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AN4035
Application note

Flash programming through Nexus/JTAG 

 

Introduction
The SPC56x/RPC56x family of devices has internal Flash used for code and data. The 
Nexus debug interface can be used to program the Flash using the JTAG communication 
protocol through the JTAG port. This allows programming of the internal Flash by an 
external tool.

This application note first addresses the JTAG and Nexus communication protocol. The 
JTAG discussion includes the JTAG signals, TAP controller state machine, and the JTAG 
controller. The explanation of Nexus includes the on-chip emulation (OnCE) module and the 
Nexus read/write (R/W) access block.

Nexus/JTAG Flash programming supports the following products:
 SPC563Mxx
 SPC564Axx
 SPC56APxx
 SPC560Dxx
 SPC560Bxx
 SPC564Bxx
 SPC560Cxx
 SPC560Pxx
 SPC56ECxx
 SPC56ELxx
 RPC56ELxx
 RPC560Bxx
 RPC564Bxx
 RPC56APxx
 RPC564Axx
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http://www.st.com
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1 JTAG

JTAG is a serial communication protocol created by the Joint Test Access Group. Originally 
developed for boundary scan, JTAG is also used for communication with the Nexus debug 
interface (NDI) on the SPC56x/RPC56x devices. 

1.1 JTAG signals
The JTAG port of the SPC56x/RPC56x devices consists of the TCK, TDI, TDO, TMS and 
JCOMP pins. TDI, TDO, TMS, and TCK are compliant with the IEEE 1149.1-2001 standard 
and are shared with the NDI through the test access port (TAP) interface. See Table 1 for 
signal properties.

          

The JCOMP pin assertion allows to put the JTAGC in reset state.

1.2 TAP controller state machine
The TAP controller state machine controls the JTAG logic. The TAP controller state machine 
is a 16-state finite state machine (FSM) as shown in Figure 1. The TCK and TMS signals 
control transition between states of the FSM. These two signals control whether an 
instruction register scan or data register scan is performed. Both the TDI and TMS inputs 
are sampled on the rising edge of TCK while the TDO output changes on the falling edge of 
TCK. The value shown next to each state of the state machine in Figure 2 is the value of 
TMS required on the rising edge of TCK to transition to the connected state. Five rising 
edges of TCK with TMS at logic 1 guarantee entry into the TEST LOGIC RESET state.

Table 1. JTAG signal properties
Name I/O Function

TCK I Test Clock

TDI I Test Data In

TDO O Test Data Out

TMS I Test Mode Select

JCOMP I JTAG Compliancy
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Figure 1. TAP controller finite state machine
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1.3 JTAG controller (JTAGC) 
The JTAGC provides the means to test chip functionality and connectivity while remaining 
transparent to system logic when not in TEST mode. Testing is performed via a boundary 
scan technique, as defined in the IEEE 1149.1-2001 standard. In addition, instructions can 
be executed in order to allow the Test Access Port (TAP) to be shared with other modules 
on the MCU. All data input to and output from the JTAGC is communicated in serial format. 
A block diagram of the JTAGC is shown in Figure 2.

Figure 2. JTAG controller block diagram

1.4 Modes of operation
Access to the JTAGC data registers is done by loading the instruction register with any of 
the JTAGC instructions while the JTAGC is enabled. Instructions are shifted in via the 
select-IR-scan path and loaded in the update-IR state. At this point, all data register access 
is performed via the select-DR-scan path. 
The select-DR-scan path is used to read or write the register data by shifting in the data 
(LSB first) during the shift-DR state. When reading a register, the register value is loaded 
into the shifter during the capture-DR state. When writing a register, the value is loaded from 
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the shifter to the register during the update-DR state. When reading a register, there is no 
requirement to shift out the entire register contents. Shifting can be terminated after fetching 
the required number of bits.

1.4.1 Reset
The JTAGC is placed in reset when the TAP controller state machine is in the TEST-LOGIC-
RESET state.  
The TEST-LOGIC-RESET state is entered upon the assertion of the power-on reset signal, 
negation of JCOMP, or through TAP controller state machine transitions controlled by TMS. 
Asserting power-on reset or negating JCOMP results in asynchronous entry into the reset 
state. While in reset, the following actions occur:
 The TAP controller is forced into the test-logic-reset state, thereby disabling the test 

logic and allowing normal operation of the on-chip system logic to continue unhindered.
 The instruction register is loaded with the IDCODE instruction.

In addition, execution of EXTEST instruction results in assertion of the internal system reset.

1.4.2 Test mode
Several TEST modes are supported, as well as a bypass mode and they are entered using 
the following instructions:
 EXTEST
 SAMPLE 
 SAMPLE/PRELOAD

Each instruction defines the set of data registers that can operate and interact with the on-
chip system logic while the instruction is current. Only one test data register path is enabled 
to shift data between TDI and TDO for each instruction.

Following the test modes available:
1. BYPASS mode

When no test operation is required, the BYPASS instruction can be loaded to place the 
JTAGC into bypass mode. While in bypass mode, the single-bit bypass shift register is 
used to provide a minimum-length serial path to shift data between TDI and TDO.

2. TAP Sharing Mode
There are three selectable auxiliary TAP controllers that share the TAP with the 
JTAGC. Selectable TAP controllers include:
a)  Nexus port controller (NPC) 
b) On Chip Emulator (ONCE) controller
c) TCU controller

The instructions required to grant ownership of the TAP to the auxiliary TAP controllers are 
ACCESS_AUX_TAP_NPC, ACCESS_AUX_TAP_ONCE, ACCESS_AUX_TAP_TCU. 
Instruction opcodes for each instruction are shown in Table 2.

When the access instruction for an auxiliary TAP is loaded, control of the JTAG pins is 
transferred to the selected TAP controller. Any data input via TDI and TMS is passed to the 
selected TAP controller, and any TDO output from the selected TAP controller is sent back 
to the JTAGC to be output on the pins. The JTAGC regains control of the JTAG port during 
the UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP controllers are 
held in RUN-TEST/IDLE while they are inactive.
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1.5 Enabling debug of a censored device
When a device is in a censored state, the debug port (JTAG/Nexus) is disabled and only 
JTAG BSDL commands can be used. Access to the Nexus/JTAG clients on a censored 
device requires inputting the proper password into the JTAG Censorship Control Register 
during reset. 

When the debug port is enabled on a censored device, it is enabled only until the next reset.

Figure 3 shows the logic that enables access to Nexus clients in a censored device using 
the JTAG port.

Table 2. JTAG instructions 
Instruction Code[4:0] Instruction summary

IDCODE 00001 Selects device identification 
register for shift

SAMPLE/PRELOAD 00010

Selects boundary scan register 
for shifting, sampling, and
preloading without disturbing 
functional operation

SAMPLE 00011
Selects boundary scan register 
for shifting and sampling without
disturbing functional operation

EXTEST 00100

Selects boundary scan register 
while applying preloaded values 
to
output pins and asserting 
functional reset

ACCESS_AUX_TAP_TCU 10000 Grants the TCU ownership of 
the TAP

ACCESS_AUX_TAP_ONCE 10001 Grants the PLATFORM 
ownership of the TAP

ACCESS_AUX_TAP_NPC 10010 Grants the Nexus port controller 
(NPC) ownership of the TAP

Reserved 10010 -

BYPASS 11111 Selects bypass register for data 
operations

Factory Debug Reserved
00101
00110
01010

Intended for factory debug only

Reserved All other codes Decoded to select bypass 
register
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Figure 3. Enabling JTAG/Nexus port access on a censored device

The steps to enable the debug port on a censored device are as follows:
1. After the RSTOUT pin has is negated, hold the device in system reset state using a 

debugger or other tool. 
2. While the device is being held in system reset state shift the 64-bit password into the 

CENSOR_CTRL register (via the JTAG port using the JTAG 
ENABLE_CENSOR_CTRL instruction. The JTAG serial password is compared against 
the serial boot flash password from the flash shadow block.

