
December 2021 AN5056 Rev 8 1/49

1

AN5056
Application note

Integration guide for the X-CUBE-SBSFU
 STM32Cube Expansion Package

Introduction

The X-CUBE-SBSFU Secure Boot and Secure Firmware Update solution allows the update of the
STM32 microcontroller built-in program with new firmware versions, adding new features and
correcting potential issues. The update process is performed in a secure way to prevent unauthorized
updates and access to confidential on-device data.

The Secure Boot (Root of Trust services) is an immutable code, always executed after a system reset.
It checks STM32 static protections, activates STM32 runtime protections, and then verifies the
authenticity and integrity of user application code before every execution to make sure that invalid or
malicious code cannot be run.

The Secure Firmware Update application receives the firmware image via a UART interface with the
Ymodem protocol. It checks its authenticity, and the integrity of the code before installing it. The
firmware update is done on the complete firmware image, or only on a portion of the firmware image.
Examples can be configured to use asymmetric or symmetric cryptographic schemes with or without
firmware encryption. They are provided:

• for single-slot configuration to maximize firmware image size
• for dual-slot configuration to ensure safe image installation and enable over-the-air firmware

update capability commonly used in IoT devices.
For a complex system with multiple firmware such as protocol stack, middleware, and user application,
the firmware image configuration can be extended up to three firmware images.

The secure key management services provide cryptographic services to the user application through
the PKCS #11 APIs (KEY ID-based APIs) that are executed inside a protected and isolated
environment. User application keys are stored in the protected and isolated environment for their
secured update: authenticity check, data decryption, and data integrity check.

STSAFE-A110 is a tamper-resistant secure element (Hardware Common Criteria EAL5+ certified)
used to host X509 certificates and keys and perform verifications used for firmware image
authentication during Secure Boot and Secure Firmware Update procedures.

The X-CUBE-SBSFU user manual (UM2262) explains how to get started with
X-CUBE-SBSFU and details SBSFU functionalities. This application note describes how to adapt X-
CUBE-SBSFU and integrate it with the user’s application; It answers such questions as:

• How to port X-CUBE-SBSFU onto another board?
• How to tune the X-CUBE-SBSFU configuration to fit the user’s needs?
• How to generate a new firmware encryption key?
• How to debug X-CUBE-SBSFU?
• How to adapt to SBSFU?
• How to adapt the user’s application?

Note: Throughout this application note, the IAR Embedded Workbench® IDE is used as an example to
provide guidelines for project configuration. Secure Boot and Secure Firmware Update applications
are referred to as SBSFU.

Note: The single-slot configuration is demonstrated in examples named 1_Image.
The dual-slot configuration is demonstrated in examples named 2_Images.

www.st.com

http://www.st.com

Contents AN5056

2/49 AN5056 Rev 8

Contents

1 General information . 6

2 Related documents . 8

3 Porting X-CUBE-SBSFU onto another board . 9

3.1 Hardware adaptation . 9

3.2 Memory mapping definition . 10

3.2.1 SBSFU region definition parameters . 13

3.2.2 Firmware image slot definition parameters . 14

3.2.3 Project-specific linker files . 16

3.2.4 Multiple image configuration . 17

3.3 Dual-core adaptation . 18

4 SBSFU configuration . 20

4.1 Features to be configured . 20

4.2 Cryptographic scheme selection . 21

4.3 Security configuration . 22

4.4 Development or production mode configuration . 25

5 Generating a cryptographic key . 27

5.1 Generating a new firmware AES encryption key 27

5.2 Generating a new public/private ECDSA pair of keys
for firmware verification . 27

5.3 STM32WB Series specificities . 28

5.4 KMS specificities . 29

5.5 STSAFE-A110 specificities . 30

6 Tips for debugging . 31

6.1 Compiler optimizations level . 31

6.2 Memory mapping adaptation . 31

6.3 Debugging SECoreBin . 32

7 Adapting SBSFU . 34

AN5056 Rev 8 3/49

AN5056 Contents

3

7.1 Implementing a new cryptographic scheme for SBSFU 34

7.2 Optimizing memory mapping . 36

7.3 How to activate interruption management inside the firewall isolated
environment . 38

7.4 How to improve boot time . 39

8 Adapting the user application . 40

8.1 How to make an application SBSFU compatible 40

8.2 Use of Flash memory to store user data . 43

8.3 Changing the firmware download function in the user application 44

8.4 How to change the firmware version . 45

8.5 How to validate a firmware image . 45

9 Revision history . 47

List of tables AN5056

4/4 AN5056 Rev 8

List of tables

Table 1. List of acronyms . 6
Table 2. List of terms . 6
Table 3. SBSFU code-size reduction . 36
Table 4. Document revision history . 47

AN5056 Rev 8 5/5

AN5056 List of figures

5

List of figures

Figure 1. SBSFU project structure . 9
Figure 2. Memory mapping example (NUCLEO-L476RG). 10
Figure 3. Linker file architecture. 11
Figure 4. Mapping constraints with MPU isolation (NUCLEO-G071RB example) 12
Figure 5. Mapping constraints for user application execution . 12
Figure 6. SBSFU regions (NUCLEO-L476RG mapping_sbsfu.icf) . 13
Figure 7. Firmware image slot definitions (NUCLEO-L476RG mapping_fwimg.icf). 14
Figure 8. Firewall configuration constraint on dual bank products . 15
Figure 9. Firewall configuration after bank swap . 15
Figure 10. SECoreBin specific linker file . 16
Figure 11. SBSFU specific linker file . 16
Figure 12. UserApp specific linker file (NUCLEO-L476RG example) . 17
Figure 13. Multiple image configuration . 18
Figure 14. STM32H7 Series dual-core adaptation. 19
Figure 15. SBSFU configuration . 21
Figure 16. Switching the cryptographic scheme . 22
Figure 17. STM32L4 Series and STM32L0 Series security configuration (app_sfu.h) 23
Figure 18. STM32F4 Series, STM32F7 Series and STM32L1

Series security configuration (app_sfu.h) . 23
Figure 19. STM32G0 Series, STM32G4 Series, and STM32H7 Series

security configuration (app_sfu.h). 24
Figure 20. STM32WB Series security configuration (app_sfu.h) . 24
Figure 21. Option Bytes management . 26
Figure 22. New firmware encryption-key . 27
Figure 23. New private/public keys . 28
Figure 24. Key provisioning . 29
Figure 25. KMS specificities. 30
Figure 26. STSAFE-A110 pairing keys . 30
Figure 27. Compiler optimizations . 31
Figure 28. Memory mapping adaptations . 32
Figure 29. Checking the WRP protection. 32
Figure 30. Debugging inside SECoreBin . 33
Figure 31. User’s cryptographic scheme implementation . 34
Figure 32. Example of memory mapping optimization on NUCLEO-G071RB – 2 images 37
Figure 33. IDE adaptations . 38
Figure 34. Boot time. 39
Figure 35. Vector table position update (NUCLEO-L476RG example) . 40
Figure 36. User application binary file length. 41
Figure 37. IDE adaptations . 41
Figure 38. Free Flash pages (NUCLEO-L476RG example) . 43
Figure 39. UserApp firmware download overview . 44
Figure 40. Firmware version change . 45
Figure 41. Validation menu . 46

General information AN5056

6/49 AN5056 Rev 8

1 General information

Table 1 and Table 2 present the definitions of acronyms and terms that are relevant for a
better understanding of this document.

