
February 2018 AN3181 Rev 4 1/47

1

AN3181
Application note

Guidelines for obtaining UL/CSA/IEC 60730-1/60335-1
 Class B certification in any STM8 application

Introduction

The role of safety is more and more important in electronic applications. The level of safety
requirements for components used in electronic designs is steadily increasing and the
manufacturers of electronic devices include many new technical solutions in the design of
new components. Software techniques for improving safety are continuously being
developed, and also the associated standards related to safety requirements for hardware
and software are in continuous development.

The current safety recommendations and requirements are specified in world wide
recognized standards issued by IEC (International Electrotechnical Commission), UL
(Underwriters Laboratories) and CSA (Canadian Standards Association) authorities, and
come under compliance, verification and certification process by institutions like TUV and
VDE (mostly operating in Europe), UL and CSA (targeting mainly US and Canadian
markets).

The main purpose of this application note and of its associated software
(STM8-SafeCLASSB) is to facilitate and accelerate user software development and
certification processes for applications (based on STM8 microcontrollers) that are subject to
these requirements and certifications.

The certified package is provided for:

• Mainstream STM8S and automotive STM8A high, medium and low density devices

• Ultra-low-power medium-density STM8L and STM8AL devices

• Ultra-low-power low density STM8L, STM8AL and STM8TL touch-sensing devices.

Due to limited memory capacity of most of 8-bit devices all these packages are optimized
and independent from other firmware libraries published by ST. Proper headers
stm8xxx_it.h and stm8xxx_type.h from ST standard peripheral libraries are included only to
keep consistency of names of registers, bit masks, interrupt vectors and constants defined
there. Optimized code reduces program memory overhead and increases the code
execution speed.

All certified packages use similar principles, described in this document with focus on the
main differences. Provided hardware and firmware compatibility within the STM8 sub-class
is ensured, the user can easily adapt the projects included in the package to all the STM8
microcontrollers.

The STL package is pre-certified for the methodology and the used techniques. The
provided examples show how to integrate the STL package in the application, however the
final implementation and functionality has to be always verified by the certification body at
the application level.

www.st.com

http://www.st.com

Contents AN3181

2/47 AN3181 Rev 4

Contents

1 Package overview . 6

2 Package structure overview . 8

3 Main differences from the product point of view 11

3.1 Clock system test . 13

3.2 RAM test . 13

3.3 Flash memory integrity test . 13

3.4 Start-up and system initialization . 14

3.5 Firmware configuration . 14

4 Compliance with IEC, UL and CSA standards 16

4.1 Generic tests included in STL firmware package 18

4.2 Application specific tests . 20

4.2.1 Analog signals . 20

4.2.2 Digital I/Os . 21

4.2.3 Interrupts and external communication . 21

4.2.4 Timing and program flow . 21

4.2.5 External addressing . 21

4.3 Safety life cycle . 22

5 Class B software package . 24

5.1 Common software principles . 24

5.1.1 Fail Safe mode . 24

5.1.2 Class B variables . 24

5.1.3 Class B flow control . 26

5.2 Firmware package structure . 28

5.2.1 Projects and workspaces included in the package 28

5.2.2 Tools and other specifc controls of the library . 28

5.2.3 Application examples . 29

5.3 Package configuring and debugging . 29

5.3.1 Configuration control . 29

5.3.2 Verbose diagnostic mode . 30

AN3181 Rev 4 3/47

AN3181 Contents

3

5.3.3 Debugging the package . 30

6 Class B solution integration . 32

6.1 Integrating software into user application . 32

6.2 Detailed description of startup self tests . 32

6.2.1 Watchdog startup self test . 33

6.2.2 CPU startup self test . 34

6.2.3 Flash memory complete checksum self test . 34

6.2.4 Full RAM March C-/X self test . 35

6.2.5 Clock startup self test . 36

6.3 Periodic run mode self tests initialization . 37

6.4 Detailed description of periodic run mode self tests 38

6.4.1 Run time self tests structure . 38

6.4.2 CPU light run mode self test . 39

6.4.3 Stack boundaries run mode test . 39

6.4.4 Clock run mode self test . 40

6.4.5 Partial Flash memory CRC run mode self test 41

6.4.6 Watchdog service in run mode test . 42

6.4.7 Partial RAM run mode self test . 42

Appendix A STM8 Class B firmware package variations 44

Appendix B List of verbose messages and codes reported at Fail Safe mode
entry45

Revision history . 46

List of tables AN3181

4/47 AN3181 Rev 4

List of tables

Table 1. Projects related to STM8-SafeCLASSB . 8
Table 2. FW organization . 8
Table 3. Overview of common STL procedures . 9
Table 4. Overview of common tool specific STL procedures . 10
Table 5. Integration support files . 10
Table 6. STM8 compatibility aspects . 12
Table 7. Specific compiler configurations . 14
Table 8. STL specific configurations. 14
Table 9. MCU parts that must be tested under Class B compliance . 18
Table 10. Methods used in micro specific tests of associated ST package . 19
Table 11. March C- phases at RAM partial test . 43
Table 12. STM8 Class B firmware packages . 44
Table 13. Verbose messages and unique codes reported at Fail Safe mode entry 45
Table 14. Revision history . 46

AN3181 Rev 4 5/47

AN3181 List of figures

5

List of figures

Figure 1. Example of RAM memory configuration . 25
Figure 2. Control flow four steps check routine . 27
Figure 3. Diagnostic LED timing signal principle . 30
Figure 4. Integration of startup and periodic run mode self tests into application 32
Figure 5. startup self tests structure. 33
Figure 6. Watchdogs startup self test structure . 34
Figure 7. CPU startup self test structure . 34
Figure 8. Flash memory startup self test structure. 35
Figure 9. RAM startup self test structure . 36
Figure 10. Clock startup self test subroutine structure. 37
Figure 11. Periodic run mode self test initialization structure. 38
Figure 12. Periodic run mode self test and time base interrupt service structure 39
Figure 13. CPU light run mode self test structure . 39
Figure 14. Stack overflow run mode test structure . 40
Figure 15. Clock run mode self test structure . 40
Figure 16. Clock run mode self test principle . 41
Figure 17. Partial Flash memory CRC run mode self test structure. 41
Figure 18. Partial RAM run mode self test structure) . 42
Figure 19. Fault coupling principle used in partial RAM run mode self test . 43

Package overview AN3181

6/47 AN3181 Rev 4

1 Package overview

Available configurations of STM8S/A package support the following devices:

• STM8S high-density Performance line devices, with 32 to128 Kbytes Flash memory
(like STM8S20x)

• STM8S medium- and low-density Access line devices, with 4 to 32 Kbytes Flash
memory (like STM8S105x, STM8S103x)

• STM8S high-, medium- and low-density Value Line devices, with 4 to 64 Kbytes Flash
memory (like STM8S007x, STM8S005x, STM8S003x)

• STM8S low-density Application specific devices, with 8 Kbytes Flash memory (like
STM8S903x)

• STM8A high-density CAN line devices, with 32 to 128 Kbytes Flash memory (like
STM8AF5xxx)

• STM8A high and medium density Standard line devices, with 8 to 128 Kbytes Flash
memory (like (STM8AF6xxx)

Available configurations of medium-density STM8L/AL package support the following
ultra-low-power devices:

• STM8L medium density standard devices, with 4 to 64 Kbytes Flash memory (like
STM8L15xx)

• STM8L medium-density Value Line devices, with 4 to 64 Kbytes Flash memory (like
STM8L05xx)

• STM8AL medium-density devices, with up to 32 Kbytes Flash memory (like
STM8AL31xx, STM8AL3Lxx)

Available configurations of low-density STM8L/AL/TL package support the following
ultra-low-power devices:

• STM8L low density standard devices, with up to 8 Kbytes Flash memory (like
STM8L10xx)

• STM8AL low density devices, with up to 8 Kbytes Flash memory (like STM8AL30xx)

• STM8TL low density devices, with up to 16 Kbytes Flash memory and touch sensing
interface (like STM8TL53xxx)

All these firmware packages are available on www.st.com.

The STM8 microcontrollers are based on a proprietary advanced 8-bit architecture core,
performing up to 20 MIPS at 24 MHz.

Two projects have been prepared and tested for each package, using the following
environment and toolchains:

1. IAR Embedded Workbench® for STM8 IDE (EWSTM8™) with IAR C/C++ Compiler™
version 3.10.1

2. ST Visual Develop (STVD) version 4.3.11 with Cosmic STM8 C compiler 32 K
version 4.4.6

AN3181 Rev 4 7/47

AN3181 Package overview

46

For more info on ElectroMagnetic Compatibility (EMC) refer to the following application
notes, available on www.st.com:

AN1015, Software techniques for improving microcontroller EMC performance

• AN1709, EMC design guide

• AN2860, EMC guidelines for STM8S

Package structure overview AN3181

8/47 AN3181 Rev 4

2 Package structure overview

The projects included in this FW package are summarized in Table 1.