3. If there is a match the Nexus client TAP controller enters normal operation mode and 
the DISNEX flag in the SIU_CCR register is negated (for the SPC56xB/RPC56xB and 
SPC56xP/RPC56xP families the flag NXEN in the SSCM_STATUS register is negated) 
indicating Nexus is enabled. Upon negation of reset the debug / calibration tool is able 
to access the device via NEXUS port and JTAG. If the JTAG serial password does not 
match the serial boot flash password or the serial boot flash password is an illegal 
password then the debug / calibration tool is not able to access the device. After the 
debug port is enabled, the tool can access the censored device and can erase and 
reprogram the shadow flash block in order to uncensor the device.

Note: If the shadow flash block is erased without reprogramming a new valid password before a 
reset, it contains an illegal password and the debug port is inaccessible. 
4. Subsequent resets clear the JTAG censor password register and the Nexus client TAP 

controller holds in reset again. Therefore, the tool must resend the JTAG serial 
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password, as described above, in order to enable the Nexus client TAP controller 
again.

1.5.1 CENSOR_CTRL register
The CENSOR_CTRL register is a shift register path from TDI to TDO selected when the 
ENABLE_CENSOR_CTRL instruction is active. The CENSOR_CTRL register transfers its 
value to a parallel hold register on the rising edge of TCK when the TAP controller state 
machine is in the Update-DR state. The parallel hold register bits CENSOR_CTRL 
correspond directly to the JTAGC output control internal signals jtag_censor_ctrl. The 
jtag_censor_ctrl signals are used to control chip dependent censorship features. Once the 
ENABLE_CENSOR_CTRL instruction is executed, jtag_censor_ctrl remains valid until a 
JTAGC reset occurs.



DocID022669 Rev 3 13/42

AN4035 On-Chip Emulation (OnCE)

41

2 On-Chip Emulation (OnCE)

All of the SPC56x/RPC56x devices possess a OnCE module for debug control of the Power 
Architecture® e200 core. The OnCE logic provides Nexus class 1 static debug capability 
including run-time control, register access, and memory access to all memory-mapped 
regions including on-chip peripherals, as well as providing access to the Nexus2 & Nexus3 
configuration registers. The OnCE module is controlled by the JTAG signals through the 
OnCE TAP controller.

Figure 4. e200z OnCE block diagram

2.1 Enabling the OnCE TAP controller
Control of the OnCE module is obtained through the OnCE TAP controller. To enable the 
OnCE TAP controller, the JTAGC must have control of the TAP and the 
ACCESS_AUX_TAP_ONCE (0b10001) opcode must be loaded into the 5-bit JTAGC 
instruction register with the JCOMP signal set to a logic 1.

The JTAGC instruction register is loaded by scanning in the appropriate bits on the TDI pin, 
the least significant bit (LSB) first, while the TAP controller state machine is in SHIFT-IR 
state . The last bit is shifted in with TMS set to a logical 1 causing transition from the SHIFT-
IR state to the EXIT1-IR state. Table 3-1 shows the steps required to enable the OnCE TAP 
controller, assuming the TAP controller state machine is initially in the RUN-TEST/IDLE 
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state. The state machine is returned to the RUN-TEST/IDLE state when the write is 
complete.

          

Figure 6. Signal transitions for enabling the OnCE TAP controller

2.2 OnCE register access
The OnCE module provides several registers for static debug support. The OnCE command 
register (OCMD) is a special register and acts as the IR for the TAP controller state machine 
and is used to access other OnCE resources.

2.3 OnCE command register
The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data 
from the TDI pin and acts as the IR register of the TAP controller state machine. The OCMD 
is updated when the TAP controller enters the UPDATE-IR state. It contains fields for 

Figure 5. Steps for enabling the OnCE TAP controller
TCK tick TMS TDI Resulting state

1 1 X SELECT-DR-SCAN

2 1 X SELECT-IR-SCAN

3 0 X CAPTURE-IR

4 0 X SHIFT-IR

5 0 1 SHIFT-IR

6 0 0 SHIFT-IR

7 0 0 SHIFT-IR

8 0 0 SHIFT-IR

9 1 1 SHIFT-IR

10 1 X UPDATE-IR

11 0 X RUN-TEST/IDLE
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controlling access to a resource, as well as controlling single step operations and exit from 
debug mode. Figure 7 shows the register definition for the OnCE command register.

Figure 7. OnCE command register

Table 3 provides bit definitions for the OnCe command register. 
Reset - 0b10_0000_0010 on assertion of JCOMP, during power on reset, or while in the 
TEST LOGIC RESET state.

          

Table 3. OnCE command register bit definitions 
Bit(s) Name Description

0 R/W

Read/Write Command Bit
The R/W bit specifies the direction of data transfer. The table below describes the options
defined by the R/W bit.
0 Write the data associated with the command into the register specified by RS[0:6]
1 Read the data contained in the register specified by RS[0:6]
Note: The R/W bit is ignored for read-only or write-only registers. In addition, it is ignored for
all bypass operations. When performing writes, most registers are sampled in the Capture-DR
state into a 32-bit shift register, and subsequently shifted out on TDO during the first 32 clocks
of Shift-DR.

1 GO

Go Command Bit
0 Inactive (no action taken)
1 Execute instruction in IR
If the GO bit is set, the chip executes the instruction which resides in the IR register in the
CPUSCR. To execute the instruction, the processor leaves debug mode, executes the
instruction, and if the EX bit is cleared, returns to debug mode immediately after executing the
instruction. The processor goes on to normal operation if the EX bit is set, and no other debug
request source is asserted. The GO command is executed only if the operation is a read/write
to CPUSCR or a read/write to “No Register Selected”. Otherwise the GO bit is ignored.The
processor leaves debug mode after the TAP controller Update-DR state is entered.
On a GO+NoExit operation, returning to debug mode is treated as a debug event, thus
exceptions such as machine checks and interrupts may take priority and prevent execution of
the intended instruction. Debug firmware should mask these exceptions as appropriate. The
OSR[ERR] bit indicates such an occurrence.
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Table 4 shows the OnCE register addresses. Access to the registers CPUSCR, DAC1-2, 
DBCNT, DBCR0-3, DBSR, and IAC1-4 require that the external debug mode bit, 
DBCR0[EDM], be set to a logical 1. Only the DBCR0[EDM] is accessible in the DBCR0 
register prior to that bit being set. Setting DBCR0[EDM] enables external debug mode and 
disables software updates to debug registers. The CPU should be placed in debug mode via 
the OCR[DR] bit prior to setting the DBCR0[EDM] bit.

