
Introduction

This application note guides the designers through the steps required to build specific Zigbee® applications based on
STM32WB series microcontrollers. It explains how to interface with the STM32WB series microcontroller. It groups together the
most important information related to Zigbee®.

To fully benefit from the information in this document and to develop an application, the user must be familiar with STM32
microcontrollers.

Parts of this document are under Copyright © 2019-2020 Exegin Technologies Limited. Reproduced with permission.

Getting started with Zigbee® on STM32WB series

AN5506

Application note

AN5506 - Rev 2 - July 2023
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/stm32wb-series?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5506

1 General information

This document applies to the STM32WB series dual-core Arm®-based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.1 Acronyms and definitions

Table 1. Acronyms and definition

Acronym Definition

API Application programming interface

APS Application support sub-layer

BDB Base device behavior

BLE Bluetooth® Low Energy

HAL Hardware abstraction layer

IAS Intruder alarm system

IPCC Inter-processor communication controller IP

MAC Media access control

PAN Personal area network

SED Sleepy end device

ZCL Zigbee cluster library

ZDO Zigbee device object

1.2 Reference documents
• [1] AN5289 Building wireless applications with STM32WB series microcontrollers
• [2] AN5492 Persistent data management Zigbee® and non-volatile memory in STM32WB series
• [3] AN5491Creating manufacture specific clusters on STM32WB series
• [4] AN5498 How to use Zigbee clusters templates on STM32WB series
• [5] AN5500 ZSDK API implementation for Zigbee® on STM32WB series

AN5506
General information

AN5506 - Rev 2 page 2/36

2 Zigbee communication protocol

2.1 Zigbee overview
Zigbee is an IEEE 802.15.4-based IOT protocol used to create wireless personal area (WPAN) networks. The aim
is to provide a simple networking layer and standard application profiles that can be used to create interoperable
solutions, with low-power and low-bandwidth constraint.
It concerns, among other things:
• Home automation
• Industrial control systems
• Building automation
• Medical data collection and monitoring
• HVAC control
• Wireless sensor networks
The data throughput is 250 write Kbit/s in 2.4 GHz band and the typical range is 10-20 meters.

2.2 Zigbee network

2.2.1 Type of devices
In Zigbee, there are three logical device types:
• Coordinator (ZC): This is the first node to be started. The coordinator is responsible for forming the network

by allowing other nodes to join the network through it. The coordinator is responsible for starting the
network and for choosing certain key network parameters. Once the network is established, the coordinator
has a routing role. In a centralized network, every Zigbee mesh network must have one and only one
coordinator.

• Router (ZR): This is a node with a routing capability which is also able to send and receive data. It also
allows other nodes to join the network through it. A Zigbee mesh network can have multiple routers.

• End Device (ZED): This is a node which is only capable of sending and receiving data. It has no routing
capability. A Zigbee mesh network can have multiple end devices. Some end device can also be sleepy
end device allowing very low power consumptions.

2.2.2 Type of network
To satisfy a wide range of applications and to ensure the optimal balance of security, Zigbee offers two types of
network: distributed and centralized:
• In a distributed network, there are no coordinator. In this configuration, any router can issue network

security keys. As more routers and end devices join the network, a router that is already on the network
securely sends the network key. All devices on the network use the same network key to encrypt
messages.

• In a centralized network, there is an entity named Trust Center (TC), which is typically the coordinator. The
TC forms a centralized network and allows routers and end devices to join the network if they have proper
credentials. In a centralized network, only the TC can issue encryption keys. The TC also establishes a
unique TC Link Key for each device on the network as they join and link keys for each pair of devices as
requested.

For obvious reasons, the centralized network is much more secure than the distributed one. Most of the Zigbee
examples provided inside the STM32WB firmware package use a centralized network.

AN5506
Zigbee communication protocol

AN5506 - Rev 2 page 3/36

2.2.3 Zigbee network topologies
In a centralized network, Zigbee supports 3 types of network topologies as shown in the figure below.

Figure 1. Zigbee network topologies (centralized network)

2.2.4 Touchlink commissioning
Touchlink is a Zigbee feature which allows devices physically close to each other to communicate without being in
the same Zigbee network. This is based on Inter-PAN communication mechanism, where devices can exchange
information in their local area without having to form or join the same Zigbee network.
Touchlink process allows to discover and join together two devices in close proximity into the same PAN.
Touchlinking involves two different device roles:
• an initiator, which is the device initiating the Touchlink process. The initiator has to discover other devices,

the targets, that can join him into the same PAN
• a target which is the device being discovered and joined to the initiator PAN.
A device that has not engaged in any touchlink process (since leaving a Zigbee network or forming a new one) is
known as factory new. The device acts as a new one, according to its initiator/target role.
For a non-factory new device, all the Zigbee stack parameters (essentially network ones) are kept unchanged.
This concerns the main Touchlink commissioning process steps such as
• Device discovery, including device identification
• Zigbee network formation and join use cases.

AN5506
Zigbee network

AN5506 - Rev 2 page 4/36

2.3 Zigbee architecture

2.3.1 General architecture
As described before, Zigbee is built on top of the IEEE 802.15.4 standard. Zigbee provides routing and multi-hop
functions to the packet-based radio protocol. It is build on top of two layers specified by 802.15.4: the physical
(PHY) and MAC layers.
The following figure describes the main components of a Zigbee stack and its articulation with IEEE 802.15.4 and
general application layer.

Figure 2. Zigbee stack overview

PHY Layer

MAC Layer

Network Layer

Application framework

Application profile

Application layer

IEEE 802.15.4

Zigbee

Customer application

AN5506
Zigbee architecture

AN5506 - Rev 2 page 5/36

2.3.2 Zigbee stack layers
The stack layers defined by the ZigBee specification are based on the OSI 7-layer model. For Zigbee it concerns
the network and application framework layers. The Zigbee stack is divided in multiple components, as shown in
the figure below.

Figure 3. Zigbee stack description

802.15.4 radio

Application

802.15.4 MAC

Application Support Sublayer (APS)

Network layer

Application objects

Base device behavior (BDB)

Std Zigbee Cluster Library (ZCL)

Zigbeedevice
object (ZDO)

802.15.4 LLD

1 Physical layer

2 Data link

3 Network

4 Transport

5 Session

6 Presentation

7 Application

ZigbeeOSI Model

Network (NWK) layer

The network layer is required to provide functionality to ensure correct operation of the IEEE 802.15.4 MAC sub-
layer and to provide a suitable service interface to the application layer.
Among other things, this is the layer where networks are started, joined, left and discovered.

