
Introduction

As the demand for better and better image quality increases, the imaging domain continually evolves giving rise to a variety of
technologies (such as 3D, computational, motion, and infrared).

Imaging applications require high-quality, ease-of-use, power efficiency, high level of integration, fast time-to-market, and cost
effectiveness. To meet these requirements, the STM32 MCUs embed a digital camera interface (DCMI), which allows
connection to efficient parallel camera modules.

The STM32 MCUs provide many performance levels (CPU, MCU subsystem, DSP, and FPU). They also provide various power
modes, an extensive set of peripheral and interface combinations (for example, SPI, UART, I²C, SDIO, USB, Ethernet, or I2S), a
rich graphical portfolio (such as LTDC, QUADSPI, or DMA2D), and an industry-leading development environment ensuring
sophisticated applications and connectivity solutions (IoT).

This application note gives to the STM32 users some basic concepts, with easy-to-understand explanations of the features,
architecture, and configuration of the DCMI. It is supported by an extensive set of detailed examples.

Refer to the device reference manual and datasheet for more details.

Table 1. Applicable products

Type STM32 lines and series

Microcontrollers

STM32F2x7

STM32F407/417, STM32F427/437, STM32F429/439, STM32F446, STM32F469/479

STM32F7x0 value line(1), STM32F7x5, STM32F7x6, STM32F7x7, STM32F7x8, STM32F7x9

STM32H723/733, STM32H725/735, STM32H730 value line, STM32H742, STM32H743/753, STM32H745/755,
STM32H747/757, STM32H750 value line, STM32H7A3/B3

STM32L4x6

STM32L4P5/Q5, STM32L4R5/S5, STM32L4R7/S7, STM32L4R9/S9

STM32U5 series

STM32H563/573, STM32H562, STM32H523/533

STM32N6 series

1. Only STM32F750xx devices.

Introduction to digital camera interface (DCMI) for STM32 MCUs

AN5020

Application note

AN5020 - Rev 4 - November 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

1 General information

This application note applies to the STM32 Series microcontrollers that are Arm® Cortex® core-based devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5020
General information

AN5020 - Rev 4 page 2/84

2 Camera modules and basic concepts

This section provides a summarized description of camera modules and their main components. It also highlights
the external interface focusing on parallel camera modules.

2.1 Basic imaging concepts
This section introduces the imaging field, and gives an overview of the basic concepts and fundamentals,
such as pixel, resolution, color depth, and blanking.
• Pixel: each point of an image represents a color for color images, or a gray scale for black-and-white

photos
A digital approximation is reconstructed to be the final image. This digital image is a two-dimensional array
composed of physical points. Each point is called a pixel (invented from picture elements). In other words,
a pixel is the smallest controllable element of a picture. Each pixel is addressable. Figure 1 illustrates
the difference between the original image and the digital approximation.

Figure 1. Original versus digital image

• Resolution: number of pixels in the image.
The more the pixel size increases, the more the image size increases. For the same image size, the higher
the number of pixels is, the more details the image contains.

• Color depth (bit depth): the number of bits used to indicate the color of a pixel (is also given in bits per
pixel, bpp)
Examples:
– For a bitonal image, each pixel comprises one bit. Each pixel is either black or white (0 or 1).
– For a gray scale, the image is most of the time composed of 2 bpp (each pixel can have one of four

gray levels) to 8 bpp (each pixel can have one of 256 gray levels).
– For color images, the number of bits per pixel varies from 8 to 24 (each pixel can

have up to 16777216 possible colors).
• Frame rate (for video): number of frames (or images) transferred each second, expressed

in frame per second (FPS).
• Horizontal blanking: ignored rows between the end of one line and the beginning of the next one.

Figure 2. Horizontal blanking illustration

Line n (valid data)

Line n + 1 (valid data)
Horizontal
blanking

Horizontal
blanking

AN5020
Camera modules and basic concepts

AN5020 - Rev 4 page 3/84

• Vertical blanking: ignored lines between the end of the last line of a frame and the beginning of the first line
in the next frame.

Figure 3. Vertical blanking illustration

Frame 1

Line n

Line 1

Frame2

Vertical blanking

• Progressive scan: a manner of dealing with moving images
The lines can be drawn one after the other in a sequence without separating the odd lines from the even
ones, as for interlaced scan. To construct the image:
– In progressive scan, the first line is drawn, then the second, and, finally, the third
– In interlaced scan, each frame is divided into two fields (odd and even lines),

which are displayed alternately

2.2 Camera module
A camera module consists of four parts: image sensor, lens, printed circuit board (PCB), and interface.
Figure 4 shows some common camera modules examples.

Figure 4. Camera module examples

2.2.1 Camera module components
The four components of a camera module are described below.

Image sensor

It is an analog device used to convert the received light into electronic signals. These signals convey the
information that constitutes the digital image.
There are two types of sensors that can be used in digital cameras:
• CCD (charge-coupled device) sensors
• CMOS (complementary metal-oxide semiconductor) sensors
Both types convert the light into electronic signals, but each has its own conversion method. As their performance
continually evolves and their cost decreases, CMOS imagers now dominate the digital photography landscape.

Lens

It is an optic, which allows the reproduction of the real image captured rigorously on the image sensor. Picking
the proper lens is part of the user creativity, and affects considerably the image quality.

AN5020
Camera modules and basic concepts

AN5020 - Rev 4 page 4/84

Printed circuit board (PCB)

It is a board that comprises electronic components to ensure the good polarization and the protection of the image
sensor. The PCB also supports all the other parts of the camera module.

Camera module interconnect

The camera interface is a kind of bridge that allows the image sensor to connect to an embedded system, and
to send/receive signals. The following signals are transferred between a camera and an embedded system:
• Control signals
• Image data signals
• Power supply signals
• Camera configuration signals
The camera interfaces are divided into two types: parallel and serial interfaces, depending on the method to
transfer data signals.

2.2.2 Camera module interconnect (parallel interface)
As mentioned above, a camera module requires four main types of signals to transmit image data properly:
control signals, image data signals, power supply signals, and camera configuration signals. Figure 5 illustrates a
typical block diagram of a CMOS sensor, and the interconnection with an MCU.

Figure 5. Interfacing a camera module with an STM32 MCU

D
T4

66
24

V1

External clock

Power supply

Serial interface
(configuration

signals)

PIXCLK
VSYNC
HSYNC

Control signals

Image data
signals

MCU

Camera module

Pixel array

Digital signal
processing

Control register

Pa
ra

lle
l o

ut
pu

t i
nt

er
fa

ce

Ti
m

in
g

co
nt

ro
l

• Control signals: used for clock generation and data transfer synchronization
The camera clock must be provided according to the camera specification. The camera also provides two
data synchronization signals: HSYNC (for horizontal/line synchronization) and VSYNC (for vertical/frame
synchronization).

• Image data signals: each of them transmits a bit of the image data.
Their width represents the number of bits to be transferred at each pixel clock. This number depends on
the parallel interface of the camera module, and on the embedded system interface.

• Power supply signals:
As any embedded electronic system, the camera module needs to have a power supply. The operating
voltage of the camera module is specified in its datasheet.

• Configuration signals: used for the following:
– To configure the appropriate image features such as resolution, format, and frame rate
– To configure the contrast and the brightness
– To select the type of interface. (A camera module can support more than one interface: a parallel and

a serial interface. The user must then choose the most convenient one for the application.)

Most camera modules are parametrized through an I2C communication bus.

AN5020
Camera modules and basic concepts

AN5020 - Rev 4 page 5/84

3 STM32 DCMI overview

This section gives a general preview of the DCMI availability across the various STM32 devices, and gives an
easy-to-understand explanation on the DCMI integration in the STM32 MCUs architecture.
The DCMI is a synchronous parallel data bus, which is used for an easy integration and easy adaptation to
specific application requirements. The DCMI connects with 8-, 10-, 12-, and 14-bit CMOS camera modules, and
supports a multitude of data formats.

3.1 DCMI availability and features across STM32 MCUs
Table 2. Availability of DCMI and related resources summarizes the STM32 devices embedding the DCMI, and
highlights the availability of other hardware resources that facilitate the DCMI operation, or that can be used with
the DCMI in the same application.
The DCMI applications need a frame buffer to store the captured images. It is then necessary to use a memory
destination that varies depending on the image size and the transfer speed.
In some applications, it is necessary to interface with external memories that offer large sizes for data storage.
Quad-SPI can be used in this case. For more details, refer to the application note Quad-SPI interface on STM32
microcontrollers and microprocessors (AN4760).
The DMA2D (Chrom-ART Accelerator controller) is useful for color space transformation (such as RGB565 to
ARGB8888), or for data transfer from one memory to another.
The JPEG codec allows data compression (JPEG encoding) or decompression (JPEG decoding).

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 6/84

Table 2. Availability of DCMI and related resources

STM32 line Max flash
memory size

On-chip
SRAM

(Kbytes)
QUADSPI OCTOSPI HSPI XSPI

Max FMC(1)

SRAM and
SDRAM

frequency
(MHz)

Max
DCMI
pixel
clock
input

(MHz)(2)

JPEG
codec DMA2D

LCD_ TFT
controller

(3)

LCD
parallel

interface

MIPI
DSI

host(5)

Max AHB
frequency

(MHz)

STM32F2x7 1 Mbyte 128 No No No No 60 48 No No No No No 120

STM32F407
STM32F417 1 Mbyte 192 No No No No 60 54 No No No No No 168

STM32F427
STM32F437 2 Mbytes 256 No No No No 90 54 No Yes No No No 180

STM32F429
STM32F439 2 Mbytes 256 No No No No 90 54 No Yes Yes No No 180

STM32F446 512 Kbytes 128 Yes No No No 90 54 No No No No No 180

STM32F469
STM32F479 2 Mbytes 384 Yes No No No 90 54 No Yes Yes No Yes 180

STM32F7x0 64 Kbytes 320 Yes No No No 100 54 No Yes Yes No No 216

STM32F7x5 2 Mbytes 512 Yes No No No 100 54 No Yes No No No 216

STM32F7x6 1 Mbyte 320 Yes No No No 100 54 No Yes Yes No No 216

STM32F7x7 2 Mbytes 512 Yes No No No 100 54 Yes Yes Yes No No 216

STM32F7x8
STM32F7x9 2 Mbytes 512 Yes No No No 100 54 Yes Yes Yes No Yes 216

STM32H723/733 1 Mbytes 564 No Yes No No 137 110 No Yes Yes No No 240

STM32H725
STM32H735 1 Mbyte 564 No Yes No No 137 110 No Yes Yes No No 275

STM32H742
STM32H743
STM32H753

2 Mbytes 864 Yes No No No 125 80 Yes Yes Yes No No 240

STM32H745
STM32H755 2 Mbytes 864 Yes No No No 125 80 Yes Yes Yes No Yes 240

STM32H747
STM32H757 2 Mbytes 864 Yes No No No 110 80 Yes Yes Yes No Yes 240

STM32H730 128 Kbytes 564 No Yes No No 137 110 No Yes Yes No No 275

STM32H750 128 Kbytes 864 Yes No No No 100 80 Yes Yes Yes No No 240

STM32H7A3
STM32H7B3 2 Mbytes 1180 No Yes No No 100 80 Yes Yes Yes No No 280

A
N

5020 - R
ev 4

page 7/84

A
N

5020
STM

32 D
C

M
I overview

STM32 line Max flash
memory size

On-chip
SRAM

(Kbytes)
QUADSPI OCTOSPI HSPI XSPI

Max FMC(1)

SRAM and
SDRAM

frequency
(MHz)

Max
DCMI
pixel
clock
input

(MHz)(2)

JPEG
codec DMA2D

LCD_ TFT
controller

(3)

LCD
parallel

interface

MIPI
DSI

host(5)

Max AHB
frequency

(MHz)

STM32L4x6 1 Mbyte 320 Yes No No No 40 32 No Yes No No No 80

STM32L4R9
STM32L4S9
STM32L4R7
STM32L4S7
STM32L4R5
STM32L4S5

2 Mbytes 640 No Yes No No 60 48 No Yes Yes No Yes 120

STM32L4P5
STM32L4Q5 1 Mbyte 320 No Yes No No 60 48 No Yes Yes No No 120

STM32U575/585 2 Mbytes 786 No Yes No No 80 64 No Yes No Yes No 160

STM32U535/545 512 Kbytes 274 No Yes No No No 64 No Yes No No No 160

STM32U595/5A5
STM32U599/5A9 4 Mbytes 2514 No Yes Yes No 80 64 No Yes Yes Yes Yes 160

STM32U5F7/5G7
STM32U5F9/5G9 4 Mbytes 3026 No Yes Yes No 80 64 Yes Yes Yes Yes Yes 160

STM32H533/523 512 Kbytes 272 No Yes No No 100 100 No No No Yes No 250

STM32H563/573
STM32H562 2 Mbytes 640 No Yes No No 100 100 No No No Yes No 250

STM32N6 series 0 Kbytes 4200 No No No Yes 166 100 Yes Yes Yes No Yes 200

1. FSMC for STM32F2x7, STM32F407/417, STM32L4+, and STM32U5 devices.
2. Refer to the datasheet for the pixel clock frequency (DCMI_PIXCLK).
3. See the application note AN4861 for more details on the STM32 LTDC peripheral.
4. LCD parallel interface via the FMC parallel interface.
5. Refer to the application note AN4860 for more details on the STM32 MIPI-DSI host.

A
N

5020 - R
ev 4

page 8/84

A
N

5020
STM

32 D
C

M
I overview

3.2 DCMI in a smart architecture
The DCMI is connected to the AHB bus matrix. It is accessed by the DMA to transfer the received image data.
The destination of the received data depends on the application.
The smart architecture of STM32 MCUs allows the following:
• The DMA, as an AHB master, transfers the received data (image number n+1) to the memory, while the

CPU processes the previously captured image (image number n).
• The DMA2D, as an AHB master, is used to transfer or modify the received data (CPU resources are kept

for other tasks).
• The memories throughput and the performance are improved thanks to the multi-layer bus matrix.

3.2.1 STM32F2 system architecture
The STM32F2x7 devices are based on a 32-bit multi-layer bus matrix, used to interconnect eight masters and
seven slaves. The DCMI is a slave AHB2 peripheral. The DMA2 performs the data transfer from the DCMI to
internal SRAMs or external memories through the FSMC.
Figure 6 shows the DCMI interconnection and the data path in the STM32F2x7 devices.

Figure 6. DCMI slave AHB2 peripheral in the STM32F2x7

D
T4

66
28

V1

Cortex-M3
GP

DMA1
GP

DMA2
MAC

Eth
OTG HS

Bus matrix-S

AR
T Flash

memory

SRAM1

AHB1 periph

FSMC

I-b
us

D
-b

us

S-
bu

s

D
M

A_
P1

D
M

A_
M

EM
1

D
M

A_
M

EM
2

D
M

A_
P2

ET
H

ER
N

ET
_M

U
SB

_H
S_

M

APB1

APB2

DCMI DCMI_PIXCLK

DCMI_VSYNC
DCMI_HSYNC

Data[0:13]

AHB2 periph

SRAM2

Pixel path through the DCMI and the DMA Pixel path to the memory destination
Bus mutliplexer32-bit bus width

3.2.2 STM32F4 system architecture
The STM32F407/417, STM32F427/437, STM32F429/439, STM32F446, and STM32F469/479 line devices are
based on a 32-bit multilayer bus matrix, allowing the interconnection between:
• Ten masters and eight slaves for the STM32F429/439 devices
• Ten masters and nine slaves for the STM32F469/479 devices
• Seven masters and seven slaves for the STM32F446 devices
• Eight masters and seven slaves for the STM32F407/417 devices
• Eight masters and eight slaves for the STM32F427/437 devices
The DCMI is a slave AHB2 peripheral. The DMA2 performs the data transfer from the DCMI to internal SRAMs or
external memories through the FMC (FSMC for the STM32F407/417 line) or the QUADSPI.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 9/84

Figure 7 shows the DCMI interconnection and the data path in these devices.

Figure 7. DCMI slave AHB2 peripheral in the STM32F4

D
T4

66
29

V1

GP
DMA1

GP
DMA2

ETH
MAC(4)

Flash
memory

SRAM1(1)

Bus Matrix-S

AC
CE

L

I-b
us

D
-b

us

S-
bu

s

D
M

A_
PI

D
M

A_
M

EM
1

D
M

A_
M

EM
2

D
M

A_
P2

64-Kbyte
CCM data

RAM(3)

APB1

APB2

LTDC(5) DMA2D(5)

AHB1 periph

FMC(7)

Dual- or
quad-SPI(2)

DCMI DCMI_PIXCLK

DCMI_VSYNC
DCMI_HSYNC

Data[0:13]

(6) (6)

Pixel path through the DCMI and the DMA Pixel path to the memory destination

Bus mutliplexer32-bit bus width

OTG
_HS

SRAM2(1)

SRAM3(1)

AHB2 periph

Note: 1. See the table below for details on the SRAMs.
2. The dual- or quad-SPI interface is available only in the STM32F469/479 and STM32F446 devices.
3. The 64-Kbyte CCM data RAM is not available in the STM32F446xx devices.
4. The Ethernet MAC interface is not available in the STM32F446xx devices.
5. The LTDC and DMA2D are only available in the STM32F429/439 and STM32F469/479 devices.
6. In the STM32F407/417 devices, there is no interconnection between:

– The Ethernet master and the DCode bus of the flash memory
– The USB master and the DCode bus of the flash memory
In the STM32F446 devices, there is no interconnection between the USB master and the DCode bus of the
flash memory.

7. It is FMSC for the STM32F407/417 devices.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 10/84

Table 3. SRAM availability in the STM32F4 series

STM32 line SRAM1 (Kbytes) SRAM2 (Kbytes) SRAM3 (Kbytes)

STM32F407/417

112 16

N/A

STM32F427/437, STM32F429/439 64

STM32F446 N/A

STM32F469/479 160 32 128

3.2.3 STM32F7 system architecture
The STM32F7x5, STM32F7x6, STM32F7x7, STM32F7x8, and STM32F7x9 line devices, and the STM32F750
devices in the STM32F7x0 value line are based on a 32-bit multilayer bus matrix, allowing the interconnection
between:
• Twelve masters and eight slaves for the STM32F7x6, STM32F7x7, STM32F7x8, STM32F7x9, and

STM32F750 devices
• Eleven masters and eight slaves for the STM32F7x5 devices
The DCMI is a slave AHB2 peripheral. The DMA2 performs the data transfer from the DCMI to internal SRAM or
external memories through the FMC or the QUADSPI.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 11/84

Figure 8 shows the DCMI interconnection and the data path in these devices.