Table 1. List of acronyms

Acronym Description

AES Advanced encryption standard

DAP Debug access port

ECDSA Elliptic curve digital signature algorithm

GCM AES Galois/counter mode

HAL Hardware abstraction layer

IDE Integrated development environment

FWALL Firewall

MPU Memory protection unit

OTFDEC On-the-fly decryption

PEM Privacy enhanced mail

PCROP Proprietary code readout protection

RDP Readout device protection

SB Secure Boot

SE Secure Engine

SFU Secure Firmware Update

SBSFU Secure Boot and Secure Firmware Update

UART Universal asynchronous receiver/transmitter

WRP Write protection

Table 2. List of terms

Term Description

Firmware image An executable binary image run by the device as a user application.

Firmware header
Bundle of meta-data describing the firmware image to be installed. It contains

firmware information and cryptographic information.

mbedTLS
mbed implementation of the TLS and SSL protocols and the respective

cryptographic algorithms.

sfb file Binary file packing the firmware header and the firmware image.

AN5056 Rev 8 7/49

AN5056 General information

48

The X-CUBE-SBSFU Secure Boot and Secure Firmware Update Expansion Package runs
on STM32 32-bit microcontrollers based on the Arm®(a) Cortex®-M processor.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and or elsewhere.

Related documents AN5056

8/49 AN5056 Rev 8

2 Related documents

1. User manual Getting started with STM32CubeH7 for STM32H7 Series (UM2204)

2. User manual Getting started with STM32CubeG4 for STM32G4 Series (UM2492)

3. User manual Getting started with STM32CubeL0 for STM32L0 Series (UM1754)

4. User manual Getting started with STM32CubeL1 MCU Package for STM32L1 Series
(UM1802)

5. User manual Getting started with STM32CubeWB for STM32WB Series (UM2550)

6. User manual Getting started with STM32CubeL4 for STM32L4 Series and STM32L4+
Series (UM1860)

7. User manual Getting started with STM32CubeF4 MCU Package for STM32F4 Series
(UM1730)

8. User manual Getting started with STM32CubeF7 MCU Package for STM32F7 Series
(UM1891)

9. User manual Getting started with STM32CubeG0 for STM32G0 Series (UM2303)

10. User manual Getting started with the X-CUBE-SBSFU STM32Cube Expansion
Package (UM2262)

11. User manual Development guidelines for STM32Cube Expansion Packages (UM2285)

12. User manual Development checklist for STM32Cube Expansion Packages (UM2312)

13. User manual STM32CubeProgrammer software description (UM2237)

14. STM32 Cortex®-M4 MCUs and MPUs programming manual (PM0214)

15. STM32F7 Series and STM32H7 Series Cortex®-M7 processor programming manual
(PM0253)

16. Cortex®-M0+ programming manual for STM32L0, STM32G0, STM32WL and
STM32WB Series (PM0223)

17. Datasheet for STSAFE-A110 Authentication, state-of-the-art security for peripherals
and IoT devices (DS12911)

AN5056 Rev 8 9/49

AN5056 Porting X-CUBE-SBSFU onto another board

48

3 Porting X-CUBE-SBSFU onto another board

X-CUBE-SBSFU supplements the STM32Cube™ software technology, making portability
across different STM32 microcontrollers easy. It comes with a set of examples implemented
on given STM32 boards that are useful starting points to port the X-CUBE-SBSFU onto
another STM32 board. The NUCLEO-L476RG and NUCLEO-L432KC boards are used as
examples in this document.

3.1 Hardware adaptation

A few changes are needed to adapt X-CUBE-SBSFU to another board:

1. GPIO configuration for UART communication with the host PC (In sfu_low_level.h file)

2. Flash configuration: NUCLEO-L432KC gives an example of a single-bank Flash
interface whereas NUCLEO-L476RG is dual-bank based (In sfu_low_level.c file)

3. Button configuration: NUCLEO-L476RG gives an example based on the push button
whereas NUCLEO-L432KC simulates a virtual button with a GPIO (In app_hw.h file)

4. Tamper GPIO pin configuration (In sfu_low_level_security.h file)

5. DAP - Debug port configuration (In sfu_low_level_security.h file)

6. I2C bus configuration for communication with STSAFE-A110
(In stsafea_service_interface.c file of
B-L4S5I-IOT01A\Applications\2_Images_STSAFE\2_Images_SECoreBin).

Figure 1 presents the SBSFU project structure together with the location of the files where
porting changes are expected.

Figure 1. SBSFU project structure

Porting X-CUBE-SBSFU onto another board AN5056

10/49 AN5056 Rev 8

3.2 Memory mapping definition

As already highlighted in the X-CUBE-SBSFU user manual (Refer to [10]), a key aspect is
the placement of all elements inside the Flash memory of the device:

• Secure Engine: protected environment to manage all critical data and operations.

• SBSFU: Secure Boot and Secure Firmware Update

• Active slot: this slot contains active firmware (Firmware header with firmware)

• Download slot: this slot stores downloaded firmware (Firmware header with encrypted
firmware) to be installed at the next reboot

• Swap area: Flash memory area used to swap the content of active and download slots
during the installation process

Figure 2 presents the Flash memory mapping illustrated by the NUCLEO-L476RG example.

Figure 2. Memory mapping example (NUCLEO-L476RG)

AN5056 Rev 8 11/49

AN5056 Porting X-CUBE-SBSFU onto another board

48

The linker file definitions shared between the three projects (SECoreBin, SBSFU, UserApp)
are grouped in the Linker_Common folder as presented in Figure 3:

• mapping_fwimg.icf: contains firmware image definitions such as active slots, download
slots, and swap area

• mapping_sbsfu.icf: contains SBSFU definitions such as SE_Code_region,
SE_Key_region, and SE_IF_region

• mapping_export.h: export the symbols from mapping_sbsfu.icf and mapping_fwimg.icf
to the SBSFU applications

Each region can be extended when adding more code is needed or shifted to another
address as long as the resulting security settings satisfy security requirements.

