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AN2780
Application note

Real-time keeping on STM8S and STM8A devices
and usage of auto-wakeup unit (AWU) and beeper

Introduction
The purpose of this application note is to explain how to keep real-time information on a 
STM8S or STM8A device maintained in low power mode.

Only simple solutions which do not require any additional hardware are described in this 
application note. They are suitable for applications which do not need a very accurate real-
time measurement.

To benefit fully from the information in this application note, the user should be familiar with 
the STM8S and STM8A microcontroller architecture and with the basics of C language.

For further information on the STM8S and STM8A family features, pinout and electrical 
characteristics, please refer to the STM8S and STM8A datasheets.

An STM8S and STM8A firmware package is delivered with this application note. It contains 
the complete C source code of an example described in this application note, so that the 
user can compile, link or modify it as necessary. 

This document and its associated firmware package, are written to accompany the STM8S 
and STM8A firmware library. It includes many examples describing how to use the STM8S 
and STM8A timers, the clock system, the beeper and the auto-wakeup unit mentioned in 
this application note.

Related documents (available for download from www.st.com):

AN2780 associated firmware package

STM8S and STM8A firmware library

AN2822 “STM8S and STM8A high speed internal oscillator calibration”

AN2857 “STM8S and STM8A family power management” 

AN2645 “Migration and compatibility guidelines for STM8S and STM8A microcontroller 
applications”

www.st.com

http://www.st.com
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1 Real-time measurement capability

1.1 Time base common to auto-wakeup unit and beeper
This application note focuses on solutions using one of the following STM8S and STM8A 
peripherals: auto-wakeup unit or beeper. These peripherals share a common 128 kHz clock 
(LS clock) which can be driven either by a low speed internal RC oscillator (LSI) or by a high 
speed external crystal/ceramic resonator (HSE), depending on the CLKAWUSEL option bit 
(see Figure below).

Figure 1. Time base block diagram for AWU and beeper

The HSE and LSI clock sources have different characteristics:

● The HSE source has the advantage of performing more accurate measurements but 
the power consumption is higher (increased by about 0.5 mA) as the system must keep 
the HSE clock running while it stays in low power mode. The HSE clock can be divided 
by setting the PRSC option bits to get a LS clock frequency close to 128 kHz or a lower 
frequency.

● The LSI clock system guarantees a much lower power consumption (consumption of 
about 5 µA) but it has the disadvantage of being less accurate and highly temperature-
dependent (about ±12.5% within the whole temperature range). 
The time interval measurement accuracy can be improved by measuring the LSI 
frequency internally. This can be performed by connecting the LSI clock to a given timer 
input capture through the switch controlled by the MSR bit in the AWU_CSR register 
and by setting properly the timer system for input capture capability. TIM3 is the 
dedicated timer for this LSI measurement in most STM8S and STM8A devices. TIM1 is 
used if TIM3 is not present. Some examples of input capture setting can be found in the 
STM8S and STM8A firmware library.

Note: If the LSI clock frequency is measured while the microcontroller is driven by the HSI clock 
(internal high speed oscillator), it is possible to achieve a greater accuracy by calibrating the 
HSI clock before measuring the LSI frequency. The user can find further information on HSI 
calibration in the AN2822 application note (STM8S and STM8A high speed internal 
oscillator calibration).

LSI RC
128 kHz

MSR
 

Prescaler
~ 128 kHz LS clock

option bit

HSE clock 
option bits
PRSC[1:0]

(for measurement)

CKAWUSEL

(1 - 24 MHz)

fLS

to timer input capture

AWU, beeper



Real-time measurement capability AN2780

6/20  Doc ID 14759  Rev 2

1.2 Solution using the auto-wakeup unit in Active-halt mode

1.2.1 Introduction

The basic software principle is to keep track of the number of elapsed time intervals 
detected by the AWU. The accumulated time can easily be converted from this data by 
loading a structure keeping real-time information either on request or at regular intervals.

1.2.2 Description

The auto-wakeup unit (AWU) provides an internal wakeup time base that is used when the 
MCU goes into Active-halt mode. The measurement of this wakeup time can be used to 
keep real-time information but some limitations must be considered, as described in the 
following sections.

Figure 2. AWU block diagram

The AWU time intervals depend on the prescaler value defined in the APR bits of the 
AWU_APR register and on the AWUTB bits programmed in the AWU_TBR register. To enter 
Active-halt mode, the auto-wakeup unit must be enabled by setting the AWUEN bit in the 
AWU_CSR register before HALT instruction execution.