Table 2. Network layer functionalities

Zigbee network layer function Coordinator Router End device

Establish a Zigbee network x - -

Permit other devices to join or leave the network x x -

Assign 16-bit network addresses x x -

Discover and record paths for efficient message delivery x x -

Discover and record list of one-hop neighbors x x -

Route network packets x x -

Receive or send network packets x x x

Join or leave the network x x x

Enter sleep mode - - x

AN5506
Zigbee architecture

AN5506 - Rev 2 page 6/36

Application (APL) Layer

The APL layer is composed of several sublayers. The components of the APL layer are shown below:

Figure 4. Application layer sublayers

• Application Support Sub-Layer (APS)
APS stands for application support sub-layer. It provides an interface between the network layer (NWK)
and the application layer through a general set of services that are used by both the ZDO and the
manufacturer-defined application objects.
The APS is responsible for:
– binding management
– message forwarding between bound devices
– group address definition and management
– address mapping from 64-bit extended addresses to 16-bit NWK
– addresses (dedicated table)
– fragmentation and reassembly of packets
– reliable data transport
Binding in Zigbee allows an endpoint on one node to be connected, or “bound” to one or more endpoints
on another node.
The binding table maps a source address and source endpoint to one or more destination addresses and
endpoints. This table is available and kept on all devices in the network.

• Zigbee Device Object (ZDO)
The ZDO component handles the device management and communication functions. It includes:
– initializing the APS sublayer and the NWK layer
– device discovery
– service discovery
– network management, including defining the operating mode of the device (ZC, ZR or ZED).
– security management
– initiating and/or responding to remote binding requests

• Base Device Behavior (BDB)
It is a standard SW component, which handles fundamental operations such as commissioning, network
security and persistent data management. This device does not need an endpoint.

AN5506
Zigbee architecture

AN5506 - Rev 2 page 7/36

• Application Framework
The application framework in Zigbee is very rich and it defines the environment in which application objects
are hosted on devices.
Data exchange between Zigbee device is performed in a client server model. It relies on an Application
Profile, Cluster, Attribute model.
The Application profile is a collection of device descriptions, which together form a cooperative application.
The Profile defines the data exchange form for the application functions of a Zigbee physical device. A
Profile consists of one or more Endpoints, each with one or more clusters associated.

Figure 5. Zigbee application profile organization

Profile Endpoint DeviceID

ClusterEndpoint DeviceID

Cluster Attribute DataType AttrData

Attribute DataType AttrData

The clusters are a group of commands and attributes that define what a device can do. Clusters are managed by
the ZCL (Zigbee Cluster Library).
Endpoint number that can be used for a Zigbee application are comprise between 1 and 240.
• Zigbee cluster library (ZCL)

ZCL is the library which manage the Clusters. Clusters can be considered as a group of commands and
attributes specific to a dedicated kind of application (DoorLock, OnOff, etc.).
ZCL is defined by the Zigbee Alliance in order to speed the development and standardization of public
profiles. With ZCL, manufacturers are able to quickly build Zigbee products with consistency and
compatibility.
A cluster is a related collection of commands and attributes, which together defines an interface to specific
functionality. commands are actions that a cluster can take. Attributes are data or states within a cluster.

2.4 Zigbee profiles

2.4.1 Zigbee application profiles
A profile is a message-handling agreement between applications on different devices. It describes the logical
components and their interfaces.
The aim of profiles is to provide interoperability between different manufacturers.
There are three types of profiles:
• public (standard), managed by the Zigbee Alliance
• private, defined by Zigbee vendors for restricted use
• published. This concerns previously private profiles that became published ones the owner profile decided

to publish it
All profiles must have a unique profile identifier.
A profile uses a defined language for data exchange and a defined set of processing actions. Indeed, an
application profile will specify the following:
• set of devices required in the application area
• functional description for each device
• set of clusters to implement the functionality
• which clusters are required by which devices
Each information that can be transferred between devices is called an attribute.

AN5506
Zigbee profiles

AN5506 - Rev 2 page 8/36

Attributes are grouped into clusters. All clusters and attributes are given unique identifiers. There are input cluster
identifiers and output cluster identifiers. It is linked to client/server cluster architecture.

2.4.2 Zigbee device profiles
The Zigbee device profile is a collection of device descriptions and clusters performed directly by the ZDO. It
applies to all Zigbee devices.
The Zigbee device profile is a template that show of how to write an application profile. It is defined in the Zigbee
application level specification.

2.5 Zigbee addressing
Before joining a Zigbee network, a device with an IEEE 802.15.4 compliant
radio has a 64-bit address that is globally unique. For Zigbee, this MAC address is called an extended address.
When the device joins a Zigbee network, it receives a 16-bit address
called the NWK address. Either of these addresses, the 64-bit extended
address or the NWK address, can be used within the PAN to communicate
with a device.

2.5.1 Zigbee messaging
Once a device has joined the Zigbee network, it can send commands to other ones on the same network. There
are two ways to address a device within the Zigbee network: direct and indirect addressing.

Direct addressing

The sender has to provide three pieces of information regarding the destination device.
This is unicast messages and they are composed of:
• Modification section indirect addressing
• Device address (NWK or IEEE extended address)
• Endpoint number
• Cluster ID

Indirect addressing

Indirect addressing is a local feature that simplifies the process. Therefore, even with indirect addressing, unicast
messages are sent.
It requires that the above three types of information are available in the binding table.
The sending device only needs to know its own address, endpoint number and cluster ID. The binding table entry
provides the destination information (device address and endpoint).

2.5.2 Broadcast addressing
In a Zigbee network, there are two broadcast levels:
• the broadcast with a MAC layer destination address of 0xFFFF. Any transceiver that is awake will receive

the packet.

Note: The packet is re-transmitted three times by each device. This broadcast type should only be used when
necessary.
• the broadcast of a message to all of the endpoints on the specified device. For such a broadcast, it is used

the endpoint number 0xFF.