Figure 8. DCMI slave AHB2 peripheral in the STM32F7

D
T4

66
30

V1

32-bit Bus Matrix - S

ITCM RAM(4)

64-bit AHB
64-bit Bus Matrix

ITCM

OTG
_HS

D
M

A_
PI

D
M

A_
M

EM
1

D
M

A_
M

EM
2

D
M

A_
P2

DCMI DCMI_PIXCLK

DCMI_VSYNC
DCMI_HSYNC

Data[0:13]

SRAM1(5)

SRAM2(6)

FMC
Dual- or

quad-SPI

AHB2 periph

AHBPAXIM

ITCM
DTCM

ETH
MAC

Pixel path through the DCMI
and the DMA
Pixel path to the memory
destination

Bus mutliplexer

32-bit bus

LTDC(2) DMA2D

64-bit bus

APB1

APB2

GP
DMA1

GP
DMA2

AHBS

AR
T

Cortex-M7
L1-cache(1)

DTCM RAM(3)

AXI to
multi-AHB

Flash
memory

AHB1 periph

Note: 1. The I/D cache size is:
– 4 Kbytes for the STM32F7x5/F7x6 and STM32F750 devices
– 16 Kbytes for the STM32F7x7/F7x8/F7x9 devices

2. The LTDC is only available in the STM32F7x6/F7x7/F7x8/F7x9 and STM32F750 devices.
3. The DTCM RAM size is:

– 64 Kbytes for the STM32F7x5/F7x6 and STM32F750 devices
– 128 Kbytes for the STM32F7x7/F7x8/F7x9 devices

4. The ITCM RAM size is 16 Kbytes for the STM32F7x6/F7x7/F7x8/F7x9 and STM32F750 devices.
5. The SRAM1 size is:

– 240 Kbytes for the STM32F7x5/F7x6 and STM32F750 devices
– 368 Kbytes for the STM32F7x7/F7x8/F7x9 devices

6. The SRAM2 size is 16 Kbytes for the STM32F7x6/F7x7/F7x8/F7x9 and STM32F750 devices.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 12/84

3.2.4 STM32H7 system architecture
The STM32H723/733, STM32H743/753, STM32H7A3/B3, STM32H747/757, STM32H745/755, STM32H742,
STM32H725/735, STM32H750, and STM32H730 line devices are based on an AXI bus matrix, two AHB bus
matrices, and bus bridges allowing the interconnection between:
• 23 masters and 18 slaves for the STM32H745/755 and STM32H747/757 devices
• 18 masters and 18 slaves for the STM32H723/733, STM32H725/735, STM32H753, and STM32H730

devices
• 19 masters and 18 slaves for the STM32H742 and STM32H743 devices
• 19 masters and 20 slaves for the STM32H7A3/B3 devices
• 19 masters and 17 slaves for the STM32H750 Value line devices

3.2.4.1 STM32H7x3, STM32H742, STM32H725/735, STM32H730, and STM32H750 devices
The DCMI is a slave AHB2 peripheral. The DMA1 and DMA2 perform the data transfer from the DCMI to internal
SRAMs or external memories through the FMC, the QUADSPI, or the OCTOSPI.
The DMA1 and DMA2 are located in the D2 domain. They are able to access the slaves in the D1 and D3
domains. As a result, the DMA1 and DMA2 can transfer the data received by the DCMI (located in D2) to
memories located in the D1 or D3 domains.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 13/84

Figure 9 shows the DCMI interconnection and the data path in these devices.

Figure 9. DCMI slave AHB2 peripheral in the STM32H723/733, STM32H743/753, STM32H742,
STM32H725/735, STM32H730, and STM32H750 devices

D
T7

11
88

V1

USBHS1DMA1 DMA2

DMA2D LTDCMDMASDMMC1

AHB3

AHB4

BDMA

AHB2

AHB1

(8)

AX
IM

Cortex-M7
I$ D$

AH
BP

D
M

A1
_M

EM

D
M

A1
_P

ER
IP

H

D
M

A2
_M

EM

D
M

A2
_P

ER
IP

H

32-bit AHB bus matrix
D2 domain

64-bit AXI bus matrix
D1 domain

32-bit AHB bus matrix
D3 domain

DTCM
128 Kbytes

ITCM
64 Kbytes

AXI SRAM
192 Kbytes(5)

AHBS
CPU

D2-to-D1 AHB
D2-to-D3 AHB

D1-to-D2 AHB

D1-to-D3 AHB

32-bit bus
64-bit bus
Bus multiplexer

Master interface
Slave interface

AXI
AHB

APB
TCM

ITCM1 92
Kbytes(5)

OR

DCMI

DCMI_VSYNC
DCMI_HSYNC
DCMI_PIXCLK

Data[0:13]

Pixel path through the DCMI and DMA1

Pixel path to the memory destination
Pixel path through the DCMI and DMA2

SRAM1(9)

SRAM2(9)

SRAM3(7)(9)

APB1

APB2

Backup
SRAM

4 Kbytes

SRAM4

APB4

Flash A

Flash B(1)

AXI
SRAM(9)

OTFDEC1(3) OCTOSPI1(2)

OCTOSPI2(2)OTFDEC2(2)

FMC

QUADSPI(4)

APB3

SDMMC2ETH
MAC USBHS2(6)

Note: 1. Flash B is not available in the STM32H723/733, STM32H725/735, STM32H730, and STM32H750 devices.
2. OCTOSPI1 and 2 are not available in the STM32H743/753, STM32H742, and STM32H750 devices.
3. OTFDEC1 and 2 are only available in the STM32H723/733, STM32H725/735, and STM32H730 devices.
4. The QUADSPI is only available in the STM32H743/753, STM32H742, and STM32H750 devices.
5. The 192-Kbyte AXI SRAM and the 92-Kbyte ITCM are only available in the STM32H723/733,
STM32H725/735, and STM32H730 devices.
6. The USBHS2 is only available in the STM32H743/753, STM32H742, and STM32H750 devices.
7. The SRAM3 is only available in the STM32H743/753, STM32H74,2 and STM32H750 devices.
8. There is no connection between the APB3 and the D2 domain in the STM32H723/733, STM32H725/735,
STM32H730, and STM32H750 devices.
9. See Table 4 for more details on the SRAM1, SRAM2, SRAM3 and the AXI SRAM.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 14/84

Table 4. SRAM availability in the STM32H723/733, STM32H743/753, STM32H742, STM32H725/735,
STM32H730, and STM32H750 devices

STM32 line SRAM1 (Kbytes) SRAM2 (Kbytes) SRAM3 (Kbytes) AXI SRAM (Kbytes)

STM32H723/733 16 16 X 128

STM32H725/735 16 16 X 128

STM32H730 16 16 X 128

STM32H743/753 128 128 32 512

STM32H742 128 128 32 512

STM32H750 128 128 32 512

3.2.4.2 STM32H745/755 and STM32H747/757 devices
The DMA1 and DMA2 are in the D2 domain. They are able to access slaves in the D1 and D3 domains. As a
result, the DMA1 and DMA2 can transfer the data received by the DCMI (located in D2) to memories located in
the D1 or D3 domains. Figure 10 shows the DCMI interconnection and the data path in these devices.

Figure 10. DCMI slave AHB2 peripheral in the STM32H745/755 and STM32H747/757 devices

D
T7

11
89

V1
BDMA

AHB1

AX
IM

DMA2 ETH
MAC SDMMC2DMA1 USBHS1 USBHS2

Cortex-M4

SDMMC1 MDMA DMA2D LTDC

Cortex-M7
I$

16 KB
D$

16 KB

AH
BP

D
M

A1
_M

EM

D
M

A1
_P

ER
IP

H

D
M

A2
_M

EM

D
M

A2
_P

ER
IP

H

S-
bu

s

D
-b

us

I-b
us

APB3

32-bit AHB bus matrix
D2 domain

64-bit AXI bus matrix
D1 domain

32-bit AHB bus matrix
D3 domain

DTCM
128 Kbytes

ITCM
64 Kbytes

Flash A
up to 1 Mbyte

Flash B
up to1 Mbyte

QUADSPI

FMC

AHBS
CPU CPU

D2-to-D1 AHB D2-to-D3 AHB

D1-to-D2 AHB

D1-to-D3 AHB

Master interface

Slave interface

AHB3

AXI
AHB

APB
TCM

DCMI

DCMI_VSYNC
DCMI_HSYNC
DCMI_PIXCLK

AXI SRAM
512 Kbytes

32-bit bus
64-bit bus
Bus multiplexer

Pixel path through the DCMI and DMA1

Pixel path to the memory destination

Pixel path through the DCMI and DMA2

ART

SRAM1
128 Kbytes

SRAM2
128 Kbytes

SRAM3
32 Kbytes

AHB2

APB1

APB2

AHB4 APB4

SRAM4
64 Kbytes
Backup SRAM

4 Kbytes

3.2.4.3 STM32H7A3/7B3 devices
The DMA1 and DMA2 are in the CD domain. They are able to access slaves in the CD and SRD domains. As a
result, the DMA1 and DMA2 can transfer the data received by the DCMI (located in the CD domain) to memories
located in the CD or SRD domain. Figure 11 shows the DCMI interconnection and the data path in these devices.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 15/84

Figure 11. DCMI slave AHB2 peripheral in the STM32H7A3/B3

D
T7

11
87

V1

Note: OTFDEC1/2 are only available in the STM32H7B3 devices.

3.2.5 STM32L4 system architecture
The STM32L496xx and STM32L4A6xx devices are based on a 32-bit multilayer bus matrix,
allowing the interconnection between six masters and eight slaves.
The DCMI is a slave AHB2 peripheral. The DMA2 performs the data transfer from the DCMI to internal SRAMs or
external memories through the FMC or QUADSPI.
The DMA has only one port (not like STM32F2/F4/F7 and STM32H7 devices where the peripheral port is
separated from the memory port), but it supports circular-buffer management, peripheral-to-memory,
memory‑to‑peripheral, and peripheral-to-peripheral transfers.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 16/84

Figure 12 shows the DCMI interconnection and the data path in these devices.

Figure 12. DCMI slave AHB2 peripheral in STM32L496/4A6

D
T4

66
31

V1

DCMI DCMI_PIXCLK

DCMI_VSYNC
DCMI_HSYNC

Data[0:13]

Cortex-M4 DMA1 DMA2

FMC

AHB1periph

SRAM2

AC
C

EL

ICode

DCode

QUADSPI

DMA2D

Bus matrix-S

AHB2 periph

SRAM1

Pixel path through the DCMI and the DMA Pixel path to the memory destination

Bus mutliplexer32-bit bus width

Flash memory
(1 Mbyte)

3.2.6 STM32L4+ system architecture
The STM32L4R9/S9, STM32L4R7/S7, STM32L4R5/S5, and STM32L4P5/Q5 line devices are based on a 32-bit
multilayer bus matrix, allowing the interconnection between:
• 9 masters and 10 slaves for the STM32L4P5/Q5 devices
• 9 masters and 11 slaves for the STM32L4R5/S5, STM32L4R7/S7, and STM32L4R9/S9 devices
The DCMI is a slave AHB2 peripheral. The DMA1 and DMA2 perform the data transfer from the DCMI to internal
SRAMs or external memories through the FSMC or OCTOSPI.
The DMA has only one port. It is different from the STM32F2/F4/F7 and STM32H7 devices where the peripheral
port is separated from the memory port. However, it supports circular-buffer management, memory-to-memory,
peripheral‑to‑memory, memory-to-peripheral, and peripheral-to-peripheral transfers.
Figure 13 shows the DCMI interconnection and the data path in these devices.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 17/84

Figure 13. DCMI slave AHB2 peripheral in the STM32L4+

D
T7

11
90

V2

Cortex®-M4 with FPU

FSMC

AHB1
peripherals

DCMI

DCMI_VSYNC
DCMI_HSYNC
DCMI_PIXCLK

Data[0:13]

SRAM2(4)

SRAM1(3)

Flash
memory
2 Mbytes

S
-b

us

D
-b

us

ICode

DCode

OCTOSPI2

DMA2D

I-
bu

s

Bus matrix-S

LCD-TFT SDMMC1 SDMMC2(2) GFXMMU(1)

SRAM3(5)

GFXMMU

OCTOSPI1

Pixel path through the DCMI and DMA1

Pixel path to the memory destination

Bus multiplixer

32-bit bus widthPixel path through the DCMI and DMA2

AHB2
peripherals

DMA1 DMA2

AC
C

EL

Note: 1. The GFXMMU is only available in the STM32L4R5/4R7/4R9/4S5/4S7/4S9 devices.
2. The SDMMC1 is only available in the STM32L4P5/4Q5 devices.
3. The SRAM1 size is:

– 128 Kbytes for the STM32L4P5/4Q5 devices
– 192 Kbytes for the STM32L4R5/4R7/4R9/4S5/4S7/4S9 devices.

4. The SRAM2 size is 64 Kbytes for the STM32L4P5/4Q5/R5/4R7/4R9/4S5/4S7/4S9 devices.
5. The SRAM3 size is:

– 128 Kbytes for the STM32L4P5/4Q5 devices
– 384 Kbytes for the STM32L4R5/4R7/4R9/4S5/4S7/4S9 devices

3.2.7 STM32U5 system architecture
The STM32U5 devices are based on a 32-bit multilayer AHB bus matrix, enabling the interconnection between:
• 16 masters and 13 slaves in the STM32U595/5A5, STM32U599/5A9, STM32U5F7/5G7, and

STM32U5F9/5G9 devices
• 11 masters and 10 slaves in the STM32U575/585 devices
• 9 masters and 7 slaves in the STM32U535/545 devices
The DCMI is a slave AHB2 peripheral.
The GPDMA1 performs the data transfer from the DCMI to internal SRAMs or external memories through the
FSMC, OCTOSPI, or HSPI.
Figure 14 shows the DCMI interconnection and the data path in these devices.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 18/84

Figure 14. DCMI slave AHB2 peripheral in the STM32U5 devices

D
T7

16
16

V1

S-
bu

s

Fa
st

-b
us

Sl
ow

-b
us

32-bit bus matrix

C
-b

us

MPCBB1

MPCBB2

MPCWM1 OCTOSPI1

AHB2
peripherals

AHB1
peripherals

SRAM2(4)

SRAM1(4)

Flash memory
(512 Kbytes/
2/4 Mbytes)

FSMC(1)

MPCBBx: Block-based memory protection controller

Bus multiplexer
MPCWMx: Watermark-based memory protection controller

DCACHE1
(4/16-Kbyte)

128-bit cache refill

MPCBB3(1) SRAM3(1)(4)

MPCWM5
(1)

OCTOSPI2
(1)

Fast bus multiplexer

SRD

OTFDEC1

MPCWM2
MPCWM3

(1)

OTFDEC2 (1)

MPCWM4 BKPSRAM
(4)

MPCBB4 SRAM4(4)

MPCBB5(2) SRAM5(2)(4)

HSPI1(2)MPCWM6
(2)

DCACHE2
(16-Kbyte)(2)

GPDMA1 DMA2D(1) SDMM
C1

SDMM
C2(1)

Po
rt

1

Po
rt

0

LTDC(2) GPU2D(2) GFXMMU(2)OTG_HS(2)

Cortex-M33
With TrustZone mainline and FPU

ICACHE(8/32-Kbyte)

Fast bus multiplexer on STM32U59x/5Ax/5Fx/5Gx

Fast bus multiplexer on STM32U575/585

MPCBB6(3) SRAM6(3)(4)

M
0

po
rt

M
1

po
rt

APB1 peripherals

APB2 peripherals

AHB3
peripherals

DCMI

DCMI_VSYNC
DCMI_HSYNC
DCMI_PIXCLK

Data[0:13]

Master Interface

Slave Interface

Pixel path through the DCMI and GPDMA1
Pixel path to the memory destination

Note: 1. This peripheral is not present in the STM32U535/545.
2. This peripheral is not present in the STM32U535/545/575/585.
3. This peripheral is present only in the STM32U5F7/5G7, STM32U5F9/5G9.
4. See Table 5 for more details on the SRAM1/2/3/4/5/6 and the BKPSRAM

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 19/84

Table 5. SRAM availability in the STM32U5 devices

STM32 lines SRAM1
(Kbytes)

SRAM2
(Kbytes)

SRAM3
(Kbytes)

SRAM4
(Kbytes)

SRAM5
(Kbytes)

SRAM6
(Kbytes)

BKSRAM
(Kbytes)

STM32U535/545 192 64 x 16 x x 2

STM32U575/585 192 64 512 16 x x 2

STM32U595/5A5
STM32U599/5A9 768 64 832 16 832 x 2

STM32U5F7/5G7
STM32U5F9/5G9 768 64 832 16 832 512 2

3.2.8 STM32H5 system architecture
The STM32H562 and STM32H563/573 devices are based on a 32-bit multilayer AHB bus matrix, enabling the
interconnection between 13 masters and 10 slaves.
The DCMI is a slave AHB2 peripheral.
The GPDMA1 performs the data transfer from the DCMI to internal SRAMs or external memories through the
FMC or OCTOSPI.
Figure 15 shows the DCMI interconnection and the data path in these devices.

Figure 15. DCMI slave AHB2 peripheral for the STM32H562 and STM32H563/573

D
T7

16
17

V1
OTFDEC

Flash (2 Mbytes)

SRAM1
256 Kbytes

SRAM2
64 Kbytes

SRAM3
320 Kbytes

BKPSRAM
4 Kbytes

OCTOSPI

FMC

MPCWM4

MPCBB3

MPCBB2

MPCBB1

AHB1
peripherals

MPCWM1

MPCWM2

AHB4
peripherals

AHB3
peripherals

AHB2
peripherals

32-bit bus matrix

Sl
ow

-b
us

Fa
st

-
bu

s

C
-b

us

S-
bu

s

Po
rt

1

Po
rt

0

Po
rt

1

Po
rt

0

SDMMC1 SDMMC2
ETHERNET

MAC
Cortex-M33

with TrustZone mainline and FPU

ICACHE
(8-Kbyte)

DCACHE
(4-Kbyte)

GPDMA1 GPDMA2

DCMI

DCMI_VSYNC
DCMI_HSYNC
DCMI_PIXCLK

Data[0:13]

Pixel path through the DCMI and GPDMA1

Pixel path to the memory destination
Pixel path through the DCMI and GPDMA2

Bus multiplexer
Fast bus multiplexer

Master Interface

Slave Interface

MPCBBx: Block-based memory protection controller
MPCWMx: Watermark-based memory protection controller

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 20/84

3.2.9 STM32N6 system architecture
The STM32N6 devices are based on a 32-bit multilayer AHB bus matrix, enabling the interconnection between 28
masters and 29 slaves.
The DCMI is a slave AHB5 peripheral. The GPDMA performs the data transfer from the DCMI to internal SRAM
or external memories through the FMC or the XSPI.