Figure 3. Linker file architecture

The security peripheral configuration (RDP, WRP, PCROP, FWALL, secure user memory if
available for the series) is automatically computed based on the SBSFU linker symbols
except for MPU configuration due to the following constraints:

• each MPU region base address must be a multiple of the MPU region size.

• each MPU region can be divided into 8 sub-regions to adjust the size.

The mapping constraints with MPU isolation are illustrated in Figure 4.

Porting X-CUBE-SBSFU onto another board AN5056

12/49 AN5056 Rev 8

Figure 4. Mapping constraints with MPU isolation (NUCLEO-G071RB example)

Another typical use case is the MPU configuration of the active-slot region to authorize user
application execution. Figure 5 shows how to respect the MPU constraints on NUCLEO-
L073RZ.

Figure 5. Mapping constraints for user application execution

AN5056 Rev 8 13/49

AN5056 Porting X-CUBE-SBSFU onto another board

48

3.2.1 SBSFU region definition parameters

Figure 6 presents the parameters in file mapping_sbsfu.icf that are used for the
configuration of the SBSFU regions.

Figure 6. SBSFU regions (NUCLEO-L476RG mapping_sbsfu.icf)

Porting X-CUBE-SBSFU onto another board AN5056

14/49 AN5056 Rev 8

3.2.2 Firmware image slot definition parameters

Figure 7 presents the parameters in file mapping_fwimg.icf that are used for the
configuration of the image regions.

Figure 7. Firmware image slot definitions (NUCLEO-L476RG mapping_fwimg.icf)

Compliance with SBSFU constraints requires that the following conditions are met:

• Slots areas must be aligned on the Flash sector size, which is 2048 bytes (0x800) for
devices in the STM32L4 Series.

• The minimum size of SWAP is 4 Kbytes and at least equal to the size of the largest
sector.

• The size of active and download slots must be multiple of the SWAP size.

• The sizes of active and download slots must be equal, except when using the partial
update feature.

In some configurations (External Flash with OTFDEC, multiple image configuration) the
header must be located outside the active slot in its own Flash memory sector to remain
protected inside the isolated environment.

For STM32L4 dual-bank Flash memory devices, firewall specific constraints are:

• Firewall code segment must be in bank1, firewall non-volatile data (Including the
header of the active slot) segment must be in bank2.

• The non-volatile data segment must overlap the firewall code segment to ensure that
secrets are always protected even if the banks are swapped.
Figure 8: Firewall configuration constraint on dual bank products and Figure 9: Firewall
configuration after bank swap illustrate the firewall configuration on the NUCLEO-
L476RG and the consequences when banks are swapped.

AN5056 Rev 8 15/49

AN5056 Porting X-CUBE-SBSFU onto another board

48

Figure 8. Firewall configuration constraint on dual bank products

Figure 9. Firewall configuration after bank swap

For the STM32G0 Series, STM32G4 Series, and STM32H7 Series, one constraint exists:
the header of the active slot must be mapped just after the SBSFU code to be protected by
the secured memory.

The SFU_IMAGE_OFFSET value depends on the STM32 microcontroller series:

• For the STM32L4 Series, STM32L0 Series, STM32L1 Series, STM32WB Series, and
STM32F4 Series, the default value is used: 512 bytes.

• For the STM32F7 Series and STM32H7 Series: 1024 bytes.
(With the Cortex®-M7, the vector table must be aligned on 1024 bytes).

• For the STM32G0 Series: 2048 bytes.
The secure user memory end address is aligned on the Flash sector size.

• For the STM32G4 Series: 4096 bytes.
The secure user memory end address is aligned on the Flash sector size.

• For the STSAFE-A variant: 2048 bytes.
The image header has a 2048-byte length to include X509 certificates.

Porting X-CUBE-SBSFU onto another board AN5056

16/49 AN5056 Rev 8

Note: For series with MPU-based isolation or firewall-based isolation, the MPU constraint on the
active-slot configuration must be verified as illustrated in Figure 5.

3.2.3 Project-specific linker files

SECoreBin places critical code and data such as secrets, as illustrated in Figure 10.

Figure 10. SECoreBin specific linker file

The SBSFU linker file is in charge of SBSFU application placement that includes SECoreBin
binary as shown in Figure 11.

Figure 11. SBSFU specific linker file

AN5056 Rev 8 17/49

AN5056 Porting X-CUBE-SBSFU onto another board

48

UserApp must be configured to run in the active slot (Slot active start address with
SFU_IMG_IMAGE_OFFSET) as illustrated in Figure 12 where SFU_IMG_IMAGE_OFFSET is
512 bytes for the STM32L4 Series.

Figure 12. UserApp specific linker file (NUCLEO-L476RG example)

1. Depends on the STM32 microcontroller Series.

3.2.4 Multiple image configuration

Up to three active slots (SFU_NB_MAX_ACTIVE_IMAGE) and three download slots
(SFU_NB_MAX_DWL_AREA) can be configured.

During the installation process, the active slot is identified with the SFU magic tag inside the
firmware image header (SFU1, SFU2, or SFU3). Depending on firmware compatibility
constraints, if the simultaneous firmware installation is not required, a single download slot
can be configured for the three active slots to optimize the memory footprint.

At boot, after verification of the authenticity and integrity of all firmware images, SBSFU
jumps into the active firmware image located inside the MASTER_SLOT in priority.

As a constraint, all the headers must be grouped in a single area to be protected inside the
isolated environment. Each header must be located in its own Flash memory sector.

Figure 13 shows the example of the multiple-image configuration provided in
2_Images_ExtFlash of the B-L475E-IOT01A board.

Porting X-CUBE-SBSFU onto another board AN5056

18/49 AN5056 Rev 8

Figure 13. Multiple image configuration

3.3 Dual-core adaptation

For the STM32H7 Series dual-core products, it is mandatory to disable the CM4 boot while
the SBSFU is running (On CM7).

Thus, once the authentication and the integrity of all firmware images are verified by the
SBSFU, the user application starting on CM7 can trigger the boot of CM4.

As an example, to port applications provided for NUCLEO-H753ZI on NUCLEO-H755ZI-Q,
the following modifications are needed as shown in Figure 14:

1. Modify the IDE configuration by adding STM32H755xx and CORE_CM7 defined
symbols.

2. Change the supply configuration from LDO to SMPS in SystemClock_Config() function.

3. Disable the Cortex M4 boot: BCM4 bit from option byte must be unchecked.

4. Add in SFU_LL_SECU_CheckFlashConfiguration() function the control of the BCM4 bit
state.

5. Add in the UserApplication project, the trigger of CM4 boot.

AN5056 Rev 8 19/49

AN5056 Porting X-CUBE-SBSFU onto another board

48

Figure 14. STM32H7 Series dual-core adaptation

Slots configuration may be adapted to manage two firmware images, one dedicated to CM7
and the other one dedicated to CM4. Refer to 3.2.4 Multiple image configuration for more
details.