2.5.3 Group addressing
An application can assign multiple devices and specific endpoints on those devices to a single group address.
The group assignation in based on the cluster ID, profile ID and source endpoint.

AN5506
Zigbee addressing

AN5506 - Rev 2 page 9/36

3 Zigbee on STM32WB

3.1 Architecture overview
The figure below gives an overview of the overall architecture. It shows in particular the split between the M4 and
the M0. All the code running on the M0 is delivered as a binary library.
The customer has access only to the M4 core and sees the firmware running on M0 as a black box. The
framework hides all the intercommunication between the M4 and M0. Dedicated IPCC channels are allocated for
Zigbee.

Figure 6. Zigbee architecture overview on STM32WB

ARM M0+

802.15.4 radio

IPCC wrapper

Infrastructure

Application

802.15.4 MAC

Zigbee stack

WPAN midleware

Zigbee Clusters

802.15.4 LLD

IPCC wrapper

A
rm

 M
4

A
rm

 M
0+

Infrastructure

The Zigbee stack is running on top of the 802.15.4 MAC layer which itself use services provided by the 802.15.4
low level driver in charge of controlling the radio.

AN5506
Zigbee on STM32WB

AN5506 - Rev 2 page 10/36

3.2 Zigbee stack layers on STM32WB
Figure 7. Zigbee layers and modules shows in more details the different Zigbee layers and how they are
implemented on STM32WB MCU.

Figure 7. Zigbee layers and modules

A
rm

 M
4

802_15_4 radio

M0 firmware

Infrastructure

Application

802.15.4 MAC

Application Support
Sublayer

Network layer

Application objects
Base device behavior

Std Zigbee cluster library (Std ZCL)Smart energy
application

objects

Zigbee device
object (ZDO)

Core ZCL

Se
cu

rit
y

se
rv

ic
e

pr
ov

id
er

Application Framework

802.15.4 LLD

A
rm

 M
0+

3.3 Zigbee firmware supported
The STM32WB55 device supports two flavors of the stack . Both stacks are Zigbee PRO 2017 (revision 22)
certified.

Table 3. Firmware supported (Zigbee standalone)

Stacks supported Firmware associated

Zigbee FFD (Full feature device) stm32wb5x_ZigBee_FFD_Full_fw.bin

Zigbee RFD (Reduced feature device stm32wb5x_ZigBee_RFD_fw.bin

• An FFD can accept any role in the network. It can be a router, a coordinator or an end device.
• An RFD can support only end device role. An RFD has a smaller footprint compared to an FFD. When

building an Application acting as a ‘sleepy end device’, in order to reach optimal low power consumption, it
is mandatory to build this application using the Zigbee RFD stack.

AN5506
Zigbee stack layers on STM32WB

AN5506 - Rev 2 page 11/36

ST supports both BLE and Zigbee protocol within a single binary firmware.

Table 4. Firmware supported (Zigbee concurrent mode)

Stacks supported Firmware associated

BLE and Zigbee (static mode) stm32wb5x_BLE_ZigBee_FFD_static_fw.bin

This binary is used for static concurrent mode applications. The example of such applications is provided under:
Projects\P-NUCLEO-WB55.Nucleo\Applications\BLE_ZigBee directory.

Static mode

In static mode, it is possible to switch from BLE to Zigbee and vice-versa. When the BLE protocol is running, the
Zigbee stack is no more running. When the BLE is stopped, the system can switch back to Zigbee. In this case,
the Zigbee stack is fully re-initialized.

Note: Before running any Zigbee application on STM32WB, the user has to ensure that the proper firmware is
downloaded on the M0. If it is not the case, he has to use STM32CubeProgrammer to load the appropriate
binary.
All available Zigbee binaries are located under:
/Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x.
Refer to
/Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x/Release_Notes.html
for the detailed procedure on how to change the Wireless Coprocessor binary.

3.4 Zigbee clusters supported
The ZigBee ecosystem available on STM32WB supports ZigBee 3.0. ZigBee 3.0 clusters are ZCL 7 compliant.
It includes BDB (base device behavior), Zigbee green power and several specific ZCL clusters as listed below:

Table 5. Zigbee cluster list ecosystem

Nb Cluster ID Cluster name

1 0x0000 Basic

2 0x0001 Power configuration

3 0x0003 Identify

4 0x0004 Groups

5 0x0005 Scenes

6 0x0006 On/Off

7 0x0008 Level control

8 0x000a Time

9 0x0019 OTA upgrade

10 0x0020 Poll control

11 0x0021 Green power proxy

12 0x0102 Window covering

13 0x0202 Fan control

14 0x0204 Thermostat user interface configuration

15 0x0300 Color control

16 0x0301 Ballast configuration

17 0x0400 Illuminance measurement

18 0x0402 Temperature measurement

AN5506
Zigbee clusters supported

AN5506 - Rev 2 page 12/36

Nb Cluster ID Cluster name

19 0x0406 Occupancy sensing

20 0x0502 IAS warning device (WD)

21 0x0b05 Diagnostics

22 0x1000 Touchlink

23 0x0002 Device temperature configuration

24 0x0007 On/Off switch configuration

25 0x0009 Alarms

26 0x000b RSSI location

27 0x0015 Commissioning

28 0x001a Power profile cluster

29 0x0024 Nearest gateway cluster

30 0x0101 Door lock

31 0x0200 Pump configuration and control

32 0x0201 Thermostat

33 0x0203 Dehumidification control

34 0x0401 Illuminance level sensing

35 0x0403 Pressure measurement

36 0x0405 Relative humidity measurement

37 0x0500 IAS zone

38 0x0501 IAS ancillary control equipment (ACE)

39 0x0700 Price

40 0x0701 Demand response and load control

41 0x0702 Metering

42 0x0703 Messaging

43 0x0704 Smart energy tunneling (Complex metering)

44 0x0800 Key establishment

45 0x0904 Voice over Zigbee

46 0x0b01 Meter identification

47 0x0b04 Electrical measurement

• All these 47 clusters are available through the STM32_WPAN middleware. This middleware is common to
BLE and Thread. For specific needs, a customer may create its own ‘proprietary’ cluster’. Refer to [3] for
more details.

• The APIs relative to these clusters can be found under the following directory:
\Middlewares\ST\STM32_WPAN\ZigBee\stack\include

• By default, all clusters are delivered as a single library. Nevertheless, it is possible to have access to the
source code on demand.