The AWU counters are running and counting only when the device is in Active-halt mode. 
They are stopped when the CPU is in Run mode and initialized again when the 
microcontroller enters Active-halt mode. This means that the total period is the sum of the 
AWU interval (AWU timeout) and the duration of the AWU interrupt routine. 

Note: As the AL bit in the CFG_GCR register cannot be used in low power mode, when the device 
goes back from an interrupt, the user must handle by software the device return to Halt 
mode.
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Several cases can be considered (refer to the following sections):

The AWU interrupt is the only interrupt used by the application

1. Constant AWU interrupt service times:
When wakeup events rise at almost equidistant periods, real-time data can be 
computed as a simple sum of the AWU periods. Two time measurement methods are 
possible in this case:

a) The interrupt service time can be disregarded if it is negligible compared to the 
AWU interval.
Time = sum of AWU intervals

b) A small constant correction can be applied to the AWU interval to compensate for 
the time spent in AWU interrupt service. 
Time = sum of corrected AWU intervals

2. Irregular AWU interrupt service times (refer to Figure 3)
Two time measurement methods are also possible in this case:

a) When most AWU services have the same duration, coincidental interrupt services 
with significantly different durations can be corrected by changing the duration of 
the next AWU interval in order to keep equidistant periods. This is done by 
modifying the APR bits in the AWU_APR register and the AWUTB bits in the 
AWU_TBR register for the next AWU interval. Time can then be computed like in 
case 1.

b) When AWU services always have different durations, the time the microcontroller 
spends in Run mode must be measured, registered and summarized. The real- 
time data can be computed as a sum of all AWU wakeup intervals plus this 
summarized Run time.
Time= sum of AWU intervals + sum of all run time procedures

Figure 3. AWU operation in applications using only AWU interrupts

ai15340

AWU 
interrupt 
service

AWU 
timeout 

AWU interrupt 

Active-halt mode
entry

AWU 
interrupt service

Corrected
AWU 

timeout 

AWU 
 period

HaltHalt



Real-time measurement capability AN2780

8/20  Doc ID 14759  Rev 2

The AWU interrupt service routine is not the only interrupt service and the
system has to service other interrupt sources

Refer to Figure 4. 
This is the most common situation for many applications. As the content of the AWU 
counters can never be read, time intervals cannot continue being measured when the 
microcontroller has been woken up by a source other than the AWU interrupt source. Then, 
there is always an unidentifiable interval between the last entry into Active-halt mode and 
the rise of the other interrupt. The time continuity of AWU interrupts is then lost. This is the 
main limitation when using AWU for real-time measurement purposes because most 
applications need to control several interrupt sources.This limitation restricts the use of the 
AWU for real-time measurement in applications where the frequency of interrupts from other 
sources is negligible compared to the frequency of AWU wakeup interrupts.

Figure 4. AWU operation in applications using the AWU interrupt and other
interrupt source
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1.3 Solution using the beeper

1.3.1 Introduction

This section provides a procedure using the BEEP signal for measuring real-time in systems 
entering low power modes. The basic software principle is very similar to the procedure 
using the AWU. This method uses the output of a low beeper frequency feeding an external 
interrupt enabled on the same I/O pin.

The application can easily derive a time base from the beeper frequency, because the 
beeper, when activated, is always running regardless of the mode in which the system stays 
(low power or run mode).

1.3.2 Beeper solution implementation

The 128 kHz LS clock divided by the beeper divider system is used as a low speed clock 
source running permanently. This clock signal acts then as an external interrupt to wake up 
the microcontroller from a low power mode. The BEEP output signal and external interrupt 
capability can be enabled simultaneously on the BEEP pin (the PD4 pin in STM8S and 
STM8A devices) so that no external connection or additional GPIO pin generating external 
interrupts is required.

● To enable the BEEP frequency output:

– The proper option byte must be programmed in devices where the BEEP pin is an 
optional alternate function.

– The BEEPEN bit in the BEEP_CSR register must be set.

● To enable the interrupt input capability:

– The BEEP pin must be configured as an input with interrupt.

– The external interrupt sensitivity for the BEEP pin port must be set as either “ 
rising edge only” or “falling edge only”.

– The appropriate interrupt service routine must be called from the corresponding 
location in the interrupt vector table.

For low-power systems, it is important to minimize the time spent in run mode and, 
consequently, to maximize the time interval between two consecutive beeper interrupts. 
Clearing the BEEPSEL[1:0] bits in the BEEP_CSR register while the BEEPDIV bits are set 
to 0x1E gives the lowest possible BEEP output frequency (about 500 Hz for 128 kHz LSI - 
LS clock input is first divided by 32 and then by 8), as shown in Figure 5.

