£— AN3259
YI Application note

RS232 communications with a terminal
using the STM8S-DISCOVERY

Application overview

This application note describes how to control the STM8S-DISCOVERY from a terminal
window running on a PC which is connected to the STM8S105C6T6 microcontroller UART
through an RS232 cable.

After adding the required components to the board and downloading the application
software, you will be able to use a terminal to manage STM8S GPIOs and TIM3 timer, and
to configure the beeper output.

Reference documents

® STMB8S-DISCOVERY evaluation board user manual (UM0817).

® Developing and debugging your STM8S-DISCOVERY application code (UM0834).

® ST232B-ST232C datasheet

All these documents are available at http://www.st.com.

December 2010 Doc ID 17835 Rev 1 1/25

www.st.com

http://www.st.com

Contents AN3259

Contents

1 Prerequisitesciiiiiiiiiii ittt 5
2 Configuring the STM8S-DISCOVERYcoiiiiiiiiiinnnns 5
3 Applicationdescriptioni ittt i i 5
3.1 Hardware required i 5
3.2 Application schematics i 6
3.3 Application principle e 7
3.3.1 Running the application 7

3.3.2 Communication sequence between the STM8S-DISCOVERY
andtheterminal 8
4 Software descriptionot i e 9
4.1 STM8S peripherals used by the application 9
4.2 Configuring STM8S standard firmware library 9
4.3 Application software flowcharts 10
4.31 Application mainroutine 11
4.3.2 App_menufunction 12
4.3.3 GetlnputString function 13
4.3.4 Get_key function 15
4.3.5 SerialPutString and SerialPutChar functions 16
4.3.6 Getintegerlnput function 17
Appendix A Standard ASCll charactercodes 18
Appendix B Configuring your terminal window. 20
Revision historyo i it n s nnnnann e 24

2/25 Doc ID 17835 Rev 1 KYI

AN3259 List of tables

List of tables

Table 1. List of passive components i e 5
Table 2. List of packaged components. e 6
Table 3. Standard ASCll charactercodes i e 18
Table 4. Document revision history e 24

IYI Doc ID 17835 Rev 1 3/25

List of figures AN3259

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

4/25

Application schematics 6
Terminal Window MenU. e 7
Main routine flowchart. e 11
App_menu flowchart. 12
GetlnputString flowchart e 14
Get_key function flowchart 15
SerialPutChar flowchart e e 16
SerialPutString flowchart e 16
Getintegerlnput flowchart e 17
Launching Windows HyperTerminal. e, 20
Selecting communication port. e 21
Configuring connection properties e 21
Checking communication settings e 22
ASCII Setup parameters.ot 23

Doc ID 17835 Rev 1 KYI

AN3259

Prerequisites

3.1

Prerequisites

The material required to run the STM8S-DISCOVERY terminal demonstration application is
the following:

® A terminal window running on a PC: the terminal emulator software can be Windows
Hyperterminal (see Appendix B), TeraTerm Pro, or any terminal software.

® An RS232 null-modem cable (transmit and receive line crosslinked).

Configuring the STM8S-DISCOVERY

Prior to running the application, the STM8S-DISCOVERY must be configured to enable the
beeper output. The beeper output is an STM8S105C6T6 alternate function. It is enabled by
setting the alternate function remap option bit AFR7 in OPT2 option byte to ‘1°.

For details on alternate function remapping and on option bytes, refer to user manual
“Developing and debugging your STM8S-DISCOVERY application code” (UM0834), and to
the STM8S105xx datasheet, respectively.

Application description

Hardware required

This application uses STM8S-DISCOVERY on-board LED (LD1) together with its associated
resistor (R1).

The external passive components required by the application are listed inTable 1.

The application also makes use of a 5 V powered ST232B RS232 driver/receiver (see
Table 2). This extra component is essential since the COM port of the PC operates from a
nominal 12 V power supply. This is not compatible with the STM8S UART input/outputs
operating at 5 V. This component is available in an SO16 package which fits the STM8S-
DISCOVERY footprint. For more information on the ST232B refer to the ST232B datasheet.

Table 1. List of passive components
Component description Value
B1 buzzer -
C1,C2,C3,C4,C5 capacitors 100 nF
DB9 connector

Doc ID 17835 Rev 1 5/25

Application description AN3259

Table 2. List of packaged components
Part name Component description Package
Very-high speed ultralow-power consumption 5 V
ST232B RS232 driver/receiver used for UART 5/12 V level SO16
shifter.
3.2 Application schematics

Figure 1 shows the application electrical schematics.