AN5506
Zigbee clusters supported

AN5506 - Rev 2 page 13/36

4 STM32WB Zigbee application design

4.1 Zigbee application framework
The overall Zigbee application framework is based on a Client Server model. Each Zigbee application provided
inside the STM32WB firmware package is delivered as two separate projects: one project handling the server
part, and the other one handling the client part. To run these applications, it is required to have one board
configured in client/coordinator mode, and all the other ones configured in server/router mode.

Note: It is possible to map a Client and or Server on any Zigbee, independently from the role it supports (ZC/ZR/ZED).
Moreover, a single device can be a client and a server at the same time.

4.1.1 Application framework
All projects are built using the same framework. In all projects, the Zigbee use case is set, defined and
implemented inside the app_ZigBee.c file.
Under:
Projects\Board_X\Applications\ZigBee\Zigbbe_Y_app\STM32_WPAN\App.
All the other files present in the application projects are mainly used for the global infrastructure management
(Interrupt management, IPCC wrapper, system startup and configuration, etc…)

Figure 8. Zigbee OnOff cluster application

Module managing the Zigbee
use case.
The stacks and the clusters are
controlled from this file

Entry point of the application

Contain generic infrastructure services
(low power, event mgt, etc..)

Interrupt handler

Application configuration file
Uart setup, low power mode setup, etc..

Read me explaining how to run the
application

IAR project setup
(including scatter file)

AN5506
STM32WB Zigbee application design

AN5506 - Rev 2 page 14/36

4.1.2 Zigbee application architecture
This section explains the general STM32WB Zigbee application architecture which are defined in the Zigbee use
case module files app_zigbee.h and app_zigbee.c.
• Application initialization

This is common step to all STM32WB application, including Thread and BLE ones. It includes the stack
layer initialization (the Zigbee stack in this case) and the Zigbee Endpoint configuration step.

• End point management
For any Zigbee application, a Profile consists of one or more EndPoints, each with one or more clusters
and a vertical structure of the attributes. The generic links between all these entities is the following:

Figure 9. Zigbee endpoint/cluster relationship

Profile Endpoint DeviceID

ClusterEndpoint DeviceID

Cluster Attribute DataType AttrData

Attribute DataType AttrData

AN5506
Zigbee application framework

AN5506 - Rev 2 page 15/36

For example, in the OnOff application, the end point configuration is managed as follows:

Figure 10. Zigbee OnOff application end point configuration

ON_OFF_CLIENT_1ZCL_DEVICE_ONOFF_SWITCHSW1_ENDPOINT = 17ZCL_PROFILE_HOME_AUTOMATION

ON_OFF_SERVER_1ZCL_DEVICE_ONOFF_SWITCHSW1_ENDPOINT = 17ZCL_PROFILE_HOME_AUTOMATION

Configuration for the server

req.profileId = ZCL_PROFILE_HOME_AUTOMATION;
req.deviceId = ZCL_DEVICE_ONOFF_SWITCH;

onoff_callbacks.off = onoff_server_off;
onoff_callbacks.on = onoff_server_on;
onoff_callbacks.toggle = onoff_server_toggle;

req.endpoint = SW1_ENDPOINT;
ZbZclAddEndpoint(z igbee_app_info.zb, &req, &conf);

zigbee_app_info.onoff_server_1 =Z bZclOnOffServerAlloc(z igbee_app_info.zb, SW1_ENDPOINT, &o noff_callbacks, NULL);
ZbZclClusterEndpointRegister(zigbee_app_info.onoff_server_1);

req.profileId = ZCL_PROFILE_HOME_AUTOMATION;
req.deviceId = ZCL_DEVICE_ONOFF_SWITCH;

req.endpoint = SW1_ENDPOINT;
ZbZclAddEndpoint(z igbee_app_info.zb , &req, &conf);

zigbee_app_info.onoff_client_1 = ZbZclOnOffClientAllocz(igbee_app_info.zb , SW1_ENDPOINT);
ZbZclClusterEndpointRegister(zigbee_app_info.onoff_client_1);

Zigbee network management

This step includes the Zigbee network formation or joining. They are managed by a specific task,
TASK_ZIGBEE_NETWORK_FORM. The task mostly includes the Zigbee network configuration and the
associated startup procedure. Further details are given in the dedicated section.
The blue led lights on when the procedure has been successful. When for any reason, the joining procedure fails,
the joining task is rescheduled.
In conclusion, if the application needs it, the APS layer can be addressed using the Group management. The
Groupcast, as the STM32WB Zigbee framework, allows accessing the APS layer.

Group management

A group being a collection of nodes inside a network. Some APS primitives allow the higher layer to request that
group membership for a particular group to be added for a particular endpoint.
For example, for the OnOff application sample, multiple OnOff clients can interact with the unique OnOff Server,
which act as coordinator using groups.

User specific code

At the end of the TASK_ZIGBEE_NETWORK_FORM task the generic task TASK_ZIGBEE_APP_START is
launched if needed. At this point the application in functional for a Zigbee point of view.
It’s here the user can perform the next steps of its application. This includes local or remotes Zigbee commands
with the associated callbacks.

AN5506
Zigbee application framework

AN5506 - Rev 2 page 16/36

Note: When implementing a callback for any command, the user should wait to return to this callback before
requesting another command in order to avoid IPCC deadlock. Indeed, many M4 application commands are
going through the IPCC wrapper in order to control the M0. For this reason the user should use available
scheduler events API just after a Zigbee command. Tthe M4 CPU should wait for the event that is raised at the
end of the associated Zigbee command callback. For instance, there is below an example of scheduler events
usage with a Zigbee remote write request commands.

Figure 11. Zigbee command using scheduler events

4.1.3 Zigbee network startup procedure
The Zigbee network startup procedure used in the Zigbee network management is based on waiting events.
Indeed, the application waits until the network startup result.
• For a Zigbee coordinator on a centralized Zigbee network, it waits until the network is formed (PAN ID

selection).
• For a Zigbee router/end device on a centralized network, it waits until the association result.
There are 3 main startup procedure types. This concern all types of network:
• Centralized
• Distributed networks
• Touchlink Commissioning:
• – The usual Zigbee startup as shown on the Zigbee_OnOff_Server_Coord application example.