AN5020
STM32 DCMI overview

AN5020 - Rev 4 page 21/84

4 Reference boards with DCMI and/or camera modules

Many STM32 reference boards are available. Most of them embed the DCMI, and some of them have an onboard
camera module. The board selection depends on the application and the hardware resources. The table below
summarizes the DCMI, the camera modules, and the memories availability across various STM32 boards.

Table 6. DCMI and camera modules on STM32 boards

STM32 line Board Camera
module

CMOS
sensor

Internal SRAM
(Kbytes)

External SDRAM
bus width (bits)

External SRAM
bus width (bits)

STM32F2x7
STM3220G-EVAL

Yes(1) OV2640 or
OV9655 132

N/A

STM3221G-EVAL

STM32F407/417

STM32F4DISCOVERY N/A(2)(3)

OV9655 196STM3240G-EVAL
Yes(1)

STM3241G-EVAL

STM32F429/439

32F429IDISCOVERY N/A(3) N/A

256

16 N/A

STM32429I-EVAL
Yes(4) OV2640 or

OV9655 32 16
STM32439I-EVAL

STM32F446 STM32446E-EVAL Yes(5) S5k5CAGA 128 16 N/A

STM32F469/479

32F469IDISCOVERY N/A(3) N/A

388 32

N/A

STM32469I-EVAL
Yes(5) S5k5CAGA 16

STM32479I-EVAL

STM32F7x0 STM32F7508DISCOVERY N/A(3) OV9655 340 32 N/A

STM32F7x6

32F746GDISCOVERY Yes(6) OV9655

320

16 N/A

STM32746G-EVAL
Yes(5) S5k5CAGA 32 16

STM32756G-EVAL

STM32F7x9

32F769IDISCOVERY N/A(3) N/A

512 32

N/A

STM32F769I-EVAL
Yes(5) S5k5CAGA 16

STM32F779I-EVAL

STM32H7x3
STM32H743I-EVAL

STM32H753I-EVAL
N/A(3) N/A 864 32 16

STM32H747/757 STM32H747DISCOVERY Yes(7) OV5640 or
OV9655 868 32 N/A

STM32H7A3/B3 STM32H7B3I-EVAL Yes(8) OV5640 1600 32 N/A

STM32L4x6 32L496GDISCOVERY Yes(6) OV9655 320
N/A

STM32L4+ 32L4R9IDISCOVERY Yes(8) OV9655 640

STM32U5

STM32U575I-EVAL Yes(8) OV5640 786 N/A N/A

STM32U5F9J-DK1 N/A(3) N/A 3026 N/A N/A

STM32U5F9J-DK2 N/A(3) N/A 3026 N/A N/A

STM32U599J-DK N/A(3) N/A 2514 N/A N/A

STM32H573 STM32H573I-DK N/A(3) N/A 644 16 16

1. Possible cameras to be connected: module CN01302H1045-C (CMOS sensor OV9655, 1.3 megapixels) and module CN020VAH2554-C
(CMOS sensor OV2640, 2 megapixels)

2. N/A means not available. The application must use the desired camera module compatible with the DCMI interface.
3. The camera module can be connected to the DCMI through the GPIO pins.

AN5020
Reference boards with DCMI and/or camera modules

AN5020 - Rev 4 page 22/84

4. The camera module daughterboard MB1066 is connected.
5. The camera module daughterboard MB1183 is connected.
6. The camera module can be connected to the DCMI through an FFC (flexible flat cable): the STM32F4DIS-CAM can be connected directly.
7. The camera module can be connected with caution before powering the Discovery board.
8. The camera module daughter board MB1379 is connected.

AN5020
Reference boards with DCMI and/or camera modules

AN5020 - Rev 4 page 23/84

5 DCMI description

This section details the DCMI, and its manner of dealing with the image data and the synchronization signals.

Note: The DCMI supports only the slave input mode.

5.1 Hardware interface
The DCMI consists of:
• Up to 14 data lines (D13-D0)
• The pixel clock line DCMI_PIXCLK
• The DCMI_HSYNC line (horizontal synchronization)
• The DCMI_VSYNC line (vertical synchronization).
The DCMI comprises up to 17 inputs. Depending on the number of data lines enabled by the user (8, 10, 12,
or 14), the number of the DCMI inputs varies (11, 13, 15, or 17 signals).
If less than 14-bit data width is used, the unused pins must not be assigned to the DCMI through GPIO alternate
functions. The unused input pins can be assigned to other peripherals.
In the case of embedded synchronization, the DCMI needs only nine inputs (eight data lines and DCMI_PIXCLK)
to operate properly. The eight unused pins can be used for GPIO or other functions.
Figure 16 shows the DCMI signals.

Figure 16. DCMI signals

DCMI

DCMI interrupt

External
interface

DCMI_D[0:13]

DCMI_PIXCLK

DCMI_HSYNC

DCMI_VSYNCDMA request

Data [31:0]

If x-bit data width is chosen (x data lines are enabled, x = 8, 10, 12, or 14), x bits of image (or video) data are
transferred each DCMI_PIXCLK cycle, and packed into a 32-bit register.

AN5020
DCMI description

AN5020 - Rev 4 page 24/84

Figure 17 shows the four main DCMI components.

Figure 17. DCMI block diagram: example of 12-bit data width

D
T4

66
33

V3

DCMI_VSYNC

DCMI_HSYNC

DCMI_PIXCLK

D0

D1

D13*

32
-b

it
da

ta
 re

gi
st

er

Data

Bit_0

Bit_11

Bit_15

Bit_27

Bit_31

DMA request

DCMI interrupt

4-
w

or
d

FI
FO

D
0[

0.
.1

1]
D

1[
0.

.1
1]

00
00

00
00

D
2[

0.
.1

1]
D

3[
0.

.1
1]

D
4[

0.
.1

1]
D

5[
0.

.1
1]

D
6[

0.
.1

1]
D

7[
0.

.1
1]

D
8[

0.
.1

1]
D

9[
0.

.1
1]

D
at

a
ex

tr
ac

to
r

Sy
nc

hr
on

iz
er

D12*
D11

Note: * D12 and D13 are not used for the 12-bit data width example.

• The DCMI synchronizer ensures the control of the ordered sequencing of the data flow through the DCMI.
It controls the data extractor, the FIFO, and the 32-bit register.

• The data extractor ensures the extraction of the data received by the DCMI.
• The 4-word FIFO is implemented to adapt the data rate transfers to the AHB. There is no overrun

protection to prevent data from being overwritten if the AHB does not sustain the data transfer rate. In case
of overrun or errors in the synchronization signals, the FIFO is reset, and the DCMI waits for a new start of
frame.

AN5020
DCMI description

AN5020 - Rev 4 page 25/84

• A 32-bit data register where the data bits are packed for transfer through a general-purpose DMA channel.
The placement of the captured data in the 32-bit register depends on the data width:
– For an 8-bit data width, the DCMI captures the eight LSBs (the six other inputs D[13:8] are ignored).

The first captured data byte is placed in the LSB position in the 32-bit word, and the fourth captured
data byte is placed in the MSB position. In this case, a 32-bit data word is made up every four pixel
clock cycles. For more details, see Section 5.6.

Figure 18. Data register filled for 8-bit data width

DCMI_DR

Bit number 0781516232431

Dn + 2 [7:0] Dn [7:0]Dn+1 [7:0]Dn + 3 [7:0]

– For a 10-bit data width, the DCMI captures the 10 LSBs (the four other inputs D[13:10] are ignored).
The first 10 bits captured are placed as the 10 LSBs of a 16-bit word. The remaining MSBs in the 16-
bit word of the DCMI_DR register (bits 10 to 15) are cleared. In this case, a 32-bit data word is made
up every two pixel clock cycles.

Figure 19. Data register filled for 10-bit data width

DCMI_DR

Bit number 09101516252631

000000 Dn + 1 [9:0] Dn [9:0]000000

– For a 12-bit data width, the DCMI captures the 12-bit LSBs (the two other inputs D[13:12] are
ignored). The first 12 bits captured are placed as the 12 LSBs of a 16-bit word. The remaining MSBs
in the 16-bit word of the DCMI_DR register (bits 12 to 15) are cleared. In this case, a 32-bit data word
is made up every two pixel clock cycles.

Figure 20. Data register filled for 12-bit data width

DCMI_DR

Bit number 011121516272831

0000 Dn + 1 [11:0] Dn [11:0]0000

– For a 14-bit data width, the DCMI captures all the received bits. The first 14 bits captured are placed
as the 14 LSBs of a 16-bit word. The remaining MSBs in the 16-bit word of the DCMI_DR register
(bits 14 and 15) are cleared. In this case, a 32-bit data word is made up every two pixel clock cycles.

Figure 21. Data register filled for 14-bit data width

DCMI_DR

Bit number 013141516293031

00 Dn + 1 [13:0] Dn [13:0]00

AN5020
DCMI description

AN5020 - Rev 4 page 26/84

5.2 Camera module and DCMI interconnection
As mentioned in Section 2.2.2, the camera module is connected to the DCMI through the following signal types:
• DCMI clock and data signals
• I2C configuration signals

Figure 22. STM32 MCU and camera module interconnection

D
T4

66
53

V1

Configuration signals

Data signals
(up to 14)

DCMI

I2C

HSYNC
VSYNC
PIXCLK

Note: For embedded synchronization, the DCMI_HSYNC and
DCMI_VSYNC signals are ignored. Only eight data signals are used.

5.3 DCMI functional description
The following steps summarize the internal DCMI component operation, and give an example of data flow through
the system bus matrix:
1. After receiving the different signals, the synchronizer controls the data flow through the different DCMI

components (data extractor, FIFO, and 32-bit data register).
2. Being extracted by the extractor, data are packed in the 4-word FIFO, then ordered in the 32-bit register.
3. Once the 32-bit data block is packed in the register, a DMA request is generated.
4. The DMA transfers the data to the corresponding memory destination.
5. Depending on the application, data stored in the memory can be processed differently.

Note: It is assumed that all image preprocessing is performed in the camera module.

5.4 Data synchronization
The camera interface has a configurable parallel data interface from 8 to 14 data lines, together with:
• A pixel clock line, DCMI_PIXCLK (rising/falling edge configuration)
• A horizontal synchronization line, DCMI_HSYNC
• A vertical synchronization line, DCMI_VSYNC, with a programmable polarity
The DCMI_PIXCLK and AHB clocks must respect the minimum ratio AHB/DCMI_PIXCLK of 2.5.
Some camera modules support the two types of synchronization, while others support either the hardware or the
embedded synchronization.

5.4.1 Hardware (or external) synchronization
In this mode, the DCMI_VSYNC and DCMI_HSYNC signals are used for the synchronization:
• The line synchronization is always referred to as DCMI_HSYNC (also known as LINE VALID).
• The frame synchronization is always referred to as DCMI_VSYNC (also known as FRAME VALID).
The polarities of the DCMI_PIXCLK and the synchronization signals (DCMI_HSYNC and DCMI_VSYNC) are
programmable.
Data are synchronized with DCMI_PIXCLK, and change on the rising or falling edge of the pixel clock, depending
on the configured polarity.

AN5020
DCMI description

AN5020 - Rev 4 page 27/84

If the DCMI_VSYNC and DCMI_HSYNC signals are programmed active level (active high or active low), the data
is not valid in the parallel interface when VSYNC or HSYNC is at that level (high or low).
For example, if VSYNC is programmed active high:
• When VSYNC is low, the data is valid.
• When VSYNC is high, the data is not valid (vertical blanking).
The DCMI_HSYNC and DCMI_VSYNC signals act like blanking signals, since all data received during
DCMI_HSYNC/DCMI_VSYNC active periods are ignored.
Figure 23 shows an example of data transfer when DCMI_VSYNC and DCMI_HSYNC are active high, and when
the capture edge for DCMI_PIXCLK is the rising edge.

Figure 23. Frame structure in hardware synchronization mode

DCMI_PIXCLK

DCMI_HSYNC

DCMI_VSYNC

Data line

Vertical
blanking

Horizontal
blanking

Horizontal
blanking

Data Data Data Data
Vertical
blanking

Compressed data synchronization

For compressed data (JPEG), the DCMI supports only the hardware synchronization. Each JPEG stream is
divided into packets, which have programmable size. The packets dispatching depends on the image content,
and results in a variable blanking duration between two packets.
DCMI_HSYNC is used to signal the start/end of a packet. DCMI_VSYNC is used to signal the start/end of the
stream.
If the full data stream finishes and the detection of an end-of-stream does not occur (DCMI_VSYNC does not
change), the DCMI pads out the end-of-frame by inserting zeros.

5.4.2 Embedded (or internal) synchronization
In this case, delimiter codes are used for synchronization. These codes are embedded within the data flow to
indicate the start/end of line or the start/end of frame.

Note: These codes are supported only for 8-bit parallel data interface width. For other data widths, this mode
generates unpredictable results, and must not be used.

The codes eliminate the need for DCMI_HSYNC and DCMI_VSYNC to signal the end/start of the line or the
frame. When this synchronization mode is used, there are two values that must not be used for data: 0 and 255
(0x00 and 0xFF). These two values are reserved for data identification purposes. It is up to the camera module to
control the data values. Image data can then have only 254 possible values (0x00 < image data value < 0xFF).
Each synchronization code consists of 4-byte sequence 0xFF 00 00 XY (as shown in Figure 24), where all
delimiter codes have the same first 3-byte sequence 0xFF 00 00. Only the final one 0xXY is programmed to
indicate the corresponding event.

Figure 24. Embedded code bytes

Embeded
code

DCMI_DR

0xFF 0x00 0x00 0xXY

Common bytes for all codes Variable byte

AN5020
DCMI description

AN5020 - Rev 4 page 28/84

5.4.2.1 Mode 1
This mode is ITU656 compatible (ITU656 is the digital video protocol ITU-R BT.656).
The following reference codes indicate a set of four events:
• SAV (active line): line-start
• EAV (active line): line-end
• SAV (blanking): line-start during inter-frame blanking period
• EAV (blanking): line-end during inter-frame blanking period
Figure 25 illustrates the frame structure using this mode.

Figure 25. Frame structure in embedded synchronization mode 1

D
T4

66
40

V1

EAV
(blanking)

SAV
(blanking)

SAV
(active line)

DataLine_0

DataLine_N

Horizontal
(or line)
blanking

Vertical (or frame) blanking

EAV
(blanking)

SAV
(blanking) Vertical (or frame) blanking

EAV
(active line)

BlankingSynchronization code Data

5.4.2.2 Mode 2
The embedded synchronization codes signal another set of events:
• Frame-start (FS)
• Frame-end (FE)
• Line-start (LS)
• Line-end (LE)
A 0xFF value programmed as a frame-end (FE) means that all the unused codes (the possible values of codes
other than FS, LS, LE) are interpreted as valid FE codes.
In this mode, once the camera interface has been enabled, the frame capture starts after the first occurrence of
an FE code followed by an FS code.

AN5020
DCMI description

AN5020 - Rev 4 page 29/84

Figure 26 illustrates the frame structure when using this mode.

Figure 26. Frame structure in embedded synchronization mode 2

D
T4

66
41

V1

FS

Vertical (or frame) blanking

LE
LS

DataLine_0

DataLine_N

Horizontal
(or line)
blanking

Vertical (or frame) blanking

FE

BlankingSynchronization code Data

Note: The camera modules can have up to eight synchronization codes in interleaved mode. This mode is then not
supported by the camera interface (otherwise, every other half frame is discarded). When using the embedded
synchronization mode, the DCMI does not support the compressed data (JPEG) and the crop feature.

5.4.2.3 Embedded unmask codes
These codes are also used to signal start/end of a line or a frame. Thanks to these codes, instead of comparing
all the received code with the programmed one to set the corresponding event, the user can select only some
unmasked bits to compare with the bits of the programmed code having the same position.
The user applies a mask to the corresponding code by configuring the DCMI embedded synchronization unmask
register (DCMI_ESUR). Each byte in this register is an unmask code, corresponding to an embedded
synchronization code:
• The most significant byte is the frame-end delimiter unmask (FEU): each bit set to 1 implies that this bit, in

the frame-end-code, must be compared with the received data to know if it is a frame-end event or not.
• The second byte is the line-end delimiter unmask (LEU): each bit set to 1 implies that this bit, in the line-

end-code, must be compared with the received data to know if it is a line-end event or not.
• The third byte is the line-start delimiter unmask (LSU): each bit set to 1 implies that this bit, in the line-start-

code, must be compared with the received data to know if it is a line-start event or not.
• The less significant byte is the frame-start delimiter unmask (FSU): each bit set to 1 implies that this bit, in

the frame-start-code, must be compared with the received data to know if it is a frame-start event or not.
There can be different codes for each event (line-start, line-end, frame-start, or frame-end) but all of them (the
different codes corresponding to one event) have the unmasked bits in the same position (same unmask code).
Example: FSC = 0xA5 and unmask code FSU = 0x10 (as shown in Figure 27). In this case the frame-start
information is embedded in the bit number 4 of the FS code. The user must compare only the bit number 4 of the
received code with the bit number 4 of the programmed code, to know if it is a frame-start event or not.

Figure 27. Embedded code unmasking

FSC = 0xA5 1 0 1 0 0 1 0 1

FSU = 0x10 0 0 0 1 0 0 0 0

0FSC unmasked bits 0 01 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0

0xFF 0x00 0x00 0xXY

AN5020
DCMI description

AN5020 - Rev 4 page 30/84

Note: Make sure that each synchronization code has different unmask code to avoid synchronization errors.

5.5 Capture modes
The DCMI supports two types of capture: snapshot (a single frame) and continuous grab (a sequence of frames).
The user can control the capture rate by selecting the bytes, lines, and frames to capture in the DCMI_CR
register. These features are used to convert the color format of the image, and/or to reduce the image resolution
(by capturing one line out of two, the vertical resolution is divided by 2). For more details, refer to Section 5.8.