If the RS232 cable is not a null-modem cable (transmit and receive lines not crosslinked),
connect U1 pin14 to DB9 pin2 and U1 pin13 to DBY pin3.

Figure 1. Application schematics

5V
T
o1 C5 e
100 nF == Ut 100 nf =T
o L T
100 nF
00n 3 (4T out
4 13 R1in
C3 L 5 1o R1out
100 nF [T1in
6 11
c4 _J:_ —17 10f—e
100 nF —g 9|—e -
1 ST232B
5V
PD5
'\\ e
LD1 TIM3| | < |PD6
R1
PDO| © i | PD4
o]
Piezo buzzer
STM8S105C6
ai17252b

6/25 Doc ID 17835 Rev 1 KYI

AN3259

Application description

3.3

3.3.1

Application principle

This application sets up a standard communication interface between the STM8S105C6T6
microcontroller and a terminal window running on a PC. Communications are performed
thanks to STM8S UART using the RS232 protocol. Both terminal window and UART must
be configured in the same way (see Appendix B: Configuring your terminal window).

This document only describes the communications and data processing from the STM8S
UART side. For more information about Windows HyperTerminal or similar software, refer to
Microsoft® Help or suppliers web pages.

Running the application

To run the application, perform the following steps:

1.

w

Figure 2. Terminal window menu

Launch and configure a terminal window on your PC (see Appendix B: Configuring
your terminal window for an example regarding Windows HyperTerminal).

Compile and run the application firmware using the ST Visual Develop (STVD).
Connect your PC to the STM8S-DISCOVERY through an RS232 cable.

When the application has started, a menu is displayed on the Windows HyperTerminal
(Figure 2.: Terminal window menu). It allows to:

— Switch LD1 on or off.
— Configure LD1 blinking speed.
— Enable/disable the beeper and select the beep frequency)

All the information displayed on this menu are sent by the STM8S microcontroller.
When a key is struck on the HyperTerminal, the corresponding ASCII value is sent to
the microcontroller and decoded.

“& STMBS-Discovery - HyperTerminal
File Edit “iew Cal Transfer Help

o g 0 i

STHM8S-Discovery
This Application 1is basic example of UART interface with
Windows Hyper Terminal.

APPLICATION MENU :

Set LD1 on
Set LD1 off
Set LD1 blink
BEEPER ON
BEEPER OFF

CAF~oPa =
| T I R |

Enter vour choice : _

Connected 0:07:41 ANST 9600 &-N-1 LM

Doc ID 17835 Rev 1 7/25

Application description AN3259

3.3.2

8/25

Communication sequence between the STM8S-DISCOVERY
and the terminal

1.

w

The STM8S microcontroller sends the character string ‘Enter your choice’ to the PC
terminal emulator software.

The terminal displays the string ‘Enter your choice’.
The user strikes key 2 on his keyboard.

The terminal emulator software sends back the corresponding ASCII code (0x52) to the
microcontroller (see Appendix A: Standard ASCII character codes).

The microcontroller decodes the data received, sends back the code 0x52 for it to be
displayed on the terminal, and stores the value 2’ in memory.

The terminal emulator software receives the code 0x52 and displays ‘2.
The user strikes the Return key.

The terminal emulator software send back the code 0x0D corresponding to carriage
return (see Appendix A: Standard ASCII character codes).

The STM8S105C6T6 microcontroller decode the data received, sends back the code
0x0D for it to be displayed it on the terminal, and performs the action associated to
option 2.

Doc ID 17835 Rev 1 KYI

AN3259

Software description

4

4.1

Note:

4.2

Software description

STMS8S peripherals used by the application

This application example uses the STM8S standard firmware library to control general
purpose functions. It makes use of the following STM8S peripherals:

UART2

UART2 is used to communicate with the terminal window running on the PC. It must be
configured as follows:

Receive and transmit enabled
UART2 clock disabled

® Baud rate = 9600 baud
® Word length = 8 bits

® One stop bit

® No parity

°

°

The communications are managed by polling each receive and transmit operation.

The terminal window and the STM8S UART peripheral must be configured with the same
baud rate, word length, number of stop bits, and parity.

Timer 3 (TIM3)

TIM3 timer is configured as a timebase with interrupt enabled to control LD1 blinking speed.

GPIOs

The GPIOs are used to interface the MCU with external hardware. Port PDO is configured as
output push-pull low to drive LD1.

BEEPER

To drive the buzzer, the BEEPER peripheral outputs a signal of 1, 2, or 4 KHz on the BEEP
output pin.

Configuring STM8S standard firmware library

The stm8s_conf.hfile of the STM8S standard firmware library allows to configure the library
by enabling the peripheral functions used by the application.

