayed on the -
Disable SFU_DEBUG_MODE terminal during SBSFU execution 9 Kbytes
No more local loader inside the SBSFU
Disable SECBOOT USE_LOCAL LOADER |application. This is not compatible with 1- | ~3 Kbytes

Implement a hardware decryption

Select STM32 devices integrating
cryptographic hardware IP.

This depends on the user
implementation

If all the code running on STM32 is fully
trusted and robust then Secure Engine
internal isolation based on MPU for
STM32F4/F7/G0/G4/H7/L1 can be
removed.

Removes alignment constraints with MPU
regions.

Up to 12 Kbytes
depending on products

The total gain depends on the mapping constraints described in Section 3.2: Memory
mapping definition on page 10.

As an example, Figure 32 highlights the mapping modifications to be done. Starting from 2
images with a symmetric cryptographic scheme, the SFFU_DEBUG_MODE and
SECBOOT USE LOCAL LOADER switches are disabled, resulting in a 16-Kbyte increase of

the user application size.

36/49

AN5056 Rev 8

3

AN5056

Adapting SBSFU

Figure 32. Example of memory mapping optimization on NUCLEO-G071RB - 2 images

2 images variant with :

- assymmetric crypto scheme
- debug mode activated

- local loader activated

0x08010000
0x08010800

Slot active #1

0x08017000 —

0x08016000 —;
0x08018800 —

Slot dwl #1

0x08000000 ——
0x08000200 ——

0x08006000 ——
0x08006700 —

0x0801EFFF

SBSFU vector table

Secure Engine

SE interface

SBSFU

Active Image hesder

Active image
28 kbytes

Swap area

Download/backup image header

2 images variant with :

- symmetric crypto scheme
- debug mode disabled

- local loader disabled

7 Files u pd ated N
se_crypto_config.h:
#define SECBOOT_CRYPTO_SCHEME SECBOOT_AES128_GCM..

app_sfuh:
#define SECBOOT_LOADER SECBOOT_USE_NO_LOADER
I #define SFU_DEBUG_MODE

sfu_low_level_security h

0x08000000

0x08000200
0x08003000
0x08003700
0x08008000

0x08008800

Slot active #1

#define SFU_PROTECT_MPU_FLASHEXE_SIZ] MPU_REGION_SEE_SZKEI

@ _0x00
MPU_REGION_SIZ]
&_0xCO0

#define SFU_PROTECT_MPL_FLASH
#define SFU_PROTECT_MPU_EXEC_S|
#define SFU_PROTECT_MPLU_EXEC_S|
mapping_shbsfu.icf:
__ICFEDIT_SE_Code_region_ROM_endg
__ICFEDIT_SB_region_ROM_end__
mapping_fwimg.icf

|CFEDIT_SLOT_Active_1_start_ = 0x08008000;
ICFEDIT_SLOT_Active_1_end__ = 0x0B012FFF;
ICFEDIT_SWAP_start__ = 0x08013000;
ICFEDIT_SWAP_end__ = 0x08013FFF;
ICFEDIT_SLOT_Dwli_1_start__ = 0x08014000;
|CFEDIT_SLOT Dwl_1_end__ = 0x0S01EFFF;

SBSFU vector table

Secure Engine

SE interface

SBSFU

Active Image hesder

Active image

46 kbytes
'
05013000 S
0x08014000 —— wap area
Download/backup image hesder
0x08014800 ——
Slot dwl #1
0x0801EFFF ¥

3

In the folder NUCLEO-G031K8\Applications\1_Image, another example of memory

optimization is provided for the NUCLEO-G031K8, where 32 Kbytes are allocated to the

AN5056 Rev 8

user application among the 64 Kbytes available on this board.

37/49

Adapting SBSFU

ANS5056

7.3

isolated
environment

How to activate interruption management inside the firewall

Interruption management inside the firewall isolated environment can be activated when low
latency on interruption handling is required. Examples are provided in the 2_Images OSC
variant for 32L496GDISCOVERY and B-L475E-IOT01A boards.