           

2 EX

0 Remain in debug mode
1 Leave debug mode
If the EX bit is set, the processor leaves debug mode and resume normal operation until
another debug request is generated. The Exit command is executed only if the Go command
is issued, and the operation is a read/write to CPUSCR or a read/write to “No Register
Selected”. Otherwise the EX bit is ignored.
The processor leaves debug mode after the TAP controller Update-DR state is entered. Note
that if the DR bit in the OnCE control register is set or remains set, or if a bit in the DBSR is set,
or if a bit in the DBSR is set and DBCR0[EDM]=1 (external debug mode is enabled), then the
processor may return to debug mode without execution of an instruction, even though the EX
bit was set.

3-9 RS
Register Select
The Register Select bits define which register is source (destination) for the read (write)
operation. Attempted writes to read-only registers are ignored.

Table 3. OnCE command register bit definitions (continued)
Bit(s) Name Description

Table 4. e200z0 OnCE Register Addressing 
RS[0:6] Register selected

000 0000 Reserved

000 0001 Reserved

000 0010 JTAG ID (read-only)

000 0011-000 1111 Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011-001 1111 Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 Data Value Compare 1 (DVC1)

010 0111 Data Value Compare 2 (DVC2)
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2.3.1 Example of OnCE register write
OnCE registers can be written by selecting the register using the RS[0:6] field and clearing 
the R/W bit in the OnCE command register (OCMD). This requires a scan through the IR 
path of the TAP controller state machine to write the OCMD and a scan through the DR path 
of the TAP controller state machine to write the selected register. As mentioned above, the 
external debug mode bit, DBCR0[EDM], must be set to a logical 1 to allow access to most of 
the OnCE registers. Therefore, writing the DCBR0 register to set the EDM bit is used as an 
example of a writing a OnCE register. Figure 8 shows the register definition of DBCR0.

Figure 8. DBCR0 register

The example of writing DBCR0 is divided into two parts: writing OCMD to select a write to 
DBCR0, and writing the value 0x80000000 to DBCR0. All data are scanned in the least 
significant bit first. 

010 1000 -010 1011 Reserved

010 1100 Debug Counter Register (DBCNT)

010 1101 Debug PCFIFO (PCFIFO) (read-only)

010 1110 -010 1111 Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100-101 1111 Reserved

111 0000 -111 1001 General Purpose register selects [0:9]

111 1010 Cache Debug Access Control Register (CDACNTL)

111 1011 Cache Debug Access Data Register (CDADATA)

111 1100 Nexus3-Access

111 1101 Reserved

111 1110 Enable_OnCE

111 1111 Bypass

Table 4. e200z0 OnCE Register Addressing (continued)
RS[0:6] Register selected
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Figure 9 shows writing the value 0b00_0011_0001 to OCMD through the IR path to select a 
write to DBCR0 assuming the TAP controller state machine is initially in the RUN-
TEST/IDLE state. The state machine is returned to the RUN-TEST/IDLE state when the 
write is complete.

Figure 9. Signal transitions for writing OCMD to select a write to DBCR0

Figure 10 shows writing the value 0x80000000 to DBCR0 through the DR path to set the 
EDM bit assuming the TAP controller state machine is initially in the RUN-TEST/IDLE state. 
The state machine is returned to the RUN-TEST/IDLE state when the write is complete.

Figure 10. Signal transitions for writing DBCR0

2.3.2 Example of OnCE register read
OnCE registers can be read by selecting the register using the RS[0:6] field and setting the 
R/W bit in the OnCE command register (OCMD). This requires a scan through the IR path of 
the TAP controller state machine to write the OCMD and a scan through the DR path of the 
TAP controller state machine to read the selected register. This read example reads DBCR0 
after the EDM bit is set. 

Figure 11 shows writing the value 0b10_0011_0001 to OCMD through the IR path to select 
a read from DBCR0 assuming the TAP controller state machine is initially in the RUN-
TEST/IDLE state. The state machine is returned to the RUN-TEST/IDLE state when the 
write is complete.
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Figure 11. Signal transitions for writing OCMD to select a read from DBCR0

Figure 12 shows reading the value 0x80000000 from DBCR0 through the DR path 
assuming the TAP controller state machine is initially in the RUN-TEST/IDLE state. The 
state machine is returned to the RUN-TEST/IDLE state when the read is complete.

Figure 12. Signal transitions for reading DBCR0

2.4 OnCE status register
The OnCE status register (OSR) is a special register in terms of how it is read. Status 
information related to the state of the CPU is latched into the OnCE status register when the 
OnCE TAP controller state machine enters the CAPTURE-IR state. The status information is 
shifted out serially through the SHIFT-IR state on TDO. The OSR is a 10-bit register like the 
OCMD. Therefore, the status information can be read while writing OCMD. The OSR is 
shown in Figure 13.
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Figure 13. OnCE status register

Figure 14 shows reading the OnCE status register on TDO while writing the OCMD on TDI 
assuming the TAP controller state machine is initially in the RUN-TEST/IDLE state. The 
state machine is returned to the RUN-TEST/IDLE state when the read is complete. The 
OCMD is written with the value 0b10_0001_0001 choosing a read of No Register Selected. 
The data read on TDO from the OnCE status register is 0b10_0000_1001 showing that the 
OSR[MCLK] and OSR[DEBUG] status bits are set. All data is scanned in and out least 
significant bit first.

Figure 14. Signal transitions of reading the OnCE status register

2.5 Entering debug mode during reset
There are several different methods of entering debug mode. This section covers entering 
debug mode while the RESET pin is asserted. Entering debug mode while the RESET pin is 
asserted is useful, because the debug session begins with the CPU in a known state. The 
OnCE control register (OCR) controls entry into debug mode for this method. Figure 15 
shows the register definition for the OCR.

Figure 15. OnCE control register

The OCR[DR] bit is the CPU debug request control bit and requests the CPU to 
unconditionally enter debug mode. The OCR[WKUP] bit is the wakeup request bit used to 
guarantee that the CPU clock is running. Debug status and CPU clock activity can be 
determined by reading the DEBUG and MCLK bits in the OnCE status register. After 
entering debug mode, the OCR[DR] bit should be cleared leaving the OCR[WKUP] bit set. 
OCR[FDB] should also then be set to enable recognition of software breakpoints.
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The steps required for entering debug mode during reset assuming the OnCE TAP 
controller has been enabled are listed below:
1. Assert RESET.
2. Set the OCR[DR] and OCR[WKUP] bits.
3. De-assert RESET.
4. Verify debug mode via the DEBUG bit in the OnCE status register.
5. Clear the OCR[DR] bit while leaving OCR[WKUP] set and set OCR[FDB].

2.6 Enabling external debug mode and other initialization
Before enabling external debug mode, the CPU should be placed into debug mode via the 
method outlined in the previous section.

The external tool should then write the DBCR0[EDM] bit to enable external debug mode. 
Note that the first write to DBCR0 only affects the EDM bit. All other bits in that register 
require DBCR0[EDM] to be set prior to writing them. After enabling external debug mode, 
the DBSR status bits should be cleared by writing 0xFFFFFFFF to DBSR. The register 
definition of DBSR is shown in Figure 16.