SBSFU configuration AN5056

20/49 AN5056 Rev 8

4 SBSFU configuration

4.1 Features to be configured

X-CUBE-SBSFU supports:

• 2 modes of operation: dual and single slot configurations

• 3 cryptographic schemes using symmetric and asymmetric cryptographic operations

• 2 cryptographic middleware:

– STMicroelectronics middleware: X-CUBE-CRYPTOLIB library integrated into the
1_Image and 2_Images variants.

– Third-party middleware: mbedTLS (Open-source code) cryptographic services.
Examples are provided for the 32L496GDISCOVERY, B-L475E-IOT01A,
32F413HDISCOVERY, 32F769IDISCOVERY, P-NUCLEO-WB55, and NUCLEO-
H753ZI Nucleo boards in the 2_Images_OSC variant.

• STSAFE-A110 secure element used to host X509 certificates and keys. An example is
provided for the B-L4S5I-IOT01A board in the 2_Images_STSAFE variant.

• KMS middleware. An example is provided for the B-L475E-IOT01A and B-L4S5I-
IOT01A boards in the 2_Images_KMS variant.

• External Flash memory with on-the-fly decryption (OTFDEC). An example is provided
for the STM32H7B3I-DK board in the 2_Images_ExtFlash variant using a specific
cryptographic scheme with AES-CTR firmware encryption.

• External Flash memory without on-the-fly decryption (OTFDEC). An example is
provided for the STM32H750B-DK board in the 2_Images_ExtFlash variant. Active
slot, as well as download slot, are mapped in an external Flash memory, thus firmware
confidentiality cannot be ensured.

• External Flash memory without on-the-fly decryption (OTFDEC). An example is
provided for the B-L475E-IOT01A board in the 2_Images_ExtFlash variant. A specific
installation process without swap is selected SFU_NO_SWAP to ensure confidentiality
by keeping the download slot always encrypted.

• External Flash memory without on-the-fly decryption (OTFDEC). An example is
provided for the STM32WB5MM-DK board in the 2_Images_ExtFlash variant.
Download slot, as well as backup slot, is mapped in an external Flash memory. A
specific installation process without swap is selected SFU_NO_SWAP to ensure
confidentiality by keeping both slots always encrypted. More details are provided in the
Appendix H of the user manual Getting started with the X-CUBE-SBSFU STM32Cube
Expansion Package (UM2262).

AN5056 Rev 8 21/49

AN5056 SBSFU configuration

48

The configuration possibilities go beyond these options through compilation switches:

• Local loader can be removed to reduce the memory footprint (Dual slots only).

• Verbose switch can be activated to make debugging easier.

• Debug mode can be disabled (No more printf on the terminal during SBSFU execution)
to reduce the memory footprint.

• Security IPs can be turned off to make debugging easier.

• Installation process with firmware image validation. A rollback on the previous firmware
image is triggered at the next reset if the firmware image has not been validated by the
user application.

• Multiple image configuration for a complex system with multiple firmware such as
protocol stack, middleware, and user application.

• Interruption management inside the firewall isolated environment for applications
requiring low latency on interruption handling.

Figure 15 presents the SBSFU configuration solutions with the related files and compilation
switches.

Figure 15. SBSFU configuration

4.2 Cryptographic scheme selection

X-CUBE-SBSFU is delivered with three cryptographic schemes using both asymmetric and
symmetric cryptography:

• ECDSA asymmetric cryptography for firmware verification and AES-CBC symmetric
cryptography for firmware decryption

• ECDSA asymmetric cryptography for firmware verification without firmware encryption.

• AES-GCM symmetric cryptography for both firmware verification and decryption

The selection among these schemes is done using the SECBOOT_CRYPTO_SCHEME
compilation switch as depicted in Figure 16.

SBSFU configuration AN5056

22/49 AN5056 Rev 8

Figure 16. Switching the cryptographic scheme

Note: For the B-L4S5I-IOT01A STSAFE and KMS variants, the
SECBOOT_X509_ECDSA_WITHOUT_ENCRYPT_SHA256 cryptographic scheme is
selected.

For the external Flash memory variant with on-the-fly decryption (OTFDEC), the
SECBOOT_ECCDSA_WITH_AES128_CTR_SHA256 cryptographic scheme is selected.

4.3 Security configuration

The SBSFU example is delivered with STM32 security protection configuration allowing
protection secrets against both outer and inner attacks.

STM32 security peripherals can be deactivated independently as per the user’s decision to
achieve a different protection level (For example with STM32L4 Series devices, firewall and
PCROP allow the activation of protections against inner attacks). Any STM32 security
configuration modification requires a security protection evaluation at the system product
level to ensure that protections are well set according to product constraints and
specifications.

During the development phase, the disabling of all IPs may be required for making
debugging easier.

Figure 17 shows the various security configuration solutions available in file app_sfu.h for
the STM32L4 Series and STM32L0 Series.

AN5056 Rev 8 23/49

AN5056 SBSFU configuration

48

Figure 17. STM32L4 Series and STM32L0 Series security configuration (app_sfu.h)

Figure 18 shows the various security configuration solutions available in file app_sfu.h for
the STM32F4 Series, STM32F7 Series, and STM32L1 Series.

Figure 18. STM32F4 Series, STM32F7 Series and STM32L1
Series security configuration (app_sfu.h)

MSv51250V3

RDP-L2
DAP/TAMPER

• Disable external access
• Protects boot options
• Lock option bytes

• WRP

• PCROP
• BFB2

• Protects the code enabling
the MPU/Firewall

• Protects the code
considered trusted

• Protects part of the Flash

WRP
PCROP

Trust

User
application

Trust

Firewall

• Protects RAM and
Flash at runtime

Trust

Trust Crypto

• Verify the integrity,
authenticity of the
user applicationMPU

• Execution allowed
only inside the chain
of trust

Trust

// #define SECBOOT_DISABLE_SECURITY_IPS /*!< Disable all security IPs at once when activated */
#if !defined(SECBOOT_DISABLE_SECURITY_IPS)/

define SFU_WRP_PROTECT_ENABLE
define SFU_RDP_PROTECT_ENABLE
define SFU_PCROP_PROTECT_ENABLE
define SFU_FWALL_PROTECT_ENABLE
define SFU_TAMPER_PROTECT_ENABLE
define SFU_DAP_PROTECT_ENABLE
define SFU_DMA_PROTECT_ENABLE
define SFU_IWDG_PROTECT_ENABLE
define SFU_MPU_PROTECT_ENABLE
define SFU_MPU_USERAPP_ACTIVATION

#endif

SBSFU configuration AN5056

24/49 AN5056 Rev 8

Figure 19 shows the various security configuration solutions available in file app_sfu.h for
the STM32WB Series.