Figure 33 shows the different steps required to activate this option:
1. Add IT MANAGEMENT as preprocessor directive in SECoreBin and SBSFU IDE

configuration

2. Select se_stack_smuggler_ it mngt IAR.c instead of se_stack _smuggler IAR.c in
SECoreBin IDE configuration

3. Modify startup_xxx.s file to branch required interrupt handler on SE_Handler

4. Add se_interface_exception_IAR.s in SBSFU IDE configuration

5. Modify the SBSFU linker option to keep SE_UserHandlerWrapper symbols

6. Modify SBSFU xxx_flash.icf linker file to place SE_IF_Code_Entry symbol
(SE_UserHandlerWrapper) at the beginning of SE_IF ROM_region.

7. Specific FreeRTOS: Modify mapping_sbsfu.icf by adding 0x10 to force
__ICFEDIT_SE _IF _region_ ROM_start _ bit[4] to 1. This is required for PendSV
handler (FPU register save/restore mechanism).

Figure 33. IDE adaptations
Options for node “Praject” x R"'"“_“‘c"
Workspace "
Caingony Factory Sefings B-LATSEAOTO1_2 hmages_SEConeBin ;:i;;.om.asc;.nzal]
General Cptions. [Mulifie Conmpaion | Files
et B Projoct- B-LAZEEIO T2 images SECorobin= | o
s u::n‘clmm? a(::r:, wmx nm-;w :Eﬁghmubn :NOROOT : REORDER (2)
Outout Converter ™ Preprcessor Diagnestics MISRAC 2004 = Wi Drivers
Frpiag ligrere standied inchuds deecodes |2 o Middlewares
bl AdBtonlinchuds Srectones: fre pering) | & STM32_Secure_Engine
il ¥ A | | & Bse_bootinfo.c
a W | | B poocotemer
QeI DR 0T | | @ B se_exceptionc
Server | | & Bse_twimoc
e || [T
Tisielars | | @ B se_user_opplicationc
il | | Lo Bseuise
e “Project” x
BL47SE0T01_2_Images_SBSFU i
© o EO T AT T o a P aare oF 2o
8 Application ;:::m: o
Ti?.; Gorein ol | o e e Q
| 8 B stm3214e_hal_msp.c Assembler Corfig Lbray ot Optmisions Advenced Oupt Lt —
LELEEWT:SW’"C aﬁ:zx«w Keep symbols- o per Ine) 1 place in SE_IF_ROM regiow sy} section .SE_IF Code }:
\Lei_—ﬁ ?Bssx;-gp,srmazm:rs»r s
i ::g'c;‘;'s 77 SE IF ROH: used to locate Sec
_E\—;!msl?[‘m?fssemejngine /% For FresRios intesration (I
@ B se_interiace_spplication ¢ . = add 0x10 to force _ ICEE
& B se_imerdace_booydaderc B - this is reguired for Pen
Fa B corfimon.c . == defime exported symbol _ ICI
| Eflal se_intedace exception JARS | =

38/49

AN5056 Rev 8

3

ANS5056

Adapting SBSFU

7.4

How to improve boot time

To resist a basic fault injection attack, some critical actions are duplicated thus are impacting
the time to start the user application. If such protections are not needed, for example, if
there is no physical access to the device, these counter-measures can be removed as

shown in Figure 34.

Figure 34. Boot time

ce

k all active slots
: & € SFU_NB_M

* Slot configured ? *
Af (SlotStarcAdd(SLOT_ACTIVE 1 + i1 f= 00)
1

* FW imscalled

Pped

the FW signa

/* Check thi 1
if (STU_ING_ContzolicElyetr

DetectEW (SLOT_RCTIVE_L + £))

if (SFU_SUCCESS
i
* In ize F1 o1
FLOW_CONTROL_INIT (uflowCzyproValue, FLOW_CTRL_INIT_VALUE) ;

.vnImHnt-dc@ﬁI‘.E_i + i) != SFU_SUCCESS:

EU_NG_SWAS

ages
i) 1= SFU_SUCCESS)

sfu_boot.c

1

return e_ret_status;

sfu_fwimg_common.c

SFU_ErrorStatus VezifySlot(uinté_t *pSlotBegin, uinti2_t uSlotSize, uintdl_t uFwSize)
B
| © "pdata
| _t length:
| SFU_ErrezSeavus e_rer_status = SFU_ERHOR: A
| PP Y g
| =
| [eeaca = pSiotBegin + SFU_ING_DMAGE_OFFSET + Q\IUV
| | 1engeh = uslousize - STU_ING_ DMAGE_ 'ﬁ'.re .
| | e_zec_status = SEU_LL FLA td, . . lengethy:
| ez e s‘i’—'r‘i‘jkﬁé
|
|
|
|
|
1

3

AN5056 Rev 8

39/49

Adapting the user application AN5056

8 Adapting the user application

8.1 How to make an application SBSFU compatible

First of all, the mapping of the user application must be modified to allow the application to
run in active slot #1. In a multiple image configuration the same applied for active slot #2 or
#3:

e Code section starting by the vector table must be configured to run from active slot #1,
just after the image header: ICFEDIT SLOT Active 1 start +512
(SFU_IMG OFFSET = 512 for the STM32L4 Series)

e Data section must start after the Secure Engine protected area:
(__ICFEDIT SE region SRAM1 end +1)

Refer to Section 3.2: Memory mapping definition on page 10 for more details on memory
constraints.

Then, during system initialization, VTOR must be set to the new location of the vector table
as shown in Figure 35.

Figure 35. Vector table position update (NUCLEO-L476RG example)

User App: Stack Pointer

User App: Reset vector

Active image header

User App vector table

Other vectors...

Active image
User application code
. — JOOCOOOOCOOOCOO
stm32i476:0¢_flash.ict 4 define exported symbol _ ICFEDIT intvec =e—p ICFEDIT SLOT Active 1_start__ + 512;] ~
st sta.

system_stmizkics o vesd syseentnid(voidy Image header size depends on
1os | Series (512 for STM32L4)

SCB->VIOR = INTVECT_START;

3

40/49 AN5056 Rev 8

AN5056

Adapting the user application

For user application encryption, the user application binary file length must be a multiple of
16 bytes. Figure 36 shows how to update the linker file to verify this constraint.

Figure 36. User application binary file length

{
udata8 "Force Alignment”;
pad_to 16;

J

define root section aes_block padding with alignment=16

39 define block CSTACK

with allignment =
40 define block HEAP -

with allignment

initialize by copy { readwritg
do not initialize { section

Jnoinit };

user application

stm321476xx flash.icf place at address mem:_ ICFEDIT

8
8

, size = _ ICFEDIT_size_cstack__ {3
, size = __ ICFEDIT_size_heap__ {1

| intvec_start__ { readonly section .intvec };

S block size (16 bytes) and L4 flash writing unit (8 bytes) */

4 place in ROM_region

{ xeadori—gl last section «ﬁs block paddingl }:

Finally, as done in the UserApp example, the IDE configuration must be updated to:

1. Generate a UserApp.bin file

2. Include search path for linker common files

3.
slot identification (1/2/3)
4.

Figure 37. IDE adaptations

Call postbuilb.bat to generate UserApp.sfb and SBFU_UserApp.bin with the correct

Integrate se_interface_appli.o to access Secure Engine runtime services if any

Options for node "Project” X Options for node "Project” X
Category: Factory Settings Category: Factory Settings
General Options General Options
Static Analysis Static Analysis
Runtime Checking Runtime Checking

C/C+4+ Compiler Output C/C++ Compler Config Library Input)\ Optimizations Advanced Output List
Assembler Assembler fidefine Diagnostics \ Checksum Encodings Extra Options
et sttt vt Conver
;:fdm:“:‘:d Output format: Custom Build Use command line options
S o :
Linker Raw binary ~ Buld Actions Command line options: {one peYjine)
Debugger Output fle [corfia_search $PROJ_DIRS\..\. \Linker_Common\EWARM\ |
Sator] Ovenide deflt '
CMSIS DAP [\ \UserApp bin ||
Optiens for nede "Project” X
NUCLED-GO71RB_2_Images_Usetépp v
Files o . g
- ategory:
=X |Project- NUCLEO-G071RB_2_Images_UserApp| ¥ | | o Ot

}-@ & Application . Static Analysis slot

]—I i Doc Runtime Checking . - .