All the projects are based on common self-test procedures collecting the principal tests and
methods. These common C-language source files are kept in the Middleware directory.

Part of the methods are tool specific, but common to the whole family. Most of them are
written in Assembler for specific compilers. Those files are located in a single place of the
IAR and Cosmic directories of the pilot STM8AS128_EVAL project, and included by all the
other projects, from these dedicated directories.

BSP directory collects specific drivers for evaluation boards (used for demonstrations)
exclusively to control the board hardware (like displays, serial channels and LEDs). These
drivers are dedicated to debug only, and are out of the certification scope.

The structure and content of the package is described in detail in Table 2.

Table 1. Projects related to STM8-SafeCLASSB

Name Revision RPN Evaluation board Sub-family

STM8AS128_EVAL 2.0.0 STM8S208MBT6B
STM8/128-EVAL

MB631 Rev D
STM8S/AF 128K

STM8S_Discovery 2.0.0 STM8S105C6T6
STM8S-Discovery

MB867 Rev A
STM8S/AF 32K

STM8SVLDiscovery 2.0.0 STM8S003K3T6
STM8S-VLDiscovery

MB1008 Rev A
STM8S/AL 8K

STM8L1528_EVAL 2.0.0 STM8L152M8T6
STM8L 1528 EVAL

MB904 Rev B
STM8L/AL 64K/32K

STM8L101_Discovery 2.0.0 STM8L101K3T6
STM8L1-DB

MB709 Rev A
STM8L/AL/TL 8K

Table 2. FW organization(1)

1. Bold type is used to indicate the procedures that are the main focus of the certification.

Directory Comments

Drivers/BSP
STM8128_EVAL

Evaluation board specific drivers
STM8L1528_EVAL

Middleware/ SM8_SelTest_Library
inc

Common STL procedures
src

Projects/STM8AS128_EVAL

Projects/STM8S_Discovery

Projects/STM8SVLDiscovery

Projects/STM8L1528_EVAL

Projects/STM8L101_Discovery

inc Product integration example and
product specific STL proceduressrc

Cosmic Tool specific STL procedures(2),
product and tools specific configurations

2. Common tool specific procedures are collected exclusively for pilot STM8AS128_EVAL project directory.

IAR

AN3181 Rev 4 9/47

AN3181 Package structure overview

46

The included projects for specific STM8 products and dedicated evaluation boards have
been prepared and tested under two environments and tool chains:

• IAR™-EWSTM8 version 3.10.1

• Cosmic version 4.4.6 - STVD version 4.3.11

The detailed structure of these projects and the list of files collecting the common and
specific STL procedures are summarized in Table 3 and Table 4, respectively.

Table 3. Overview of common STL procedures

STL
Common STL procedures

File Description

Start-up test
stm8_stl_startup.c Start-up STL flow control

stm8_stl_clockstart.c Clock system initial test

Run time test

stm8_stl_main.c Run time STL flow control

stm8_stl_crcrun.c Partial Flash test

stm8_stl_clockrun.c Partial clock test

stm8_stl_transpRam.c Partial RAM test

Headers

stm8_stl_classB_var.h Definition of Class B variables

stm8_stl_lib.h Overall STL includes control

stm8_stl_startup.h Initial process STL header

stm8_stl_main.h Run time process STL header

stm8_stl_param.h STL configuration file

stm8_stl_clockstart.h Start-up clock test header

stm8_stl_clockrun.h Run time clock test header

stm8_stl_cpu.h CPU test header

stm8_stl_crc16Run.h Flash test header

stm8_stl_fullRam_Mc.h Start-up RAM test header

stm8_stl_transpRam.h Run time RAM test header

Package structure overview AN3181

10/47 AN3181 Rev 4

Additional supporting files used in the examples are listed in Table 5.

Table 4. Overview of common tool specific STL procedures

STL Compiler
Common STL procedures

File Description

Source

Cosmic

_classb_cksumXXX.s Start-up CRC calculation

_block_cksumXXX.s Run time CRC calculation

stm8_stl_cpustart_CSMC.s Start-up CPU test

stm8_stl_cpurun_CSMC.s Run time CPU test

stm8_stl_fullRam_CSMC.s Start-up RAM test

IAR

stm8_stl_cpustart_IAR.asm Start-up CPU test

stm8_stl_cpurun_IAR.asm Run time CPU test

stm8_stl_fullRam_IAR.asm Start-up RAM test

stm8_stl_crc16_IAR.c Start-up CRC calculation

Table 5. Integration support files

File Description

cstartup.s C start-up for IAR™ compiler

stm8_interrupt_vector.c Interrupt vector table for Cosmic

main.c Main flow of the example source

stm8xxx_it.c
STL Interrupts, clock measurement processing and configuration
procedures

main.h Main flow header

stm8xxx.h Product specific header

stm8xxx_it.c Product specific ISR header

AN3181 Rev 4 11/47

AN3181 Main differences from the product point of view

46

3 Main differences from the product point of view

The user can find some small differences, mainly due to product hardware configuration,
and to incompatibilities of compilers and debugging tools.

The main differences are described in this section, they are due mainly to compatibility
aspects between different STM8 products, summarized in Table 6.

M
a

in
 d

iffe
re

n
c

es
 fro

m
 th

e p
ro

d
u

ct p
o

in
t o

f v
ie

w
A

N
3

18
1

1
2/4

7
A

N
31

81 R
ev 4

Table 6. STM8 compatibility aspects

Feature
STM8S207/208
STM8AF (128K)

STM8S105/005
STM8AF (32K)

STM8S103/903/003
(8K)

STM8L15x/16x/05x/06x
STM8AL (32K and 64K)

STM8L101
STM8AL/TL5x (8K)

Core STM8 - Proprietary

Technology [nm] 130 130(1)

Frequency [MHz] 24 16

Performance [DMIPS] 20 10 10 16(2)

Flash memory density [KB] 128 32 8 64 / 32 8

RAM density [KB] 6 2 1 4 1.5

Data EEPROM [bytes] 2048 640 128 2048 -

ECC on Non-Volatile Memory(3) Yes

Window watchdog Yes No(4)

Stack HW roll-over limit at RAM end [bytes] 1024 513 513(5)

Clock system
HSE-24
HSI-16

LSI ~128 kHz

HSE-16
HSI-16

LSI ~128 kHz

HSI-16
LSI ~128 kHz

HSE-16
LSE-32,768 kHz

HSI-16, LSI ~38 kHz

HSI-16
LSI ~38 kHz

Clock cross reference measurement TIM3/Ch1 TIM3/Ch1 TIM1/Ch1 TIM2/Ch1 TIM2/Ch1

1. Low power technology.

2. CISC MIPS.

3. Both embedded Flash and EEPROM feature internal single bit correction, hidden to the user.

4. WWDG is available only on STM8STL5x devices.

5. Stack is not limited for STM8TL5x devices; there is rollover (due to over/underflow) only if the stack overlaps the 4 KB.

AN3181 Rev 4 13/47

AN3181 Main differences from the product point of view

46

3.1 Clock system test

Internal timers are used to cross-check frequency measurements. This method is required
to determine harmonic or sub-harmonic frequencies when the system clock is provided by
an external crystal (or ceramic resonator, if applicable), or to detect any significant
discrepancy in the application timing. Different product dependent timers are dedicated to
perform such cross check measurements.

The initial configuration of the specific timers is slightly different, while dedicated interrupt
vectors are used for the measurement in dependency of the available timers on a given
device.

CSS clock security feature is enabled for HSE quartz clock by default. The user has to
ensure proper setting of the HSECNT (HSE oscillator stabilization time) parameter in the
option bytes, thus ensuring sufficient time for the oscillator proper start after reset, and thus
preventing premature action of the CSS system.

If the system clock doesn't use the HSE quartz clock, the user can set up the clock
measurement HSI vs. LSI commenting out the parameter STL_INCL_HSECSS in the
stm8_stl_param.h file, or adapting the clock measurement to be based on another reliable
clock source (e.g. line power frequency) to satisfy the standard requirements for the clock
monitoring.

In any case, if the cross check measurement depends upon the RC clock (HSI or LSI), the
user has to consider the accuracy of this clock source over the whole temperature range.
This is necessary to prevent any false clock failure detection, especially when the unit under
self-test operates over a wide temperature range. The user can apply an adaptable clock
test algorithm while monitoring the trend of the ambient temperature, or consider a more
accurate source to be taken as a clock reference.