5.5.1 Snapshot mode
In this mode, a single frame is captured. After the capture is enabled by setting the CAPTURE bit in DCMI_CR,
the interface waits for the detection of a start of frame (the next DCMI_VSYNC or the next embedded frame-start
code, depending on the synchronization mode) before sampling the data.
Once the first complete frame is received, the DCMI is automatically disabled (CAPTURE bit automatically
cleared), and all the other frames are ignored. In case of an overrun, the frame is lost and the camera interface is
disabled.

Figure 28. Frame reception in snapshot mode

Capture bit

DCMI_HSYNC

DCMI_VSYNC

Data

Enabled by the user Automatically cleared

Captured frame Ignored frame

5.5.2 Continuous grab mode
Once this mode is selected and the capture is enabled (CAPTURE = 1), the interface waits for the detection of a
start of frame (the next DCMI_VSYNC or the next embedded frame-start code, depending on the synchronization
mode) before sampling the data.

AN5020
DCMI description

AN5020 - Rev 4 page 31/84

In this mode, the DCMI can be configured to capture all the frames, every alternate frame (50% bandwidth
reduction), or one frame out of four (75% bandwidth reduction). The camera interface is not automatically
disabled but the user must disable it by setting CAPTURE = 0 . After being disabled by the user, the DCMI
continues to grab data until the end of the current frame.

Figure 29. Frame reception in continuous grab mode

D
T4

66
44

V1

Captured frame 2Captured frame 1

Capture bit

DCMI_HSYNC

DCMI_VSYNC

Data

Enabled by the user Cleared by the user

Captured frame N

Received data

Ignored frame

5.6 Data formats and storage
The DCMI supports the following data formats:
• 8-bit progressive video: either monochrome or raw Bayer
• YCbCr 4:2:2 progressive video
• RGB565 progressive video
• Compressed data (JPEG)
For monochrome, RGB and YCbCr, the frame buffer is stored in raster mode as shown in Figure 30.

Figure 30. Pixel raster scan order

Word 0 Word 1 Word 2 Word m
Row 0

Row n

Placement of words
 in one line

Passing to the
next line

Note: Only 32-bit words are used, and only the little-endian format is supported (the least significant byte is stored in
the smallest address).

Data received from the camera can be organized in lines, frames (raw YUV/RGB/Bayer modes), or can be a
sequence of JPEG images.
The number of bytes in a line may not be a multiple of four. The user must therefore be careful when handling this
case since a DMA request is generated each time a complete 32-bit word has been constructed from the
captured data. When an end of frame is detected and the 32-bit word to be transferred has not been completely
received, the remaining data are padded with zeros, and a DMA request is generated.

AN5020
DCMI description

AN5020 - Rev 4 page 32/84

5.6.1 Monochrome
The DCMI supports the monochrome format 8 bpp. In the case an 8-bit data width is selected when configuring
the DCMI, the data register has the structure shown in Figure 31.

Figure 31. DCMI data register filled with monochrome data

DCMI_DR

Bit number 0781516232431

Dn + 2 DnDn+1Dn + 3

5.6.2 RGB565
RGB refers to Red, Green, and Blue, which represent the three hues of light. Any color is obtained by mixing
these three colors.
565 is used to indicate that each pixel consists of 16 bits divided as follows:
• 5 bits for encoding the red value (the most significant 5 bits)
• 6 bits for encoding the green value
• 5 bits for encoding the blue value (the less significant 5 bits)
Each component has the same spatial resolution (4:4:4 format): each sample has a red (R), a green (G) and a
blue (B) component. Figure 32 shows the DCMI data register containing RGB data, when an 8-bit data width is
selected.

Figure 32. DCMI data register filled with RGB data

DCMI_DR Rn + 1 Gn + 1 Bn + 1 Rn Gn Bn

Bit number 0452021262731 10111516

Red Green Blue

5.6.3 YCbCr
YCbCr is a family of color spaces that separates the luminance or luma (brightness) from the chrominance or
chroma (color differences).
YCbCr consists of three components:
• Y refers to the luminance or luma (black and white).
• Cb refers to the blue difference chroma.
• Cr refers to the red difference chroma.
YCbCr 4:2:2 is a subsampling scheme, which requires a half resolution in horizontal direction: for every two
horizontal Y samples, there is one Cb or Cr sample.
Each component (Y, Cb, and Cr) is encoded in 8 bits. Figure 33 shows the DCMI data register containing YCbCr
data when an 8-bit data width is selected.

Figure 33. DCMI data register filled with YCbCr data

DCMI_DR

Bit number 0781516232431

Crn CbnYnYn + 1

AN5020
DCMI description

AN5020 - Rev 4 page 33/84

5.6.4 YCbCr, Y only
Note: This data format is only available for the STM32F446, STM32F469/479, STM32F7, STM32H7, STM32L496xx,

STM32L4A6, STM32L4+, STM32U5, STM32H5, and STM32N6 devices listed in Table 1.

The buffer contains only the Y information, monochrome image. The chroma information is dropped. Only the
luma component of each pixel, encoded in 8 bits, is stored. The result is a monochrome image having the half-
horizontal resolution of the original image (YCbCr data). Figure 34 shows the DCMI register when an 8-bit data
width is selected.

Figure 34. DCMI data register filled with Y only data

DCMI_DR

Bit number 0781516232431

Yn + 2 YnYn+1Yn + 3

5.6.5 JPEG
For compressed data (JPEG), the DCMI supports only the hardware synchronization, and the input size is not
limited. Each JPEG stream is divided into packets, which have programmable size. The packet dispatching
depends on the image content, and results in a variable blanking duration between two packets.
To allow JPEG image reception, the JPEG bit must be set to one in the DCMI_CR register. The JPEG images are
not stored as lines and frames. The DCMI_VSYNC signal is used to start the capture while DCMI_HSYNC serves
as a data enable signal.
If the full data stream finishes and the detection of an end of stream does not occur (DCMI_VSYNC does not
change), the DCMI pads out the end of the frame by inserting zeros: if the stream size is not a multiple of four, at
the end of the stream, the DCMI pads the remaining data with zeros.

Note: The crop feature and embedded synchronization mode cannot be used in the JPEG format.

Figure 35. JPEG data reception

D
T4

66
50

V1

JPEG data

DCMI_HSYNC

DCMI_VSYNC

Begin/end of JPEG streamData packet Padding data at the end of JPEG stream

5.7 Crop feature
With the crop feature, the camera interface selects a rectangular window from the received image. The start
coordinates (upper-left corner) are specified in the 32-bit DCMI_CWSTRT register.
The window size is specified in number of pixel clocks (horizontal dimension), and in number of lines (vertical
dimension) in the DCMI_CWSIZE register.

AN5020
DCMI description

AN5020 - Rev 4 page 34/84

5.8 Image resizing (resolution modification)
Note: This feature is only available for STM32F446, STM32F469/479, STM32F7x5/6/7/8/9, STM32F750, STM32H7,

STM32L496xx, STM32L4A6, STM32L4+, STM32U5, STM32H5, and STM32N6 devices listed in Table 1.

As described in Section 5.5, the DCMI capture features are set through the DCMI_CR register.
The DCMI captures all received lines, or one line out of two (the user can choose to capture the odd or even
lines).
This feature affects the vertical resolution that can be received by the DCMI as sent from the camera module or
divided by two (only the odd or the even lines are received).
This interface also allows the capture of:
• All received data
• Every other byte from the received data (one byte out of two, only the odd or the even bytes are received)
• One byte out of four
• Two bytes out of four
This feature affects the horizontal resolution allowing the user to select one of the following resolutions:
• The full horizontal resolution
• The half of the horizontal resolution
• The quarter of the horizontal resolution (available only for 8 bpp data formats)

Caution: For some data formats (color spaces), the modification of the horizontal resolution allows a change of the data
format. For example, when the data format is YCbCr, the data is received interleaved (CbYCrYCbYCr). When
the user chooses to receive every other byte, the DCMI receives only the Y component of each sample, means
converting YCbCr data into Y-only data. This conversion affects both the horizontal resolution (only half of the
image is received), and the data format.

Figure 36 shows one frame when receiving only one byte out of four and one line out of two.

Figure 36. Frame resolution modification

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2B2 B3 B2 B1 B0

Word0 Word1Word1 Word m

Line 0

Line 1

Ignored Received

Ignored line

Ignored line

Ignored lineLine n

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2B2 B3 B2 B1 B0

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2B2 B3 B2 B1 B0

5.9 DCMI interrupts
The following interrupts can be generated:
• IT_LINE indicates the end of line.
• IT_FRAME indicates the end of frame capture.
• IT_OVR indicates the overrun of data reception.
• IT_VSYNC indicates the synchronization frame.
• IT_ERR indicates the detection of an error in the embedded synchronization code order (only in embedded

synchronization mode).
All interrupts can be masked by software. The global interrupt dcmi_it is the logic OR of all the individual
interrupts.

AN5020
DCMI description

AN5020 - Rev 4 page 35/84

The DCMI interrupts are handled through the following registers:
• DCMI_IER: read/write register allowing the interrupts to be generated when the corresponding event

occurs
• DCMI_RIS: read-only register giving the current status of the corresponding interrupt, before masking this

interrupt with DCMI_IER (each bit gives the status of the interrupt that can be enabled or disabled in
DCMI_IER).

• DCMI_MIS: read-only register providing the current masked status of the corresponding interrupt,
depending on DCMI_IER and DCMI_RIS.

If an event occurs and the corresponding interrupt is enabled, the DCMI global interrupt is generated.

Figure 37. DCMI interrupts and registers

D
T4

66
52

V1

IT_DCMI

Cortex-M

DCMI_IER register

DCMI_RIS register
DCMI_MIS register

DCMI peripheral

LINE_IE

VSYNC_IE

ERR_IE

OVR_IE

FRAME_IE

LINE_RIS

VSYNC_RIS

ERR_RIS

OVR_RIS

FRAME_RIS

LINE_MIS

VSYNC_MIS

ERR_MIS

OVR_MIS

FRAME_MIS

NVIC

Line event

VSYNC event

Error event

OVR event

Frame event

5.10 Low-power modes
The STM32 power mode has a direct effect on the DCMI, which operates as follows over
the different power modes:
• In Run mode, the DCMI and all peripherals operate normally.
• In Sleep mode, the DCMI and all peripherals work normally, and generate interrupts to wake up the CPU.
• In Stop and Standby modes, the DCMI does not work.
For some STM32 devices, there are other low-power modes where the state of the DCMI varies from one
to the other:
• Low-power Run mode
• Low-power Sleep mode: interrupts from peripherals cause the device to exit this mode.
• Stop 0, Stop 1, Stop 2, Stop 3 modes: the content of peripheral registers is kept.
• Shutdown mode: the peripheral must be reinitialized when exiting Shutdown mode.

AN5020
DCMI description

AN5020 - Rev 4 page 36/84

The table below summarizes the DCMI operation in the different modes.

Table 7. DCMI operation in low-power modes

Mode DCMI operation

Run

Active
Low-power Run(1)

Sleep

Low-power Sleep(1)

Stop(2)

Frozen

Stop 0(3)

Stop 1(3)

Stop 2(3)

Stop 3(4)

Stop mode SVOS high(5)

Stop mode SVOS low(5)

Standby
Powered down

Shutdown(3)

1. Only for the STM32L496xx, STM32L4A6xx, and STM32L4+ devices.
2. Not available on the STM32N6 devices.
3. Only for the STM32L496xx, STM32L4A6xx, STM32L4+, and STM32U5 devices.
4. Only on the STM32U5 devices.
5. Only for the STM32N6 devices.

AN5020
DCMI description

AN5020 - Rev 4 page 37/84

6 DCMI configuration

When selecting a camera module to interface with STM32 MCUs, the user must consider some parameters such
as the pixel clock, the supported data format, and the resolutions.
To correctly implement the application, the user needs to perform the following configurations:
• Configure the GPIOs.
• Configure the timings and the clocks.
• Configure the DCMI peripheral.
• Configure the DMA.
• Configure the camera module:

– Configure the I2C to allow the camera module configuration and control.
– Set parameters such as contrast, brightness, color effect, polarities, and data format.

Note: It is recommended to reset the DCMI and the camera module before starting the configuration. The DCMI can
be reset by setting the corresponding bit in the RCC_AHB2RSTR register, which resets the clock domains.

6.1 GPIO configuration
To easily configure the DCMI GPIOs (such as data pins, control signals pins, camera configuration pins), and to
avoid any pin conflicts, it is recommended to use the STM32CubeMX configuration and initialization code
generator.
Thanks to the STM32CubeMX, the user generates a project with all the needed peripherals preconfigured.
Depending on the extended data mode chosen by configuring EDM bits in DCMI_CR register, the DCMI receives
a 8-, 10-, 12-, or 14-bpp clock (DCMI_PIXCLK).
The user needs to configure:
• 11, 13, 15, or 17 GPIOs for the DCMI for the hardware synchronization
• only nine GPIOs (eight pins for data and one pin for DCMI_PIXCLK) for the embedded synchronization
The user needs to configure also the I2C, and in some cases the camera power supply pin (if the camera power
supply source is the STM32 MCU).

Enable interrupts

To be able to use the DCMI interrupts, the user must enable the DCMI global interrupts on the NVIC side. Each
interrupt is then enabled separately by enabling its corresponding enable bit in the DCMI_IER register:
• Only four interrupts (IT_LINE, IT_FRAME, IT_OVR, and IT_DCMI_VSYNC) can be used in hardware

synchronization mode.
• The five interrupts can be used in embedded synchronization mode.
The software allows the user to check whether the specified DCMI interrupt has occurred or not, by checking the
state of the flags.

6.2 Clock and timing configuration

6.2.1 System clock configuration (HCLK)
It is recommended to use the highest system clock to get the best performance. This recommendation applies
also for the frame buffer of the external memory: if an external memory is used for the frame buffer, the clock must
be set at the highest allowed speed to get the best memory bandwidth.
Examples:
• STM32F4x9xx devices: the maximum system speed is 180 MHz. If an external SDRAM is connected to the

FMC, the maximum SDRAM clock is 90 MHz (HCLK/2).
• STM32F7 devices: the maximum system speed is 216 MHz. With this speed and HCLK/2 prescaler, the

SDRAM speed exceeds the maximum allowed speed (see datasheets for more details). To get the
maximum SDRAM, it is recommended to configure HCLK @ 200 MHz, then the SDRAM speed is set at
100 MHz.

AN5020
DCMI configuration

AN5020 - Rev 4 page 38/84

The clock configurations providing the highest performance are the following:
• For STM32F2x7 devices, HCLK @ 120 MHz and SRAM @ 60 MHz
• For STM32F407/417 devices, HCLK @ 168 MHz and SRAM @ 60 MHz
• For STM32L4x6 devices, HCLK @ 80 MHz and SRAM @ 40 MHz

6.2.2 DCMI clock and timing configuration (DCMI_PIXCLK)
The DCMI pixel clock configuration depends on the configuration of the pixel clock of the camera module. The
user must make sure that the pixel clock has the same configuration on the DCMI and the camera module sides.
DCMI_PIXCLK is an input signal for the DCMI used for input data sampling. The user selects either the rising or
the falling edge for capturing data by configuring the PCKPOL bit in the DCMI_CR register.
As explained in Section 5.4, there are two types of synchronization: embedded and hardware. To select the
desired synchronization mode for the application, the user needs to configure the ESS bit in DCMI_CR.

6.2.2.1 DCMI clock configuration in hardware synchronization
The DCMI_HSYNC and DCMI_VSYNC signals are used. The configuration of these two signals is defined by
selecting each signal active level (high or low) for the VSPOL and HSPOL bits in DCMI_CR.

Note: The user must make sure that DCMI_HSYNC and DCMI_VSYNC polarities are programmed according to the
camera module configuration. In the hardware synchronization mode (ESS = 0 in DCMI_CR), the IT_VSYNC
interrupt is generated (if enabled), even when CAPTURE = 0 in DCMI_CR. To reduce the frame capture rate
even further, the IT_VSYNC interrupt can be used to count the number of frames between two captures, in
conjunction with the snapshot mode. This is not allowed by the embedded synchronization mode.

6.2.2.2 DCMI clock configuration in embedded synchronization
The line-start/line-end and frame-start/frame-end are determined by codes or markers embedded within the data
flow. The embedded synchronization codes are supported only for an 8-bit parallel data interface width. The
synchronization codes must be programmed in the DCMI_ESCR register as defined in Figure 38.

Figure 38. DCMI_ESCR register bytes

DCMI_ESCR

Bit number 0781516232431

LEC FSCLSCFEC

FEC (frame-end code)

The most significant byte specifies the frame-end delimiter. The camera module sends a 32-bit word containing
0xFF 00 00 XY with XY = FEC code, to signal the end of a frame. The code is received as indicated in Figure 39.

Figure 39. FEC structure

FF 00 00 FEC

Before the reception of this FEC code, VSYNC must be set to one in DCMI_SR to indicate a valid frame. After the
reception of the FEC, VSYNC must be cleared to zero to indicate that it is synchronization between frames.
VSYNC must remain at zero until the reception of the next frame-start code.
If FEC = 0xFF (the camera module sends 0xFF 00 00 FF), all the unused codes are interpreted as frame-end
codes. There are 253 values corresponding to the end-of-frame delimiter (0xFF0000FF and the 252 unused
codes).

AN5020
DCMI configuration

AN5020 - Rev 4 page 39/84

LEC (line-end code)

This byte specifies the line-end marker. The code received from the camera to indicate the end of line is 0xFF 00
00 XY with XY = LEC code.

Figure 40. LEC structure

FF 00 00 LEC

FSC (frame-start code)

This byte specifies the frame-start marker. The code received from the camera to indicate the start of new frame
is 0xFF 00 00 XY with XY = FSC code.

Figure 41. FSC structure

FF 00 00 FSC

LSC (line-start code)

This byte specifies the line-start marker. The code received from the camera to indicate the start of new line is
0xFF 00 00 XY with XY = LSC code.
If LSC = 0xFF, the camera module does not send a frame-start delimiter. The DCMI interprets the first occurrence
of an LSC code after an FEC code as an FSC code occurrence.

Figure 42. LSC structure

FF 00 00 LSC

In this embedded synchronization mode, HSPOL and VSPOL bits are ignored. While the DCMI receives data
(CAPTURE = 1 in DCMI_CR), the user can monitor the data flow to know if it is an active line/frame or a
synchronization between lines/frames, by reading VSYNC and HSYNC in DCMI_SR.
If ERR_IE = 1 in DCMI_IER, an interrupt is generated each time an error occurs (such as embedded
synchronization characters not received in the correct order).