Figure 16. Debug Status Register (DBSR)

2.7  CPU Status and Control Scan Chain Register (CPUSCR)
CPU information is accessible via the OnCE module through a single scan chain register 
named the CPUSCR. The CPUSCR provides access to this CPU information and a 
mechanism for an external tool to set the CPU to a desired state before exiting debug mode. 
The CPUSCR also provides the ability to access register and memory contents. Figure 17 
shows the CPUSCR. Once debug mode has been entered, it is required to scan in and 
update the CPUSCR prior to exiting debug mode or single stepping. Access to the CPUSCR 
is controlled by the OCMD.
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Figure 17. CPU status and control scan chain register

2.7.1 Instruction Register (IR)
After entering debug mode, the opcode of the next instruction to be executed is in the 
instruction register (IR). The value in the IR should be saved for later restoration if 
continuation of the normal instruction stream is desired.

The external tool has the capability to put instructions directly into the instruction register 
(IR) via the CPUSCR. These instructions can then be executed by the debug control block. 
By selecting appropriate instructions and single stepping them, the external tool can 
examine or change memory locations or CPU registers.
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2.7.2 Control State Register (CTL)
The control state register (CTL) stores the value of certain internal CPU state variables 
before debug mode is entered. Figure 18 shows the CTL register.

Figure 18. Control State Register (CTL)

The “*” in the CTL register represents the internal processor state bits that should be 
restored to the value they held when debug mode was entered prior to exiting debug mode. 
If a single step is executing an instruction that is in the normal instruction flow of the 
program that was running when debug mode was entered, these bits should be restored. If 
a single step is executing an instruction outside the normal instruction flow, these bits should 
be cleared to zero. 
The PCOFST field indicates whether the value in the PC portion of the CPUSCR must be 
adjusted prior to exiting debug mode. Due to the pipelined nature of the CPU, the PC value 
must be backed-up under certain circumstances. The PCOFST field specifies the value to 
be subtracted from the PC value when debug mode was entered. This PC value should be 
adjusted according to PCOFST prior to exit from debug mode if continuation of the normal 
instruction stream is desired. In the event that PCOFST is non-zero, the IR should be 
loaded with a nop instruction instead of the value in the IR when debug mode was entered. 
Below are the possible values and meanings of the PCOFST field:
 0000—No correction required.
 0001—Subtract 0x04 from PC.
 0010—Subtract 0x08 from PC.
 0011—Subtract 0x0C from PC.
 0100—Subtract 0x10 from PC.
 0101—Subtract 0x14 from PC.

All other encodings are reserved.

After entering debug mode, the PCINV field overrides the PCOFST field and indicates that 
values in the PC and IR are invalid. Exiting debug mode with these PC and IR values have 
unpredictable results:
 No error condition exists.
 Error condition exists. PC and IR are corrupted.

The FFRA control bit causes the contents of WBBR to be used as the rA (rS for logical and 
shift operations) operand value of the first instruction to be executed when exiting debug 
mode or the instruction to be single stepped. This allows the external tool to update CPU 
registers and memory. rA and rS are instruction syntax used to identify a source GPR:
 No action.
 Contents of WBBR used as rA (rS for logical and shift operations) operand value.

The IRStat0-9 bits provide status information to the external tool. The IRStat8 bit indicates 
that the instruction in the IR is a VLE or non-VLE instruction. For MPC5500 devices without 
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VLE, bits IRstat8 and IRstat9 of the CTL do not exist. Below is a description of the IRStat8 
bit. 

All other CTL bits are discussed as needed.:
 IR contains a BookE instruction.
 IR contains a PowerPC VLE instruction, aligned in the most significant portion of IR if 

16-bit.

2.7.3 Program Counter Register (PC)
The PC stores the value of the program counter that was present when debug mode was 
entered. The PC value is affected by operations performed during debug mode and must be 
restored prior to exiting debug mode. It may be necessary to adjust the PC before exiting 
debug mode according the PCOFST field in the CTL. If the external tool desires to redirect 
program flow to an arbitrary location, the PC and IR should be initialized corresponding to 
the first instruction to be executed. Alternatively, the IR may be set to a nop instruction and 
the PC may be set to the location prior to the location at which it is desired to redirect flow. 
When debug mode is exited, the nop executes and then instruction fetch and execution 
begins at the location where it is desired to redirect flow.

2.7.4 Write-Back Bus Register (WBBRlow, WBBRhigh)

WBBR is used as a means of passing operand information to/from the CPU from/to the 
external tool. Whenever the external tool needs to read the contents of a CPU register or 
memory location, it can force the CPU to single step an instruction that brings that 
information to WBBR. To write the contents of a CPU register or memory location, the 
external tool can force the CPU to single step an instruction that uses the information in 
WBBR. For the purpose of this document, only WBBRlow is used. WBBRhigh is used for SPE 
instructions that generate 64-bit results or use 64-bit operands. Such instructions are 
outside the scope of this document.

2.7.5 Machine State Register (MSR)
The MSR is used to read/write the machine state register of the CPU. This register is 
affected by operations performed while in debug mode. If consistency of the machine state 
is desired, the MSR should be saved when entering debug mode and restored prior to 
exiting debug mode.

2.8 Single step
Single stepping of instructions is achieved by first placing the CPU in debug mode if the 
CPU is not already in debug mode. The next step is to write the appropriate information into 
the CPU scan chain register (CPUSCR), followed by writing to OCMD to set the OCMD[GO] 
bit and clear the OCMD[EX] bit with the OCMD[RS] field indicating either the CPUSCR or 
No Register Selected. Once debug mode has been entered, it is required that a scan in and 
update to the CPUSCR must be performed prior to single stepping. For single step, the CPU 
returns to debug mode after executing a single instruction. The external tool should read the 
OnCE status register (OSR) to verify that the CPU has returned to debug mode without the 
OSR. During single step, exception conditions can occur, if not masked, and may prevent 
the desired instruction from being executed. After stepping over the instruction, the core 
fetches the next instruction. The new program counter and instruction are loaded into the 
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PC and IR portions of the CPUSCR. Care must be taken to insure that the next instruction 
fetched after the single step, points to a valid memory location. 

For SPC56x/RPC56x devices with VLE, the CTL[IRstat8] bit indicates that the instruction in 
the IR is a VLE or non-VLE instruction. The CTL[FFRA], CTL[IRStat8], and the CTL bits 
indicated by “*” should be set as appropriate before single stepping. All other CTL bits 
should be set to zero.  Single stepping can be used during normal execution of the 
instruction flow or to force execution of a particular instruction by loading the desired 
instruction into the IR portion of the CPUSCR. By forcing execution of particular instructions, 
single stepping can be used for memory and register access by the tool.