– The Zigbee startup with persistence where the persistent data, previously stored before the device
power off, are restored. This include Zigbee stack and cluster parameters. Detailed explanation is
given on a specific Zigbee Persistent data document (Ref[1]). Refer to Zigbee_OnOff_Coord_NVM
and Zigbee_OnOff_Router_NVM applications examples.

– The CBKE (Certificate Based Key Establishment) Zigbee startup. This startup includes a complete
certificate exchange/validation for the joining process.

Zigbee device network joining timeout

After a device has set up or joining a Zigbee network, the time when another device is allowed to join to this
device (coordinator or router for a Zigbee centralized network for example) is fixed.
As a result, after this delay, joining the network for a device is not permitted (Zigbee association permit value).
This is also the case when a device is reset after this time.
In order for a device to join a Zigbee network when the permit join timeout is over, the Zigbee coordinator can
allow a parent device (for instance a Zigbee router) to permit joining. This is done by sending a ZDO message to
parent.
For the coordinator, it can sent a ZDO message to itself to allow permit join for an extra amount of time.

Note: Zigbee persistent data feature can also be used in order to keep stack parameters and be able to reconnect to a
network (or setting up) after a reset/shutdown.

AN5506
Zigbee application framework

AN5506 - Rev 2 page 17/36

4.1.4 Traces
Both traces coming from the stack itself (running on M0 core) and from the application itself (running on M4 side)
are managed by the M4 and are routed through an UART (configured at compilation time using app_conf.h file).
To get the traces you need to connect your Board to the HyperTerminal (through the STLink Virtual COM Port).
The UART must be configured as follows:
• BaudRate = 115200 baud
• Word Length = 8 Bits
• Stop Bit = 1 bit
• Parity = none
• Flow control = none

AN5506
Zigbee application framework

AN5506 - Rev 2 page 18/36

5 STM32WB Zigbee application

Several Zigbee applications are delivered inside the STM32WB firmware package. These applications are
available on P-NUCLEO-WB55.Nucleo boards and on P-NUCLEO-WB55.USBDongle.
The full list of applications is available in STM32CubeProjectsList.html file (under \Projects directory).
The purpose of these applications is mainly to provide simple examples highlighting the usage of specific clusters.
The easiest way to start playing with Zigbee on STM32WB is to use the ZigBee_OnOff_Server_Coord and
ZigBee_OnOff_Client_Router applications.

5.1 Zigbee general applications

Table 6. Zigbee applications available

Projects name Description

Zigbee_APS_Coord and Zigbee_APS_Router

The purpose of this application is to show:
• how to create a Zigbee centralized network
• how to use the APSDE interface to the Zigbee stack

directly
• how to send and receive raw APS messages between

devices on the network

Zigbee_Commissioning_Client_Coord

Zigbee_Commissioning_Server_Router

The purpose of this application is to show how to create a Zigbee
centralized network, and how to operate a commissioning
process using the commissioning cluster

Zigbee_DevTemp_Server_Coord

Zigbee_DevTemp_Client_Router
How to use device temperature cluster on a centralized Zigbee
network.

Zigbee_Diagnostic_Server_Coord

Zigbee_Diagnostic_Client_Router
How to use diagnostic on a centralized Zigbee network.

Zigbee_DoorLock_Server_Coord

Zigbee_DoorLock_Client_Router
How to use door lock cluster on a centralized Zigbee network.

Zigbee_IAS_WD_Server_Coord

Zigbee_IAS_WD_Client_Router
How to use IAS WD cluster on a centralized Zigbee network.

Zigbee_MeterId_Server_Coord

Zigbee_MeterId_Client_Router
How to use meter identification cluster on a centralized Zigbee
network.

Zigbee_OnOff_Client_DistribZigbee_OnOff_Server_Distrib How to use OnOff cluster on a distributed Zigbee network.

Zigbee_OnOff_Server_Coord

Zigbee_OnOff_Client_Router
How to use OnOff cluster on a centralized Zigbee network.

Zigbee_OnOff_Server_Coord

Zigbee_OnOff_Client_SED

How to use OnOff cluster on a centralized Zigbee network with a
sleepy end device (SED) as client.

The SED client is configured to support low power mode STOP2
with a 3μA consumption when IDLE.

Zigbee_OnOff_Coord_NVM

Zigbee_OnOff_Router_NVM
Description of the Zigbee OnOff cluster application with usage of
persistent data using a centralized network.

Zigbee_OTA_Client_Router

Zigbee_OTA_Server_Coord

Zigbee_OnOff_Client_Router_Ota

Description of the Zigbee OTA cluster application

Zigbee_PollControl_Client_Coord

Zigbee_PollControl_Server_SED

How to use poll control cluster on a centralized Zigbee network.

Poll control cluster is used for remotely operating on a Sleepy
End Device (SED).

Zigbee_PowerProfile_Client_Coord How to use power profile cluster on a centralized Zigbee network.

AN5506
STM32WB Zigbee application

AN5506 - Rev 2 page 19/36

Projects name Description

Zigbee_PowerProfile_Server_Router
This demo shows how to use power profile cluster in an
appliance/home gateway configuration by simulating a white food
generic behavior.

Zigbee_PressMeas_Server_Coord

Zigbee_PressMeas_Client_Router
How to use pressure measurement cluster on a centralized
Zigbee network

Zigbee_SE_Msg_Client_Coord

Zigbee_SE_Msg_Server_Router
How to use SE messaging cluster on a centralized Zigbee
network.

5.2 Zigbee commissioning
This application shows the commissioning process between a Zigbee commissioning server and a commissioning
client.
It shows a device distributing its Zigbee parameters (channel, panid, …) to another device using to the
commissioning process. Commissioning is based on Inter-PAN communication mechanism where devices can
exchange information in their local area without having to form or join the same Zigbee network.
One device acts as commissioner and the other one as joiner.
In this application, the commissioner accepts a newcomer in its Zigbee network.
This application requires two STM32WBxx_NUCLEO boards.