AN5020
DCMI configuration

AN5020 - Rev 4 page 40/84

Figure 43 shows a frame received in embedded synchronization mode.

Figure 43. Frame structure in embedded synchronization mode

FF 00 00 FSC FF 00 00 LSC data FF 00 00 LEC

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00

FF 00 00 LSC FF 00 00 FF 00 00 FEC

Blanking LSC code FSC code LEC code FEC code

data data data data data data data

data data data data data data data data

data data data data data data data data

data data data data data data data data

data data data data data data data data

data data data data data data data data

data data data data data data data data

data data data data data data data data

data data data data data data data data

data data data data data data data data

data data data data data data data data

LEC

LEC

LEC

LEC

LEC

LEC

LEC

LEC

LEC

LEC

6.3 DCMI configuration
The DCMI configuration allows the user to select the capture mode, the data format, the image size, and the
resolution.

6.3.1 Capture mode selection
The user can capture an image or a video by selecting one of the following modes:
• The continuous grab mode to capture frames (images) continuously
• The snapshot mode to capture a single frame
The received data in snapshot or continuous grab mode is transferred to the memory frame buffer by the DMA.
The buffer location and mode (linear or circular buffer) are controlled through the system DMA.

6.3.2 Data format selection
The DCMI allows the reception of compressed data (JPEG) or many uncompressed data formats (such as
monochrome, RGB, or YCbCr). For more details, refer to Section 5.6.

6.3.3 Image resolution and size
The DCMI allows the reception of a wide range of resolutions (low, medium, high) and image sizes, since the
image size depends on the image resolution and data format. The DMA ensures the transfer and the placement
of the received images in the memory frame buffer.
Optionally, the user can configure the byte, line, and frame select mode to modify the image resolution and size,
and in some cases, the data format (see Section 5.8). The user can also configure and enable the crop feature to
select a rectangular window from the received image (see Section 5.7).

Note: The DCMI configuration registers must be programmed correctly before enabling the ENABLE bit in DCMI_CR.
The DMA controller and all DCMI configuration registers must be programmed correctly before enabling the
CAPTURE bit in DCMI_CR.

AN5020
DCMI configuration

AN5020 - Rev 4 page 41/84

6.4 DMA configuration
The DMA configuration is a crucial step to ensure the success of the application.
As mentioned in Section 3.2, the DMA2 ensures the transfer from the DCMI to the memory (internal SRAM or
external SRAM/SDRAM) for all STM32 devices embedding the DCMI.
For the STM32H7 and SMT32L4+ devices, the DMA1 can also access the AHB2 peripherals and ensures the
transfer of the received data from the DCMI to the memory frame buffer.
For the STM32U5 and STM32N6 devices, the GPDMA1 ensures the transfer from the DCMI to the memory.
For the STM32H5 devices, the GPDMA1 and the GPDMA2 ensure the transfer from the DCMI to the memory.

6.4.1 DMA configuration for DCMI-to-memory transfers
The transfer direction must be peripheral-to-memory by configuring:
• DIR bits in DMA_SxCR for the STM32F2, STM32F4, STM32F7, and STM32H7 devices
• DIR bits in DMA_CCRx for the STM32L4x6 and STM32L4+ devices
• SWREQ = 0 and REQSEL[6:0] in GPDMA_CxTR2 for the STM32U5 and STM32H5
The source address (DCMI data register address) must be written:
• In DMA_SxPAR for the STM32F2, STM32F4, STM32F7, and STM32H7 devices
• In DMA_CPARx for the STM32L4x6 and STM32L4+ devices
• In GPDMA_CxSAR for the STM32U5, STM32H5, and STM32N6 devices
The destination address (frame buffer address in internal SRAM or external SRAM/SDRAM) must be written:
• In DMA_SxMAR for the STM32F2, STM32F4, STM32F7, and STM32H7 devices
• In DMA_CMARx for the STM32L4x6 and STM32L4+ devices
• In GPDMA_CxDAR for the STM32U5, STM32H5, and STM32N6 devices
To ensure the data transfer from the DCMI data register, the DMA waits for the request to be generated from the
DCMI. The relevant stream and channel must be configured. For more details, refer to Section 6.4.3.
Since a DMA request is generated each time the DCMI data register is filled, the data transferred from the DCMI
must have a 32-bit width. Data is transferred:
• To the DMA2 (or the DMA1 for the STM32H7 and STM32L4+ devices) for all STM32 except for the

STM32U5, STM32H5, and STM32N6
• To the GPDMA1 for the STM32U5, STM32H5, and STM32N6 devices
• To the GPDMA2 for the STM32H5 devices
The peripheral data width must be 32-bit words. It is programmed:
• By PSIZE bits in DMA_SxCR for the STM32F2, STM32F4, STM32F7, and STM32H7 devices
• By PSIZE bits in DMA_CCRx register for the STM32L4x6 and STM32L4+ devices
• By DDW_LOG2 and DBL_1 in GPDMA_CxTR1 for the STM32U5, STM32H5, and STM32N6 devices
The DMA is the flow controller: the number of 32-bit data words to be transferred is software programmable from
1 to 65535 (see Section 6.4.4 for more details):
• In DMA_SxNDTR for the STM32F2, STM32F4, STM32F7, and STM32H7 devices
• In DMA_CNDTRx for the STM32L4x6 and STM32L4+ devices
• In GPDMA_CxBr1 for the STM32U5, STM32H5, and STM32N6 devices
The DMA operates in one of the following modes:
• Direct mode: each word received from the DCMI is transferred to the memory frame buffer.
• FIFO mode: the DMA uses its internal FIFO to ensure burst transfers (more than one word from the DMA

FIFO to the memory destination).
For more details on the DMA internal FIFO, refer to Section 6.4.5.

AN5020
DCMI configuration

AN5020 - Rev 4 page 42/84

Figure 44 shows the DMA2 (or the DMA1 for STM32H7 and STM32L4+ devices, the GPDMA1 for the STM32U5,
and STM32N6 devices, the GPDMA1 or the GPDMA2 for the STM32H5 devices) operation in peripheral-to-
memory mode, except for the STM32L496xx and STM32L4A6xx devices. The DMA2 in these devices has only
one port.

Figure 44. Data transfer through the DMA

D
T4

66
60

V1

DMA2

Arbiter

AHB
memory bus

FIFO
level

AHB
periph. bus

Req_streamx

Memory bus

Memory destination
(camera frame buffer)

Peripheral bus

Peripheral source
(DCMI)

FIFO

DMA_SxM0AR
DMA_SxM1AR(1)

DMA_SxPAR

Data path through the DMA Note 1: DMA_SxM1AR is configured for double-buffer mode.

6.4.2 DMA configuration versus image size and capture mode
The DMA must be configured according to the image size (color depth and resolution), and to the capture mode:
• In snapshot mode, the DMA must ensure the transfer of one frame (image) from the DCMI to the desired

memory:
– If the image size in words does not exceed 65535, the stream can be configured in normal mode

(see Section 6.4.6).
– If the image size in words is between 65535 and 131070, the stream can be configured in double-

buffer mode (see Section 6.4.8).
– If the image size in words exceeds 131070, the stream cannot be configured in double-buffer mode

(see Section 6.4.9).
• In continuous mode: the DMA must ensure the transfer of successive frames (images) from the DCMI to

the desired memory. Each time the DMA finishes the transfer of one frame, it starts the transfer of the next
frame:
– If one image size in words does not exceed 65535, the stream can be configured in circular mode

(see Section 6.4.7).
– If one image size in words is between 65535 and 131070, the stream can be configured in double-

buffer mode (see Section 6.4.8).
– If one image size in words exceeds 131070, the stream cannot be configured in double-buffer mode

(see Section 6.4.9).

6.4.3 DCMI channel and stream configuration
The user must also configure the corresponding DMA2 (or the DMA1 for the STM32H7 and STM32L4+ devices,
the GPDMA1 for the STM32U5 and STM32N6 devices, the GPDMA1 and GPDMA2 for the STM32H5 devices)
stream and channel to ensure the DMA acknowledgment each time the DCMI data register is fulfilled.

AN5020
DCMI configuration

AN5020 - Rev 4 page 43/84

The tables below summarize the DMA stream and channels that enable the DMA request from the DCMI.

Table 8. DMA stream selection across STM32 devices

STM32 DMA stream Channel

STM32F2

Stream 1 and stream 7 Channel 1STM32F4

STM32F7

STM32H7 Stream 0 to stream 7 Multiplexer 1 request 75

STM32L4
Stream 0 Channel 6

Stream 4 Channel 5

Table 9. DMA stream selection across STM32 devices

STM32 DMA channel Request

STM32L4+
STM32L4Rxxx and STM32L4Sxxx Channel 1 to

channel 7
DMA request multiplexer 90

STM32L4P5xx and STM32L4Q5xx DMA request multiplexer 91

STM32U5 Channel 0 to
channel 15 GPDMA1 request 86

STM32H5 Channel 0 to
channel 7 GPDMA1/2 request 108

STM32N6 Channel 0 to
channel 15 GPDMA1 request 140

Note: See the reference manual for a step-by-step description of the stream and channel configuration procedure.

6.4.4 DMA_SxNDTR/DMA_CNDTRx/GPDMA_CxBR1 register
The total number of words to transfer from the DCMI to the memory is programmed in this register
(see Section 6.4.1).
When the DMA starts the transfer from the DCMI to the memory, the number of items decreases from the initial
programmed value until the end of the transfer (reaching zero or disabling the stream by software before
the number of data remaining reaches zero).
The table below gives the number of bytes corresponding to the programmed value and the peripheral data width
(PSIZE bitfield).

Table 10. Maximum number of bytes transferred during one DMA transfer

Programmed value in the register Peripheral size Number of bytes

65535
Words

262140

0 < N < 35535 4 * N

Note: To avoid data corruption, this programmed value must be a multiple of MSIZE or PSIZE.

AN5020
DCMI configuration

AN5020 - Rev 4 page 44/84

6.4.5 FIFO and burst transfer configuration
The DMA performs the transfer with or without enabling the 4-word FIFO. When the FIFO is enabled, the source
data width (programmed in PSIZE) can differ from the destination data width (programmed in MSIZE). In this
case, the user must pay attention to adapt the address to write:
• In DMA_SxPAR and DMA_SxM0AR (and DMA_SxM1AR in case of double-buffer mode configuration) to

the data width programmed in PSIZE and MSIZE of DMA_SxCR for all STM32 except the STM32L4/L4+,
STM32U5, STM32H5, and STM32N6 devices

• In DMA_CPARx and DMA_CMARx to the data width programmed in PSIZE and MSIZE of DMA_CCRx for
the STM32L4 and STM32L4+ devices

• In GPDMA_CxSAR and GPDMA_CxDAR to the data width programmed with a burst length by SBL_1[5:0]
(respectively DBL_1[5:0]), and with a data width defined by SDW_LOG2[1:0] (respectively
DDW_LOG2[1:0]) in GPDMA_CxTR1 for the STM32U5, STM32H5, and STM32N6 devices

For a better performance, it is recommended to use the FIFO. When the FIFO mode is enabled, the user can
configure the MBURST bits to make the DMA perform burst transfer (up to four words) from its internal FIFO to
the destination memory, which guarantees better performance.

6.4.6 Normal mode for low resolution in snapshot capture
Low-resolution images are the ones having size (in 32-bit word) less than 65535. In snapshot mode, the normal
mode can be used to ensure the transfer of low-resolution frames (see Table 10).
The maximum number of pixels depends on the bit depth of the image (number of bytes per pixel). The DCMI
supports two possible bit depths:
• 1 byte per pixel in monochrome or Y only format
• 2 bytes per pixel in case of RGB565 or YCbCr format
The table below summarizes the maximum image resolution that can be transferred using the normal mode.

Table 11. Maximum image resolution in normal mode

Item Max number of bytes Bit depth (byte/pixel) Max number of pixels Max resolution

Word 262140
1 262140 720x364

2 131070 480x272

6.4.7 Circular mode for low resolution in continuous capture
The circular mode allows the process of successive frames (continuous data flows), providing that one frame size
is less than 65535. The initial size value is programmed:
• In DMA_SxNDTR for the STM32F2, STM32F4, STM32F7, and STM32H7 devices
• In DMA_CNDTRx for the STM32L4x6 and STM32L4+ devices
• In GPDMA_CxBr1 for the STM32U5, STM32H5, and STM32N6 devices
Each time the number of data decrementing reaches the zero, the number of data words is automatically reloaded
to the initial value. Each time the DMA pointer reaches the end of the frame buffer, it is reinitialized, and the DMA
ensures the transfer of the next frame.
The resolutions listed in Table 11 are also valid for the low resolution in continuous mode.

AN5020
DCMI configuration

AN5020 - Rev 4 page 45/84

Figure 45 shows the DMA_SxNDTR value and the frame buffer pointer modifications during a DMA transfer and
between two successive DMA transfers.

Figure 45. Frame buffer and DMA_SxNDTR register in circular mode

Pointer
Incrementation

during DMA
transfer

N

N - 1

0

N - 2

N - 3

1

2
Frame buffer

Adress 0

Adress N 1

Frame buffer

Address 0

Address N

Pointer
reinitialization

between
 two sucessive
DMA transfers

Start of one DMA transfer End of one DMA transfer

Number of data to transfer
(DMA_SxNDTR content)

 decrementationin circular mode

6.4.8 Double-buffer mode for medium resolutions (snapshot or continuous capture)
Note: This mode is not available for STM32L4A6xx and STM32L496xx devices.

Medium resolution images are the ones with a size (in 32-bit words) between 65536 and 131070. When the
double-buffer mode is enabled, the circular mode is automatically enabled.
If the image size exceeds (in words) the maximum sizes mentioned in Table 11 in snapshot or continuous capture,
the double-buffer mode must be used in snapshot or continuous mode. In this case, the number of pixels per
frame allowed is doubled since received data are stored in two buffers: each buffer maximum size (in 32-bit
words) is 65535 (the maximum frame size is 131070 words or 524280 bytes). The images sizes and resolutions
allowed to be received by the DCMI and transferred by the DMA are then doubled.

Table 12. Maximum image resolution in double-buffer mode

Item Max number of
bytes

Bit depth (byte/
pixel)

programmed
value in the

register
Number of pixels Max resolution

Word 524280

1
65535 524280

960x544
0 < N < 65535 8 * N

2
65535 262140

720x364
0 < N < 65535 4 * N

In this mode, the double-buffer stream has two pointers (two buffers for storing data), switched at each end of the
transaction:
• In snapshot mode, the DMA controller writes the data to the first frame buffer. After this first frame buffer is

filled (at this level, the register is reinitialized to the programmed value, and the DMA pointer switches to
the second frame buffer), the data is transferred to the second buffer. The total frame size (in words) is
divided by two and programmed into the register. The image is stored to two buffers with the same size.

• In continuous mode, each time one frame (image) is received and stored to the two buffers. As the circular
mode is enabled, the register is reinitialized to the programmed value (total frame size divided by two), and
the DMA pointer switches to the first frame buffer to receive the next frame.

AN5020
DCMI configuration

AN5020 - Rev 4 page 46/84

Figure 46 shows the two pointers and the DMA_SxNDTR value modifications during the DMA transfers.

Figure 46. Frame buffer and DMA_SxNDTR register in double-buffer mode

Start of one DMA transfer End of one DMA transfer

Pointer
Incrementation

during DMA
transfer

Number of data to transfer
(DMA_SxNDTR content) decrementation

N

0

1

2

Address0_0

Address0_N

Pointer
reinitialization
between two

sucessive DMA
transfers Adress 0Address1_0

Address1_N

Second
frame buffer

(not used by the DMA)

N 3
N 2

N 1

Firstframe buffer used by the DMA

6.4.9 DMA configuration for higher resolutions
When the number of words in one frame (image) in snapshot or continuous mode exceeds 131070, and when the
image resolution exceeds the indicated ones in Table 12, the DMA double-buffer mode cannot ensure the transfer
of the received data.

Note: This section highlights only the DMA operation in case of high resolution. An example is developed and
described using this DMA configuration in Section 8.3.6: Resolution capture (YCbCr data format).

The STM32F2, STM32F4, STM32F7, STM32H7, and STM32L4+ devices embed a very important feature in
double-buffer mode: the possibility to update the programmed address for the AHB memory port on-the-fly (in
DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled. The following conditions must be respected:
• When CT is cleared to zero in DMA_SxCR (current target memory is memory 0), the DMA_SxM1AR

register can be written. Attempting to write to this register while CT = 1 generates an error flag (TEIF), and
the stream is automatically disabled.

• When CT is set to one in DMA_SxCR (current target memory is memory 1), the DMA_SxM0AR register
can be written. Attempting to write to this register while CT = 0 generates an error flag (TEIF), and the
stream is automatically disabled.

To avoid any error condition, it is advised to change the programmed address as soon as the TCIF flag is
asserted. At this point, the targeted memory must have changed from memory 0 to memory 1 (or from 1 to 0),
depending on the CT bit value in DMA_SxCR.

Note: For all the other modes than the double-buffer one, the memory address registers are write-protected as soon
as the stream is enabled.

The DMA allows then the management of more than two buffers:
• In the first cycle, while the DMA uses the buffer 0 addressed by pointer 0 (memory 0 address in

DMA_SxM0AR), the buffer 1 is addressed by pointer 1 (memory 1 address in DMA_SxM1AR).
• In the second cycle, while DMA uses the buffer 1 addressed by pointer 1, the buffer 0 address can be

changed, and the frame buffer 2 can be addressed by pointer 0.
• In the second cycle, while the DMA is using the buffer 2 addressed by pointer 0, the frame buffer 1 address

can be changed, and the buffer 3 can be addressed by pointer 1.
DMA_SxM0AR and DMA_SxM1AR can then be used to address many buffers, ensuring the transfer of high
resolution images.

Note: To simplify the use of this specific feature, it is recommended to divide the image into equal buffers. When
capturing high resolution images, the user must secure that the memory destination has a sufficient size.

Example: In case of a resolution that is 1280x1024, the image size is 655360 words (32 bits). This size must be
divided into equal buffers, with a maximum size of 65535 for each of them. To be correctly received, the image
must then be divided into 16 frame buffers, with each frame buffer size equal to 40960 (lower than 65535).