2.9 Exit from debug mode to normal execution
Exiting debug mode and returning to normal execution is achieved by first clearing the 
OCR[DMDIS] and OCR[DR] bits if not already cleared while leaving the OCR[MCLK] set. 
The next step is to write the appropriate information into the CPU scan chain register 
(CPUSCR), followed by a write to OCMD to set the OCMD[GO] bit and OCMD[EX] bit with 
the OCMD[RS] field indicating either the CPUSCR or No Register Selected. Once debug 
mode has been entered, it is required that a scan in and update to the CPUSCR be 
performed prior to exiting debug mode. If continuation of the normal instruction stream is 
desired, the external tool is responsible for inspection of the CTL register value when debug 
mode was entered to determine if the PC is invalid or needs to be offset prior to exiting 
debug mode. Also, the internal state bits indicated by “*” in the CTL should be restored to 
their original value when debug mode was entered if continuation of the normal instruction 
stream is desired. The IRStatus bits of the CTL should be set to zero with the exception of 
CTL[IRStat8] on SPC56x/RPC56x devices with VLE. CTL[IRStat8] indicates if the current 
instruction in the IR is a VLE or non-VLE instruction.  To begin instruction execution from an 
arbitrary location, the PC should be set to the desired location for execution to begin minus 
0x4. The IR should be set to a nop (ex: 0x60000000). Then exit debug mode as mentioned 
above. The nop executes, then the core begins fetching instructions at the desired location 
for execution.

2.10 GPR access
The OnCE module provides the ability to read and write the general purpose registers 
(GPR) while in debug mode. Reading a general purpose register is achieved by single 
stepping over an ori instruction. As an example, to read the lower 32 bits of GPR r1, an ori 
r1,r1,0 instruction is executed, and the result of the instruction is latched into WBBRlow. The 
external tool can then read the contents of WBBRlow by scanning out the CPUSCR.

Writing a register is achieved by single stepping over an ori instruction with the CTL[FFRA] 
bit set causing the WBBRlow to be used as the source register for the instruction. As an 
example, to write the lower 32 bit of GPR r1, an ori r1, X, 0 is executed with the data to be 
written in WBBRlow. The X in the instruction is replaced by the WBBRlow register. 

2.11 SPR access
The OnCE module provides the ability to read and write the special purpose registers (SPR) 
while in debug mode. Reading a special purpose register is achieved by saving the value in 
a GPR, single stepping over a mfspr instruction which brings the spr value into both the 
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saved GPR and WBBRlow, and then restoring the GPR. As an example, to read SPR 624, 
first save r31. Then execute mfspr r31, 624. The value that was in SPR 624 is now in 
WBBRlow of the CPUSCR and can be read by the external tool. Finally r31 should be 
restored.  
To write an SPR, single step over a mtspr instruction with the value to write to the SPR in 
WBBRlow and the CTL[FFRA] bit set. For example, to write SPR 624 with the value 
0x10050000, single step over mtspr 624, X with the value to write to SPR 624 in WBBRlow 
and CTL[FFRA] set. The X in the instruction is replaced by WBBRlow.  
DBCR0-3, DBSR, DBCNT, IAC1-4, DAC1-2 cannot be written by single stepping over mtspr 
like the other SPRs while in external debug mode. They can however be written by the 
method detailed in Section 2.2: OnCE register access.

2.12 OnCE memory access
There are two ways to access memory mapped locations on the SPC56x/RPC56x devices: 
one is through the OnCE module, and the other is through the Nexus R/W access block. 
The OnCE module method requires that the CPU be in debug mode. The Nexus R/W 
access block does not require that the CPU be in debug mode. The Nexus R/W access 
block is also the faster method of accessing memory. This section covers access to memory 
mapped locations using the OnCE method. The Nexus R/W access block is covered in a 
following section. 
Writing a memory location is achieved by first reading the contents of a GPR and saving that 
value, writing that GPR with the value to be written to memory, and single stepping over a 
stw, sth, or stb instruction with the address to write in WBBRlow and the CTL[FFRA] bit set. 
The GPR that was previously saved should be used as the rS field of the store instruction. 
After single stepping over the store instruction, the saved GPR value should then be 
restored. For example, to write the word 0xA5A5A5A5 to location 0x40000000, first save the 
value in a r31. Then write the value 0xA5A5A5A5 to r31. The next step is to step over the 
instruction stw r31, 0(X) with 0x40000000 in WBBRlow and the CTL[FFRA] bit set. The X in 
the instruction is replaced by the WBBRlow register. GPR r31 should then be restored to its 
saved value. 
Reading a memory location is achieved by first reading the contents of a GPR and saving 
that value, then single stepping a lwz, lhz, or lbz with the address to be read in WBBRlow 
and the CTL[FFRA] bit set. The GPR that was previously saved should be used as the rD 
field of the load instruction. The value read from the memory location is then in both the 
WBBRlow and the GPR whose value was previously saved. 
After single stepping the load instruction and getting the read data from WBBRlow, the saved 
GPR value should then be restored. For example, to read a word from address location 
0x40000000, first save the value in r31. Then single step over the instruction lwz r31, 0(X) 
with 0x40000000 in WBBRlow and the CTL[FFRA] bit set. The X in the instruction is 
replaced by the WBBRlow register. After the single step is complete, the data read from 
memory can be read by the external tool from WBBRlow. GPR r31 should then be restored 
to its saved value.

2.13  Breakpoints
The OnCE debug module provides the capability for both software and hardware 
breakpoints to be set at a particular address. 
As a reference, instruction address hardware breakpoints are also discussed in this section.
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2.13.1 Software breakpoints
Recognition of software breakpoints by the OnCE module are enabled by setting the 
OCR[FDB] bit along with the DBCR0[EDM] bit. Upon executing a bkpt pseudo-instruction, 
the CPU enters debug mode after the instruction following the bkpt pseudo-instruction has 
entered the instruction register. The bkpt pseudo-instruction is defined to be an all 0’s 
instruction opcode.

2.13.2 Instruction address hardware breakpoints
The OnCE module provides the capability to set up to four instruction address hardware 
breakpoints. 
When an instruction address breakpoint is hit, the CPU enters debug mode prior to 
executing the instruction at that address location. When debug mode is entered due to a 
breakpoint, the CPUSCR holds the address at which the breakpoint was set in the PC, and 
the IR contains the instruction at that address. 
To use an instruction address hardware breakpoint, these steps are required:
1. Write the address at which a breakpoint is desired to one of the instruction address 

compare registers IAC1, IAC2, IAC3, or IAC4.
2. Enable the instruction address compare debug event in the DBCR0 by setting the 

appropriate enable bit; DBCR0[IAC1], DBCR0[IAC2], DBCR0[IAC3], or DBCR0[IAC4].
3. Exit from debug mode to normal execution to execute the desired code.
4. Poll the DBSR for the appropriate status bit to be set; DBSR[IAC1], DBSR[IAC2], 

DBSR[IAC3], or DBSR[IAC4]. 
5. If the appropriate status bit in DBSR is set, verify entry into debug mode by reading the 

OnCE status register.
6. Clear the appropriate status bit by writing a 1 to that bit location in the DBSR; 

DBSR[IAC1], DBSR[IAC2], DBSR[IAC3], or DBSR[IAC4].
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3 Nexus Read/Write access block

The Nexus module provided on the cores of the SPC56x/RPC56x family of devices offers 
the capability for program trace, data trace, ownership trace, watch-point messaging and 
trigger, and read/write (R/W) access to memory mapped regions. This section covers R/W 
access using the Nexus R/W access block. The other features of the Nexus module are out 
of the scope of this document and are not covered.  
Unlike the OnCE method of memory access, the Nexus R/W access block provides the 
ability to read and write memory without having to stop code execution by entering debug 
mode. The Nexus R/W access method provides faster memory access over the OnCE 
method due to fewer JTAG scans, and it doesn’t require loading and single stepping over 
any instructions. The Nexus R/W access block is independent of the CPU. 
The R/W access block is controlled by three Nexus registers. These registers are the 
Read/Write Access Control/Status register (RWCS), Read/Write Access Data register 
(RWD), and Read/Write Access Address register (RWA). Access to the Nexus registers is 
covered inSection 3.1. RWCS is shown in Figure 19 and Figure 5 gives the field 
descriptions.