3.2 RAM test

By default, a lighter Marching X algorithm is applied during run time instead of the Marching
C- one applied at start-up test of volatile memory. It depends on STL_RUN_USE_MARCHX
symbol defined in the stm8_stl_param.h file. If this symbol is defined, two middle marching
steps are skipped and not implemented during the transparent run time test. Optionally, user
can apply Marching C- test at run time, too, by commenting out this parameter definition.

The test range both at startup and during run time has to be customized according to the
product volatile memory capacity, by proper setting of constants in the linker or in the library
configuration file.

3.3 Flash memory integrity test

Different methods can be applied, depending on the used compiler. Cosmic uses a lighter
CRC test, which is faster but its algorithm doesn’t fully correspond to CRC standard.
Moreover Cosmic has defined different procedures for different memory models.
Consequently the user has to verify the applied model and if 8-bit or 16-bit CRC pattern is
used.

IAR™ uses a standard procedure, where the CRC calculation is simulated by SW or uses a
look-up table. The second method is considerably faster, but needs a significant part of
code.

Main differences from the product point of view AN3181

14/47 AN3181 Rev 4

When a slower method is used and/or large memory area is tested, the user has to split the
memory testing in segments, and take care about the handling of watchdogs between them.

3.4 Start-up and system initialization

Standard product start-up file dedicated to IAR™ is modified to call set of start-up tests at
the very first program execution. Reset vector in the interrupt vector table for Cosmic is
modified to force the program flow to startup-tests after the application reset.

3.5 Firmware configuration

All the STL configuration parameters and constants used in the STL code written at C-level
are collected into one file, stm8_stl_param.h. Configuration differences are mainly related to
different size of tested areas, different compilers and to small deviations of the control flow.

The specific compiler and the STL configuration options are summarized, respectively, in
Table 7 and Table 8.

Projects for Cosmic compiler have been tested with Short Stack model, disabled
optimizations and enforced functions prototyping for C-compiler, while those for IAR
compiler have bee tested with standard C-language conformance with IAR extensions
enabled, C99 dialect and low level optimizations.

Table 7. Specific compiler configurations

Feature Where it acts Target

Device
Compilation
parameters

Set up proper peripheral configuration and physical
ranges of the embedded memories
(e.g. STM8S208 or STM8L15X_MD).

Optimization Compiler configuration
Some higher optimization settings may cause
unexpected removal or corruption of testing
procedures.

Memories ranges
Linker file, Compiler
configuration, STL
parameters

Set ranges tested in volatile and non-volatile
memories both at startup and during run time.

Check sum calculation
Compiler configuration,
Project configuration,
STL parameters

Set type of program Flash memory integrity check
(8-bit, far addressing, fast or slow method) and
include proper source files supporting the selected
calculation.

Table 8. STL specific configurations

Feature Where it acts Target

Set test STL parameters
Remove unused tests (e.g. external quart clock if not
applied) as, by default, all the tests are included.

Debug diagnostic
STL and
Compilation
parameter

Select included diagnostic functions (e.g. DEBUG,
STL_VERBOSE, EVAL_BOARD_CONTROL) and
limit some STL functions when debugging the library
(e.g. watchdogs or Flash memory check sum
evaluation).

AN3181 Rev 4 15/47

AN3181 Main differences from the product point of view

46

For more detailed description of the FW structure configuration and integration aspects see
Section 5: Class B software package.

Safety variables
stm8_tl_ClassB_var.h
header file

Definition of safety critical variables keeping
redundant information stored in the area under
permanent transparent testing during run time.

RAM transparent test STL parameter
Control algorithm during RAM transparent test during
run time (enables lighter and faster March X method).

Table 8. STL specific configurations (continued)

Feature Where it acts Target

Compliance with IEC, UL and CSA standards AN3181

16/47 AN3181 Rev 4

4 Compliance with IEC, UL and CSA standards

IEC (International Electro technical Commission) is a not-for-profit and non-governmental
world wide recognized authority preparing and publishing international standards for a vast
range of electrical, electronic and related technologies. IEC standards are focused mainly
on safety and performance, the environment, electrical energy efficiency and its renewable
capabilities. The IEC cooperates closely with the ISO (International Organization for
Standardization) and the ITU (International Telecommunication Union). Their standards
define not only the recommendations for hardware but as well for software solutions divided
into a number of safety classes in dependency of the purpose of the application.

Other world wide recognized bodies in the field of electronic standards are TUV or VDE in
Germany, IET in the United Kingdom and the IEEE, UL or CSA in the United States and
Canada. Beyond providing expertise during standard development process, they act as
testing, inspection, consultancy, auditing, education and certification bodies. Most of them
target global market access but are primarily recognized and registered as a local National
Certification Bodies (NCB) or National Recognized Testing Labs (NRTL). The main purpose
of these institutions is to offer standards compliance and quality testing services to
manufacturers of electrical appliances.

Due to globalization process, most of manufacturers push for harmonization of national
standards. This is contrary to the efforts of many governments, still protecting smaller local
producers by building administrative barriers to prevent easy local market access from
abroad. As a matter of fact, most of the standards are well harmonized, with negligible
differences. This makes the certification process easier, and any cooperation with locally
recognized bodies is fruitful.

The pivotal IEC standards are IEC 60730-1 and IEC 60335-1, well harmonized with UL/CSA
60730-1 and UL/CSA 60335-1 starting from their 4th edition (previous UL/CSA editions use
references to UL1998 norm in addition). They cover safety and security of household
electronic appliances for domestic and similar environment.

Appliances incorporating electronic circuits are subject to component failure tests. The basic
principle here is that the appliance must remain safe in case of any component failure. The
microcontroller is an electronic component as any other one from this point of view. If safety
relies on an electronic component, it must remain safe after two consecutive faults. This
means that the appliance must stay safe with one hardware failure and the microcontroller
not operating (under reset or not operating properly).

The conditions required are defined in detail in Annexes Q and R of the IEC 60335-1 norm
and Annex H of the IEC 60730-1 norm.

Three classes are defined by the 60730-1 standard:

• Class A: Safety does not rely on SW

• Class B: SW prevents unsafe operation

• Class C: SW is intended to prevent special hazards.

AN3181 Rev 4 17/47

AN3181 Compliance with IEC, UL and CSA standards

46

For programmable electronic component applying a safety protection function, the 60335-1
standard requires incorporation of software measures to control fault /error conditions
specified in tables R.1 and R.2, based on Table H.11.12.7 of the 60730-1 standard:

• Table R.1 summarizes general conditions comparable with requirements given for
Class B level in Table H.11.12.7.

• Table R.2 summarizes specific conditions comparable with requirements for Class C
level of the 60730-1 standard, for particular constructions to address specific hazards.

Similarly, if software is used for functional purposes only, the R.1 and R.2 requirements are
not applicable.

The scope of this Application note and associated STL package is Class B specification in
the sense of 60730-1 standard and of the respective conditions, summarized in Table R.1 of
the 60335-1 standard.

If safety depends on Class B level software, the code must prevent hazards if another fault
occurs in the appliance. The self test software is taken into account after a failure. An
accidental software fault occurring during a safety critical routine will not necessarily result
into an hazard thanks to another applied redundant software procedure or hardware
protection function. This is not a case of much more severe Class C level, where fault at a
safety critical software results in a hazard due to lack of next protection mechanisms.

Appliances complying with Class C specification in the sense of the 60730-1 standard and
of the respective conditions summarized in Table R.2 of the 60335-1 standard are outside
the scope of this document as they need more robust testing and usually lead to some
specific HW redundancy solutions like dual microcontroller operation. In this case, user
should use product dedicated safety manuals and apply the methods described there.

Class B compliance aspects for microcontrollers are related both to hardware and software.
The compliant parts can be divided into two groups, i.e. micro specific and application
specific items, as exemplified in Table 9.

While application specific parts rely on customer application structure and must be defined
and developed by user (communication, IO control, interrupts, analog inputs and outputs)
micro specific parts are related purely to the micro structure and can be generic (core self
diagnostic, volatile and non-volatile memories integrity checking, clock system tests). This
group of micro specific tests is the focus of the ST solution, based on powerful hardware
features of STM8 MCUs, such as dual independent watchdogs or clock system monitoring.

Compliance with IEC, UL and CSA standards AN3181

18/47 AN3181 Rev 4

4.1 Generic tests included in STL firmware package

The certified STM8 STL firmware package is composed by the following micro specific
software modules:

• CPU registers test

• System clock monitoring

• RAM functional check

• Flash integrity check

• Watchdog self test

• Stack overflow monitoring.