& Dri Build Actions Configuration identification

= M Drivers e ClC++ Compiler 0

= Assembler
-8 W Middlewares Oulgatt Converter Pre-buld command line:
| L@ i STM32_Sequre’ Custom Buid
Se_interface_oppiio
Linker
Debugger

3

AN5056 Rev 8

41/49

Adapting the user application AN5056

Note:

42/49

As explained in the user manual UM2262, some additional constraints are depending on the

STM32 series:

e STM32F4 Series, STM32F7 Series, and STM32L1 Series: MPU-based Secure Engine
isolation relies fully on the fact that a privileged level of software execution is required
to access the Secure Engine services. The user application must take this constraint
into account and trust any piece of code running in privileged mode.

e STM32GO0 Series, STM32G4 Series, and STM32H7 Series: when secured, any access
to securable memory area (Fetch, read, programming, erase) is rejected, generating a
bus error. As a consequence, there are no Secure Engine runtime services available
for the user application.

IWDG is started during SBSFU execution. It must be refreshed periodically.

3

AN5056 Rev 8

AN5056

Adapting the user application

8.2 Use of Flash memory to store user data
The storage of user data in Flash pages or sectors is possible with some restrictions:
e Out of the SBSFU code area
e Notin the images slots
e Notinthe swap area
Figure 38 provides a memory-mapping example based on the NUCLEO-L476RG where the
Flash memory is available from page 489 to page 511 for the user to store data, install a file
system, or emulate an EEPROM.
Figure 38. Free Flash pages (NUCLEO-L476RG example)
Bank 1 Bank 2
""""" SBSFU initvect \ 0#08000000 \ 0108050008
/(0x08000200 Page 256 to page 267
Secure Engine Mot free covered by
PWALL NVdata
WRP : 64kB SE IF froso0sa0e U 0X08086000
0x08005500
SBSFU
———————— -- 0x0800FFFF
Slot active #1
424 Kbytes OX0BOF2800
Slot dwi #1
424 Koyt v
= S?(?:st:;ea """"" "[Page 48010 Page 483 | | >°°°r°
————————— - 0x080F1FFF
Page 484 to Page 511
,,,,,,,, 0xD80TOFFF Free pages
gﬁeﬁhpﬁgg \ G st / 0x0807FFFF 56 Kbytes __________\ / 0X080FFFFF

3

AN5056 Rev 8

43/49

Adapting the user application AN5056

8.3 Changing the firmware download function in the user
application
This possibility is available only in the dual-slot mode of operation.

A sample code based on the YMODEM protocol over UART is available in the X-CUBE-
SBSFU UserApp project. The download procedure is located in file fw_update _app.c as
illustrated in Figure 39.

Figure 39. UserApp firmware download overview

HAL StatusTypeDef FW_UPDATE Run(void)
1
HAL StatusTypeDef ret = HAL ERROR;
uint®_t f£w_header_ input[SE_FW_HEADER TOT_LEN]:
) SFU_FwImageFlashTypeDef fw_image dwl_area;
Where to store the downloaded firmware

image

e /* Print Firmware Update welcome message */

FW_UPDATE_PrintWelcome():

if (SFU_APP_GetDownloadAreaInfo (&fw_image dwl_area) != HAL ERRCR)
i

\ﬁ /* Get Info about the download area */

YMODEM protocol over UART download

/* Download new firmware image®*/
procedure (Can be replaced by anOther ret = FW_UPDATE DownloadNewFirmware (&fw image dwl area);
solution)

if (HAL OK = ret)