5.3 Sleepy End Device

5.3.1 Sleepy end device principle
To run this application, it is requested to have two boards:
• Board 1: STM32WB55xx Nucleo board loaded with:

– Wireless coprocessor: stm32wb5x_Zigbee_FFD_fw.bin
– Application: Zigbee_OnOff_Server_Coord

• Board 2: STM32WB55xx Nucleo board loaded with:
– Wireless coprocessor: stm32wb5x_Zigbee_RFD_fw.bin
– Application: Zigbee_OnOff_Client_SED

Once the Sleepy end device (Board 2 acting as client) has joined the Zigbee network controlled by the coordinator
(Board 1 acting as server), it sends a unicast OnOff toggle request every second to the coordinator. At this stage,
the LED1 on Board 1 should toggle every second when receiving the request coming from the SED.

Figure 12. Sleepy end device user case

OnOffToggleRequest

Sleepy End Device
(RFD stack configuration)

Coordinator
(FFD stack configuration)

Led toggling

In order to have the lowest power consumption as possible on the SED side, this application is by default
compiled with the flag CFG_FULL_LOW_POWER set to 1 (in the app_conf.h file). In this configuration, LEDs are
no more available, and the debug access to the M4 core is also disabled.
In this configuration, using the power shield, it is possible to check that between the sending of two requests to
the coordinator, the SED is able to reach low power mode (STOP2).

AN5506
Zigbee commissioning

AN5506 - Rev 2 page 20/36

Figure 13. Sleepy end device consumption

[Amp]

Low power mode
(STOP2 : < 3uA)O

nO
ffT

og
gl

eR
eq

ue
st

O
nO

ffT
og

gl
eR

eq
ue

st

O
nO

ffT
og

gl
eR

eq
ue

st

[Time]
1sec

AN5506
Sleepy End Device

AN5506 - Rev 2 page 21/36

5.4 ZigBee FUOTA

5.4.1 Zigbee FUOTA principle
The goal is to use the Zigbee protocol to update the CPU1 application binary or CPU2 wireless coprocessor
binary on a remote device.

Figure 14. Zigbee FUOTA network topology

CPU1: Zigbee_Ota_Server + binary to be sent
CPU2: Zigbee_FFD_Full

CPU1: Zigbee_Ota_Client
CPU2: Zigbee_FFD_Full

This thread requires at least two STM32WBxx boards (see Figure 14) running the Zigbee protocol with specific
applications:
• One board running ZigBee_Ota_Server application
• One or more boards running the ZigBee_Ota_Client application

Cube version inferior to v1.16

FUOTA process can take place only on one device at a time.
The server initiates a FUOTA provisioning process and one client must respond to it.
Multiple clients are updated one at the time.

Cube version superior or equal to v1.16

FUOTA process can take place on multiple devices at a time.
The server initiates a FUOTA provisioning process and all clients must respond to it.
Multiple clients are updated at the same time.

AN5506
ZigBee FUOTA

AN5506 - Rev 2 page 22/36

5.4.2 Memory mapping

Server side

The binary file to be installed (either for CPU1 or for CPU2 update) on remote device has to be flashed first on the
“FREE” memory region on the Server side (see Figure 15).
Maximum size of the binary to be transferred is equal to:
FREE region size = SFSA Address - (FLASH_BASE - 0x8030000)

Figure 15. OTA server (ZigBee_Ota_Server) Flash memory mapping

Zigbee_Ota_Server

Free

Wireless FW

FUS

Se
cu

re
d

N
on

 s
ec

ur
ed

FLASH_BASE + FLASH_SIZE

FLASH_BASE + 0x30000

FLASH_BASE

Binary to send to remote
Zigbee device must be located
in this memory region.
Flash it (using ST-Link)
at address 0x08030000SFSA
(security boundary set by OB)

SFSA (security boundary set by OB)

Client side

On the client side, before receiving the binary from the server, the Flash memory is as shown in Figure 16.

Figure 16. FUOTA client Flash memory mapping initial state

Zigbee_Ota_Client

Free

Wireless FW

FUS

Se
cu

re
d

N
on

 s
ec

ur
ed

FLASH_BASE + FLASH_SIZE

FLASH_BASE + 0x30000

FLASH_BASE

Binary for firmware update
is flashed here,
starting from
FLASH_BASE + 0x30000

SFSA (security boundary set by OB)

NVM
FLASH_BASE + 0x20000

After receiving the binary data from server side, the Flash memory is updated as shown in Figure 17 and
Figure 18, respectively, for CPU1 binary transfer and CPU2 binary transfer.

AN5506
ZigBee FUOTA

AN5506 - Rev 2 page 23/36

Figure 17. FUOTA client Flash memory mapping after CPU1 binary transfer

Zigbee_Ota_Client

Application FW
binary

Wireless FW

FUS

Se
cu

re
d

N
on

 s
ec

ur
ed

FLASH_BASE + FLASH_SIZE

FLASH_BASE + 0x30000

FLASH_BASE

Application firmware binary
has been transferred and flashed.
The device will reboot on this
application firmware.

SFSA (security boundary set by OB)

NVM
FLASH_BASE + 0x20000

Free

Figure 18. FUOTA client Flash memory mapping after CPU2 binary transfer

Zigbee_Ota_Client

stm32wb5x_Zigbee
_FFD_Full_fw.bin

Wireless FW

FUS

Se
cu

re
d

N
on

 s
ec

ur
ed

FLASH_BASE + FLASH_SIZE

FLASH_BASE + 0x30000

FLASH_BASE

Encrypted coprocessor wireless
binary has been transferred and
flashed. Reboot on FUS, which
will install it in a secure Flash
memory region.

SFSA (security boundary set by OB)

NVM
FLASH_BASE + 0x20000

Free

AN5506
ZigBee FUOTA

AN5506 - Rev 2 page 24/36

5.4.3 Zigbee FUOTA protocol
This is a STMicroelectronics proprietary protocol to update CPU2 wireless coprocessor binary or CPU1 FW
application using Zigbee, based on ZCL OTA cluster.

OTA file format

The ZCL OTA upgrade is based on a specific OTA file format made of:
• An OTA header
• Addition of OTA sub-elements
The figure below shows the OTA file format for the Zigbee FUOTA upgrade process

Figure 19. OTA file format for Zigbee FUOTA

OTA Upgrade Image tag

Firmware data

ZCL OTA Header

This OTA file format contains one sub-element (Upgrade image tag and associated binary firmware data).
For any OTA firmware stored in the OTA server Flash memory (see Section 5.4.2 Memory mapping for further
details), the OTA file format is dynamically generated (OTA header, Upgrade Image tag information).