Note: The last two items from the upper list are not explicitly requested by the norm, but they
improve overall fault coverage and partially cover some specific required testing (e.g
internal addressing, data path, timing etc.).

An overview of the methods used for the MCU-specific tests (described in deeper detail in
the following sections) is given in Table 10.

User can include a part or all of the certified SW modules into his project. If they aren’t
changed and are integrated according with these guidelines the time and costs needed to
get a certified end-application will be significantly reduced.

When tests are removed user should consider side effects because any not applied
component test could play a significant role at indirect testing of other components as well.

Table 9. MCU parts that must be tested under Class B compliance

Group Component to be tested according to the standard

Microcontroller specific

CPU registers

CPU program counter

System clock

Invariable and variable memories

Internal addressing (and External if any)

Internal data path

Application specific

Interrupt handling

External communication

Timing

I/O periphery

Analog A/D and D/A

Analog multiplexer

AN3181 Rev 4 19/47

AN3181 Compliance with IEC, UL and CSA standards

46

The applied tests are primarily dedicated to detect permanent faults (to cover faults under
so called d.c. fault model). Detection of transient faults by any software testing is always
limited, because of the relatively long repetition period of testing (in comparison with any
HW methods with permanent checking capability), and can be covered partially with indirect
routes.

Note: In case of minor changes to the modules, the user should keep track of all of them, placing
clear explanation commentaries in the source files and informing the certification authorities
of the differences vs. the certified routines.

Table 10. Methods used in micro specific tests of associated ST package

Components
to be verified

Method used

IEC/UL 60730 references

Table Items
Applied
methods

CPU registers

Functional test A, X and Y registers, flags and stack pointer are
performed at startup. In the run time flags are not tested. Stack
pointer is tested for overflow and underflow. If any error is found, the
software jumps directly to the Fail Safe routine.

H.1 1.1

H.2.16.5

H.2.16.6

H.2.19.6

Program
counters

Two different watchdogs driven by two independent clock sources
can reset the device when the program counter is lost. The Window
watchdog (driven by the main oscillator) performs time slot
monitoring(1), while the Independent one (driven by lthe ow speed
internal RC oscillator) cannot be disabled once enabled. Both
watchdogs must be serviced at regular intervals. Program control
flow is additionally monitored by specific software method (see
Section 3.1.3: Class B flow control).

H.1 1.3
H.2.18.10.2

H.2.18.10.4

Addressing
and data path

This is tested indirectly by RAM functional and Flash memory
integrity tests, stack overflow (a specific pattern is written at a low
boundary of stack space and checked for corruption at regular
intervals) and underflow (a second pattern is written at a high
boundary if it is not at the RAM end).

H.1
4.3,

5 and
5.2

H.1.5.1

H.1.5.2
(indirect
testing)

Clock
Two independent internal frequencies are used for the dedicated
timer clock and they are verified by reciprocal comparison. One
frequency is fed to the dedicated timer while the other gates it.

H.1 3
H.2.18.10.1

H.2.18.10.4

Non-volatile
memory

A 16-bit CRC software checksum test of the entire memory is carried
out at startup and a partial memory test is repeated at runtime (block
by block).

H.1 4.1
H.2.19.4.1

H.2.19.8.1

Variable
memory space

March C- (or, optionally, March X) full memory test is performed at
startup. Partial memory test is repeated during run time (block by
block). Word protection with double inverse redundancy (inverse
values stored in nonadjacent memory space) is used for safety
critical Class B variables.

Class A variable space, stack and unused space are not tested
during run time.

H.1. 4.2
H.2.19.6.2

H2.19.8.2

1. Window WDG feature is not available in STM8L10x devices.

Compliance with IEC, UL and CSA standards AN3181

20/47 AN3181 Rev 4

4.2 Application specific tests

The user should be aware that the following are also required for Class B certification but
are not included in the ST firmware library:

• Analog: ADC/DAC and multiplexer

• Digital I/Os

• Interrupts and external communication

• Timing and program flow

• External addressing

4.2.1 Analog signals

Measured values should be checked for plausibility and verified by measurements
performed by other redundant channels, while free channels can be used to read some
reference voltages in conjunction with testing of analog multiplexers used in the application.
The internal reference voltage should also be checked. Multiple acquisition at one channel
or comparison of redundant channels, followed by averaging operations, can be applied.

ADC input signal disconnection

Can be tested by using Schmitt triggers and pull-ups. It is recommended that triggers are
disabled on the GPIO pin used for ADC analog input. In this case the GPIO digital input
signal cannot be read from the pin, as it always returns 0. To test the analog signal
disconnection the Schmitt triggers can be enabled temporary on the analog input pin. This
enables the digital input functionality on the tested GPIO. Activation of pull-up resistor at this
pin can be used for testing analog source signal disconnection from the pin. User can read
the digital input value on the GPIO with activated pull-up and compare it with the analog
value measured by ADC on the pin.

Other free pins with DAC functionality (or GPIO output functionality) can be used for analog
signal injection into tested ADC input. Monitoring the ADC input allows the user to detect the
analog signal disconnection from ADC input channel pin.

Routing interface can be used on some STM8L devices for internal connection between
analog pins. By routing interface it is possible to connect two pins in parallel and then
perform ADC measurement on those two pins on independent channels.

Testing of internal reference voltage and temperature sensor

ADCs can measure the internal reference voltage and/or internal temperature sensor (on
some STM8L devices). Functionality of the internal reference voltage and of the internal
temperature sensor can be based on the measured ratio between those two voltages, by
checking that the ratio is within the allowed range.

Additional redundant testing (for internal reference voltage and internal temperature sensor
functionality) can be performed on system where the VDD voltage is known.

ADC clock testing

Measurement of the ADC conversion time (by timers) can be used to test the independent
ADC clock functionality.

AN3181 Rev 4 21/47

AN3181 Compliance with IEC, UL and CSA standards

46

DAC output functionality (STM8L only)

Free ADC channel can be used to check if the DAC output channel is working correctly. The
Routing interface can be used for connection between ADC input channel and DAC output
channel.

Comparator functionality

Comparator inputs can be used for comparison between known voltage and DAC output
voltage or internal reference voltage.

Analog signal disconnection can be tested by pull-down or pull-up activation on tested pin,
and compariso of this signal with DAC voltage as reference on another comparator input.

ADC/DAC

Analog components depend on device application and peripheral capabilities. Used pins
should be checked at correct intervals. Free analog pins can be used to check user analog
reference points. Internal references should be checked too.

4.2.2 Digital I/Os

Class B tests must detect any malfunction on digital I/Os. This can be covered by plausibility
checks together with some other application parts (e.g. change in an analog signal from
temperature sensor when heating/cooling digital control is switched on/off).

4.2.3 Interrupts and external communication

Application interrupts occurrence and external communications can be checked by different
methods, one of them could be a control using a set of incremental counters where every
interrupt or communication event increments a specific counter. The values in the counters
are then verified at given time intervals by cross-checking against some other independent
time base.

Data exchange during communication sessions should be checked, including redundant
information into the data packets. Parity, sync signals, CRC check sums, block repetition or
protocol numbering can be used for this purpose. Robust application software protocol
stacks like TCP/IP give higher level of protection, if necessary. Periodicity and effective
occurrence of the communication events together with protocol error signals has to be
permanently checked.

4.2.4 Timing and program flow

Timing and program flow can be verified by ensuring that the application routines execution
times and order are both correct and complete, and that there are no unexpected delays. A
cross-check with a different time base can be performed too. Timing control is strictly
dependent on the application.

4.2.5 External addressing

External addressing is not used by STM8 microcontrollers.

Compliance with IEC, UL and CSA standards AN3181

22/47 AN3181 Rev 4

4.3 Safety life cycle

Development and maintenance of FW are provided with respect to requirements of UL/IEC
60730-1 concerning prevention of systematic errors focused mainly in Section H.11.12.3. All
the associated processes follow the ST internal policy to ensure they have the required level
of quality.

Application of these internal rules and the compliance with the recognized standards are
target of regular inspections and audits carried out by recognized external inspection
bodies.

The following phases are involved:

Specification of safety requirements

The main target was pointed by internal planning to provide set of generic modules
independent on user application to be easily integrated into user firmware targeting
compliance with UL/IEC 60730-1 and UL/IEC 60335-1 standards. Used solutions and
methods reviewed by certification authority speed up the user development and certification
processes.

Architecture planning

The STL packet structure is the result of a long experience with repeatedly certified FW,
where both optimized and standard peripheral libraries based modules were integrated into
these sets of self tests in the past dedicated for each sub product separately. Main goal of
the new FW has been to collect and integrate most of the safety critical routines into
common sources to be shared and reused by all the members of the family overall.