AN5020
DCMI configuration

AN5020 - Rev 4 page 47/84

Figure 47 illustrates the DMA_SxM0AR and DMA_SxM1AR update during the DMA transfer:

Figure 47. DMA operation in high resolution case

Current buffer DMA destination

Buffer 14
=

Memory 0

Buffer 15
=

Memory 1
Buffer 2 Buffer 3Buffer 0 Buffer 1

Address 14 Address 15Address 2 Address 3Address 0 Address 1

Cycle 14

CT=0

Buffer 14 Buffer 15Buffer 0 Buffer 1

Address 14 Address 15Address 2 Address 3Address 0 Address 1

Cycle 2

CT=0
Buffer 2

=
Memory 0

Buffer 3
=

Memory 1

Buffer 14 Buffer 15

Address 14 Address 15Address 2 Address 3Address 0 Address 1

Cycle 0

CT=0 Buffer 2 Buffer 3
Buffer 0

=
Memory 0

Buffer 1
=

Memory 1

Buffer 14 Buffer 15

Address 14 Address 15Address 2 Address 3Address 0 Address 1

Cycle 1

CT=1 Buffer 3Buffer 0
Buffer 1

=
Memory 1

Buffer 2
=

Memory 0

DMA_SxM0AR DMA_SxM1AR

DMA_SxM0AR DMA_SxM1AR

DMA_SxM0AR DMA_SxM1AR

DMA_SxM0AR DMA_SxM1AR

AN5020
DCMI configuration

AN5020 - Rev 4 page 48/84

6.5 Camera module configuration
The following steps allow a correct configuration of the camera module (refer also to the camera module
datasheet):
1. Configure the input/output functionalities for camera configuration pins to be able to modify its registers (serial

communication, mostly I2C).
2. Apply hardware reset on the camera module.
3. Initialize the camera module:

– Configure the image resolution.
– Configure the contrast and the brightness.
– Configure the white balance of the camera (such as black and white, white negative, white normal).
– Select the camera interface (some camera modules have serial and parallel interface).
– Select the synchronization mode if the camera module supports more than one.
– Configure the clock signals frequencies.
– Select the output data format.

AN5020
DCMI configuration

AN5020 - Rev 4 page 49/84

7 Power consumption and performance

7.1 Power consumption
In order to save more energy when the application is in low-power mode, it is recommended to put the camera
module in low-power mode before the STM32 entry in low-power mode.
Putting camera module in low-power mode ensures a considerable gain in power consumption.
Example for OV9655 CMOS sensor:
• In active mode, the operating current is 20 mA.
• In standby mode, the current requirements drop to 1 mA in case of I2C-initiated Standby mode (the internal

circuit activity is suspended but the clock is not halted), and to 10 μA in case of pin-initiated Standby mode
(the internal device clock is halted and all internal counters are reset). For more details, refer to the camera
datasheet.

7.2 Performance
For all STM32 MCUs, the number of bytes to be transferred at each pixel clock depends on the extended data
mode:
• When the DCMI is configured to receive 8-bit data, the camera interface takes four pixel clock cycles to

capture a 32-bit data word.
• When the DCMI is configured to receive 10-, 12-, or 14-bit data, the camera interface takes two pixel clock

cycles to capture a 32-bit data word.
The table below summarizes the maximum data flow depending on the data width configuration.

Table 13. Maximum data flow at maximum DCMI_PIXCLK
These values are calculated for the maximum DCMI_PIXCLK given in Table 2. Availability of DCMI and related resources.

STM32

Data flow (max Mbyte/s) in extended data mode

8-bit
1 byte per PICXCLK

10-bit
1.25 bytes

per PICXCLK

12-bit
1.5 bytes

per PICXCLK

14-bit
1.75 bytes

per PICXCLK

STM32F2 46.875 58.594 70.312 82.031

STM32F4
52.734 65.918 79.101 92.285

STM32F7

STM32H723/733, STM32H743/753,
STM32H747/757, STM32H745/755,
STM32H742, STM32H750, STM32H7A3/7B3

78.125 97.656 117.187 136.718

STM32H725/735, STM32H730 107.422 134.277 161.133 187.988

STM32L4 31.25 39.062 46.875 54.687

STM32L4+ 46.875 58.594 70.312 82.031

STM32U5 62.5 78.125 93.75 109.375

STM32H5
93.75 117.187 140.625 164.062

STM32N6

In some applications, the DMA2 (or the DMA1 for the STM32H7 and STM32L4+; the GPDMA1 for the STM32U5
and STM32N6; and the GPDMA1 and GPDMA2 for the STM32H5) is configured to serve other requests in
parallel with the DCMI request. In this case, the user must pay attention to the stream priority configurations, and
consider the performance impact when the DMA serves other streams in parallel with the DCMI.
For better performance, when using the DCMI in parallel with other peripherals having requests that can be
connected to either DMA1 or DMA2, or to GPDMA1 and GPDMA2, it is better to configure these streams to be
served by the DMA/GPDMA that is not serving the DCMI.
The user must make sure that the DCMI supports the pixel clock configured on the camera module side to avoid
the overrun.

AN5020
Power consumption and performance

AN5020 - Rev 4 page 50/84

It is recommended to use the highest system speed HCLK for better performance. However, the user must
consider the speed of all the peripherals used (for example the speed of external memories) to avoid an overrun
and to ensure the successful operation of the application.
The DCMI is not the only AHB peripheral but there are many other peripherals. The DMA is not the only master
that can access the AHB peripherals. Using many AHB peripherals or other masters accessing the AHB
peripherals leads to a concurrency on the AHB: the user must consider its impact on performance.

AN5020
Power consumption and performance

AN5020 - Rev 4 page 51/84

8 DCMI application examples

This section details how to use the DCMI, and provides step-by-step implementation examples .

8.1 DCMI use cases
There are several imaging applications that can be implemented using the DCMI and other STM32 peripherals.
Here below some application examples:
• Machine vision
• Toys
• Biometry
• Security and video surveillance
• Door phone and home automation
• Industrial monitoring systems and automated inspection
• System control
• Access control systems
• Bar-code scanning
• Video conferencing
• Drones
• Real-time video streaming and battery-powered video cameras
Figure 48 provides examples of applications based on an STM32 MCU. These applications allow the user to:
• Capture data
• Store it to internal or external memories
• Display it
• Share it via the internet
• Communicate with human beings

Figure 48. STM32 DCMI application example

Capture

Display

Internet

STM32

Storage

Cortex-
M DMA

LTDC

USART

Bus matrix

USB
OTG
HS

DCMI RAM FMC
Dual

QUAD
SPI

DSI
DMA2D

MAC
ETH

SDIO

Storage SDRAM

QUADSPI

AN5020
DCMI application examples

AN5020 - Rev 4 page 52/84

8.2 STM32Cube examples
The STM32CubeF2, STM32CubeF4, STM32CubeF7, STM32CubeH7, STM32CubeL4, and STM32CubeU5 MCU
Packages offer a large set of examples implemented and tested on the corresponding boards.
The table below gives an overview of the DCMI examples and applications across various STM32Cube. All these
examples are developed to capture RGB data. For most of the examples, the user can select one of the following
resolutions: QQVGA 160x120, QVGA 320x240, 480x272, VGA 640x480.

Table 14. STM32Cube DCMI examples

MCU Package Project name Board

STM32CubeF2

DCMI_CaptureMode

STM3220G-EVAL, STM3221G‑EVALSnapshotMode

Camera_To_USBDisk

STM32CubeF4

DCMI_CaptureMode
STM32446E‑EVAL, STM32429I‑EVAL1,
STM32469I‑EVAL, STM3240G‑EVALSnapshotMode

Camera_To_USBDisk

STM32CubeF7

DCMI_CaptureMode

STM32756G-EVAL, STM32F769I‑EVALSnapshotMode

Camera_To_USBDisk

Camera STM32F7508-DISCOVERY

STM32CubeH7
DCMI_CaptureMode

STM32H747I-DISCOVERY
SnapshotMode

STM32CubeL4

DCMI_CaptureMode 32L496GDISCOVERY, 32L4R9IDISCOVERY

SnapshotMode
32L496GDISCOVERY

DCMI_Preview

STM32CubeU5 DCMI_ContinousCap_EmbeddedSynchMode STM32U575I-EVAL

8.3 DCMI examples based on STM32CubeMX
This section details the following typical examples of DCMI use:
• Capture and display of RGB data

Data captured in RGB565 format with QVGA (320 × 240) resolution, stored in the SDRAM, and displayed
on the LCD‑TFT

• Capture of YCbCr data
Data captured in YCbCr format with QVGA (320 × 240) resolution and stored in the SDRAM

• Capture of Y-only data
DCMI configured to receive Y-only data to be stored in the SDRAM

• Resolution capture (YCbCr data format)
Data captured in YCbCr format with a 1280 × 1024 resolution and stored in the SDRAM

• Capture of JPEG data
Data captured in JPEG format, and stored in the SDRAM

All these examples have been implemented on 32F746GDISCOVERY using STM32F4DIS-CAM (OV9655 CMOS
sensor), except the capture of JPEG data that was implemented on STM324x9I-EVAL (OV2640 CMOS sensor).

AN5020
DCMI application examples

AN5020 - Rev 4 page 53/84

As illustrated in Figure 49, the application consists of three main steps:
1. Import the received data from the DCMI to the DMA (to be stored in FIFO temporarily)

through its peripheral port.
2. Transfer the data from the FIFO to the SDRAM.
3. Import data from the SDRAM to be displayed on the LCD-TFT, only for the RGB data format. For the YCbCr or

JPEG data format, the user must convert the received data to RGB to be displayed.

Figure 49. Data path in capture and display application

D
T4

66
68

V1

Cortex-M7

L1-Cache

DMA2 LTDC

FIFO

FLASH
DCMI

Camera

Bus matrix

1 Mbyte

RAM

320 kbytes
FMC Dual

QUADSPI Frame buffer in the SDRAM

Pixel data signal reception from
the camera module

RGB

SDRAM

DMA2D

For these examples, the user needs to configure the DCMI, the DMA2, the LTDC (for the RGB data capture and
display example), and the SDRAM.
The five examples described in the next sections have some common configurations based on STM32CubeMX:
• GPIO configuration
• DMA configuration
• Clock configuration
The following specific configurations are needed for Y-only and JPEG capture examples:
• DCMI configuration
• Camera module configuration
The next sections provide the hardware description, the common configuration using STM32CubeMX, and
the common modifications that have to be added to the STM32CubeMX generated project.

AN5020
DCMI application examples

AN5020 - Rev 4 page 54/84

8.3.1 Hardware description
All examples except the JPEG capture, were implemented on 32F746GDISCOVERY using the camera board
STM32F4DIS-CAM, as shown in Figure 50.

Figure 50. 32F746GDISCOVERY and STM32F4DIS-CAM interconnection

The STM32F4DIS-CAM board includes an Omnivision CMOS sensor (ov9655), 1.3 megapixels. The resolution
can reach 1280x1024. This camera module is connected to the DCMI via a 30-pin FFC.
The 32F746GDISCOVERY board features a 4.3-inch color LCD-TFT with capacitive touch screen that is used
in the first example to display the captured images.
As shown in Figure 51, the camera module is connected to the STM32F7 through:
• Control signals DCMI_PIXCLK, DCMI_VSYNC, DCMI_HSYNC
• Image data signals DCMI_D[0..7]
Additional signals are provided to the camera module through the 30-pin FFC:
• Power supply signals (DCMI_PWR_EN)
• Clock for the camera module (Camera_CLK)
• Configuration signals (I2C)
• Reset signal (DCMI_NRST)
For more details on these signals, refer to Section 2.2.2: Camera module interconnect (parallel interface).
The camera clock is provided to the camera module through the Camera_CLK pin, by the NZ2520SB crystal
clock oscillator (X1) embedded on the 32F746GDISCOVERY board. The frequency of the camera clock is equal
to 24 MHz.
The DCMI reset pin (DCMI_NRST) used to reset the camera module is connected to
the global MCU reset pin (NRST).

AN5020
DCMI application examples

AN5020 - Rev 4 page 55/84

Figure 51. Camera connector on 32F746GDISCOVERY

For more details on the 32F746GDISCOVERY board, refer to the user manual Discovery kit for STM32F7 series
with STM32F746NG MCU (UM1907) available on the STMicroelectronics website.

AN5020
DCMI application examples

AN5020 - Rev 4 page 56/84

Figure 52 details the camera module connector implemented on STM32F4DIS-CAM.

Figure 52. Camera connector on STM32F4DIS-CAM

8.3.2 Configuration of common examples
When starting with STM32CubeMX, the first step is to configure the project location and the corresponding
toolchain or IDE (menu Project/Settings).

AN5020
DCMI application examples

AN5020 - Rev 4 page 57/84

8.3.2.1 STM32CubeMX - Configuration of DCMI GPIOs
1. Select the DCMI and choose “Slave 8 bits External Synchro” in the Pinout & configuration multimedia tab to

configure the DCMI in slave 8-bit external (hardware) synchronization.

Figure 53. STM32CubeMX - DCMI synchronization mode selection

If, after selecting one hardware configuration (Slave 8 bits External Synchro for example), the used GPIOs do
not match with the hardware, the user can change the desired GPIOs, and configure the alternate function
directly on the pin.
Another method consists of configuring manually the GPIO pins by selecting the right alternate function for
each of them. For more details on the GPIOs that must be configured, refer to Figure 55.
After this step, 11 pins must be highlighted in green (D[0..7], DCMI_VSYNC, DCMI_HSYNC, and
DCMI_PIXCLK).

2. Select the Configuration tab to configure the GPIOs mode.
3. When the DCMI configuration window appears, select the GPIO Settings tab.

Figure 54. STM32CubeMX - GPIO settings selection

AN5020
DCMI application examples

AN5020 - Rev 4 page 58/84

4. Select all the DCMI pins.

Figure 55. STM32CubeMX - DCMI pin selection

5. Set the GPIO pull-up/pull-down.

Figure 56. STM32CubeMX - GPIO no pull-up and no pull-down selection

8.3.2.2 STM32CubeMX - Configuration of DCMI control signals and capture mode
1. Click on Parameter Settings tab in DCMI Configuration window.

Figure 57. STM32CubeMX - Parameter Settings tab

2. Set the different parameters (vertical synchronization, horizontal synchronization, and pixel clock polarities)
that must be programmed according to the camera module configuration.

Figure 58. STM32CubeMX - DCMI control signals and capture mode

Note: The vertical synchronization polarity must be active high, and the horizontal synchronization polarity must be
active low. They must not be inverted for this configuration of the camera module.

AN5020
DCMI application examples

AN5020 - Rev 4 page 59/84

8.3.2.3 STM32CubeMX - Enable DCMI interrupts
1. Select NVIC Settings tab in DCMI Configuration window, and check the DCMI global interrupt.

Figure 59. STM32CubeMX - Configuration of DCMI interrupts

8.3.2.4 STM32CubeMX - DMA configuration
This configuration aims to receive RGB565 data (2 byte/pixel). The image resolution is QVGA (320x240). The
image size is then 320 × 240 × 2 = 153600 bytes.
Since the data width sent from the DCMI is 4 bytes (32-bit words sent from the DCMI data register), the number of
data items in the DMA_SxNDTR register is the number of words to transfer. The number of words is then 38400
(153600 / 4) which is less than 65535.
In snapshot mode, the user can configure the DMA in normal mode. In continuous mode, the user can configure
the DMA in circular mode.
1. Select DMA Settings tab in DCMI Configuration window.

Figure 60. STM32CubeMX - DMA Settings tab

2. Click on the Add button.

Figure 61. STM32CubeMX - Add button

3. Click on Select under DMA Request, and choose DCMI. The DMA2 Stream 1 channel 1 is configured to
transfer the DCMI request each time its time register is fulfilled.

Figure 62. STM32CubeMX - DMA stream configuration

AN5020
DCMI application examples

AN5020 - Rev 4 page 60/84

4. Modify the DMA Request Settings.

Figure 63. STM32CubeMX - DMA configuration

8.3.2.5 STM32CubeMX - Camera module power-up pins
To power up the camera module, the PH13 pin must be configured for 32F746GDISCOVERY.
1. Click on the PH13 pin and select GPIO_Output in the Pinout tab.

Figure 64. STM32CubeMX - PH13 pin configuration

2. In Pinout & Configuration tab system core, click on the GPIO button.

Figure 65. STM32CubeMX - GPIO button

AN5020
DCMI application examples

AN5020 - Rev 4 page 61/84

3. Set the parameters.

Figure 66. STM32CubeMX - DCMI power pin configuration

8.3.2.6 STM32CubeMX - System clock configuration
In this example, the system clock is configured as follows:
• Use of an external HSE clock, where the main PLL is used as a system source clock
• HCLK @ 200 MHz, so the Cortex®-M7 and LTDC are both running at 200 MHz

Note: HCLK is set to 200 MHz but not 216 MHz, to set the SDRAM_FMC at its maximum speed of 100 MHz with an
HCLK/2 prescaler.

1. Select the Clock Configuration tab.

Figure 67. STM32CubeMX - HSE configuration

AN5020
DCMI application examples

AN5020 - Rev 4 page 62/84

2. Set the PLLs and the prescalers in the Clock Configuration tab, to get the system clock HCLK @ 200 MHz.

Figure 68. STM32CubeMX - Clock configuration

8.3.2.7 Adding files to the project
Generate the code and open the generated project using the preferred toolchain. Then follow these steps:
1. Right click on Drivers/STM32F7xx_HAL_Driver.
2. Choose “Add Existing Files to group 'Drivers/STM32F7xx_HAL_Driver..."
3. Select the following files in Drivers/STM32F7xx_HAL_Driver/Src:

– stm32f7xx_hal_dma2d.c
– stm32f7xx_hal_ltdc.c
– stm32f7xx_hal_ltdc_ex.c
– stm32f7xx_hal_sdram.c
– stm32f7xx_hal_uart.c
– stm32f7xx_ll_fmc.c

4. Create a new group called, for example, Imported_Drivers.
5. Copy the following files from the STM32746G_Discovery folder in C: directory to the Src folder of the project:

– stm32746g_discovery.c
– stm32746g_discovery_sdram.c

6. Copy the following files from the STM32746G_Discovery folder in C: directory to the Inc folder of the project:
– stm32746g_discovery.h
– stm32746g_discovery_sdram.h

7. Copy ov9655.c from the Components folder to the Src folder.
8. Copy ov9655.h from the Components folder to the Inc folder.
9. Copy camera.h from the Component/Common folder to the Inc folder.
10. Add the following files in the new group (called Imported_Drivers in this example):

– stm32746g_discovery.h
– stm32746g_discovery_sdram.h
– ov9655.c

11. Allow modifications on ov9655.h and camera.h (read-only by default):
a. Click right on the file.
b. Uncheck read-only.
c. Click on Apply and OK.