Figure 19. STM32G0 Series, STM32G4 Series, and STM32H7 Series
security configuration (app_sfu.h)

Figure 20 shows the various security configuration solutions available in file app_sfu.h for
the STM32WB Series.

Figure 20. STM32WB Series security configuration (app_sfu.h)

AN5056 Rev 8 25/49

AN5056 SBSFU configuration

48

4.4 Development or production mode configuration

The first step before any code modification is often to configure the SBSFU project in
development mode to enable IDE debugging facilities and add SBSFU debug traces:

1. Deactivate all security protections: SFU_xxx_PROTECT_ENABLE

2. Deactivate SFU_FINAL_SECURE_LOCK_ENABLE

3. Activate SFU_FWIMG_BLOCK_ON_ABNORMAL_ERRORS_MODE

4. Activate SECBOOT_OB_DEV_MODE

5. Optionally, activate the verbose mode: SFU_VERBOSE_DEBUG_MODE. For details about
the impact on mapping, refer to Section 6.2: Memory mapping adaptation.

At the end of the development phase, the SBSFU project must be configured in production
mode for the final release:

1. Activate all required security protections: SFU_xxx_PROTECT_ENABLE

2. Deactivate verbose mode: SFU_VERBOSE_DEBUG_MODE

3. Deactivate SFU_FWIMG_BLOCK_ON_ABNORMAL_ERRORS_MODE

4. Deactivate SECBOOT_OB_DEV_MODE

5. Activate SFU_FINAL_SECURE_LOCK_ENABLE to configure the RDP level 2. On
STM32H7 Series, the secure user memory is also configured when
SFU_FINAL_SECURE_LOCK_ENABLE is enabled.

6. Deactivate SFU_DEBUG_MODE to remove all prints of SBSFU that can be valuable
information for an attacker.

Read Protection Level 2 is mandatory to achieve the highest level of protection and to
implement a Root of Trust. It is the user’s responsibility to activate it in the final SW to be
programmed during the product manufacturing stage.

In production mode, the Secure Boot checks the Option Byte values (RDP, WRP, PCROP,
Secure user memory) and blocks execution in case a wrong configuration is detected.
Depending on the platform, a few other Option Bytes must be configured such as:

• BFB2 disabled for STM32L4 Series and STM32L0 Series devices with dual-bank Flash

• nDBANK enabled for STM32F7 Series

• nBFB2 enabled for STM32L1 Series

• BOOT_LOCK enabled for STM32G0Series and STM32G4 Series

• DBANK disabled on STM32G4 Series and B-L4S5I-IOT01A board

Caution: Option Bytes must be configured to the production mode values using
STM32CubeProgrammer (STM32CubeProg), just after programming the software during
the production stage. If this is not done, the device remains unsecured. Refer to [13] for the
way to use STM32CubeProgrammer.

SBSFU configuration AN5056

26/49 AN5056 Rev 8

Figure 21 shows how Option Bytes are managed at SBSFU startup:

Figure 21. Option Bytes management

AN5056 Rev 8 27/49

AN5056 Generating a cryptographic key

48

5 Generating a cryptographic key

5.1 Generating a new firmware AES encryption key

Key generation and firmware encryption are performed automatically during the compilation
process with the prebuild.bat and postbuild.bat scripts (Refer to [10] for a detailed
description of the build process).

Figure 22 shows the few steps to modify the firmware encryption key of active slot #1. The
same applied to active slot #2 or #3:

1. Change the key value in file OEM_KEY_COMPANY1_keys_AES_xxx.bin

2. Compile SECoreBin: prebuild.bat is executed and se_key.s is generated

3. Compile UserApp: postbuild.bat is executed and UserApp is encrypted

Figure 22. New firmware encryption-key

5.2 Generating a new public/private ECDSA pair of keys
for firmware verification

As for the AES encryption key, the public key (SE_ReadKey_Pub()) is automatically
modified when the private key (ECCKEY1.txt) is changed.

Figure 23 shows the few steps to modify the private and public keys for ECDSA asymmetric
cryptography firmware verification of the active slot #1. The same applied for active slot #2
or #3:

1. Change the key value in file ECCKEY1.txt

2. Compile SECoreBin: prebuild.bat is executed and se_key.s is generated

3. Compile UserApp: postbuild.bat is executed and UserApp is encrypted

Generating a cryptographic key AN5056

28/49 AN5056 Rev 8

Figure 23. New private/public keys

5.3 STM32WB Series specificities

For STM32WB Series, the AES encryption key is not processed through the prebuild.bat
script but is provisioned into the M0+ core. The provisioning process is described in
SECoreBin/readme.txt.

Another way to provision the AES key is to use the recent STM32CubeProgrammer release.
Since V2.5.0, M0+ key provisioning is available as Firmware Upgrade Service (FUS).

First, connect to the bootloader USB interface:

1. nBOOT1 and nSWBOOT0 are checked.

2. Correct boot mode is selected by setting Boot0 pin to VDD:

a) With a P-NUCLEO-WB55 Nucleo board: The jumper is ON between CN7.5 (VDD)
and CN7.7 (Boot0).

b) With an STM32WB5MM-DK Discovery board: A jumper is ON on CN13(VDD-
Boot0) after pin header soldering and another jumper selects ‘USB MCU’ on JP2.

3. A USB cable is connected to the USB_USER interface.

4. The power is ON (Unplug/plug USB cable is connected to ST-LINK).

Then, the function Key provisioning of Firmware Upgrade Services panel is allowed as
shown in Figure 24.

AN5056 Rev 8 29/49

AN5056 Generating a cryptographic key

48

Figure 24. Key provisioning

5.4 KMS specificities

With KMS middleware integration, SBSFU keys are no longer stored in a section under
PCROP protection. They are stored inside the KMS code as static embedded keys.

Figure 25 shows an example of the firmware encryption key modification of active slot #1.
The same applied for active slot #2 or #3:

1. Change the key value in file OEM_KEY_COMPANY1_keys_AES_xxx.bin

2. Compile SECoreBin: prebuild.bat is executed and kms_platf_objects_config.h is
generated

3. Compile UserApp: postbuild.bat is executed and UserApp is encrypted

The same process is applied for firmware ECDSA verification key, BLOB AES encryption
key, and BLOB ECDSA verification key.

Generating a cryptographic key AN5056

30/49 AN5056 Rev 8

Figure 25. KMS specificities

5.5 STSAFE-A110 specificities

As explained in Appendix G of the UM2262, STM32 and STSAFE-A110 must be
provisioned with pairing keys and X509 certificates.
STSAFE-A110 provisioning process is described in STSAFE_Provisioning/readme.txt.