Such common architecture is considerably safer from a systematic point of view, involves
easier maintenance and integration of the solution when migrating either between existing
or into new products. The same structures are applied by many customers in many different
configurations, so their feedback is absolutely significant and helps to efficiently address
weaknesses, if any.

Planning the modules

The testing methods of modules comes from proved solutions used at the original FW.
Some methods were optimized to speed up the test period and so minimize limitation of the
process safety time at the final application applying these self testing methods, provided
mostly by software.

Coding

Coding is based on principles defined by internal ST policy, respecting widely recognized
international standards of coding, proven verification tools and compilers.

Emphasis is put on performing very simple, single and transparent thread structure of code,
calling step by step the defined set of testing functions while using simplified and clear
inputs and outputs.

The process flow is secured by specific flow control mechanism and synchronized with
system tick interrupts service providing specific particular background transparent testing.
Hardware watchdogs service is provided exclusively once the full set of partial checking
procedures is successfully completed.

AN3181 Rev 4 23/47

AN3181 Compliance with IEC, UL and CSA standards

46

Testing modules

Modules have been tested for functionality on different products, with different development
tools. Details can be found in the following sections and in the specific test documentation
dedicated to certification authorities (Test report).

Modules integration testing

Modules integration has been tested in several examples dedicated to different products
using different development tools, focusing on proper timing measurements, code control
flow, stack usage and other methods. Again, details can be found in the following sections
and in the test documentation.

Maintenance

For the FW maintenance ST uses feedback from customers (including preliminary beta
testers) processed according to standard internal processes. New upgrades are published
at regular intervals or when some significant bugs are identified. All the versions are
published with proper documentation describing the solution and its integration aspects.
Differences between upgrades, applied modifications and known limitations are described in
associated Release Notes included in the package.

Specific tools are used to support proper SW revision numbering, source files and the
associated documentation archiving.

All the FW and documentation are available to ST customers directly from www.st.com, or
on request, made to local supporting centers.

Class B software package AN3181

24/47 AN3181 Rev 4

5 Class B software package

This section highlights the basic common principles used in ST software solution.

The workspace organization is described together with its configuration and debugging
capabilities. The differences between the supported development environments
(IAR™ EWARM, STVD Cosmic) are also addressed.

5.1 Common software principles

The basic software methods and common principles used for all the tests included in the ST
firmware library are described in detail at this section.

5.1.1 Fail Safe mode

FailSafe() routine is called (defined in stm8_stl_startup.c file) at any fail detection. The
program stays in a never ending loop waiting for WDG reset. Except for some debugging
features, the routine is almost empty. When editing this routine, the user must remember to
include procedures necessary to keep the application in a safe state.

If the user wants to recognize the error raised, the debug or verbose mode described in
Section 5.3 can be used. In debug mode the independent WDG is refreshed inside the
never ending loop to prevent resetting the microcontroller when a failure occurs.

Even when debug mode is not applied, the user can detect the cause of the entry from the
unique code passed by the caller as a parameter, and thus adjust the flow.

The complete list of error codes is provided in Appendix B: List of verbose messages and
codes reported at Fail Safe mode entry.

5.1.2 Class B variables

Class B variables are dedicated variables defined by the user as critical to the application.
They are always stored as a pair of complementary values in two separate RAM areas. Both
normal and redundant values are always placed into non-adjacent memory locations. Partial
transparent RAM March C- or March X test is performed permanently on these two regions
through the system interrupt routines in run mode. The integrity of the pair is compared
before the value is used. If any value stored is corrupted, FailSafe() routine is called. An
example of RAM configuration is shown in Figure 1. The user can adapt the RAM space
allocation according to application needs and with respect to device hardware capability.

AN3181 Rev 4 25/47

AN3181 Class B software package

46

Figure 1. Example of RAM memory configuration

Note: In the integration examples associated with the firmware package, all the Class B variables
and buck-up buffers used for temporal storage of the RAM area tested during run time are
allocated in a portion of Page0 accessed by short single byte addressing mode to speed up
the testing procedures.

For a better consistency of the run time test, both class B regions are merged in a single
compact memory location. The user should align the size of the tested area to multiple
single transparent steps while respecting the overlay used for the first and the last step of
the test.

Class B software package AN3181

26/47 AN3181 Rev 4

If the area is not aligned, the not aligned bytes at the end of the area are tested together
with the following redundant bytes completing the block size in the last step of the test, while
the next additional one is included for the block overlay.

This is why the user has to allocate dummy gaps at the beginning and at the end of the area
dedicated to Class B variables. The size of these gaps corresponds to the applied overlay of
the single tested block (set to a single byte by default), with occasional number of redundant
bytes making the area aligned with multiples of the steps.

Backup buffer and run time pointer to Class B area have to be allocated out of the area
dedicated to Class B variables, in a specific location, tested separately each time the overall
Class B area test cycle is completed.

When the full dedicated space for stack is applied at the end of the RAM area defined by the
stack HW roll over limit, it is advisable to place a common specific pattern for detection of
both overflow and underflow at the end of the RAM, while initializing the stack pointer in the
first address just below this pattern.

5.1.3 Class B flow control

Program flow control is a method highly recommended by the standards, because it’s an
efficient way of ensuring that all specific parts of code are correctly executed and passed.

A specific software method is used for this check. Unique labels (constant numbers) are
defined for identifying all key points (blocks with component tests) in the code flow in order
to make sure that no block is skipped and that all the flow is executed as expected. The
unique labels are processed in two complementary counters complying with class B variable
criteria. The main principle is a symmetrical four steps change of the counter pair content
(adding or subtracting the unique label values) each time any significant testing block is
processed. Two of these check steps are placed outside the called block at caller (main
flow) level. This ensures that the block is correctly called from main flow level (processed
just before calling and just after return from the called procedure). The next two steps are
performed inside the called procedure to ensure that the block is correctly completed
(processed just after enter and just before return from the procedure).

An example is given in Figure 2, where a routine performing a component test is called in
the controlled flow sequence and the four-step checking service is shown. This method
decreases the load on CPU as all these points are always checked by counting one
member of the complementary counter pair only. Because there is always the same number
of call/return and entry/exit points, the values stored in the counter pair after each block is
passed completely must be always complementary ones. Several execution flow check
points are evaluated and placed in the code flow where the integrity of the counter pair is
checked. If the counters are not complementary or if they do not contain the expected
values at any of these checkpoints, the Fail Safe routine is called.

AN3181 Rev 4 27/47

AN3181 Class B software package

46

Figure 2. Control flow four steps check routine

1. For this example, the unique number for Component test 1 caller is “5” and for the procedure itself it is
defined as “7”. The counters are initialized to 0x0000 and 0xFFFF. The table in the upper right corner in
Figure 2 shows how the counters are changed in four steps. Also shown is their complementary value after
the last step (return from procedure) is completed.

Class B software package AN3181

28/47 AN3181 Rev 4

5.2 Firmware package structure

This section describes how the ST solution is organized.

5.2.1 Projects and workspaces included in the package

Two projects have been prepared for each sub-family representative using different
toolchains. The project for IAR C/C++ Compiler™ is done under IAR EWSTM8™
environment, while the project for Cosmic C-compiler is done as ST Visual Develop (STVD)
project workspace. The corresponding Project.eww or Project.stw project file must be
configured for specific STM8 device settings, and adequate workspace configuration before
any compilation must be available.

5.2.2 Tools and other specifc controls of the library

Each project covers all settings and includes needs for both compilation and linking
processes. User has to check the symbols defined for preprocessor at project settings as
these symbols configure the project main structure and used features. The user can make
detailed configurations at library parametric header file (see Section 5.3). Predefined linker
script files *.icf are included in IAR™ projects for different microcontrollers. Default linker
script files generated by STVD projects are overwritten and replaced at the project
directories dedicated for Cosmic solution.

Reset handler must be modified to perform STL_StartUp function after reset before
standard C compiler initialization starts. Therefore startup assembly file csstartup.s (IAR™)
must be modified in that way. For Cosmic, the reset handler reference is modified in the
stm8_interrupt_vector.c file.

Caution: Be careful when invariable memory checksum setting is configured for the project, as it
differs from compiler to compiler.
IAR C/C++ Compiler™ uses project option setting applied to its specific checksum card
window of linker. The user has to ensure proper setting of the memory area under check,
and avoid calculation running over the checksum pattern itself.
Some problems can raise during debug, implementation of break points or code
optimization, too. All can lead to different memory content and corrupt the check sum
calculation result. That is why the checksum result is ignored during debug, but verified at
release time.
Cosmic C-compiler requires to define all the segments under checksum computation (by
adding -ck parameter to each of them) and specific checksum segment keeping the
checksum descriptor table must be included into the project and allocated at invariable
memory additionally with applied -ik parameter.