{
/* Read header in slot 1 */

void *) fw _header input, (void *) fw_image_dwl_area.DownloadAddr,

R R . memcpy (
Sets the appropriate information for
5 o = /* RAsk for installation at next reset */
SBSFU tD Indlcate _ﬂ]@l a new flrmWare { (void) SFU_APP InstallAtNextResec((uintf_t *) fw_header input);]
image must be installed — =
/* System Reboot*/
printf(" -- Image correctly downloaded - reboot\r\n\n");
HAL Delayv(Ty ;
Reset to let SBSFU start and proceed with L S LAt
the installation procedure)
if (ret !'= HAL OK)
{
printf(" -- Operation failed x\n\n"} ;

}
return rec;
}

3

44/49 AN5056 Rev 8

AN5056

Adapting the user application

8.4 How to change the firmware version
The firmware version is part of the firmware header generated with the postbuild.bat script.
In the following example, the version is 5.
Figure 40. Firmware version change
UserApp.sib
Header
SFU Magic
Security protocol
@ version
File Edit View Project ST-Link Tools Window Help | Fw Version |
dy ok Y, LRES) - « - = » m Fw'Size
NORB & X KNS C Q2 e v 2D B8 =0 . d, Partid Fw Offset
Workspace il Options for node "Project” X B‘rﬁal Fw Size
STHM32L47ERG_NUCLED_2 |mages_Userdpp /{ Fw Tag
HA256 computed
Files < on clear full FW
S IProject - STM3zL476.[v | [l IR Fw Tag
M Application L] General Options SHAZ':: mm;:lm
M Doc Static Analysis Ot cmnrvp:ﬂo[
B Dirivers L) Runtime Checking Reserved
M Middlewares C/C++ Compiler Build Actions Configuration =
B Output Asgembler) _ S::;g;r TAGeq
Output Converter Pre-build command line: s ECFE)'GS“A
Custom Build || | /
Post-build command line: FW Image state
Linker e e N - Previous FW image
Debgger [ROJ_DIRS" "STARGET_PATHs" "$PROJ_DIRS\UserApp bin" 1|5 o
Simulator

Firmware Image

Encrypted
firmware
With AES CBC

Caution:

8.5

3

The firmware with version SFU_FW_VERSION_INIT_NUM app_sfu.h is the only one
allowed for installation when the header of the installed image is not valid. This is the case
either because no firmware is installed (Development phase) or due to an attack attempt. It

is important to keep such firmware private as the only purpose of this version is to analyze
and repair devices returned from the field.

How to validate a firmware image

First of all, the ENABLE IMAGE STATE HANDLING compilation switch must be defined in
SECoreBin, SBSFU, and UserApp IDE configuration.

At the first user application start-up, if the execution is correct (For example after self-tests
execution) the user application must call a running service SE_APP_Validate(slot_id) if
available or update dedicated flags in RAM otherwise to validate the firmware image. If not
done a rollback on the previous firmware image is performed by SBSFU at the next reset.

An example is provided in the user application through the menu
FW_VALIDATE_RunMenu() as shown in Figure 41. In a multiple image configuration, the
slot identification parameter can be either 1, 2, 3, or 255. The value 255 indicates that all
new firmware images are validated through a single request. The objective is to ensure

firmware compatibility between all new images in case of interruption during the validation
phase.

AN5056 Rev 8 45/49

Adapting the user application AN5056

Figure 41. Validation menu

Yalidate all firpwares ----—----------"-m—- d
Yalidate firnuare of SLOT ACTINE 1
Yalidate firnuare of SLOT ACTIME ¢ -—-—--—--—-- 2

Yalidate firnuare of SLOT ACTIME 3 -———--—--—-- ki

Pravious Henu

Selact ion :

Caution: This feature can be activated only on a dual-slot configuration example with the swap
installation process selected.

3

46/49 AN5056 Rev 8

ANS5056

Revision history

9

3

Revision history

Table 4. Document revision history

Date

Revision

Changes

20-Dec-2017

1

Initial release.