AN5506
ZigBee FUOTA

AN5506 - Rev 2 page 25/36

Zigbee FUOTA process

The figure below shows the steps to perform the firmware update transfer.

Figure 20. Zigbee FUOTA protocol

Zigbee_Ota_Server
(server)

First step: Server notifies the
client that an OTA image is
available.

Second step: Client must check
notification parameters and decide if
image request can be done, depending
on its capabilities (e.g. image type).

Query next image request

Third step: Client must check image
parameters and decide if transfer can
be done, depending on its capabilities
(e.g. free memory versus binary size).

Image block request

Image block response

Image block request

Image block response

Image notify request

Fourth step: At the end of the transfer,
client must verify the downloaded
firmware (FUOTA magic keyword).

Client notifies the OTA server upgrade
is finished.
Start boot/startup procedure.

Write received data in a RAM buffer.
Write RAM buffer in Flash memory
when full starting at
FLASH_BASE + 0X30000,
incrementing each time a new buffer is
written

Query next image response
…

Upgrade end request

Upgrade end response

Zigbee_Ota_Client
(client)

1. Server sends an Image Notify request to inform the client an image is available. It contains:
– manufacturer ID
– image type
– new file version

2. Client decides to request this image (Query Next Image request) regarding notification parameters.
3. Query Next Image response is sent to the client. It contains:

– manufacturer ID
– image type
– new file version
– OTA image full size

Client checks parameters and decides if transfer can be done depending on its capabilities (for instance free
space from image size).
1. During the OTA block transfer, the client store received firmware data blocks in a RAM cache and in Flash

when it is full.

AN5506
ZigBee FUOTA

AN5506 - Rev 2 page 26/36

2. When transfer is finished (client has received all the necessary blocks regarding OTA image size), client
validates the downloaded with the magic keyword.

3. The client notifies the server.
4. The upgrade finishes with the Upgrade End request and starts boot/startup procedure (regarding Upgrade

End response parameters).

5.4.4 FUOTA application startup procedure
Once binary data has been transferred to the remote device (Zigbee FUOTA client), the startup procedure is
different for the update of a CPU1 application or of CPU2 coprocessor wireless binary.

FUOTA for CPU1

On the client side after the binary transfer is completed, the process shown in Figure 21 takes place to jump on
OTA specific application (for instance Zigbee_OnOff_Client_Router_Ota).

Figure 21. FUOTA startup procedure

FW
application
 available

NoNo

Yes

Boot mode
 from SRAM1

Application

Boot

SW reset
source

OTA

Yes

Start Zigbee OTA application:
Delete sectors according to info from SRAM1
Start OTA client

Update CPUVTOR register to set new vector table address
Set MSP to the value from the application Jump to reset
handler for application

Update SRM1 to delete all sectorspart
of the FW application

FUOTA for CPU2

CPU2 update involves FUS (firmware upgrade service) software component, which is responsible to decrypt and
install secure binary. Figure 22 describes the process.

AN5506
ZigBee FUOTA

AN5506 - Rev 2 page 27/36

Figure 22. Update procedure

Reboot on
FW application

FUS running
on CPU2?

Yes

SRAM1_BASE =
CFG_REBOOT_ON_CPU

_UPGRADE

No

FUS FW update completed. Ask to reboot on FW application

SRAM1_BASE =
CFG_REBOOT_ON_CPU

_UPGRADE

Run FUS FW upgrade
SRAM1_BASE =

CFG_REBOOT_ON_CPU2_UPGRADE

No

Yes

Run OTA
application

Yes

Start CPU2

Boot

Download complete on Flash memory.
For CPU2 update request it to reboot

on FUS

No

APPE_SysEvtReadyProcessingCPU2

Events from CPU2: FUS running

5.4.5 Applications

ZigBee_OTA_Server_Coord

This application must be loaded on STM32WB 1Nucleo board acting as FUOTA server.

ZigBee_OTA_Client_Router

This application must be loaded on STM32WB Nucleo board acting as FUOTA client. In order for the client to be
able to reconnect to the Zigbee network after an upgrade procedure, the Zigbee stack parameters have to be
persisted. This is why persistent data are used with this application with both RAM cache and Flash storage.

ZigBee_OnOff_Client_Router_Ota

This application is almost identical to ZigBee_OnOff_Client_Router, the differences are:
• Persistent data with Flash storage are used. The NVM configuration is the same as in

ZigBee_OTA_Client_Router application. So, after a reboot with this new application firmware, the previous
Zigbee stack configuration can be restored. The updated device is able to reconnect to the coordinator’s
network.

AN5506
ZigBee FUOTA

AN5506 - Rev 2 page 28/36

• Use special tags (to manage end data transfer and data consistency):
– TAG_OTA_END : The Magic Keyword value is checked in the ZigBee_Ota_Client_Router

Application.
– TAG_OTA_START : The Magic Keyword address shall be mapped at 0x140 from start of the binary

image.
Therefore, by reading memory content at 0x140 it must be equal to Magic keyword value.
• Scatter file must be updated to place the sections above

Example for IAR:
Vector table and ROM start @ moved to 0x08030000:
define symbol __ICFEDIT_intvec_start__ = 0x08030000;
define symbol __ICFEDIT_region_ROM_start__ = 0x08030000;
define region OTA_TAG_region = mem:[from
(__ICFEDIT_region_ROM_start__ + 0x140) to
(__ICFEDIT_region_ROM_start__ + 0x140 + 4)];
keep { section TAG_OTA_START};
keep { section TAG_OTA_END };
place in OTA_TAG_region { section TAG_OTA_START };
place in ROM_region { readonly, last section TAG_OTA_END };

5.5 Static concurrent mode
An example of static concurrent mode (BLE_ZigBee_Static) is provided in the STM32WB firmware package.
This application is located under the Projects\P-NUCLEO-WB55.Nucleo\Applications\BLE_ZigBee directory.
When running this use case, the "static concurrent mode" device can switch from BLE to Zigbee and vice versa.
This device can be connected through BLE to a smartphone running the "STBLESensor" application and once the
BLE activity is stopped. It can join a Zigbee network. Then, once the Zigbee application has been fully stopped, it
is possible to go back to BLE again.