Specific segments for Class B variables and checking stack overflow must be added into
project and allocated at variable memory, too. Double storage in CLASS_B_RAM and
CLASS_B_RAM_REV separated segments is necessary to ensure the redundancy of the
safety critical data (Class B). All other variables defined without any particular attributes are
considered as Class A variables and their storage area is not checked during the
transparent RAM test. The size and allocation of these segments can be modified in the
project linker script file.

AN3181 Rev 4 29/47

AN3181 Class B software package

46

A new Class B variable must be declared as a complementary pair of two variables
allocated at different segments by definition placed into proper part of the
stm32fxxx_STLclassBvar.h header file.

The following syntax is used for the compilers:

Cosmic

EXTERN @near u16 MyClassBVariable;

....

EXTERN @near u16 MyClassBVariableInv;

IAR

EXTERN __near u16 MyClassBVariable @ "CLASS_B_RAM";

.....

EXTERN __near u16 MyClassBVariableInv @ "CLASS_B_RAM_REV";

5.2.3 Application examples

A short example of the self-test package integration in an application is attached in each
project main.c file with respect to the package integration criteria (see Section 6: Class B
solution integration). Except for some low-density STM8S devices, the examples are written
to run on the corresponding STM8 evaluation boards (STM8S/128-EVAL and
STM8L1528-EVAL) as Class B package demonstration firmware. They use on board LCD
and LED diodes to display current versus expected master clock frequency measurement
changes. Display or LED outputs can be disabled and enabled by editing the set of code
conditional compilation defines in the project option dedicated to the compiler preprocessor.
The main loop also performs initialization and calling all run mode tests at ordinary intervals.

5.3 Package configuring and debugging

A functional part of the package may need to be changed, suspended, excluded or included.
For example the microcontroller type might need to be changed, or there could be a
non-volatile memory space limitation. Modifications are also required to debug the user
application. This section describes how the ST solution can be configured, modified and
debugged.

5.3.1 Configuration control

Software configuration is done at two levels. The first one is automatic and consists of
configuring the project for a given microcontroller. This is done by selecting the
corresponding device project while adapting its preprocessor user-defined options. The
second one is done through user configuration. All user defined configuration settings are
collected in the Class B configuration file stm8x_stl_param.h. The user must be very
careful when modifying this file. Most of the package functional blocks are under conditional
compilation controlled by a predefined set of constants in this file.

It is possible to disable some part(s) of the library by putting compilation parameters to
control their inclusion in comments. The full Class B package, even optimized and with
disabled verbose messages, takes about 3.5 Kbytes of code memory. Disabling some
library parts can be required for microcontrollers where the memory space is too small for
the application needs, or when the tested parts are not included in the application (e.g. HSE
testing).

Class B software package AN3181

30/47 AN3181 Rev 4

The user must be careful, when modifying the initial / run time test flow, of possible
corruption of the implemented procedures control flow. In this case, the values summarized
in the complementary control flow counters can differ from the constants defined for
comparison at flow check points. To prevent any control flow error, the user must change
definition of these constants in an adequate way.

5.3.2 Verbose diagnostic mode

The Tx pin of dedicated UART interface is used to output text messages in verbose mode.
This mode is useful in debug phase as the interface can be connected to an external
terminal (the line setting is 115200 Bd, no parity, 8-bit data, 1 stop bit). However the text
messages take too much code space in this mode. Different levels of verbose mode can be
enabled or disabled by the user through definition of constants in the Class B configuration
file stm8x_stl_param.h. For example, verbose mode could be limited to startup, run mode
or fail case only.

The complete list of verbose messages is provided in Appendix B: List of verbose messages
and codes reported at Fail Safe mode entry.

LEDs toggling is another way to verify a Class B event. First LED toggles at each begin and
end of run mode checks and with every successful finish of program memory test. Next LED
toggles with each begin and end of RAM partial check called on at each tick interrupt and
with every successful finish of the RAM memory test. LEDs slow toggling signals the main
processes and quick pulses modulated on the slow signal correspond to the length of partial
services, that is, the loading time (see Figure 3). LED control can be disabled by the user in
Class B configuration file stm8x_stl_param.h.

Note: Verbose mode via UART line is not used in the STM8L10x package. Error codes are passed
to FailSafe() routine instead.

Figure 3. Diagnostic LED timing signal principle

5.3.3 Debugging the package

While debugging the package, it is useful to disable:

• Reset in FailSafe() routine by servicing independent WDG,

• Verification of the program memory integrity test result when using breaks in the code
to prevent program memory checksum error occurrence

• Window WDG to prevent improper service out of the time slot window dedicated to
refresh(a).

• Control flow monitoring (mostly done automatically by changing values of constants
when some tests are omitted)

AN3181 Rev 4 31/47

AN3181 Class B software package

46

At the debugging phase it may be useful to enable:

• Verbose Diagnostic mode to watch messages at UART terminal

• LEDs toggling to see basic process flow

a.Window WDG feature is not available in STM8L10x devices.

Class B solution integration AN3181

32/47 AN3181 Rev 4

6 Class B solution integration

6.1 Integrating software into user application

Class B routines are divided into two main processes: periodic run mode self tests and
startup tests. The periodic run mode test must be initialized by the set-up block before it is
applied. All the blocks are checked by sufficient flow control checked at a number of flow
check points (see Section 5.1.3: Class B flow control). All class B variables are kept
redundantly in a pair of control registers stored in the Class B variable space defined by
user (see Section 5.1.2: Class B variables). This variable space is split into two separate
RAM regions which are permanently undergoing the transparent test as a part of run mode
tests.

Figure 4 shows the basic principle of how to integrate the Class B software package into
user software. The reset vector should be forced by the user to STL_StartUp() routine
which collects all system startup self tests. If they pass successfully, then the standard
initialization procedure of C compiler routine is performed. While the application is running,
periodic tests must be executed at regular intervals. To ensure this, the user must initialize
these tests by calling the initialization routine STL_InitRunTimeChecks() before entering
main loop and then inserting a periodical call of STL_DoRunTimeChecks() at main level.
For best results, this should be inside the main loop. TIM4 (or TIM6 for some devices),
which is configured during initialization routine to generate periodic system interrupts,
provides the time base for all the tests. Short partial transparent RAM March C- or March X
check is performed at each interrupt tick. If any self test fails, FailSafe() routine is called.

Figure 4. Integration of startup and periodic run mode self tests into application

6.2 Detailed description of startup self tests

The startup self test is forced during initialization phase as the earliest checking process
after resetting the microcontroller (see Figure 4) and before standard application startup
routine. The user must force the reset vector to the first address in STL_StartUp() routine.

AN3181 Rev 4 33/47

AN3181 Class B solution integration

46

The startup tests block structure is shown in Figure 5 and includes the following self tests:

• Watch dogs startup test

• CPU startup test

• Flash memory complete checksum test

• Full RAM March C-/X test

• Clock startup test

• Control flow checks

These blocks are described in more details in the next chapters. User can control including
them as usual in the configuration file stm8_stl_param.h.

Figure 5. startup self tests structure

6.2.1 Watchdog startup self test

The first startup self test is to enter WDG self test routine. The program passes through this
routine three times. First the routine checks the reset source in reset status register. If
Independent watchdog (IWDG) is not flagged in reset status register, then reset sources is
cleared and IWDG test begins. The IWDG is set to the shortest period and the
microcontroller is reset by hardware and IWDG flag is set (see Figure 6). The routine comes
back to the beginning and check WDG flags. When IWDG is recognized, it looks for WWDG
flag. If WWDG is not flagged, the test continues a second time with window watchdog
(WWDG) test. Again the microcontroller is reset by hardware and WWDG flag is set. When
both WDG flags are set in the reset status register, the test is assumed as finished and both
flags are cleared. WWDG is not present at STM8L10x devices, so WWDG test is not
present.

User must carefully set both IWDG and WWDG periods. Time periods and window refresh
parameters must be set according to the time base interval because refresh is done at the
successful end of the periodical run mode test in main loop.

Class B solution integration AN3181

34/47 AN3181 Rev 4

Figure 6. Watchdogs startup self test structure

6.2.2 CPU startup self test

Core flags, registers and stack pointer are tested for their functionality. In case of errors,
FailSafe() routine is called.