The following define statements must be present:

#define GPIO 1 enables the GPIOs
#define TIM3 1 enables TIM3
#define BEEPER 1 enables the BEEPER
#define UART2 1 enables UART2

Doc ID 17835 Rev 1 9/25

Software description AN3259

4.3 Application software flowcharts

This section describes the application software main loop and the function that controls data
reception/transmission from/to the terminal window:

e App_Menu

This function is used to display a menu on the terminal, and manage the information
entered by the user.

® SerialPutString
This function is used to transmit a string to the terminal.
e SerialPutChar
This function is used to transmit a character to the terminal.
o GetlnputString
This function is used to receive a string from the terminal.
® Getintegerinput
This function is used to receive an integer from the terminal.
o Get_Key
When a key is stroke, this function returns the corresponding hexadecimal code.

10/25 Doc ID 17835 Rev 1 KYI

AN3259

Software description

4.3.1

Application main routine

The application main routine configures the STM8S peripherals and enables all the
standard interrupts used by the application. When the initialization is complete, the main
routine displays the application menu on the terminal window (see Figure 3).

Figure 3. Main routine flowchart

C START }

\ 4
HSI configuration 4@clock prescaler set to 1

A 4

(—
GPIO initialization PDO configured as output push-pull low
—

\ 4 TIM3 prescaler set to 1
TIM3 initalization TIM3 ARR set to FFF
TIM3 update interrupt enabled

Baud rate = 9600 bauds
Word length = 8 bits

Parity none

Receive and transmit enabled
UART2 clock disabled

\ 4
UART?2 initalization

y
BEEPER calibration()

\ 4
Enable general interrupt

A 4

App_Menu()

(END)

ai17254

Doc ID 17835 Rev 1 11/25

Software description AN3259

4.3.2 App_menu function

The App_menu function is the main application routine. It displays a menu on the terminal
through which the GPIOs, TIM2 and BEEPER can be configured. App_menu calls
GetlnputString, Getlntegerlnput and SerialPutString to send and receive data through the
RS232 interface.

Figure 4. App_menu flowchart

START
i Succession of GetlnputString() calls to display
Print Menu ' the menu of the terminal

!

GetlnputString(Choice)
Yes
> LD1 blinking OFF
LD1 ON
. Yes
Choice = 27 > LD1 blinking OFF
\ 4
LD1 OFF >
Yes » LD1 blinking ON
Yes
» Freq = Getintegerlnput()

4
Beep_freq = freq

y
Beeper ON

A 4

Beeper OFF

\ 4

SerialPutString('Choice Error’)

A

END

ai17255b

12/25 Doc ID 17835 Rev 1 KYI

AN3259

Software description

4.3.3

GetlnputString function

The GetlnputString function is used to receive and store the character strings sent through
the terminal window. This function relies on the Get_key function to acquire and decode
each character (see Section 4.3.4). Different actions can be performed according to the
value of the character ASCII code:

e If ASCIl code = \b’

A backspace has been sent by the terminal. The last character of the string is erased if
the string is not empty.

e [f ASCII code belongs to {0...1 or a...Z}
The character is stored.
e If ASCIl code = ‘\r
The GetlnputString function stores the “end of string” value, \0', at the end of the string.

The maximum number of ASCII codes stored in the buffP[bytes_read] buffer has been
reached

The software erases the recorded string and waits for another input from the terminal.

For more information on ASCII codes refer to Appendix A: Standard ASCII character codes.

Doc ID 17835 Rev 1 13/25

Software description

AN3259

GetlnputString flowchart

Figure 5.

C

START)

v

bytes_read =0

Get_Key()

*‘
Yes
ytes_rea
> Max?2
No

SerialPutString(’Size overflow’)

Yes

Key =\b’?
No

Yes

ytes_read

No

v

bytes_read --

v

v

bytes_read =0
|

A Y
©

ey = Yes

ora..z?2

A

A 4

Store ASCII code in

SerialPutChar(ASCII code)

No
buffP[bytes_read]
bytes_read ++
: I
Y
No key =\r
v

bytes_read =\0’

v

C

END)

ai17253b

14/25

Doc ID 17835 Rev 1

574

AN3259 Software description

4.3.4 Get_key function

The Get_key function is used to detect a key stroke on the terminal by polling the UART
RXNE flag. This function returns the received value.

Figure 6. Get_key function flowchart

(START)

Key = UART2 data register

A 4
(Return Key)
ai17256b

IYI Doc ID 17835 Rev 1 15/25

Software description AN3259

4.3.5 SerialPutString and SerialPutChar functions

The SerialPutString function is used to send a character string through the UART. The string
characters are sent one by one by the SerialPutChar function as described in the flowcharts
shown in Figure 8 and Figure 9.