AN5506
Static concurrent mode

AN5506 - Rev 2 page 29/36

Figure 23. Static concurrent mode on STM32WB

AN5506
Static concurrent mode

AN5506 - Rev 2 page 30/36

Revision history

Table 7. Revision history

Date Revision Changes

23-Jul-2020 1 Initial release

17-Jul-2023 2

Updated:
• Section 5.3.1 Sleepy end device principle
• Section 5.4.1 Zigbee FUOTA principle
• Section 5.5 Static concurrent mode

AN5506

AN5506 - Rev 2 page 31/36

Contents

1 General information .2
1.1 Acronyms and definitions . 2

1.2 Reference documents. 2

2 Zigbee communication protocol .3
2.1 Zigbee overview . 3

2.2 Zigbee network . 3
2.2.1 Type of devices . 3

2.2.2 Type of network . 3

2.2.3 Zigbee network topologies . 4

2.2.4 Touchlink commissioning . 4

2.3 Zigbee architecture . 5
2.3.1 General architecture . 5

2.3.2 Zigbee stack layers . 6

2.4 Zigbee profiles . 8
2.4.1 Zigbee application profiles. 8

2.4.2 Zigbee device profiles . 9

2.5 Zigbee addressing. 9
2.5.1 Zigbee messaging . 9

2.5.2 Broadcast addressing . 9

2.5.3 Group addressing . 9

3 Zigbee on STM32WB. .10
3.1 Architecture overview . 10

3.2 Zigbee stack layers on STM32WB . 11

3.3 Zigbee firmware supported . 11

3.4 Zigbee clusters supported . 12

4 STM32WB Zigbee application design. .14
4.1 Zigbee application framework . 14

4.1.1 Application framework. 14

4.1.2 Zigbee application architecture . 15

4.1.3 Zigbee network startup procedure. 17

4.1.4 Traces . 18

5 STM32WB Zigbee application .19
5.1 Zigbee general applications . 19

5.2 Zigbee commissioning . 20

5.3 Sleepy End Device . 20

AN5506
Contents

AN5506 - Rev 2 page 32/36

5.3.1 Sleepy end device principle. 20

5.4 ZigBee FUOTA . 22
5.4.1 Zigbee FUOTA principle . 22

5.4.2 Memory mapping . 23

5.4.3 Zigbee FUOTA protocol. 25

5.4.4 FUOTA application startup procedure . 27

5.4.5 Applications . 28

5.5 Static concurrent mode. 29

Revision history .31
List of tables .34
List of figures. .35

AN5506
Contents

AN5506 - Rev 2 page 33/36

List of tables
Table 1. Acronyms and definition . 2
Table 2. Network layer functionalities . 6
Table 3. Firmware supported (Zigbee standalone) . 11
Table 4. Firmware supported (Zigbee concurrent mode) . 12
Table 5. Zigbee cluster list ecosystem. 12
Table 6. Zigbee applications available. 19
Table 7. Revision history . 31

AN5506
List of tables

AN5506 - Rev 2 page 34/36

List of figures
Figure 1. Zigbee network topologies (centralized network) . 4
Figure 2. Zigbee stack overview . 5
Figure 3. Zigbee stack description . 6
Figure 4. Application layer sublayers. 7
Figure 5. Zigbee application profile organization . 8
Figure 6. Zigbee architecture overview on STM32WB . 10
Figure 7. Zigbee layers and modules . 11
Figure 8. Zigbee OnOff cluster application . 14
Figure 9. Zigbee endpoint/cluster relationship . 15
Figure 10. Zigbee OnOff application end point configuration . 16
Figure 11. Zigbee command using scheduler events. 17
Figure 12. Sleepy end device user case . 20
Figure 13. Sleepy end device consumption . 21
Figure 14. Zigbee FUOTA network topology. 22
Figure 15. OTA server (ZigBee_Ota_Server) Flash memory mapping . 23
Figure 16. FUOTA client Flash memory mapping initial state . 23
Figure 17. FUOTA client Flash memory mapping after CPU1 binary transfer . 24
Figure 18. FUOTA client Flash memory mapping after CPU2 binary transfer . 24
Figure 19. OTA file format for Zigbee FUOTA. 25
Figure 20. Zigbee FUOTA protocol . 26
Figure 21. FUOTA startup procedure . 27
Figure 22. Update procedure . 28
Figure 23. Static concurrent mode on STM32WB . 30

AN5506
List of figures

AN5506 - Rev 2 page 35/36

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5506

AN5506 - Rev 2 page 36/36

http://www.st.com/trademarks

	AN5506
	Introduction
	1 General information
	1.1 Acronyms and definitions
	1.2 Reference documents

	2 Zigbee communication protocol
	2.1 Zigbee overview
	2.2 Zigbee network
	2.2.1 Type of devices
	2.2.2 Type of network
	2.2.3 Zigbee network topologies
	2.2.4 Touchlink commissioning

	2.3 Zigbee architecture
	2.3.1 General architecture
	2.3.2 Zigbee stack layers

	2.4 Zigbee profiles
	2.4.1 Zigbee application profiles
	2.4.2 Zigbee device profiles

	2.5 Zigbee addressing
	2.5.1 Zigbee messaging
	2.5.2 Broadcast addressing
	2.5.3 Group addressing

	3 Zigbee on STM32WB
	3.1 Architecture overview
	3.2 Zigbee stack layers on STM32WB
	3.3 Zigbee firmware supported
	3.4 Zigbee clusters supported

	4 STM32WB Zigbee application design
	4.1 Zigbee application framework
	4.1.1 Application framework
	4.1.2 Zigbee application architecture
	4.1.3 Zigbee network startup procedure
	4.1.4 Traces

	5 STM32WB Zigbee application
	5.1 Zigbee general applications
	5.2 Zigbee commissioning
	5.3 Sleepy End Device
	5.3.1 Sleepy end device principle

	5.4 ZigBee FUOTA
	5.4.1 Zigbee FUOTA principle
	5.4.2 Memory mapping
	5.4.3 Zigbee FUOTA protocol
	5.4.4 FUOTA application startup procedure
	5.4.5 Applications

	5.5 Static concurrent mode

	Revision history
	Contents
	List of tables
	List of figures