Figure 7. CPU startup self test structure

6.2.3 Flash memory complete checksum self test

The CRC checksum computation is performed over the entire Flash memory space
indicated by linker checksum structure. The resulting computation is compared with the
linker result. FailSafe() routine is called if there is an error.

AN3181 Rev 4 35/47

AN3181 Class B solution integration

46

The user actually has a choice of three different methods for calculating the CRC (see
Figure 8) over the code memory content in the project.

• An 8-bit check sum calculation over the 16-bit address space can be used for checking
up to 64 Kbytes of memory code, this is the simplest method.

• A 16-bit check sum calculation over the 16-bit address space can be used for checking
up to 64 Kbytes of the memory code; this method is more precise and is the default
method.

• A 16-bit check sum calculation over all the possible address space can be used when
the code memory exceeds 64 Kbytes, 24-bit addressing must be used; this way uses
the larger code space and is the most time-consuming.

The STM8 firmware includes six separate source files defined for each of these methods.
There is one pair for each method: one used for startup and one for run time. The user
should include the correct source file pair into the project.

Figure 8. Flash memory startup self test structure

6.2.4 Full RAM March C-/X self test

The whole RAM space is alternately filled and checked simultaneously by zero and 0xFF
pattern in six loops, either by March C- or March X algorithms. March X algorithm is faster
as the two middle steps are skipped. The first three loops are performed in incremental
order of addresses, the last three in decremented order. In case of error, FailSafe() routine
is called.

Class B solution integration AN3181

36/47 AN3181 Rev 4

Figure 9. RAM startup self test structure

6.2.5 Clock startup self test

When the test begins, the low speed internal clock (LSI) source is started first, followed by
the high speed external source (HSE). The CPU is running on the high speed internal
source (HSI). HSI is switched onto a dedicated timer input, mainly TIM3, but TIM1 or TIM2
can also be used in some devices. The timer is gated by the LSI source. The number of
gated ticks is compared and if it falls outside of the predefined interval (more than +/- 25%
from nominal value) an HSI fail is signaled and FailSafe() routine is called.

CPU clock continues with HSI, default source. If there is no error, the test continues with the
next step and HSE is checked. HSE is switched on as the new CPU clock source and input
into the dedicated timer. The same measurement and check of gated ticks are repeated but
with HSE feeding the timer. If the measure falls out of the interval, CPU clock is immediately
turned back to HSI and HSE fail is signaled with a FailSafe() routine being called,
otherwise, the test returns OK.

CPU clock is switched back to default HSI source after the test is finished. All the parts of
this test are under conditional compilation control, so the user can skip some tests, e.g. HSE
test when no external oscillator is used.

AN3181 Rev 4 37/47

AN3181 Class B solution integration

46

Figure 10. Clock startup self test subroutine structure

1. Low speed external (LSE) clock source can be started/checked at the beginning of the test and measured
feeding the dedicated timer on STM8L15x devices. They can be inserted at the beginning of this routine.

2. High speed external (HSE) tests are skipped on STM8L10x devices.

3. LSI frequency is different for STM8S and STM8L devices. That is why the four consequent LSI periods are
gated for STM8S devices (LSI=128 kHz) and only one period is used for measures on STM8L devices
(LSI=38 kHz).

6.3 Periodic run mode self tests initialization

Run time self tests must be initialized just before the program enters the main loop
performing the run mode self tests (refer to Figure 4). This must come just after start-up self
tests have been executed and standard initialization done. The timing should be set so as to
ensure that run mode tests are called properly and at regular intervals.

All class B variables must first be initialized. Zero and its complement value are stored in
every class B variable complementary pair. The magic pattern is than stored at the top of
stack space. Timer peripherals are configured for the tick interval measurement and master
clock frequency measurement. Master frequency is gated by the LSI clock. The same
method as for startup test is used. The resulting number of pulses is stored into the class B
variable pair as an initial reference sample of master frequency measure.

Class B solution integration AN3181

38/47 AN3181 Rev 4

Figure 11. Periodic run mode self test initialization structure

6.4 Detailed description of periodic run mode self tests

6.4.1 Run time self tests structure

Run time self tests are performed periodically, their period is based on time base interrupt
settings. Before the first run, all tests must be initialized by run mode initialization routine
(refer to Figure 4). All tests are performed in the main loop level except partial transparent
RAM test, which is executed during the time base interrupt service. Some tests (analog,
communication peripherals and application interrupts) are not automatically included.
Depending on device capability and application needs, the user can implement them. The
following is the list of the run mode self tests:

• CPU core partial run mode test

• Stack boundaries overflow test

• Clock run mode test

• AD MUX self test (not implemented)

• Interrupt rate test (not implemented)

• communication peripherals test (not implemented)

• Flash memory partial CRC test including evaluation of the complete test

• IWDG and WWDG refresh

• Partial transparent RAM March C-/X test (under system interrupt scope)

AN3181 Rev 4 39/47

AN3181 Class B solution integration

46

Figure 12. Periodic run mode self test and time base interrupt service structure

6.4.2 CPU light run mode self test

CPU core run mode self test is a simplified startup test where the flags and stack pointer are
not tested. In case of error, FailSafe() routine is called.

Figure 13. CPU light run mode self test structure

6.4.3 Stack boundaries run mode test

The magic pattern stored at the top of the stack is checked here. In case the original pattern
is corrupted, FailSafe() routine is called. The pattern is placed at the lowest address
dedicated for stack area.Overflow and underflow are detected as the stack pointer rolls over

Class B solution integration AN3181

40/47 AN3181 Rev 4

inside this range in both cases. This area differs among the devices. The user must respect
the dedicated stack area when the pattern location is changed.

Figure 14. Stack overflow run mode test structure

6.4.4 Clock run mode self test

The current master clock frequency selected by user application is gated by LSI internal
clock source. The resulting number of pulses is compared with the initial master frequency
reference sample measure stored during initial run mode self tests. When the difference is
larger than +/-25% FailSafe() routine is called. Occasional over captured measures are
ignored (they can appear when a longer user interrupt service corrupts current
measurement.

Figure 15. Clock run mode self test structure

AN3181 Rev 4 41/47

AN3181 Class B solution integration

46

Figure 16. Clock run mode self test principle

6.4.5 Partial Flash memory CRC run mode self test

Partial 16-bit CRC checksum over the Flash memory block is performed in every step. The
boundaries are given in the segment table created by the linker. When the last block is
reached the CRC checksum is compared with the value stored by linker at the last record in
the segment table. In case of a difference, FailSafe() routine is called, otherwise a new
computation cycle is initialized.

Figure 17. Partial Flash memory CRC run mode self test structure

1. For more details about CRC calculation, refer to Section 6.2.3: Flash memory complete checksum self test.

Class B solution integration AN3181

42/47 AN3181 Rev 4

6.4.6 Watchdog service in run mode test

If the run mode service block is correctly completed, then both window and independent
watchdogs (WDGs) are refreshed at the last step just before returning to the main loop. To
correctly refresh watchdogs, the user must ensure calling STL_DoRunTimeChecks()
routine (see Figure 12) at corresponding intervals in order to be able to properly react to the
time base flag change.

Only one WDG refresh inside the main loop is necessary and contributes to overall
efficiency. There should be no other WDG refresh except the one in
STL_DoRunTimeChecks() routine. Sometimes it is necessary to refresh WDGs at
initialization phase, too. In this instance, the refresh should be outside of any software
infinite loop.

6.4.7 Partial RAM run mode self test

Partial transparent RAM test is performed inside the time base interrupt service. The test
covers the part of the RAM containing the class B variables. One block of six bytes is tested
at every test step. To guarantee coupling fault coverage, consecutive test steps are
performed on memory blocks with an overlapping of two adjacent bytes. During the first
phase, the block content is stored in the storage buffer. The next phase is to perform the
marching destructive tests on all the bytes in the tested RAM block. Then, the final step is to
restore the original content. March X algorithm is faster as two middle marching steps are
skipped over (see Table 11). The last test sequence step is to perform a marching test on
the storage buffer itself, again with the next two additional bytes to cover coupling faults.
Then the whole test is re-initialized and it begins again. In case any fault is detected,
FailSafe() routine is called.