Figure 19. Read/Write Access Control/Status Register (RWCS)

          

Table 5. RWCS field description 
Bits Name Description

31 AC
Access control.
0 End access
1 Start access

30 RW
Read/write select.
0 Read access
1 Write access
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Table 6 details the status bit encodings.

          

RWD is shown in Figure 20.

29–27
SZ

[2:0]

Word size.
0008-bit (byte)
0016-bit (half-word)
01032-bit (word)
01164-bit (double-word - only in burst mode)
100–111 Reserved (default to word)

26–24
MAP
[2:0]

MAP select.
000Primary memory map
001-111 Reserved

23–22
PR

[1:0]

Read/write access priority.
00Lowest access priority
01Reserved (default to lowest priority)
10Reserved (default to lowest priority)
11Highest access priority

21 BST
BST Burst control.
0 Module accesses are single bus cycle at a time.
1 Module accesses are performed as burst operation.

20–16 — Reserved.

15–2
CNT
[13:0]

Access control count. Number of accesses of word size SZ.

1 ERR Read/write access error. See Table 6.

0 DV Read/write access data valid. See Table 6.

Table 6. Read/Write access status bit encoding 
Read action Write action ERR DV

Read access has not 
completed

Write access completed 
without error 0 0

Read access error has 
occurred

Write access error has 
occurred 1 0

Read access 
completed without error

Write access has not 
completed 0 1

Not allowed Not allowed 1 1

Table 5. RWCS field description (continued)
Bits Name Description
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Figure 20. Read/Write access data register (RWD)

RWA is shown in Figure 21.

Figure 21. Read/Write access address register (RWA) 

3.1 Nexus register access
Access to the Nexus registers is enabled by loading the Nexus3-Access instruction 
(0b00_0111_1100) into the OCMD of the OnCE. Once the Nexus3-Access instruction has 
been loaded, reading/writing a Nexus register requires two passes through the DR path the 
OnCE TAP controller state machine that are detailed below. 
1. The first pass through the DR selects the Nexus register to be accessed and whether 

the access is a read or a write. This is achieved by loading an 8-bit value LSB first into 
the JTAG Data Register (DR). The format of this register is described in Figure 22.
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Figure 22. JTAG Data Register (DR)

          

2. The second pass through the DR then shifts the data in or out depending on the type of 
access LSB first.
a) During a read access, the data is latched from the Nexus register when the TAP 

controller state machine passes through the CAPTURE-DR state. The data from 
the Nexus register can be read by the external tool by shifting the data out in the 
SHIFT-DR state. The last bit is shifted out with TMS set to 1, causing transition to 
the EXIT1-DR state.

b) During a write access, the data is shifted in while in the SHIFT-DR state. The last 
bit is shifted in with TMS set to 1, causing transition to the EXIT1-DR state. The 
data is latched into the Nexus register when the TAP controller state machine 
passes through the UPDATE-DR state.

Table 7. Nexus register index
Nexus register index Value shown at bottom of register description

Read/Write (R/W)
0 Read
1 Write
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3.2 Single memory write access
The steps to perform a single memory write access via the Nexus R/W access block are:
1. Initialize RWA with the address to be written using Nexus register index 0x9.
2. Initialize RWCS using Nexus register index 0x7.

a) Access Control (AC) = 0b1 (to indicate start access)
b) Map Select (MAP) = 0b000 (primary memory map)
c) Access Priority (PR) = 0b00 (lowest priority)
d) Read/Write (RW) = 0b1 (write access)
e) Word Size (SZ) = 0b000 (8-bit) or 0b001 (16-bit) or 0b010 (32-bit)
f) Access Count (CNT) = 0b00_0000_0000_0000 or 0b00_0000_0000_0001 (single 

access)
g) Burst Control (BST) = 0b0 (burst disabled)

3. Initialize RWD using Nexus register index 0xA with the data to be written to the address 
in RWA. The endianess of the data needs to be right-justified little endian.
a) 8-bit value of 0xDE to be written to memory: RWD = 0x000000DE
b) 16-bit value of 0xDEAD to be written to memory: RWD = 0x0000ADDE
c) 32-bit value of 0xDEADBEEF to be written to memory: RWD = 0xEFBEADDE

4. The Nexus block then arbitrates for the system bus and transfer the data value from 
RWD to the memory mapped address in RWA. When the access has completed 
without error, then RWCS[ERR] = 0 and RWCS[DV] = 0. This indicates that the device 
is ready for the next access. Nexus also asserts the RDY pin when the transaction has 
completed without error. The external tool can use this as an alternative to polling the 
RWCS status bits.

3.3 Burst block memory write access
The steps to perform a burst block memory write access via the Nexus R/W access block 
are:
1. Initialize RWA with the first address to be written using Nexus register index 0x9. The 

address needs to be aligned on an 8-byte boundary. RWA[2:0] are ignored on a burst 
write.

2. Initialize RWCS using Nexus register index 0x7.
a) Access Control (AC) = 0b1 (to indicate start access)
b) Map Select (MAP) = 0b000 (primary memory map)
c) Access Priority (PR) = 0b00 (lowest priority)
d) Read/Write (RW) = 0b1 (write access)
e) Word Size (SZ) = 0b011 (64-bit)
f) Access Count (CNT) = 0b00_0000_0000_0100 (four double-words)\
g) Burst Control (BST) = 0b1 (burst enabled)

3. Write all 32 bytes of data to be burst to RWD using Nexus register index 0xA, 32-bits at 
a time, starting with the first 32-bit word to be written to the address in RWA. This data 



DocID022669 Rev 3 33/42

AN4035 Nexus Read/Write access block

41

is buffered internally by the burst data buffer. The endianess of the 32-bit data written to 
RWD needs to be little endian.

Value of 0xDEADBEEF to be written to memory: RWD = 0xEFBEADDE
4. The Nexus block then arbitrates for the system bus and transfer the burst data from the 

burst data buffer to the memory starting at the address in RWA. When the access has 
completed without error, then RWCS[ERR] = 0 and RWCS[DV] = 0. This indicates that 
the device is ready for the next access. Nexus also asserts the RDY pin when the 
transaction has completed without error. The external tool can use this as an 
alternative to polling the RWCS status bits.

3.4 Single memory read access
The steps to perform a single memory read access via the Nexus R/W access block are:
1. Initialize RWA with the address to be read using the register index 0x9.

a) Initialize RWCS using Nexus register index 0x7.
b) Access Control (AC) = 0b1 (to indicate start access)
c) Map Select (MAP) = 0b000 (primary memory map)
d) Access Priority (PR) = 0b00 (lowest priority)
e) Read/Write (RW) = 0 (read access)
f) Word Size (SZ) = 0b000 (8-bit) or 0b001 (16-bit) or 0b010 (32-bit)
g) Access Count (CNT) = 0b00_0000_0000_0000 or 0b00_0000_0000_0001 (single 

access)
h) Burst Control (BST) = 0b0 (burst disabled)

2. The Nexus block then arbitrates for the system bus and the read data is transferred to 
RWD from the memory mapped address in RWA. When the access has completed 
without error, then RWCS[ERR] = 0 and RWCS[DV] = 1. This indicates that the device 
is ready for the next access. Nexus also asserts the RDY pin when the transaction has 
completed without error. The external tool can use this as an alternative to polling the 
RWCS status bits.