31-Aug-2018

Document structure and content entirely updated:

— Refocused on the integration topics presented in
Introduction

— Adapted to the asymmetric and symmetric
cryptography schemes
— Adapted to the single-image and dual-image modes

18-Dec-2018

Product scope extended to the STM32F4 Series,

STM32F7 Series, and STM32G0 Series:

— Updated Chapter 1: General information, Chapter 2:
Related documents, Section 3.2: Memory mapping
definition, Section 4.3: Security configuration, Section:
Figure 15 shows the various security configuration
solutions available in file app_sfu.h for the STM32WB
Series., and Section 8.1: How to make an application
SBSFU compatible

— Added Chapter 7: Adapting SBSFU

Secure library offer extended to mbedTLS:

— Updated Section 4.1: Features to be configured

06-Sep-2019

Updated Introduction.
Product scope extended to the STM32H7 Series,

STM32G4 Series, STM32L0 Series, STM32L1 Series
and STM32WB Series.

Updated Chapter 2: Related documents.

Updated Section 3.1: Hardware adaptation

Updated Section 3.2: Memory mapping definition
Modified Section 3.2.1: SBSFU region definition
parameters and Section 3.2.2: Firmware image slot
definition parameters

Updated Section 4.1 on page 17

Updated Chapter 4.3: Security configuration (Updated
figures and added Figure 18: STM32WRB Series security
configuration (app_sfu.h)

Added note in Section 4.2 on page 18.

Modified Option Byte configuration in Section 4.4:
Development or production mode configuration.
Added Section 5.3: STM32WB Series specificities,
Section 5.4: KMS specificities and Section 5.5:
STSAFE-A100 specificities.

Updated Table 3 in Section 7.2: Optimizing memory
mapping

Added Section 8.4: How to replace the standalone
loader with a BLE OTA loader and Section 8.5: How to
change the firmware version.

AN5056 Rev 8 47/49

Revision history

ANS5056

48/49

Table 4. Document revision history (continued)

Date

Revision

Changes

09-Jul-2020

Added OTFDEC information in Section 4.1: Features
to be configured and Section 4.2: Cryptographic scheme
selection (added one note)

Updated Section 3.2.2: Firmware image slot definition
parameters.

Added Figure 8: Firewall configuration constraint on
dual bank products and Figure 9: Firewall configuration
after bank swap.

Updated Figure 11: SBSFU specific linker file, Figure 12:
UserApp specific linker file (NUCLEO-L476RG example)
and Figure 13: SBSFU configuration.

Updated Section 4.4: Development or production mode
configuration, Section 6.2: Memory mapping adaptation,
Section 7.2: Optimizing memory mapping

Removed Figure 28 Example of memory mapping
optimization on the NUCLEO-G031K8 — 1 image.

1-Sep-2020

Added:
— Section 3.2.4: Multiple image configuration
— Section 3.3: Dual-core adaptation

— Section 7.3: How to activate interruption management
inside the firewall isolated environment

— Section 7.4: How to improve boot time
— Section 8.6: How to validate a firmware image
Updated:

— Secure element STSAFE-A100 replaced by STSAFE-
A110

22-Jul-2021

Added:

— Section 3.2.2: Firmware image slot definition
parameters SFU_IMAGE_OFFSET value for
STM32H7 Series

— Section 4.1: Features to be configured External Flash
memory without on-the-fly decryption

Updated:

— Section 3.2: Memory mapping definition and
Section 5.1: Generating a new firmware AES
encryption key references to UM2262

— Section 5.3: STM32WB Series specificities with added
Figure 24: Key provisioning

Removed:

— Former Section 8.4 How to replace the standalone
loader with a BLE OTA loader

14-Dec-2021

Updated:

— Section 4.1: Features to be configured for
STM32WB5MM-DK Discovery board

— Section 5.3: STM32WB Series specificities to select
boot mode on P-NUCLEO-WB55 Nucleo and
STM32WB5MM-DK Discovery boards