Figure 18. Partial RAM run mode self test structure)

AN3181 Rev 4 43/47

AN3181 Class B solution integration

46

Figure 19. Fault coupling principle used in partial RAM run mode self test

Table 11. March C- phases at RAM partial test

March phase Partial bytes test over the block Address order

Initial Write 0x00 pattern Increasing

1 Test 0x00 pattern, write 0xFF pattern Increasing

2(1)

1. Steps 2 and 3 are skipped when March X algorithm is used.

Test 0xFF pattern, write 0x00 pattern Increasing

3(1) Test 0x00 pattern, write 0xFF pattern Decreasing

4 Test 0xFF pattern, write 0x00 pattern Decreasing

5 Test 0x00 pattern Decreasing

STM8 Class B firmware package variations AN3181

44/47 AN3181 Rev 4

Appendix A STM8 Class B firmware package variations

Table 12. STM8 Class B firmware packages

Test STM8S/A package
Medium density

STM8L/AL package
Low density

STM8L/AL/TL package

Optional UART verbose mode Yes Yes No(1)

Demo mode with optional LCD screen Yes Yes No

Window watchdog test Yes Yes No(2)

High speed external (HSE) clock test Yes Yes No

Low speed internal (LSI) frequency /

Number of LSI periods used for clock tests
(measurement)

128 kHz / 4 38 kHz / 1 38 kHz / 1

Stack space at the top of RAM [bytes] 1024 / 512(3) 513 513(4)

1. Errors are signaled by error codes passed to FailSafe() routine.

2. Window watchdog is available on STM8TL5x devices only.

3. The stack is limited for some STM8S Access line devices and STM8A devices with up to 32 Kbytes non-volatile memory;
for correct values see the corresponding datasheets.

4. Stack is not limited for STM8TL5x devices; there is rollover (due to over/underflow) only if the stack overlaps the 4 Kbytes.

AN3181 Rev 4 45/47

AN3181 List of verbose messages and codes reported at Fail Safe mode entry

46

Appendix B List of verbose messages and codes reported
at Fail Safe mode entry

Table 13. Verbose messages and unique codes reported at Fail Safe mode entry

STL
block

Tested module
Error code

(hex)
Verbose message

Start up

CPU 00 Start-up CPU Test Failure

Flash 01 FLASH 8/16-bit CRC Error at Start-up

Flow control 02 Control Flow Error (Start up 1)

RAM 03 RAM Test Failure

Clock

04 HSI clock source failure

05 LSI start-up failure

06 HSE start-up failure

07 Clock switch failure

08 EXT clock source failure

09 Abnormal Clock Test routine termination (POR)

Flow control 0A Control Flow Error (Start-up 2)

Run time

Clock 10 Abnormal Clock Test routine termination (main init)

Flow control 11 Control Flow Error (Main init)

CPU 12 Run Time CPU Test Failure

Stack control 13 Stack overflow

Clock

14 EXT clock frequency error (clock test)

15 System clock frequency error (clock test)

16 Class B variable error (clock test)

17 Abnormal Clock test routine termination (main)

Flash 18 Run-time FLASH CRC Error

Flow control

19 Control Flow Error (main loop, Flash CRC)

1A Control Flow Error (main loop, Flash CRC on-going)

1B Control Flow Error (main loop)

Variable integrity 1C Class B variable error (time base check)

IT system

Clock 20 Clock Source failure (Clock Security System)

RAM 21 RAM Error (March Run-time check)

Flow control
22 Control Flow Error (March Run-time check)

23 Control Flow Error (ISR)

Variable integrity 24 Class B Error on Tick Counter

Revision history AN3181

46/47 AN3181 Rev 4

Revision history

Table 14. Revision history

Date Revision Description of changes

01-Jun-2010 1 Initial release

29-Nov-2012 2

Modified Introduction and document throughout to include all new
members of the STM8 family.

Added Section 1: Package overview and Table 1: Applicable products.

Modified Table 3: Overview of methods used in micro-specific tests and
Appendix A: STM8 Class B firmware package variations.

07-Mar-2016 3

Updated document title, Introduction and Section 4: Compliance with
IEC, UL and CSA standards.

Removed former Table 1: Applicable products.

Minor text changes across the whole document.

26-Feb-2018 4

Updated document title.

Updated Introduction, Section 1: Package overview, Section 4:
Compliance with IEC, UL and CSA standards, Section 4.1: Generic tests
included in STL firmware package, Section 4.2: Application specific
tests, Section 4.2.1: Analog signals, Section 4.2.2: Digital I/Os,
Section 4.2.3: Interrupts and external communication, Section 4.2.4:
Timing and program flow, Section 4.3: Safety life cycle, Section 5: Class
B software package, Section 5.1: Common software principles,
Section 5.1.1: Fail Safe mode, Section 5.1.2: Class B variables,
Section 5.1.3: Class B flow control, Section 5.2: Firmware package
structure, Section 5.2.1: Projects and workspaces included in the
package, Section 5.2.2: Tools and other specifc controls of the library,
Section 5.2.3: Application examples, Section 5.3.1: Configuration
control, Section 5.3.3: Debugging the package and Section 6: Class B
solution integration.

Added Section 2: Package structure overview, Section 3: Main
differences from the product point of view and their subsections.

Added Appendix B: List of verbose messages and codes reported at Fail
Safe mode entry.

Updated title of Table 4: Overview of common tool specific STL
procedures, Table 6: STM8 compatibility aspects, Table 10: Methods
used in micro specific tests of associated ST package and Table 12:
STM8 Class B firmware packages.

Updated Figure 1: Example of RAM memory configuration and Figure 2:
Control flow four steps check routine.

AN3181 Rev 4 47/47

AN3181

47

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 Package overview
	2 Package structure overview
	Table 1. Projects related to STM8-SafeCLASSB
	Table 2. FW organization
	Table 3. Overview of common STL procedures
	Table 4. Overview of common tool specific STL procedures
	Table 5. Integration support files

	3 Main differences from the product point of view
	Table 6. STM8 compatibility aspects
	3.1 Clock system test
	3.2 RAM test
	3.3 Flash memory integrity test
	3.4 Start-up and system initialization
	3.5 Firmware configuration
	Table 7. Specific compiler configurations
	Table 8. STL specific configurations

	4 Compliance with IEC, UL and CSA standards
	Table 9. MCU parts that must be tested under Class B compliance
	4.1 Generic tests included in STL firmware package
	Table 10. Methods used in micro specific tests of associated ST package

	4.2 Application specific tests
	4.2.1 Analog signals
	4.2.2 Digital I/Os
	4.2.3 Interrupts and external communication
	4.2.4 Timing and program flow
	4.2.5 External addressing

	4.3 Safety life cycle

	5 Class B software package
	5.1 Common software principles
	5.1.1 Fail Safe mode
	5.1.2 Class B variables
	Figure 1. Example of RAM memory configuration

	5.1.3 Class B flow control
	Figure 2. Control flow four steps check routine

	5.2 Firmware package structure
	5.2.1 Projects and workspaces included in the package
	5.2.2 Tools and other specifc controls of the library
	5.2.3 Application examples

	5.3 Package configuring and debugging
	5.3.1 Configuration control
	5.3.2 Verbose diagnostic mode
	Figure 3. Diagnostic LED timing signal principle

	5.3.3 Debugging the package

	6 Class B solution integration
	6.1 Integrating software into user application
	Figure 4. Integration of startup and periodic run mode self tests into application

	6.2 Detailed description of startup self tests
	Figure 5. startup self tests structure
	6.2.1 Watchdog startup self test
	Figure 6. Watchdogs startup self test structure

	6.2.2 CPU startup self test
	Figure 7. CPU startup self test structure

	6.2.3 Flash memory complete checksum self test
	Figure 8. Flash memory startup self test structure

	6.2.4 Full RAM March C-/X self test
	Figure 9. RAM startup self test structure

	6.2.5 Clock startup self test
	Figure 10. Clock startup self test subroutine structure

	6.3 Periodic run mode self tests initialization
	Figure 11. Periodic run mode self test initialization structure

	6.4 Detailed description of periodic run mode self tests
	6.4.1 Run time self tests structure
	Figure 12. Periodic run mode self test and time base interrupt service structure

	6.4.2 CPU light run mode self test
	Figure 13. CPU light run mode self test structure

	6.4.3 Stack boundaries run mode test
	Figure 14. Stack overflow run mode test structure

	6.4.4 Clock run mode self test
	Figure 15. Clock run mode self test structure
	Figure 16. Clock run mode self test principle

	6.4.5 Partial Flash memory CRC run mode self test
	Figure 17. Partial Flash memory CRC run mode self test structure

	6.4.6 Watchdog service in run mode test
	6.4.7 Partial RAM run mode self test
	Figure 18. Partial RAM run mode self test structure)
	Figure 19. Fault coupling principle used in partial RAM run mode self test
	Table 11. March C- phases at RAM partial test

	Appendix A STM8 Class B firmware package variations
	Table 12. STM8 Class B firmware packages

	Appendix B List of verbose messages and codes reported at Fail Safe mode entry
	Table 13. Verbose messages and unique codes reported at Fail Safe mode entry

	Revision history
	Table 14. Revision history