Figure 5. Beeper block diagram example

As explained in Section 1.1, the lower accuracy of the LSI source can be compensated by 
measuring internally its frequency. When the LS clock signal is measured internally by the 
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dedicated timer, the following formula can be used for calculating the BEEP signal frequency 
in case the beeper dividers are selected to provide the lowest output frequency:

fBEEP = fLS / (32*8) = (fCNT / n) / (32*8)

where

fBEEP = BEEP signal frequency [Hz].
fCNT = timer counter input frequency [Hz].
n= number of timer counter counts within LS signal period.

Then the rounded frequency fBEEP in Hertz is equal to the number of external interrupts 
counted on the BEEP pin to get the one-second period time base.

The LS measurement accuracy can be increased by setting the input capture prescaler of 
the timer to its maximum value (bits ICxPSC = 11 in the TIMx_CCMR register) while the 
timer counter is running at a maximum frequency (HSIDIV and CPUDIV bits cleared in the 
CLK_CKDIVR register and PSC bits cleared in the TIMx_PSCR register), as described in 
the example given in the associated firmware package. Then the number of timer counter 
counts matches eight consecutive LS signal periods. The upper formula is simplified in this 
case as follows:

fBEEP = fLS / (32*8) = (fCNT*8 / N) / (32*8) = fCNT / (N*32)

where

N = number of timer counter counts during eight consecutive LS signal periods.

1.4 Other solutions
The solutions given in Section 1.2 and Section 1.3 are suitable for applications where real- 
time is used only as an approximate indication (to track the usage or running time of some 
devices, or to record error occurrences for instance). They should not be used for 
applications requiring precise real-time measurement. 

To keep real-time information more accurately or with consistent measurement in the whole 
operating temperature range, another solution should be chosen using an external low 
speed crystal oscillator. The user can select a member of the STM8L subfamily where a 
real-time clock with low speed external clock source connectivity is included. A wide range 
of external components keeping real-time autonomously can also be found. They can easily 
be connected to the STM8S or STM8A in most cases via peripherals like I2C (e.g. 
M41ST85) or SPI (e.g. M41ST95).
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2 Associated software example description

This section describes a software method using the Beeper function as described in 
Chapter 1.3. The solution is based on STM8S and STM8A firmware library routines. The 
sections below describe the structure of the software example and how it works:

– Variables are listed in Section 2.1.

– The initialization process is described in Section 2.2.

– The interrupt system registering beeper pulses is described in Section 2.3.

– Two alternative examples of how the real-time can be converted from registered 
pulses are listed in Section 2.4.1 and Section 2.4.2. The first one keeps real-time 
information continuously and the second one calculates it on request only.

The application does not require any external connection. The only hardware limitation 
consists in reserving the external connectivity of the BEEP pin for beeper signal output and 
external interrupt input purposes.

2.1 Main variables, definitions and constants used by the 
software

2.1.1 Variables defined in main.c file

● lsi_fqcy ... variable keeping the result of internal measurement of LS clock frequency 
[Hz],

● beep_fqcy ... variable keeping result of internal computation of beeper output 
frequency used as a one second interval compare limit [Hz],

● edge_day_overflow_limit ... variable keeping computed number of external events 
within one day period used as a one day interval compare limit,

● fx_time ... structure filled with the interrupt service registering number of external 
events together with the number of overflows of predefined one-second and one-day 
limits (edge_second_counter & second_overflow_counter are used for “second” 
intervals, edge_day_counter & day_overflow_counter for “day” intervals),

● real_time ... structure keeping converted real-time information (seconds, minutes, 
hours and days). The update of this structure is performed in main loop and is based on 
the content of the registers in the fx_time structure.

2.1.2 Configuration definitions in rtc.h file

● KEEP_RT ... SW software selection between two alternative solutions. 

– If the KEEP_RT constant is defined: real-time information is kept continuously 
(updated in one-second intervals) in real_time structure 

– If KEEP_RT constant is not defined: it is converted into the structure on request 
only (in this case, the request is simulated by key press event)

● MEASURE_ON_HSE ... SW software selection between two alternative solutions.

– If the MEASURE_ON_HSE constant is defined: LSI is measured using the HSE 
frequency.

– If the MEASURE_ON_HSE constant is not defined, the HSI frequency is used.
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2.1.3 Configuration constants defined in STM8S and STM8A firmware 
library

HSI_VALUE & HSE_VALUE ... constants to determine values of HSI and HSE frequencies.

Note: The accuracy of the LSI value measurement is highly dependent on the difference between 
the real value of the HSI or HSE clock frequency and the HSI_VALUE or HSE_VALUE 
constant entered as a parameter for calculation (see Section 5: Accuracy of the used 
method). 