12. Modify ov9655.h by replacing #include "../Common/camera.h" by #include "camera.h".

AN5020
DCMI application examples

AN5020 - Rev 4 page 63/84

13. Copy the following files to the Inc folder:
– rk043fn48h.h from Components folder
– fonts.h from Utilities/Fonts folder

14. Copy fonts24.c from Utilities/Fonts folder to the Src folder.
15. Check that no problem happened by rebuilding all files. There must be no error and no warning.

8.3.2.8 Modifications in main.c file
1. Update main.c by inserting some instructions to include the needed files in the adequate space (indicated in

bold below). This task provides the project modification and regeneration without losing the user code.
/* USER CODE BEGIN Includes */
#include "stm32746g_discovery.h"
#include "stm32746g_discovery_sdram.h"
#include "ov9655.h"
#include "rk043fn48h.h"
#include "fonts.h"
/* USER CODE END Includes */

Some variable declarations must then be inserted in the adequate space indicated in bold below.
/* USER CODE BEGIN PV */
/* Private variables --*/
typedef enum
{
CAMERA_OK = 0x00,
CAMERA_ERROR = 0x01,
CAMERA_TIMEOUT = 0x02,
CAMERA_NOT_DETECTED = 0x03,
CAMERA_NOT_SUPPORTED = 0x04
} Camera_StatusTypeDef;
typedef struct
{
uint32_t TextColor;
uint32_t BackColor;
sFONT *pFont;
}LCD_DrawPropTypeDef;
typedef struct
{
int16_t X;
int16_t Y;
}Point, * pPoint;
static LCD_DrawPropTypeDef DrawProp[2];
LTDC_HandleTypeDef hltdc;
LTDC_LayerCfgTypeDef layer_cfg;
static RCC_PeriphCLKInitTypeDef periph_clk_init_struct;
CAMERA_DrvTypeDef *camera_driv;
/* Camera module I2C HW address */
static uint32_t CameraHwAddress;
/* Image size */
uint32_t Im_size = 0;
/* USER CODE END PV */

The function prototypes must also be inserted in the adequate space indicated in bold below.
/* USER CODE BEGIN PFP */
/* Private function prototypes ---*/
uint8_t CAMERA_Init(uint32_t);
static void LTDC_Init(uint32_t , uint16_t , uint16_t , uint16_t, uint16_t
);
void LCD_GPIO_Init(LTDC_HandleTypeDef *, void *);
/* USER CODE END PFP */

AN5020
DCMI application examples

AN5020 - Rev 4 page 64/84

2. Update main() function by inserting some functions in the adequate space (indicated in bold below).
– LTDC_Init allows the configuration and initialization of the LCD.
– BSP_SDRAM_Init allows the configuration and initialization of the SDRAM.
– CAMERA_Init allows the configuration of the camera module, DCMI registers, and DCMI parameters.
– One of the two functions HAL_DCMI_Start_DMA allowing the DCMI configuration in snapshot or in

continuous mode, must be uncommented.

/* USER CODE BEGIN 2 */
LTDC_Init(FRAME_BUFFER, 0, 0, 320, 240);
BSP_SDRAM_Init();
CAMERA_Init(CAMERA_R320x240);
HAL_Delay(1000); //Delay for the camera to output correct data
Im_size = 0x9600; //size=320*240*2/4
/* uncomment the following line in case of snapshot mode */
//HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_SNAPSHOT, (uint32_t)FRAME_BUFFER, Im_size);
/* uncomment the following line in case of continuous mode */
HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_CONTINUOUS , (uint32_t)FRAME_BUFFER, Im_size);
/* USER CODE END 2 */

AN5020
DCMI application examples

AN5020 - Rev 4 page 65/84

3. Insert the implementation of the new functions (called in the main() function), out of the main function, in the
adequate space, indicated in bold below.
/* USER CODE BEGIN 4 */
void LCD_GPIO_Init(LTDC_HandleTypeDef *hltdc, void *Params)
{
GPIO_InitTypeDef gpio_init_structure;
/* Enable the LTDC and DMA2D clocks */
__HAL_RCC_LTDC_CLK_ENABLE();
__HAL_RCC_DMA2D_CLK_ENABLE();
/* Enable GPIOs clock */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_GPIOJ_CLK_ENABLE();
__HAL_RCC_GPIOK_CLK_ENABLE();
/*** LTDC Pins configuration ***/
/* GPIOE configuration */
gpio_init_structure.Pin = GPIO_PIN_4;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_NOPULL;
gpio_init_structure.Speed = GPIO_SPEED_FAST;
gpio_init_structure.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOE, &gpio_init_structure);
/* GPIOG configuration */
gpio_init_structure.Pin = GPIO_PIN_12;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Alternate = GPIO_AF9_LTDC;
HAL_GPIO_Init(GPIOG, &gpio_init_structure);
/* GPIOI LTDC alternate configuration */
gpio_init_structure.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_13 |
GPIO_PIN_14 | GPIO_PIN_15;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOI, &gpio_init_structure);
/* GPIOJ configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 |
GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_5
| GPIO_PIN_6 | GPIO_PIN_7 |GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 |
GPIO_PIN_11 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOJ, &gpio_init_structure);
/* GPIOK configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 |
GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7;
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Alternate = GPIO_AF14_LTDC;
HAL_GPIO_Init(GPIOK, &gpio_init_structure);
/* LCD_DISP GPIO configuration */
gpio_init_structure.Pin = GPIO_PIN_12; /* LCD_DISP pin has to be
manually controlled */
gpio_init_structure.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(GPIOI, &gpio_init_structure);
/* LCD_BL_CTRL GPIO configuration */
gpio_init_structure.Pin = GPIO_PIN_3; /* LCD_BL_CTRL pin has to be
manually controlled */
gpio_init_structure.Mode = GPIO_MODE_OUTPUT_PP;
HAL_GPIO_Init(GPIOK, &gpio_init_structure);
}
static void LTDC_Init(uint32_t FB_Address, uint16_t Xpos, uint16_t Ypos,
uint16_t Width, uint16_t Height)
{
/* Timing Configuration */
hltdc.Init.HorizontalSync = (RK043FN48H_HSYNC - 1);
hltdc.Init.VerticalSync = (RK043FN48H_VSYNC - 1);
hltdc.Init.AccumulatedHBP = (RK043FN48H_HSYNC + RK043FN48H_HBP - 1);
hltdc.Init.AccumulatedVBP = (RK043FN48H_VSYNC + RK043FN48H_VBP - 1);
hltdc.Init.AccumulatedActiveH = (RK043FN48H_HEIGHT + RK043FN48H_VSYNC +
RK043FN48H_VBP - 1);

AN5020
DCMI application examples

AN5020 - Rev 4 page 66/84

hltdc.Init.AccumulatedActiveW = (RK043FN48H_WIDTH + RK043FN48H_HSYNC +
RK043FN48H_HBP - 1);
hltdc.Init.TotalHeigh = (RK043FN48H_HEIGHT + RK043FN48H_VSYNC +
RK043FN48H_VBP + RK043FN48H_VFP - 1);
hltdc.Init.TotalWidth = (RK043FN48H_WIDTH + RK043FN48H_HSYNC +
RK043FN48H_HBP + RK043FN48H_HFP - 1);
/* LCD clock configuration */
periph_clk_init_struct.PeriphClockSelection = RCC_PERIPHCLK_LTDC;
periph_clk_init_struct.PLLSAI.PLLSAIN = 192;
periph_clk_init_struct.PLLSAI.PLLSAIR = RK043FN48H_FREQUENCY_DIVIDER;
periph_clk_init_struct.PLLSAIDivR = RCC_PLLSAIDIVR_4;
HAL_RCCEx_PeriphCLKConfig(&periph_clk_init_struct);
/* Initialize the LCD pixel width and pixel height */
hltdc.LayerCfg->ImageWidth = RK043FN48H_WIDTH;
hltdc.LayerCfg->ImageHeight = RK043FN48H_HEIGHT;
hltdc.Init.Backcolor.Blue = 0;/* Background value */
hltdc.Init.Backcolor.Green = 0;
hltdc.Init.Backcolor.Red = 0;
/* Polarity */
hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
hltdc.Instance = LTDC;
if(HAL_LTDC_GetState(&hltdc) == HAL_LTDC_STATE_RESET)
{
LCD_GPIO_Init(&hltdc, NULL);
}
HAL_LTDC_Init(&hltdc);
/* Assert display enable LCD_DISP pin */
HAL_GPIO_WritePin(GPIOI, GPIO_PIN_12, GPIO_PIN_SET);
/* Assert backlight LCD_BL_CTRL pin */
HAL_GPIO_WritePin(GPIOK, GPIO_PIN_3, GPIO_PIN_SET);
DrawProp[0].pFont = &Font24 ;
/* Layer Init */
layer_cfg.WindowX0 = Xpos;
layer_cfg.WindowX1 = Width;
layer_cfg.WindowY0 = Ypos;
layer_cfg.WindowY1 = Height;
layer_cfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
layer_cfg.FBStartAdress = FB_Address;
layer_cfg.Alpha = 255;
layer_cfg.Alpha0 = 0;
layer_cfg.Backcolor.Blue = 0;
layer_cfg.Backcolor.Green = 0;
layer_cfg.Backcolor.Red = 0;
layer_cfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_PAxCA;
layer_cfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_PAxCA;
layer_cfg.ImageWidth = Width;
layer_cfg.ImageHeight = Height;
HAL_LTDC_ConfigLayer(&hltdc, &layer_cfg, 1);
DrawProp[1].BackColor = ((uint32_t)0xFFFFFFFF);
DrawProp[1].pFont = &Font24;
DrawProp[1].TextColor = ((uint32_t)0xFF000000);
}
uint8_t CAMERA_Init(uint32_t Resolution) /*Camera initialization*/
{
uint8_t status = CAMERA_ERROR;
/* Read ID of Camera module via I2C */
if(ov9655_ReadID(CAMERA_I2C_ADDRESS) == OV9655_ID)
{
camera_driv = &ov9655_drv;/* Initialize the camera driver structure */
CameraHwAddress = CAMERA_I2C_ADDRESS;
if (Resolution == CAMERA_R320x240)
{
camera_driv->Init(CameraHwAddress, Resolution);
HAL_DCMI_DisableCROP(&hdcmi);
}
status = CAMERA_OK; /* Return CAMERA_OK status */
}

AN5020
DCMI application examples

AN5020 - Rev 4 page 67/84

else
{
status = CAMERA_NOT_SUPPORTED; /* Return CAMERA_NOT_SUPPORTED status */
}
return status;
}
/* USER CODE END 4 */

8.3.2.9 Modifications in main.h file
Update main.h by inserting the frame buffer address declaration in the adequate space, indicated in bold below.
/* USER CODE BEGIN Private defines */
#define FRAME_BUFFER 0xC0000000
/* USER CODE END Private defines */

At this stage, the user can build, debug, and run the project.

8.3.3 RGB data capture and display
To simplify this example, data are captured and displayed in RGB565 format (2 bpp). The image resolution is
320x240 (QVGA). The frame buffer is placed in the SDRAM. Camera and LCD data are located in the same
frame buffer. The LCD displays then directly the data captured through the DCMI without any processing. The
camera module is configured to output RGB565 data, QVGA (320x240).
The configuration of this example can be done by following the steps described in Section 8.3.2.

8.3.4 YCbCr data capture
This implementation example aims to receive YCbCr data from the camera module, and to transfer them to the
SDRAM.
Displaying the YCbCr received data on the LCD (configured to display RGB565 data in the previous
configuration) is not correct, but can be used for verification.
To display images correctly, YCbCr data must be converted into RGB565 data (or RGB888 or ARGB8888,
depending on the application needs).
All the configuration steps signaled in Section 8.3.2 must be followed.
Some instructions must be added to obtain YCbCr data. Only the camera configuration has to be updated by
adding:
• A table of constants allowing the configuration of camera module registers
• A new function used to configure the camera module by sending the register configuration through the I2C.

AN5020
DCMI application examples

AN5020 - Rev 4 page 68/84

1. Add the table containing the configuration of camera module registers in main.c,
below /* Private variables ----------------------*/.

const unsigned char OV9655_YUV_QVGA [][2]=
{ { 0x12, 0x80 },{ 0x00, 0x00 },{ 0x01, 0x80 },{ 0x02, 0x80 },{ 0x03, 0x02
},{ 0x04, 0x03 },{ 0x0e, 0x61 }, { 0x0f, 0x42 },{ 0x11, 0x01 },{ 0x12, 0x62
},{ 0x13, 0xe7 },{ 0x14, 0x3a },{ 0x16, 0x24 },{ 0x17, 0x18 }, { 0x18, 0x04
},{ 0x19, 0x01 },{ 0x1a, 0x81 } ,{ 0x1e, 0x04 },{ 0x24, 0x3c },{ 0x25, 0x36
},{ 0x26, 0x72 }, { 0x27, 0x08 },{ 0x28, 0x08 },{ 0x29, 0x15 },{ 0x2a, 0x00
},{ 0x2b, 0x00 },{ 0x2c, 0x08 },{ 0x32, 0x24 }, { 0x33, 0x00 },{ 0x34, 0x3f
},{ 0x35, 0x00 },{ 0x36, 0x3a },{ 0x38, 0x72 },{ 0x39, 0x57 } ,{ 0x3a, 0x0c
},{ 0x3b, 0x04 },{ 0x3d, 0x99 },{ 0x3e, 0x0e },{ 0x3f, 0xc1 },{ 0x40, 0xc0}
,{ 0x41, 0x01 },{ 0x42, 0xc0 },{ 0x43, 0x0a },{ 0x44, 0xf0 },{ 0x45, 0x46
},{ 0x46, 0x62} ,{ 0x47, 0x2a },{ 0x48, 0x3c },{ 0x4a, 0xfc }, { 0x4b, 0xfc
},{ 0x4c, 0x7f },{ 0x4d, 0x7f}, { 0x4e, 0x7f },{ 0x52, 0x28 },{ 0x53, 0x88
},{ 0x54, 0xb0 }, { 0x4f, 0x98 },{ 0x50, 0x98} ,{ 0x51, 0x00 },{ 0x58, 0x1a
},{ 0x59, 0x85 },{ 0x5a, 0xa9 },{ 0x5b, 0x64 } ,{ 0x5c, 0x84 },{ 0x5d, 0x53
},{ 0x5e, 0x0e },{ 0x5f, 0xf0 },{ 0x60, 0xf0 },{ 0x61, 0xf0 } ,{ 0x62, 0x00
}, { 0x63, 0x00 },{ 0x64, 0x02 },{ 0x65, 0x20 },{ 0x66, 0x00 },{ 0x69, 0x0a
},{ 0x6b, 0x5a },{ 0x6c, 0x04 }, { 0x6d, 0x55 },{ 0x6e, 0x00 },{ 0x6f, 0x9d
},{ 0x70, 0x21 },{ 0x71, 0x78 },{ 0x72, 0x11 },{ 0x73, 0x01 }, { 0x74, 0x10
},{ 0x75, 0x10 } ,{ 0x76, 0x01 },{ 0x77, 0x02 },{ 0x7a, 0x12 },{ 0x7b, 0x08
},{ 0x7c, 0x15 }, { 0x7d, 0x24 },{ 0x7e, 0x45 },{ 0x7f, 0x55 },{ 0x80, 0x6a
},{ 0x81, 0x78 },{ 0x82, 0x87 },{ 0x83, 0x96 }, { 0x84, 0xa3 },{ 0x85, 0xb4
},{ 0x86, 0xc3 },{ 0x87, 0xd6 },{ 0x88, 0xe6 } ,{ 0x89, 0xf2 },{ 0x8a, 0x24
}, { 0x8c, 0x80 },{ 0x90, 0x7d },{ 0x91, 0x7b },{ 0x9d, 0x02 } ,{ 0x9e, 0x02
},{ 0x9f, 0x7a },{ 0xa0, 0x79 }, { 0xa1, 0x40 },{ 0xa4, 0x50 },{ 0xa5, 0x68
},{ 0xa6, 0x4a },{ 0xa8, 0xc1 },{ 0xa9, 0xef },{ 0xaa, 0x92 }, { 0xab, 0x04
} ,{ 0xac, 0x80 },{ 0xad, 0x80 },{ 0xae, 0x80 },{ 0xaf, 0x80 },{ 0xb2, 0xf2
},{ 0xb3, 0x20 } ,{ 0xb4, 0x20 },{ 0xb5, 0x00 },{ 0xb6, 0xaf },{ 0xbb, 0xae
},{ 0xbc, 0x7f },{ 0xbd, 0x7f } ,{ 0xbe, 0x7f },{ 0xbf, 0x7f },{ 0xc0, 0xaa
},{ 0xc1, 0xc0 },{ 0xc2, 0x01 },{ 0xc3, 0x4e } ,{ 0xc6, 0x05 },{ 0xc7, 0x81
},{ 0xc9, 0xe0 },{ 0xca, 0xe8 },{ 0xcb, 0xf0 },{ 0xcc, 0xd8 } ,{ 0xcd, 0x93
}, { 0xcd, 0x93 },{ 0xFF, 0xFF } };

2. The new function prototype has to be inserted below /* Private function prototypes ------*/.

void OV9655_YUV_Init (uint16_t);
3. The second step of modifications in main.c described in Section 8.3.2.8 has to be updated. Modify the

main() function by inserting the following functions in the adequate space, indicated in bold below. One of
the two functions allowing the DCMI configuration in snapshot or in continuous mode must be uncommented.
/* USER CODE BEGIN 2 */
BSP_SDRAM_Init();
CAMERA_Init(CameraHwAddress);
OV9655_YUV_Init(CameraHwAddress);
HAL_Delay(1000); //Delay for the camera to output correct data
Im_size = 0x9600; //size=320*240*2/4
/* uncomment the following line in case of snapshot mode */
//HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_SNAPSHOT, (uint32_t)FRAME_BUFFER, Im_size);
/* uncomment the following line in case of continuous mode */
HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_CONTINUOUS , (uint32_t)FRAME_BUFFER, Im_size);
/* USER CODE END 2 */

4. The third step of modifications in main.c described in Section 8.3.2.8 has to be updated by adding the new
function implementation.
void OV9655_YUV_Init(uint16_t DeviceAddr)
{ uint32_t index;
for(index=0; index<(sizeof(OV9655_YUV_QVGA)/2); index++)
{ CAMERA_IO_Write(DeviceAddr, OV9655_YUV_QVGA[index][0],
OV9655_YUV_QVGA[index][1]);
CAMERA_Delay(1);
} }

8.3.5 Y only data capture
In this example, the camera module is configured to output YCbCr data format. By using the byte select feature
on the DCMI side, the chrominance components (Cb and Cr) are ignored: only the Y component is transferred to
the frame buffer in the SDRAM.