Figure 26 shows an example of pairing-key provisioning:
1. STSAFE-A110 provisioning with default pairing keys

2. Update STSAFE_PAIRING_keys.bin accordingly

3. Compile SECoreBin: prebuild.bat is executed and se_key.s is generated.

Figure 26. STSAFE-A110 pairing keys

AN5056 Rev 8 31/49

AN5056 Tips for debugging

48

6 Tips for debugging

6.1 Compiler optimizations level

Projects are delivered with the highest level of compiler optimizations turned on for size
aspects. Such optimizations can make the debug complex. Changing the compiler
optimization level possibly impacts memory mapping.

Figure 27. Compiler optimizations

6.2 Memory mapping adaptation

When changing the compiler optimizations level or activating the development mode with
the verbose compilation switch, the user may have to adapt the SBSFU memory mapping,
for instance reducing firmware image slots to avoid overlap.

Caution: The security peripheral configuration (RDP, WRP, PCROP, FWALL, secure user memory if
available for the series) is automatically computed based on the SBSFU linker symbols
except for the MPU configuration due to the constraints detailed in Section 3.2: Memory
mapping definition. Disabling temporarily the MPU protection can be an efficient workaround
for the debug.

Figure 28 depicts the 3 steps of the memory adaptation based on an example:

1. Identify the gap by analyzing the linker message: 0x1d9 bytes

2. Identify the concerned region by consulting the project.map file:
__ICFEDIT_SB_region_ROM_start__

3. Apply the modification in file mapping_sbsfu.icf: 0x300 bytes

Tips for debugging AN5056

32/49 AN5056 Rev 8

Figure 28. Memory mapping adaptations

The impact of memory mapping adaptation on security peripheral configurations must be
checked even though it is automatically computed. For example, check the WRP
configuration using STM32CubeProgrammer (STM32CubeProg) as shown in Figure 29.

Figure 29. Checking the WRP protection

6.3 Debugging SECoreBin

To debug inside SECoreBin, the SBSFU project option must be changed to load SECoreBin
symbols. This is performed in the debugger menu as presented in Figure 30:

• Browse to select file Project.out

• Set Offset to 0

• Check the Debug info only box

AN5056 Rev 8 33/49

AN5056 Tips for debugging

48

Figure 30. Debugging inside SECoreBin

Adapting SBSFU AN5056

34/49 AN5056 Rev 8

7 Adapting SBSFU

7.1 Implementing a new cryptographic scheme for SBSFU

X-CUBE-SBSFU comes with some predefined cryptographic schemes (Refer to
Section 4.2: Cryptographic scheme selection on page 21). It is also possible to extend the
package with the user’s cryptographic scheme.

To implement a new cryptographic scheme for SBSFU, follow the steps illustrated in
Figure 31 and described below.

Figure 31. User’s cryptographic scheme implementation

Updating the code running on the device side:

1. Step 1: define a new value for SECBOOT_CRYPTO_SCHEME.

2. Step 2: look carefully at the signatures of the APIs that the bootloader requires. The
cryptographic services must have the same signatures to avoid updating the SBSFU
code.

3. Step 3: define a new SE_FwRawHeaderTypeDef structure and respect the constraints
to remain compatible with the existing SBSFU code.

4. Step 4: implement the code of the cryptographic services in se_crypto_bootloader.c.

AN5056 Rev 8 35/49

AN5056 Adapting SBSFU

48

Updating the tools running on the host side to prepare the keys and the
firmware image:

5. Step 5: update the preparation tools to support the new cryptographic scheme:
prepareimage.py, translate_key.py, and keys.py.

6. Step 6: update the IDE integration to generate the appropriate keys and firmware
image.

– A new batch file is required to call the preparation tools with the appropriate
commands; prebuild.bat copies this batch file to create postbuild.bat.

– prebuild.bat must be updated to take into account the new cryptographic scheme
and generate the proper keys and postbuild.bat.

Adapting SBSFU AN5056

36/49 AN5056 Rev 8

7.2 Optimizing memory mapping

Several options exist to reduce SBSFU code size to maximize the size of the user
application slot. Some of these options are summarized in Table 3.

The total gain depends on the mapping constraints described in Section 3.2: Memory
mapping definition on page 10.

As an example, Figure 32 highlights the mapping modifications to be done. Starting from 2
images with a symmetric cryptographic scheme, the SFFU_DEBUG_MODE and
SECBOOT_USE_LOCAL_LOADER switches are disabled, resulting in a 16-Kbyte increase of
the user application size.

Table 3. SBSFU code-size reduction

Option Description / Consequence Gain

Select 1-image variant
Download a new firmware image from the
user application is no more possible.

Slot size is doubled
vs. 2-image projects

Select AES-GCM symmetric
cryptographic scheme

Shared symmetric key secret stored in the
device.

~ 9 Kbytes

Disable SFU_DEBUG_MODE
No more information displayed on the
terminal during SBSFU execution

~ 9 Kbytes

Disable SECBOOT_USE_LOCAL_LOADER
No more local loader inside the SBSFU
application. This is not compatible with 1-
image variant.

~3 Kbytes

Implement a hardware decryption
Select STM32 devices integrating
cryptographic hardware IP.

This depends on the user
implementation

If all the code running on STM32 is fully
trusted and robust then Secure Engine
internal isolation based on MPU for
STM32F4/F7/G0/G4/H7/L1 can be
removed.

Removes alignment constraints with MPU
regions.

Up to 12 Kbytes
depending on products

AN5056 Rev 8 37/49

AN5056 Adapting SBSFU

48

Figure 32. Example of memory mapping optimization on NUCLEO-G071RB – 2 images

In the folder NUCLEO-G031K8\Applications\1_Image, another example of memory
optimization is provided for the NUCLEO-G031K8, where 32 Kbytes are allocated to the
user application among the 64 Kbytes available on this board.

Adapting SBSFU AN5056

38/49 AN5056 Rev 8

7.3 How to activate interruption management inside the firewall
isolated
environment

Interruption management inside the firewall isolated environment can be activated when low
latency on interruption handling is required. Examples are provided in the 2_Images_OSC
variant for 32L496GDISCOVERY and B-L475E-IOT01A boards.

Figure 33 shows the different steps required to activate this option:

1. Add IT_MANAGEMENT as preprocessor directive in SECoreBin and SBSFU IDE
configuration

2. Select se_stack_smuggler_it_mngt_IAR.c instead of se_stack_smuggler_IAR.c in
SECoreBin IDE configuration

3. Modify startup_xxx.s file to branch required interrupt handler on SE_Handler

4. Add se_interface_exception_IAR.s in SBSFU IDE configuration

5. Modify the SBSFU linker option to keep SE_UserHandlerWrapper symbols

6. Modify SBSFU xxx_flash.icf linker file to place SE_IF_Code_Entry symbol
(SE_UserHandlerWrapper) at the beginning of SE_IF_ROM_region.