— Section 8.5: How to validate a firmware image

AN5056 Rev 8 ‘Yl

ANS5056

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

3

AN5056 Rev 8 49/49

	1 General information
	Table 1. List of acronyms
	Table 2. List of terms

	2 Related documents
	3 Porting X-CUBE-SBSFU onto another board
	3.1 Hardware adaptation
	Figure 1. SBSFU project structure

	3.2 Memory mapping definition
	Figure 2. Memory mapping example (NUCLEO-L476RG)
	Figure 3. Linker file architecture
	Figure 4. Mapping constraints with MPU isolation (NUCLEO-G071RB example)
	Figure 5. Mapping constraints for user application execution
	3.2.1 SBSFU region definition parameters
	Figure 6. SBSFU regions (NUCLEO-L476RG mapping_sbsfu.icf)

	3.2.2 Firmware image slot definition parameters
	Figure 7. Firmware image slot definitions (NUCLEO-L476RG mapping_fwimg.icf)
	Figure 8. Firewall configuration constraint on dual bank products
	Figure 9. Firewall configuration after bank swap

	3.2.3 Project-specific linker files
	Figure 10. SECoreBin specific linker file
	Figure 11. SBSFU specific linker file
	Figure 12. UserApp specific linker file (NUCLEO-L476RG example)

	3.2.4 Multiple image configuration
	Figure 13. Multiple image configuration

	3.3 Dual-core adaptation
	Figure 14. STM32H7 Series dual-core adaptation

	4 SBSFU configuration
	4.1 Features to be configured
	Figure 15. SBSFU configuration

	4.2 Cryptographic scheme selection
	Figure 16. Switching the cryptographic scheme

	4.3 Security configuration
	Figure 17. STM32L4 Series and STM32L0 Series security configuration (app_sfu.h)
	Figure 18. STM32F4 Series, STM32F7 Series and STM32L1 Series security configuration (app_sfu.h)
	Figure 19. STM32G0 Series, STM32G4 Series, and STM32H7 Series security configuration (app_sfu.h)
	Figure 20. STM32WB Series security configuration (app_sfu.h)

	4.4 Development or production mode configuration
	Figure 21. Option Bytes management

	5 Generating a cryptographic key
	5.1 Generating a new firmware AES encryption key
	Figure 22. New firmware encryption-key

	5.2 Generating a new public/private ECDSA pair of keys for firmware verification
	Figure 23. New private/public keys

	5.3 STM32WB Series specificities
	Figure 24. Key provisioning

	5.4 KMS specificities
	Figure 25. KMS specificities

	5.5 STSAFE-A110 specificities
	Figure 26. STSAFE-A110 pairing keys

	6 Tips for debugging
	6.1 Compiler optimizations level
	Figure 27. Compiler optimizations

	6.2 Memory mapping adaptation
	Figure 28. Memory mapping adaptations
	Figure 29. Checking the WRP protection

	6.3 Debugging SECoreBin
	Figure 30. Debugging inside SECoreBin

	7 Adapting SBSFU
	7.1 Implementing a new cryptographic scheme for SBSFU
	Figure 31. User’s cryptographic scheme implementation

	7.2 Optimizing memory mapping
	Table 3. SBSFU code-size reduction
	Figure 32. Example of memory mapping optimization on NUCLEO-G071RB – 2 images

	7.3 How to activate interruption management inside the firewall isolated environment
	Figure 33. IDE adaptations

	7.4 How to improve boot time
	Figure 34. Boot time

	8 Adapting the user application
	8.1 How to make an application SBSFU compatible
	Figure 35. Vector table position update (NUCLEO-L476RG example)
	Figure 36. User application binary file length
	Figure 37. IDE adaptations

	8.2 Use of Flash memory to store user data
	Figure 38. Free Flash pages (NUCLEO-L476RG example)

	8.3 Changing the firmware download function in the user application
	Figure 39. UserApp firmware download overview

	8.4 How to change the firmware version
	Figure 40. Firmware version change

	8.5 How to validate a firmware image
	Figure 41. Validation menu

	9 Revision history
	Table 4. Document revision history