2.2 Initialization procedures
Just after the start of the program, software performs LS clock frequency measurement and 
stores the result into the lsi_fqcy variable.

The computed LSI frequency is used as a base for calculating internal compare limits stored 
into the beep_fqcy and edge_day_overflow_limit variables. These limits are compared 
with internal counters counting the number of external interrupts from the BEEP pin signal 
edges. 

● The first limit can be used for measuring a one-second interval (in case real time is 
continuously updated) and it is equal to the beeper signal frequency in Hz. 

● The second one is always used for measuring a one-day interval.

2.3 Application interrupt routine
The main task of the software is to count and register the number of interrupts generated by 
each falling edge of the BEEP pin signal. The interrupt service routine performs a very short 
increment & compare cycle on the pair of variables included in the fx_time structure 
registering elapsed one-day intervals (the next cycle is performed by registering one-second 
intervals when real-time is kept continuously). Refer to the following simplified flowchart.
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Figure 6. BEEP signal edge external interrupt - example of increment & compare
cycle performed on pair of registers of fx_time structure

This cycle first increments a counter. Then the counter value is compared with the 
predefined limit and number of the limit overflows is stored into the next variable. It mainly 
acts as a prescaler. The number of overflows is used by the main program to define the 
number of time interval cycles elapsed when real-time information is processed and 
real_time structure content is updated.

2.4 Application interface - real-time conversions
The two alternative methods of recalculation mentioned above are described in more details 
in this section. Both methods use the information stored in the fx_time structure and convert 
this time information into the real_time structure. The only difference is how often and in 
which way real-time information is recalculated by main loop and how many increment & 
compare cycles are performed by interrupt service. The main loop always checks the state 
of overflow registers in the fx_time structure either continuously or on application request 
and converts this information into the real_time structure. The result of every conversion 
reflects the number of detected elapsed intervals and it is stored in the real_time structure 
registers keeping seconds, minutes, hours and etc.

These methods are given as examples only. The user can modify the fx_time and/or 
real_time structures. Some other recalculation methods can also be used.

One of these two methods is always selected through the definition control of the KEEP_RT 
parameter as it is described in Section 2.1.2: Configuration definitions in rtc.h file.
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2.4.1 First alternative solution: real-time kept continuously

Keeping real-time information continuously is suitable in case the information is permanently 
used by the application (e.g. actual time must be displayed or sent). 
In this case, an additional increment & compare cycle is added for one-second interval 
measurements into the interrupt service. The elapsed one-second intervals are then 
checked in the main loop. Real-time incremental routine rt_increment() is called from the 
main loop to process every new elapsed one-second interval detected by interrupt routine. It 
ensures the actual real-time information is kept continuously in the real_time data structure.

Note: As a one-second increment & compare cycle is short and the beeper frequency may not 
exactly match the one-second interval, a measurement error for this interval can be 
relatively high (up to 0.1% when the beeper frequency is 500 Hz). The one-second time 
interval is rounded to the closest integer number of beeper signal pulses. Due to this short 
measurement interval, a significant error is cumulated when a longer real-time interval is 
evaluated from this measurement.

Figure 7. Main loop service checking the one-second events

A more accurate “real_time” data structure update calculation can also be performed in this 
mode at any time, as described in the following section.

2.4.2 Second alternative solution: real-time converted on request

Converting real-time information on request is suitable for low-power systems where the 
information is needed occasionally (e.g. when errors occur or in specific cases) and when 
saving power is a priority. Then the interrupt service duration is reduced to a minimum and 
the recalculation routine from the main loop is called only in case the information is 
requested. The main loop service then calls the rt_update() conversion function only on 
update request from application. This function updates the content of the user real_time 
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data structure to the current state depending on the content of the internal counters in the 
fx_time structure. 

Note: Drawback: the conversion is much more complicated in this case, because a few divisions 
must be performed to obtain values of the seconds, minutes and hours from the current 
edge_day_counter counter content. 

Advantage: the measured interval is much longer, so the calculation is more precise when 
this method is used.

Figure 8. Main loop service checking the real-time update request
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3 Firmware environment

A complete project is included in the STM8S and STM8A firmware package. This project is 
designed for the ST Visual Develop (STVD) development environment. 

Two projects are contained in the associated software package: one for Cosmic compiler 
and one for the Raisonance compiler. Both projects have been tested using the STM8/128-
EVAL evaluation board. To run the proper project example, you must have installed STVD 
(at least version 3.5.0) and the Cosmic or Raisonance C compiler for STM8 family. All tools 
are free for download from STMicroelectronics, Cosmic and Raisonance web sites.