3. The data can then be read from the RWD register using Nexus register index 0xA. The 
data in RWD are right-justified little endian.
a) 8-bit value of 0xDE read from memory: RWD = 0x000000DE
b) 16-bit value of 0xDEAD read from memory: RWD = 0x0000ADDE
c) 32-bit value of 0xDEADBEEF read from memory: RWD = 0xEFBEADDE



Nexus Read/Write access block AN4035

34/42 DocID022669 Rev 3

3.5 Burst block memory read access
The steps to perform a burst block memory read access via the Nexus R/W access block 
are:
1. Initialize RWA with the first address to be read using Nexus register index 0x9. The 

address needs to be aligned on an 8-byte boundary. RWA[2:0] are ignored on a burst 
read.

2. Initialize RWCS using Nexus register index 0x7.
a) Access Control (AC) = 0b1 (to indicate start access)
b) Map Select (MAP) = 0b000 (primary memory map)
c) Access Priority (PR) = 0b00 (lowest priority) 
d) Read/Write (RW) = 0b0 (read access) 
e) Word Size (SZ) = 0b011 (64-bit)
f) Access Count (CNT) = 0b00_0000_0000_0100 (four double-words)-
g) Burst Control (BST) = 0b1 (burst enabled)

3. The Nexus block then arbitrates for the system bus and transfer the burst data from 
memory to the burst data buffer starting at the address in RWA. When the access has 
completed without error then RWCS[ERR] = 0 and RWCS[DV] = 1. See Table 7 for 
details. This indicates that the device is ready for the next access. Nexus also asserts 
the RDY pin when the transaction has completed without error. The external tool can 
use this as an alternative to polling the RWCS status bits.

4. Read all 32 bytes of data from RWD using Nexus register index 0xA, 32-bits at a time, 
starting with the first 32-bit word read from the address in RWA. The endianess of the 
32-bit data read from RWD is little endian. 

Value of 0xDEADBEEF read from memory: RWD = 0xEFBEADDE
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4 System initialization

For Flash programming, there is some system initialization that needs to be performed by 
the external tool. 
The initialization to perform is the SRAM initialization.

4.1 Internal SRAM initialization
The SPC56x/RPC56x family of devices all contain internal SRAM that must be initialized 
after power-on-reset by 64-bit writes to the entire memory. This is necessary to initialize the 
error-correcting code (ECC) logic.

The easiest way to do this with an external tool is to single step over a number of stmw 
(store multiple words) instructions with r0 as the rS field, the address to begin the writes in 
WBBRlow, and CTL[FFRA] set. This causes all 32 GPRs to be written to memory beginning 
at the address in WBBRlow using 64-bit writes. For example, the starting physical address of 
the internal SRAM is 0x40000000. Stepping over stmw r0, 0(X) with the 0x40000000 in 
WBBRlow causes all 32 GPRs to be written to memory starting at address 0x40000000 
using 64-bit writes. Then 0x80 should be added to the address, written to WBBRlow and 
stmw executed again. This should be done [size of internal SRAM] / [0x80] times to initialize 
the entire internal SRAM.

4.2 Setting up the memory management unit
The memory management unit (MMU) on the SPC56x/RPC56x devices, that include this 
hardware implementation (for example SPC560B/RPC560B devices don’t have this 
hardware implementation), provides memory translation from effective to real addresses. 
For the purpose of Flash programming, it is easier to setup the MMU so that the effective 
addresses are the same as the real addresses. For the CPU to access a memory mapped 
region, an MMU entry for that memory space must be configured. The external tool has the 
capability to setup MMU entries by writing the appropriate SPRs and single stepping over 
the tlbwe instruction.

For Flash programming, the external tool should set up at least four MMU entries. The steps 
required to setup an MMU entry are:
1. Setup MAS0 (SPR 624).
2. Setup MAS1 (SPR 625).
3. Setup MAS2 (SPR 626).
4. Setup MAS3 (SPR 627).
5. Execute tlbwe (0x7C0007A4).



Creating the Flash programming tool AN4035

36/42 DocID022669 Rev 3

5 Creating the Flash programming tool

This section covers the Flash drivers provided by STMicroelectronics®, the tool 
requirements, and also suggests a functional division of the tool.

5.1 Flash programming drivers
STMicroelectronics provides a set of Flash drivers called Standard Software Driver for 
C90FL Flash (SSD). These drivers are easy to use and well documented. The drivers come 
in a c-array format, s-record format, and library format. For external tools, the s-record 
format is the easiest to use. Instructions on how to use the s-record format set of drivers are 
discussed in the next section. There are also examples of using the three driver formats 
provided with the installation of the SSD.

5.2 Tool requirements
The Flash programming tool must perform several required tasks to program the Flash on 
the SPC56x/RPC56x devices.

5.2.1 Debug and driver initialization
The first requirement is to enter debug mode followed by the appropriate initialization. 
These steps must be performed every time a reset occurs or a new SPC56x/RPC56x device 
is connected to the Flash programming tool. The steps to do this are listed below.
1. Ensure that the JTAGC currently has control of the TAP by going through the PAUSE-

DR state. See Section 1.4.2: Test mode for details.
2. Enable the OnCE TAP controller by the method outlined in Section 2.1: Enabling the 

OnCE TAP controller.
3. Enter debug mode during reset and enable recognition of software breakpoints as 

mentioned in Section 2.5: Entering debug mode during reset.
4. Enable external debug mode and clear the debug status bits as mentioned in 

Section 2.6: Enabling external debug mode and other initialization.
5. Setup the MMU as described in Section 4.2: Setting up the memory management unit, 

if it is necessary depending on the device used.
6. Initialize the internal SRAM as mentioned in Section 4.1: Internal SRAM initialization.

The next step is to load the s-record format Flash driver set. The required drivers to load are 
FlashInit, SetLock, FlashProgram, and FlashErase. The other drivers are not required but 
could be loaded if features other than erasing and programming are desired. The s-record 
drivers all specify the start address to be 0x0 however the drivers are position independent. 
The tool should load each driver into internal SRAM at a desired location. The tool is 
responsible for knowing where these drivers are located in memory. Space should also be 
reserved in the internal SRAM for variables needed for the driver set. For example, the 
SSD_CONFIG structure is used for all drivers.

Space must be allocated for this structure. Space should also be allocated in internal SRAM 
for the stack and a buffer for the data to be programmed to Flash. The drivers and variables 
can be written by the method described Section 2.12: OnCE memory access or the 
methods described in Section 3: Nexus Read/Write access block.
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5.2.2 FlashInit
After the drivers are loaded into internal SRAM, operations on the Flash can begin. The 
FlashInit driver should be called first to initialize the Flash.  
This function reads the Flash configuration information from the Flash control registers and 
initialize parameters in SSD configuration structure. ‘FlashInit()’ must be called prior to any 
other flash operations.