Figure 7. SerialPutChar flowchart Figure 8. SerialPutString flowchart

(smRT)
(START) i=0

——

UART_sendData8(char) Yes STOP

No

SerialPutChar(String[i])

(STOP) ai17257b I-:"'I'
.

ai17258

16/25 Doc ID 17835 Rev 1 K‘YI

AN3259

Software description

4.3.6

Getintegerinput function

The GetIntegerlnput function is used to check that incoming data correspond to an integer. If
so, the data are stored in the memory. Otherwise the user is prompted to enter new data.

Figure 9.

GetlIntegerinput flowchart

(START)

4
N

v

GetlnputString()

Yes
Str=10"?

v

SerialPutString('User cancelled’)

\ 4
(Return 0 >

Stris

n integer 2 SerialPutString('Error input again’)

Yes

Value stored

A
(RETURN 1)

ai17259

Doc ID 17835 Rev 1

17/25

Standard ASCII character codes AN3259
Appendix A Standard ASCII character codes
Table 3. Standard ASCII character codes

Hex Char Hex Char Hex Char Hex Char
0x00 NULL 0x20 Space 0x40 @ 0x60 ‘
0x01 Start of heading 0x21 ! 0x41 A 0x61 a
0x02 Start of text 0x22 “ 0x42 B 0x62 b
0x03 End of text 0x23 # 0x43 C 0x63 c
0x04 End of transmit 0x24 $ 0x44 D 0x64 d
0x05 Enquiry 0x25 % 0x45 E 0x65 e
0x06 Ack 0x26 & 0x46 F 0x66 f
0x07 Audible bell 0x27 ‘ 0x47 G 0x67 g
0x08 Backspace 0x28 (0x48 H 0x68 h
0x09 Horizontal tab 0x29) 0x49 | 0x69 i
O0x0A line feed 0x2A * O0x4A J Ox6A i
0x0B Vertical tab 0x2B + 0x4B K 0x6B k
0x0C Form feed 0x2C , 0x4C L 0x6C |
0x0D carriage return 0x2D - 0x4D M 0x6D m
O0xOE Shift out 0x2E Ox4E N Ox6E n
OxOF Shift in O0x2F / Ox5F o O0x6F o}
0x10 Data link escape 0x30 0 0x50 P 0x70 p
0x11 Device control 1 0x31 1 0x51 Q 0x71 q
0x12 Device control 2 0x32 2 0x52 R 0x72 r
0x13 Device control 3 0x33 3 0x53 S 0x73 s
0x14 Device control 4 0x34 4 0x54 T 0x74 t
0x15 Neg. Ack 0x35 5 0x55 U 0x75 u
0x16 Synchronous idle 0x36 6 0x56 Vv 0x76 \Y
0x17 End trans. block 0x37 7 0x57 W Ox77 w
0x18 Cancel 0x38 8 0x58 X 0x78 X
0x19 End of medium 0x39 9 0x59 Y 0x79 y

18/25 Doc ID 17835 Rev 1 KY_I

AN3259

Standard ASCII character codes

Table 3. Standard ASCII character codes (continued)

Hex Char Hex Char Hex Char Hex Char
Ox1A Substitution 0x3A : O0x5A z 0x7A z
0x1B Escape 0x3B ; 0x5B [0x7B {
0x1C File sep. 0x3C < 0x5C \ 0x7C I
0x1D Group sep. 0x3D = 0x5D] 0x7D }
Ox1E Record sep. O0x3E > Ox5E A Ox7E ~
Ox1F Unit sep. O0x3F ? Ox5F _ Ox7F

Doc ID 17835 Rev 1 19/25

Configuring your terminal window AN3259

Appendix B Configuring your terminal window

20/25

The terminal window connected to the STM8S-DISCOVERY must be configured with the
following settings valid for all terminal types:

® Communication port: COM1 or other available
® Bits per second: 9600

e Data bits: 8

® Parity: none

® Stop bits: 1

® Flow control: none

To provide a ready-to-use application example, a preconfigured terminal using Windows

HyperTerminal and COM1 port is provided within the project folder. To launch it, simply
execute the .ht file included in the project.

However, you can also set up a new connection with the STM8S-DISCOVERY based on
Windows HyperTerminal and related to this example by following the steps below:

1. Open Windows HyperTerminal application and choose a connection name, such as
“MyConnection” and validate it by clicking OK.