Table 1 gives the list of the files included in the package.

Table 1. List of files included in the STM8S and STM8A firmware package

File name File contents

main.c RTC routines & example of how to handle them

stm8s_it.c User interrupt services

stm8s_interrupt_vector.c STM8S interrupt vector table

stm8s_awu.c Peripheral file

stm8s_beep.c Peripheral file

stm8s_clk.c Peripheral file

stm8s_exti.c Peripheral file

stm8s_gpio.c Peripheral file

stm8s_tim3.c Peripheral file

rtc.h User header file

stm8s_awu.h Peripheral header file

stm8s_beep.h Peripheral header file

stm8s_clk.h Peripheral header file

stm8s_exti.h Peripheral header file

stm8s_gpio.h Peripheral header file

stm8s_tim3.h Peripheral header file

stm8s_config.h STM8 hardware configuration header

stm8s_map.h STM8 hardware mapping header

stm8s_type.h Common data type header

stm8s_it.h Interrupt declaration header

stm8s_lib.h Library peripheral headers including control

mods0.h Memory model control header
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4 Test environment

The functionality of the interface has been tested on STM8/128-EVAL evaluation board. The 
main.c file of the included project contains simple examples of how to keep real-time 
information.

● In case real-time data is kept continuously (KEEP_RT is defined), the one-second 
events are checked in main loop and real-time registers are updated in intervals of one 
second. 

● In case real-time data is not kept continuously, real-time registers are updated only on 
external interrupt service request. This simulation is performed by pressing the “Key” 
button on the evaluation board. The user can check the current content of real-time 
structure registers by using the STVD “Read on the fly” debug feature.

Both the BEEP output frequency and the LS clock frequency can be monitored by 
connecting an oscilloscope to the BEEP pin (PD4) and CLK_CCO pin (PE0). The outputs of 
these signals are enabled in the initialization phase.
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5 Accuracy of the used method

As described in this document, the time measurement accuracy of the methods used in 
these examples is mainly dependent on LSI measurement accuracy. Consequently, the user 
must also take into account the fact that the LSI clock frequency varies with temperature and 
voltage.

In case of a low-power application where consumption is a critical point and often no 
external frequency signal is available, only the method using internal LSI measurement by 
HSI frequency can be used.

When the HSI clock feeds the internal timers with a maximal rate and its value is precisely 
known, the LSI value can be determined from the measurement of 8 consecutive periods 
with an accuracy of 128 KHz / 16 MHz / 8 ~ 0.1% steps. This means the best theoretical 
accuracy would be almost equal to 4 seconds per hour.

It is in fact difficult to determine precisely the HSI frequency without any external reference 
frequency. As the HSI_VALUE constant entered as a parameter for calculation can differ 
from the real HSI frequency, the LSI result accuracy is significantly reduced. 
The default 16 MHz value cannot be used because there is a big tolera?nce for shipped 
devices in this case (up to +1.3%/-2.5% at 5 V/25 °C, but up to +3%/-4% in a wider range of 
supply voltage or temperature).
The HSI can be trimmed internally within an interval of +3/-4% of the frequency range to get 
a value as near as possible to the 16 MHz nominal value.
Note that the frequency change between two trimming steps is 0.5% of the range (even 1% 
in some STM8S and STM8A devices), so the difference after trimming can remain too 
significant. 
Much better accuracy can be achieved when the HSI frequency (and, consequently, the LSI) 
can be measured and/or compared using an exact external reference frequency (e.g. by net 
frequency). These comparative measurements must be performed at adequate intervals to 
detect any significant temperature and power supply voltage changes so as to compensate 
for them.
In addition, the LSI clock frequency also depends on temperature and supply voltage. 
Temperature and voltage conditions can change this value in the similar range as the HSI in 
the same conditions. That is why real-time measurement accuracy can be partly improved 
by repeating periodically the LSI measurement to compensate for possible condition 
changes.

Note: Finding an accurate external frequency source which can precisely state the value of 
internal frequency sources is especially a problem for low-cost and battery-supplied 
applications as a crystal oscillator is a rather expensive solution and battery-supplied 
devices cannot have a stable net frequency that could be used as a reference.

5.1 Conclusion
The level of accuracy of real-time measurement based on LSI is only suitable for 
applications working in stable conditions where real-time information is used only as an 
approximate indication. It is strongly recommended to use an external low frequency signal 
source or special components keeping real-time information with much better accuracy in 
any other cases.
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6 Revision history

         

Table 2. Revision history

Date Revision Description of changes

18-Mar-2010 1 Initial release

31-Aug-2011 2 Updated to refer to STM8S and STM8A.
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