The steps required are outlined below.
1. Setup the SSD_CONFIG structure as required. This is documented in the SSD user’s 

manual. The user should correctly initialize the fields c90flRegBase, mainArrayBase, 
shadowRowBase, shadowRowSize, pageSize, and BDMEnable. The other fields are 
initialized when FlashInit is executed. BDMEnable should be set to 1 to cause debug 
mode to be entered via a software breakpoint when each driver completes execution. 
This is the easiest way for the external tool to determine when driver execution is 
complete.

2. Setup r1 as the stack pointer by writing r1 using the method described in Section 2.10: 
GPR access.

3. Setup r3 to point to the SSD_CONFIG structure in internal SRAM.
4. Set the PC to the beginning of FlashInit minus 0x4 and load the IR with a nop 

(0x60000000). See Section 2.7:  CPU Status and Control Scan Chain Register 
(CPUSCR) for details. 

5. Exit debug mode and begin execution of the driver as described in Section 2.9: Exit 
from debug mode to normal execution.

6. Poll the OnCE Status Register to determine when debug mode has been re-entered. 
Reading the OnCE Status Register is described in Section 2.4: OnCE status register.

7. When debug mode has been entered, read the return value in r3. 

5.2.3 SetLock
After the Flash has been initialized using the FlashInit function, the SetLock function should 
be called as many times as required to unlock or lock the appropriate Flash blocks. This 
function sets the block lock state for Shadow/Low/Middle/High address space on the C90FL 
module to protect them from program/erase. The API provides password to enable block 
lock register writes when needed and write the block lock value to block lock register for the 
requested address space.

For the low and mid blocks as well as the shadow block, the lock bits in both the primary and 
secondary lock registers must be set appropriately. It is recommended to lock the shadow 
block unless programming of the shadow block is absolutely necessary. Erasing the shadow 
block without re-programming the censorship information prior to a reset causes the device 
to be censored with an invalid password and the Flash of the device is not able to be 
uncensored.

The steps to call the SetLock driver are listed below.
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1. Setup r1 as the stack pointer.
2. Setup r3 to point to the SSD_CONFIG structure in internal SRAM.
3. Setup r4 with the lock indicator.
4. Setup r5 with the lock state.
5. Setup r6 with the correct password.
6. Set the PC to the beginning of SetLock minus 0x4 and load the IR with a nop 

(0x60000000).
7. Exit debug mode and begin execution of the driver.
8. Poll the OnCE Status Register to determine when debug mode has been re-entered.
9. When debug mode has been entered, read the return value in r3. 

5.2.4 FlashErase
When the appropriate blocks have been locked or unlocked, then an erase of the unlocked 
blocks can be performed.  
This function erases the enabled blocks in the main array or the shadow row. Input 
arguments together with relevant Flash module status is checked, and relevant error code 
returns if there is any error.

The steps to call the FlashErase driver are listed below. 
1. Setup r1 as the stack pointer.
2. Setup r3 to point to the SSD_CONFIG structure in internal SRAM.
3. Setup r4 to indicate either the main array or shadow block to be erased. Erasing the 

shadow block without re-programming the censorship control information prior to a 
reset results in the device being censored. 

4. Setup r5 to select the low address array blocks to be erased. 
5. Setup r6 to select the mid address array blocks to be erased.
6. Setup r7 to select the high address array blocks to be erased.
7. Setup r8 with the pointer to the call back function.
8. Set the PC to the beginning of FlashErase minus 0x4 and load the IR with a nop 

(0x60000000). 
9. Exit debug mode and begin execution of the driver. 
10. Poll the OnCE Status Register to determine when debug mode has been re-entered. 
11. When debug mode has been entered, read the return value in r3. 

5.2.5 FlashProgram
When Flash blocks have been erased, they then can be programmed. To program the 
Flash, the internal SRAM should first be written with the data to be programmed in Flash. 
Depending on the size of the data buffer in internal SRAM and the size of the data to be 
programmed to Flash, the FlashProgram driver may need to be called multiple times. 

This function programs the specified flash areas with the provided source data. Input 
arguments together with relevant flash module status is checked, and relevant error code is 
returned if there is any error.

The steps to call the FlashProgram driver are listed below.
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1. Setup r1 as the stack pointer.
2. Setup r3 to point to the SSD_CONFIG structure in internal SRAM. 
3. Setup r4 to point to the destination address to be programmed in Flash. This address 

must be aligned on a double word boundary. 
4. Setup r5 to the size of the data in bytes to be programmed to Flash. This size should be 

a multiple of 8 and the combination of the destination address and size should be 
entirely contained in the main array or shadow block. 

5. Setup r6 to point to the source buffer of data in internal SRAM to be programmed to 
Flash. This address should be aligned on a word boundary. 

6. Setup r7 with the pointer to the call back function. 
7. Set the PC to the beginning of FlashProgram minus 0x4 and load the IR with a nop 

(0x60000000). 
8. Exit debug mode and begin execution of the driver. 
9. Poll the OnCE Status Register to determine when debug mode has been re-entered. 
10. When debug mode has been entered, read the return value in r3. 

5.2.6 Using other drivers
There are other useful drivers provided with the driver set. For example, BlankCheck can be 
used to verify that a particular region is erased, and ProgramVerify can be used to verify that 
the data was programmed correctly. The method to use these other drivers is similar to the 
above mentioned drivers except that the GPRs needs to be setup appropriately for that 
particular driver.
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5.3 Functional division of the external tool
Before creating the external tool for Flash programming, thought should be given to how the 
software should be divided to meet the tool’s functional requirements. The following list 
gives an example of a simple functional division of the software:
 OnCE TAP controller enable, Section 2.1: Enabling the OnCE TAP controller.
 OnCE register read, Section 2.2: OnCE register access.
 OnCE register write, Section 2.2: OnCE register access.
 OnCE status register read, Section 2.4: OnCE status register.
 Debug mode during reset, Section 2.5: Entering debug mode during reset.
 Single step, Section 2.8: Single step.
 Exit from debug mode, Section 2.9: Exit from debug mode to normal execution.
 Write GPR, Section 2.10: GPR access.
 Read GPR, Section 2.10: GPR access.
 Write SPR, Section 2.11: SPR access.
 Read SPR, Section 2.11: SPR access.
 OnCE memory read, Section 2.12: OnCE memory access.
 OnCE memory write, Section 2.12: OnCE memory access.
 Nexus3 single write, Section 3.2: Single memory write access.
 Nexus3 burst write, Section 3.3: Burst block memory write access.
 Nexus3 single read, Section 3.4: Single memory read access.
 Nexus3 burst read, Section 3.5: Burst block memory read access.
 MMU initialization, Section 4.2: Setting up the memory management unit.
 Internal SRAM initialization, Section 4.1: Internal SRAM initialization.
 S-record parser and loader, Section 5.1: Flash programming drivers
 Debug and driver initialization, Section 5.2.1: Debug and driver initialization.
 Flash initialization, Section 5.2.2: FlashInit.
 Flash block lock initialization, Section 5.2.3: SetLock.
 Flash erase, Section 5.2.4: FlashErase.
 Flash program, Section 5.2.5: FlashProgram.
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23-Sep-2015 3 Added new Root Part Numbers.
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