Figure 10. Launching Windows HyperTerminal

Connection Description E]E|

Enter a name and choose an icon for the connection:

Mame:

MyConnection

|zon:

[ok, H Cancel]

Doc ID 17835 Rev 1 K‘!I

AN3259

Configuring your terminal window

2. Select COM1 or any available port on your computer and validate your choice by
clicking OK. Other fields can remain set to the default value.

Figure 11. Selecting communication port

Connect To

-5 MyConnection

Enter detailz far the phone number that you want to dial;

Countryregior; | United States [1) v |

Area code:

Phone number: | |

Connect using: | IBM Integrated 56K Modem w

IBM Integrated SEK. Modem
COkd4

TCPAP [winzock]

3. Configure the communication port properties as shown in Figure 12. Windows
HyperTerminal is launched and communications can start.

Figure 12. Configuring connection properties

COM1 Properties

Part Settings |
Bitz per second: |E|EDEI V|
Drata bits: |B v|
Banity: |Nclne v‘
Stop bits: |1 v|
Flow contral: | V|
[Restare Defaults]
k.] [Cancel] l Apply]

Doc ID 17835 Rev 1 21/25

Configuring your terminal window

AN3259

4. To check communication settings:

a) Disconnect the HyperTerminal by choosing Call > Disconnect from the

HyperTerminal main menu.

b) Once communications are stopped, go to the Settings tab in MyConnection
Properties menu. The parameters should be as shown below.

Figure 13. Checking communication settings

Conmect To | Settings |

MyConnection Properties

Function, arrow, and chil keys act az

(& Teminal keys 0 Windows keys

Backspace key zends

o CueH O Del (&) Chl+H, Space, Ciri+H

Emulation:
|p‘-‘-.NSI VH Terminal Setup...]
Telnet terminal D: | ANS|

Backscroll buffer lines: |5EIEI

Y
w

[] Play sound when connecting or dizconnecting

[Input Tranzlation.. | [ASCI Setup...]

1] 9

H Cancel]

22/25

Doc ID 17835 Rev 1

AN3259 Configuring your terminal window

c) Finally, click ASCII Setup in MyConnection properties menu, check that the
ASCII parameters match those shown in Figure 14, and modify them if needed.

Figure 14. ASCII Setup parameters

ASCII Setup 2IX

A5C1 Sending
[] 5end line ends with line feeds
[] Echo typed characters locally

Line delay: 0 millizeconds.

Character delay: |0 millizeconds.

ASCI Receiving

[] Append line feeds to incoming line ends
[] Force incoming data to 7-bit ASCI

[] wirap lines that exceed terminal width

| aE |[Cancel]

d) Close MyConnection Properties menu, and restart communications by choosing
Call > Call from the HyperTerminal main menu. Your STM8S-DISCOVERY

application is now ready to start.

IYI Doc ID 17835 Rev 1 23/25

Revision history

AN3259

Revision history

24/25

Table 4. Document revision history

Date

Revision

Changes

06-Dec-2010

Document migrated from UMO0884 rev 1.
Document extended to all terminal windows.

Added Section 1: Prerequisites. Updated Figure 1: Application
schematics and added case of not null-modem RS232 cable.
Removed section “Description of the application package.

Updated Section 3.3.1: Running the application.
Updated Section 4.1: STM8S peripherals used by the application.

Renamed SerialGetString and SerialGetinterger, SeriallnputString
and Serialntegerlnput, respectively.

Updated Section 4.3.1: Application main routine overview.
Updated Section 4.3.2: App_menu function overview.

Updated Section 4.3.3: GetlnputString function, Section 4.3.4:
Get_key function, Section 4.3.5: SerialPutString and SerialPutChar
functions, and Section 4.3.6: GetIntegerlnput function.

Doc ID 17835 Rev 1 [‘II

AN3259

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

IYI Doc ID 17835 Rev 1 25/25

	1 Prerequisites
	2 Configuring the STM8S-DISCOVERY
	3 Application description
	3.1 Hardware required
	3.2 Application schematics
	3.3 Application principle
	3.3.1 Running the application
	3.3.2 Communication sequence between the STM8S-DISCOVERY and the terminal

	4 Software description
	4.1 STM8S peripherals used by the application
	UART2
	Timer 3 (TIM3)
	GPIOs
	BEEPER

	4.2 Configuring STM8S standard firmware library
	4.3 Application software flowcharts
	4.3.1 Application main routine
	4.3.2 App_menu function
	4.3.3 GetInputString function
	4.3.4 Get_key function
	4.3.5 SerialPutString and SerialPutChar functions
	4.3.6 GetIntegerInput function

	Appendix A Standard ASCII character codes
	Appendix B Configuring your terminal window
	Revision history