7. Specific FreeRTOS: Modify mapping_sbsfu.icf by adding 0x10 to force
__ICFEDIT_SE_IF_region_ROM_start__ bit[4] to 1. This is required for PendSV
handler (FPU register save/restore mechanism).

Figure 33. IDE adaptations

AN5056 Rev 8 39/49

AN5056 Adapting SBSFU

48

7.4 How to improve boot time

To resist a basic fault injection attack, some critical actions are duplicated thus are impacting
the time to start the user application. If such protections are not needed, for example, if
there is no physical access to the device, these counter-measures can be removed as
shown in Figure 34.

Figure 34. Boot time

Adapting the user application AN5056

40/49 AN5056 Rev 8

8 Adapting the user application

8.1 How to make an application SBSFU compatible

First of all, the mapping of the user application must be modified to allow the application to
run in active slot #1. In a multiple image configuration the same applied for active slot #2 or
#3:

• Code section starting by the vector table must be configured to run from active slot #1,
just after the image header: __ICFEDIT_SLOT_Active_1_start__ + 512
(SFU_IMG_OFFSET = 512 for the STM32L4 Series)

• Data section must start after the Secure Engine protected area:
(__ICFEDIT_SE_region_SRAM1_end__ + 1)

Refer to Section 3.2: Memory mapping definition on page 10 for more details on memory
constraints.

Then, during system initialization, VTOR must be set to the new location of the vector table
as shown in Figure 35.

Figure 35. Vector table position update (NUCLEO-L476RG example)

AN5056 Rev 8 41/49

AN5056 Adapting the user application

48

For user application encryption, the user application binary file length must be a multiple of
16 bytes. Figure 36 shows how to update the linker file to verify this constraint.

Figure 36. User application binary file length

Finally, as done in the UserApp example, the IDE configuration must be updated to:

1. Generate a UserApp.bin file

2. Include search path for linker common files

3. Call postbuilb.bat to generate UserApp.sfb and SBFU_UserApp.bin with the correct
slot identification (1/2/3)

4. Integrate se_interface_appli.o to access Secure Engine runtime services if any

Figure 37. IDE adaptations

Adapting the user application AN5056

42/49 AN5056 Rev 8

As explained in the user manual UM2262, some additional constraints are depending on the
STM32 series:

• STM32F4 Series, STM32F7 Series, and STM32L1 Series: MPU-based Secure Engine
isolation relies fully on the fact that a privileged level of software execution is required
to access the Secure Engine services. The user application must take this constraint
into account and trust any piece of code running in privileged mode.

• STM32G0 Series, STM32G4 Series, and STM32H7 Series: when secured, any access
to securable memory area (Fetch, read, programming, erase) is rejected, generating a
bus error. As a consequence, there are no Secure Engine runtime services available
for the user application.

Note: IWDG is started during SBSFU execution. It must be refreshed periodically.

AN5056 Rev 8 43/49

AN5056 Adapting the user application

48

8.2 Use of Flash memory to store user data

The storage of user data in Flash pages or sectors is possible with some restrictions:

• Out of the SBSFU code area

• Not in the images slots

• Not in the swap area

Figure 38 provides a memory-mapping example based on the NUCLEO-L476RG where the
Flash memory is available from page 489 to page 511 for the user to store data, install a file
system, or emulate an EEPROM.

Figure 38. Free Flash pages (NUCLEO-L476RG example)

Adapting the user application AN5056

44/49 AN5056 Rev 8

8.3 Changing the firmware download function in the user
application

This possibility is available only in the dual-slot mode of operation.

A sample code based on the YMODEM protocol over UART is available in the X-CUBE-
SBSFU UserApp project. The download procedure is located in file fw_update_app.c as
illustrated in Figure 39.

Figure 39. UserApp firmware download overview

AN5056 Rev 8 45/49

AN5056 Adapting the user application

48

8.4 How to change the firmware version

The firmware version is part of the firmware header generated with the postbuild.bat script.
In the following example, the version is 5.

Figure 40. Firmware version change

Caution: The firmware with version SFU_FW_VERSION_INIT_NUM app_sfu.h is the only one
allowed for installation when the header of the installed image is not valid. This is the case
either because no firmware is installed (Development phase) or due to an attack attempt. It
is important to keep such firmware private as the only purpose of this version is to analyze
and repair devices returned from the field.

8.5 How to validate a firmware image

First of all, the ENABLE_IMAGE_STATE_HANDLING compilation switch must be defined in
SECoreBin, SBSFU, and UserApp IDE configuration.

At the first user application start-up, if the execution is correct (For example after self-tests
execution) the user application must call a running service SE_APP_Validate(slot_id) if
available or update dedicated flags in RAM otherwise to validate the firmware image. If not
done a rollback on the previous firmware image is performed by SBSFU at the next reset.

An example is provided in the user application through the menu
FW_VALIDATE_RunMenu() as shown in Figure 41. In a multiple image configuration, the
slot identification parameter can be either 1, 2, 3, or 255. The value 255 indicates that all
new firmware images are validated through a single request. The objective is to ensure
firmware compatibility between all new images in case of interruption during the validation
phase.

Adapting the user application AN5056

46/49 AN5056 Rev 8

Figure 41. Validation menu

Caution: This feature can be activated only on a dual-slot configuration example with the swap
installation process selected.

AN5056 Rev 8 47/49

AN5056 Revision history

48

9 Revision history

Table 4. Document revision history

Date Revision Changes

20-Dec-2017 1 Initial release.

31-Aug-2018 2

Document structure and content entirely updated:

– Refocused on the integration topics presented in
Introduction

– Adapted to the asymmetric and symmetric
cryptography schemes

– Adapted to the single-image and dual-image modes

18-Dec-2018 3

Product scope extended to the STM32F4 Series,

STM32F7 Series, and STM32G0 Series:

– Updated Chapter 1: General information, Chapter 2:
Related documents, Section 3.2: Memory mapping
definition, Section 4.3: Security configuration, Section:
Figure 15 shows the various security configuration
solutions available in file app_sfu.h for the STM32WB
Series., and Section 8.1: How to make an application
SBSFU compatible

– Added Chapter 7: Adapting SBSFU

Secure library offer extended to mbedTLS:

– Updated Section 4.1: Features to be configured

06-Sep-2019 4

Updated Introduction.

Product scope extended to the STM32H7 Series,

STM32G4 Series, STM32L0 Series, STM32L1 Series
and STM32WB Series.

Updated Chapter 2: Related documents.

Updated Section 3.1: Hardware adaptation

Updated Section 3.2: Memory mapping definition

Modified Section 3.2.1: SBSFU region definition
parameters and Section 3.2.2: Firmware image slot
definition parameters

Updated Section 4.1 on page 17

Updated Chapter 4.3: Security configuration (Updated
figures and added Figure 18: STM32WB Series security
configuration (app_sfu.h)

Added note in Section 4.2 on page 18.

Modified Option Byte configuration in Section 4.4:
Development or production mode configuration.

Added Section 5.3: STM32WB Series specificities,
Section 5.4: KMS specificities and Section 5.5:
STSAFE-A100 specificities.

Updated Table 3 in Section 7.2: Optimizing memory
mapping

Added Section 8.4: How to replace the standalone
loader with a BLE OTA loader and Section 8.5: How to
change the firmware version.

Revision history AN5056

48/49 AN5056 Rev 8

09-Jul-2020 5

Added OTFDEC information in Section 4.1: Features
to be configured and Section 4.2: Cryptographic scheme
selection (added one note)

Updated Section 3.2.2: Firmware image slot definition
parameters.
Added Figure 8: Firewall configuration constraint on
dual bank products and Figure 9: Firewall configuration
after bank swap.

Updated Figure 11: SBSFU specific linker file, Figure 12:
UserApp specific linker file (NUCLEO-L476RG example)
and Figure 13: SBSFU configuration.

Updated Section 4.4: Development or production mode
configuration, Section 6.2: Memory mapping adaptation,
Section 7.2: Optimizing memory mapping
Removed Figure 28 Example of memory mapping
optimization on the NUCLEO-G031K8 – 1 image.

1-Sep-2020 6

Added:

– Section 3.2.4: Multiple image configuration

– Section 3.3: Dual-core adaptation

– Section 7.3: How to activate interruption management
inside the firewall isolated environment

– Section 7.4: How to improve boot time

– Section 8.6: How to validate a firmware image

Updated:

– Secure element STSAFE-A100 replaced by STSAFE-
A110

22-Jul-2021 7

Added:

– Section 3.2.2: Firmware image slot definition
parameters SFU_IMAGE_OFFSET value for
STM32H7 Series

– Section 4.1: Features to be configured External Flash
memory without on-the-fly decryption

Updated:

– Section 3.2: Memory mapping definition and
Section 5.1: Generating a new firmware AES
encryption key references to UM2262

– Section 5.3: STM32WB Series specificities with added
Figure 24: Key provisioning

Removed:
– Former Section 8.4 How to replace the standalone

loader with a BLE OTA loader

14-Dec-2021 8

Updated:

– Section 4.1: Features to be configured for
STM32WB5MM-DK Discovery board

– Section 5.3: STM32WB Series specificities to select
boot mode on P-NUCLEO-WB55 Nucleo and
STM32WB5MM-DK Discovery boards

– Section 8.5: How to validate a firmware image

Table 4. Document revision history (continued)

Date Revision Changes

AN5056 Rev 8 49/49

AN5056

49

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

	1 General information
	Table 1. List of acronyms
	Table 2. List of terms

	2 Related documents
	3 Porting X-CUBE-SBSFU onto another board
	3.1 Hardware adaptation
	Figure 1. SBSFU project structure

	3.2 Memory mapping definition
	Figure 2. Memory mapping example (NUCLEO-L476RG)
	Figure 3. Linker file architecture
	Figure 4. Mapping constraints with MPU isolation (NUCLEO-G071RB example)
	Figure 5. Mapping constraints for user application execution
	3.2.1 SBSFU region definition parameters
	Figure 6. SBSFU regions (NUCLEO-L476RG mapping_sbsfu.icf)

	3.2.2 Firmware image slot definition parameters
	Figure 7. Firmware image slot definitions (NUCLEO-L476RG mapping_fwimg.icf)
	Figure 8. Firewall configuration constraint on dual bank products
	Figure 9. Firewall configuration after bank swap

	3.2.3 Project-specific linker files
	Figure 10. SECoreBin specific linker file
	Figure 11. SBSFU specific linker file
	Figure 12. UserApp specific linker file (NUCLEO-L476RG example)

	3.2.4 Multiple image configuration
	Figure 13. Multiple image configuration

	3.3 Dual-core adaptation
	Figure 14. STM32H7 Series dual-core adaptation

	4 SBSFU configuration
	4.1 Features to be configured
	Figure 15. SBSFU configuration

	4.2 Cryptographic scheme selection
	Figure 16. Switching the cryptographic scheme

	4.3 Security configuration
	Figure 17. STM32L4 Series and STM32L0 Series security configuration (app_sfu.h)
	Figure 18. STM32F4 Series, STM32F7 Series and STM32L1 Series security configuration (app_sfu.h)
	Figure 19. STM32G0 Series, STM32G4 Series, and STM32H7 Series security configuration (app_sfu.h)
	Figure 20. STM32WB Series security configuration (app_sfu.h)

	4.4 Development or production mode configuration
	Figure 21. Option Bytes management

	5 Generating a cryptographic key
	5.1 Generating a new firmware AES encryption key
	Figure 22. New firmware encryption-key

	5.2 Generating a new public/private ECDSA pair of keys for firmware verification
	Figure 23. New private/public keys

	5.3 STM32WB Series specificities
	Figure 24. Key provisioning

	5.4 KMS specificities
	Figure 25. KMS specificities

	5.5 STSAFE-A110 specificities
	Figure 26. STSAFE-A110 pairing keys

	6 Tips for debugging
	6.1 Compiler optimizations level
	Figure 27. Compiler optimizations

	6.2 Memory mapping adaptation
	Figure 28. Memory mapping adaptations
	Figure 29. Checking the WRP protection

	6.3 Debugging SECoreBin
	Figure 30. Debugging inside SECoreBin

	7 Adapting SBSFU
	7.1 Implementing a new cryptographic scheme for SBSFU
	Figure 31. User’s cryptographic scheme implementation

	7.2 Optimizing memory mapping
	Table 3. SBSFU code-size reduction
	Figure 32. Example of memory mapping optimization on NUCLEO-G071RB – 2 images

	7.3 How to activate interruption management inside the firewall isolated environment
	Figure 33. IDE adaptations

	7.4 How to improve boot time
	Figure 34. Boot time

	8 Adapting the user application
	8.1 How to make an application SBSFU compatible
	Figure 35. Vector table position update (NUCLEO-L476RG example)
	Figure 36. User application binary file length
	Figure 37. IDE adaptations

	8.2 Use of Flash memory to store user data
	Figure 38. Free Flash pages (NUCLEO-L476RG example)

	8.3 Changing the firmware download function in the user application
	Figure 39. UserApp firmware download overview

	8.4 How to change the firmware version
	Figure 40. Firmware version change

	8.5 How to validate a firmware image
	Figure 41. Validation menu

	9 Revision history
	Table 4. Document revision history