AN5020
DCMI application examples

AN5020 - Rev 4 page 69/84

All the configuration steps signaled in Section 8.3.2 must be followed.
Some instructions must be added to obtain the Y only data. Only the camera and the DCMI configuration must be
updated. To simplify this task, main.c must be modified as described in Section 8.3.4, but the second step of
STM32CubeMX - DCMI control signals and capture mode configuration, or the static void
MX_DCMI_Init(void) function (this function is implemented in main.c) must be modified..

hdcmi.Instance = DCMI;
hdcmi.Init.SynchroMode = DCMI_SYNCHRO_HARDWARE;
hdcmi.Init.PCKPolarity = DCMI_PCKPOLARITY_RISING;
hdcmi.Init.VSPolarity = DCMI_VSPOLARITY_HIGH;
hdcmi.Init.HSPolarity = DCMI_HSPOLARITY_LOW;
hdcmi.Init.CaptureRate = DCMI_CR_ALL_FRAME;
hdcmi.Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B;
hdcmi.Init.ByteSelectMode = DCMI_BSM_OTHER;
hdcmi.Init.ByteSelectStart = DCMI_OEBS_EVEN;
hdcmi.Init.LineSelectMode = DCMI_LSM_ALL;
hdcmi.Init.LineSelectStart = DCMI_OELS_ODD;

8.3.6 Resolution capture (YCbCr data format)
This implementation example aims to receive YCbCr data from the camera module, and to transfer them to the
SDRAM. The captured image resolution is 1280x1024.
To display images correctly, YCbCr data must be converted into RGB565 data (or RGB888 or ARGB8888,
depending on the application needs).
All the configuration steps details in Section 8.3.2 must be followed.
Some instructions must be added to obtain the YCbCr data. Only the DMA and the camera module configuration
have to be updated.

DMA configuration

The DMA is configured as described in Section 6.4.9: DMA configuration for higher resolutions. The
HAL_DMA_START function ensures this configuration because the image size exceeds the maximum allowed size
for double-buffer mode.
Calling HAL_DMA_START ensures the division of the received frames to equal parts, and the placement of each
part in one frame buffer. As explained, for the SXGA resolution, each frame is divided in 16 frame buffers. Each
buffer size is equal to 40960 words.
For the buffers addresses, HAL_DMA_START ensures the placement of the 16 frame buffers in the memory. In this
case, the address of the first frame buffer is 0xC0000000. The second address is then 0xC0163840 (0xC0000000
+ (40960 * 4)). The 16th frame buffer address is (0xC0000000 + 16 * (40960 * 4)).
At the end of each transfer, the DMA has filled one frame, an interrupt is generated, the address of the next buffer
is calculated, and one pointer is modified as illustrated in Figure 47. DMA operation in high resolution case.

Camera module configuration

The new camera module configuration is done by adding:
• A table of constants allowing the configuration of camera module registers
• A new function used to configure the camera module by sending the register configuration through the I2C

AN5020
DCMI application examples

AN5020 - Rev 4 page 70/84

To ensure that the camera module sends images having a YCbCr format, the CMOS sensor registers must be
configured with the following steps:
1. Add the table containing the configuration of camera module registers in main.c

below /* Private variables -------------------------*/.

const unsigned char ov9655_yuv_sxga[][2]= {
{ 0x12, 0x80 },{ 0x00, 0x00 },{ 0x01, 0x80 },{ 0x02, 0x80 },{ 0x03, 0x1b },{
0x04, 0x03 }, { 0x0e, 0x61 },{ 0x0f, 0x42 },{ 0x11, 0x00 },{ 0x12, 0x02 },{
0x13, 0xe7 },{ 0x14, 0x3a },{ 0x16, 0x24 }, { 0x17, 0x1d },{ 0x18, 0xbd },{
0x19, 0x01 },{ 0x1a, 0x81 }, { 0x1e, 0x04 }, { 0x24, 0x3c }, { 0x25, 0x36
},{ 0x26, 0x72 }, { 0x27, 0x08 }, { 0x28, 0x08 },{ 0x29, 0x15 },{ 0x2a, 0x00
},{ 0x2b, 0x00 },{ 0x2c, 0x08 },{ 0x32, 0xff },{ 0x33, 0x00 },{ 0x34, 0x3d
},{ 0x35, 0x00 },{ 0x36, 0xf8 },{ 0x38, 0x72 },{ 0x39, 0x57 }, { 0x3a, 0x0c
},{ 0x3b, 0x04 },{ 0x3d, 0x99 }, { 0x3e, 0x0c },{ 0x3f, 0xc1 },{ 0x40, 0xd0
},{ 0x41, 0x00 },{ 0x42, 0xc0 },{ 0x43, 0x0a },{ 0x44, 0xf0 },{ 0x45, 0x46
},{ 0x46, 0x62 }, { 0x47, 0x2a }, { 0x48, 0x3c },{ 0x4a, 0xfc },{ 0x4b, 0xfc
},{ 0x4c, 0x7f },{ 0x4d, 0x7f },{ 0x4e, 0x7f },{ 0x52, 0x28 },{ 0x53, 0x88
},{ 0x54, 0xb0 },{ 0x4f, 0x98 },{ 0x50, 0x98 },{ 0x51, 0x00 },{ 0x58, 0x1a
},{ 0x58, 0x1a },{ 0x59, 0x85 },{ 0x5a, 0xa9 },{ 0x5b, 0x64 },{ 0x5c, 0x84
},{ 0x5d, 0x53 },{ 0x5e, 0x0e }, { 0x5f, 0xf0 }, { 0x60, 0xf0 }, { 0x61,
0xf0 },{ 0x62, 0x00 }, { 0x63, 0x00 }, { 0x64, 0x02 },{ 0x65, 0x16 },{ 0x66,
0x01 },{ 0x69, 0x02 },{ 0x6b, 0x5a }, { 0x6c, 0x04 }, { 0x6d, 0x55 }, {
0x6e, 0x00 },{ 0x6f, 0x9d },{ 0x70, 0x21 }, { 0x71, 0x78 },{ 0x72, 0x00 },{
0x73, 0x01 },{ 0x74, 0x3a },{ 0x75, 0x35 },{ 0x76, 0x01 },{ 0x77, 0x02 },{
0x7a, 0x12 },{ 0x7b, 0x08 }, { 0x7c, 0x15 }, { 0x7d, 0x24 },{ 0x7e, 0x45 },{
0x7f, 0x55 },{ 0x80, 0x6a },{ 0x81, 0x78 },{ 0x82, 0x87 },{ 0x83, 0x96 },{
0x84, 0xa3 },{ 0x85, 0xb4 }, { 0x86, 0xc3 },{ 0x87, 0xd6 },{ 0x88, 0xe6 },
{ 0x89, 0xf2 },{ 0x8a, 0x03 }, { 0x8c, 0x0d }, { 0x90, 0x7d }, { 0x91, 0x7b
}, { 0x9d, 0x03 },{ 0x9e, 0x04 }, { 0x9f, 0x7a }, { 0xa0, 0x79 }, { 0xa1,
0x40 }, { 0xa4, 0x50 },{ 0xa5, 0x68 }, { 0xa6, 0x4a }, { 0xa8, 0xc1 },{
0xa9, 0xef }, { 0xaa, 0x92 },{ 0xab, 0x04 },{ 0xac, 0x80 },{ 0xad, 0x80 },{
0xae, 0x80 },{ 0xaf, 0x80 },{ 0xb2, 0xf2 },{ 0xb3, 0x20 },{ 0xb4, 0x20 },{
0xb5, 0x00 },{ 0xb6, 0xaf },{ 0xbb, 0xae },{ 0xbc, 0x7f },{ 0xbd, 0x7f },{
0xbe, 0x7f }, { 0xbf, 0x7f },{ 0xc0, 0xe2 },{ 0xc1, 0xc0 },{ 0xc2, 0x01 },
{ 0xc3, 0x4e }, { 0xc6, 0x05 },{ 0xc7, 0x80 }, { 0xc9, 0xe0 },{ 0xca, 0xe8
}, { 0xcb, 0xf0 },{ 0xcc, 0xd8 },{0xcd, 0x93} ,{ 0xFF, 0xFF } };

2. The new function prototype has to be inserted
below /* Private function prototypes ------------------------*/ .

void OV9655_YUV_Init (uint16_t);
3. The second step of modifications in main.c in this example is to update the main() function by inserting the

following functions in the adequate space (indicated in bold below). One of the two functions allowing the
DCMI configuration in snapshot or in continuous mode must be uncommented.
/* USER CODE BEGIN 2 */
BSP_SDRAM_Init();
CAMERA_Init(CameraHwAddress);
OV9655_YUV_Init(CameraHwAddress);
HAL_Delay(1000); //Delay for the camera to output correct data
Im_size = 0xA0000; //size=1280*1024*2/4
/* uncomment the following line in case of snapshot mode */
//HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_SNAPSHOT, (uint32_t)FRAME_BUFFER,
Im_size);
/* uncomment the following line in case of continuous mode */
HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_CONTINUOUS , (uint32_t)FRAME_BUFFER,
Im_size);
/* USER CODE END 2 */

AN5020
DCMI application examples

AN5020 - Rev 4 page 71/84

4. The third step of modifications in main.c described in Section 8.3.2.8 has to be updated by adding the new
function implementation below /* USER CODE BEGIN 4 */ .

void OV9655_YUV_Init(uint16_t DeviceAddr)
{
uint32_t index;
for(index=0; index<(sizeof(ov9655_yuv_sxga)/2); index++)
{
CAMERA_IO_Write(DeviceAddr, ov9655_yuv_sxga[index][0],
ov9655_yuv_sxga[index][1]);
CAMERA_Delay(1);
}
}

Note: In case of frame with RGB data format, the user can reduce the resolution to display the received images on the
LCD_TFT by using the resizing feature of the DCMI.

8.3.7 JPEG data capture
The OV9655 CMOS sensor embedded in the STM32F4DIS-Cam board does not support the compressed output
data. This example is then implemented using OV2640 CMOS sensor, supporting the 8-bit format compressed
data.
This example is based on the STM324x9I-EVAL (REV B) board embedding the OV2640 CMOS sensor (MB1066).
The compressed data (JPEG) must be uncompressed to have YCbCr data, and converted to RGB to be
displayed, but this implementation example aims only to receive JPEG data through the DCMI, and to store them
in the SDRAM.
This example is developed based on the DCMI example (SnapshotMode) provided within the STM32CubeF4
firmware, located in Projects\STM324x9I_EVAL\Examples\DCMI\DCMI_SnapshotMode. The provided
example, aims to capture one RGB frame (QVGA resolution), and to display it on the LCD-TFT, having the
following configuration:
• The DCMI and I2C GPIOs are configured as described in Section 8.3.2.
• The system clock runs at 180 MHz.
• SDRAM clock runs at 90 MHz.
• The DCMI is configured to capture 8-bit data width in hardware synchronization (uncompressed data).
• The camera module is configured to output RGB data images with QVGA resolution.
Based on this example, to be able to capture JPEG data, the user needs to modify the DCMI and the camera
module configuration.

DCMI configuration

The DCMI needs to be configured to receive compressed data (JPEG) by setting the JPEG bit in DCMI_CR.
To set this bit, the user must simply add the instruction written in bold below in the stm324x9i_eval_camera.c
file in uint8_t BSP_CAMERA_Init(uint32_t Resolution) (this function is called in main() to configure
the DCMI and the camera module). The DCMI previous configuration is kept.
phdcmi->Init.CaptureRate = DCMI_CR_ALL_FRAME;
phdcmi->Init.HSPolarity = DCMI_HSPOLARITY_LOW;
phdcmi->Init.SynchroMode = DCMI_SYNCHRO_HARDWARE;
phdcmi->Init.VSPolarity = DCMI_VSPOLARITY_LOW;
phdcmi->Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B;
phdcmi->Init.PCKPolarity = DCMI_PCKPOLARITY_RISING;
phdcmi->Init.JPEGMode = DCMI_JPEG_ENABLE;

AN5020
DCMI application examples

AN5020 - Rev 4 page 72/84

Camera module configuration

The configuration of CMOS sensor (ov2640) registers must be inserted in the ov2640.c file.

const unsigned char OV2640_JPEG[][2]=
{ {0xff, 0x00},{0x2c, 0xff},{0x2e, 0xdf},{0xff, 0x01},{0x12,
0x80},{0x3c, 0x32},{0x11, 0x00},{0x09,0x02},{0x04, 0x28},{0x13,
0xe5},{0x14, 0x48},{0x2c, 0x0c},{0x33, 0x78},{0x3a, 0x33},{0x3b,
0xfb},{0x3e, 0x00},{0x43, 0x11},{0x16, 0x10},{0x39, 0x02},{0x35,
0x88},{0x22, 0x0a},{0x37, 0x40},{0x23, 0x00},{0x34,
0xa0},{0x36,0x1a},{0x06, 0x02},{0x07, 0xc0}, {0x0d, 0xb7},{0x0e,
0x01},{0x4c, 0x00},{0x4a, 0x81},{0x21, 0x99},{0x24, 0x40},{0x25,
0x38},{0x26, 0x82}, {0x5c, 0x00},{0x63, 0x00},{0x46, 0x3f},{0x61,
0x70},{0x62, 0x80},{0x7c, 0x05}, {0x20, 0x80},{0x28, 0x30},{0x6c,
0x00},{0x6d, 0x80},{0x6e, 0x00},{0x70, 0x02},{0x71,0x94},{0x73,
0xc1},{0x3d, 0x34},{0x5a, 0x57},{0x4f, 0xbb},{0x50, 0x9c},{0xff,
0x00},{0xe5, 0x7f},{0xf9, 0xc0},{0x41, 0x24},{0xe0, 0x14},{0x76,
0xff},{0x33, 0xa0},{0x42, 0x20},{0x43, 0x18},{0x4c, 0x00},{0x87,
0xd0},{0x88, 0x3f},{0xd7, 0x03},{0xd9, 0x10},{0xd3, 0x82},{0xc8,
0x08},{0xc9, 0x80},{0x7c, 0x00}, {0x7d, 0x00},{0x7c, 0x03},{0x7d,
0x48},{0x7d, 0x48},{0x7c,0x08},{0x7d, 0x20},{0x7d, 0x10},{0x7d,
0x0e},{0x90, 0x00},{0x91, 0x0e},{0x91, 0x1a},{0x91, 0x31},{0x91,
0x5a},{0x91, 0x69},{0x91, 0x75},{0x91, 0x7e},{0x91, 0x88},{0x91,
0x8f},{0x91, 0x96}, {0x91, 0xa3},{0x91, 0xaf},{0x91, 0xc4},{0x91,
0xd7},{0x91, 0xe8},{0x91, 0x20},{0x92, 0x00},{0x93, 0x06},{0x93,
0xe3},{0x93, 0x05},{0x93, 0x05},{0x93, 0x00},{0x93, 0x04},{0x93,
0x00},{0x93, 0x00},{0x93, 0x00},{0x93, 0x00},{0x93, 0x00},{0x93,
0x00},{0x93, 0x00},{0x96, 0x00},{0x97, 0x08},{0x97, 0x19},{0x97,
0x02},{0x97, 0x0c},{0x97, 0x24},{0x97, 0x30},{0x97, 0x28},{0x97,
0x26},{0x97, 0x02},{0x97, 0x98},{0x97, 0x80},{0x97, 0x00},{0x97,
0x00},{0xc3, 0xed},{0xc5, 0x11},{0xc6, 0x51},{0xbf, 0x80},{0xc7,
0x00},{0xb6, 0x66},{0xb8, 0xA5},{0xb7, 0x64},{0xb9, 0x7C},{0xb3,
0xaf},{0xb4, 0x97},{0xb5, 0xFF},{0xb0, 0xC5},{0xb1, 0x94},{0xb2,
0x0f},{0xc4, 0x5c},{0xc0, 0xc8},{0xc1, 0x96},{0x86, 0x1d},{0x50,
0x00},{0x51, 0x90},{0x52, 0x18}, {0x53, 0x00},{0x54, 0x00},{0x55,
0x88},{0x57, 0x00},{0x5a, 0x90},{0x5b, 0x18}, {0x5c, 0x05},{0xc3,
0xed},{0x7f, 0x00},{0xda, 0x00},{0xe5, 0x1f},{0xe1, 0x77},{0xe0,
0x00},{0xdd, 0x7f},{0x05, 0x00},{0xFF, 0x00},{0x05, 0x00},{0xDA,
0x10},{0xD7, 0x03},{0xDF, 0x00},{0x33, 0x80},{0x3C, 0x40}, {0xe1, 0x77},
{0x00, 0x00} };

To modify the camera module registers, the previous table must be sent to the camera through the I2C. In ov264
0.c, in void ov2640_Init(uint16_t DeviceAddr, uint32_t resolution), replace:

case CAMERA_R320x240:
{
for(index=0; index<(sizeof(OV2640_QVGA)/2); index++)
{
CAMERA_IO_Write(DeviceAddr, OV2640_QVGA[index][0],
OV2640_QVGA[index][1]);
CAMERA_Delay(1);
}
break;
}

by
case CAMERA_R320x240:
{
for(index=0; index<(sizeof(OV2640_JPEG)/2); index++)
{
CAMERA_IO_Write(DeviceAddr, OV2640_JPEG[index][0],
OV2640_JPEG[index][1]);
CAMERA_Delay(1);
}
break;
}

AN5020
DCMI application examples

AN5020 - Rev 4 page 73/84

9 Supported devices

To know if a CMOS sensor (a camera module) is compatible with the DCMI or not, the user must check the
following points in the CMOS sensor specifications:
• Parallel interface (8-, 10-, 12-, or 14-bit)
• Control signals (VSYNC, HSYNC, and PIXCLK)
• Supported pixel clock frequency output
• Supported data output
There is a wide range of camera modules and CMOS sensors that are compatible with the STM32 DCMI.
The table below lists some of them.

Table 15. Examples of supported camera modules

CMOS sensor Camera module Formats Parallel interface

MT9D111 ArduCAM 2 megapixels RGB, YCbCr, JPEG 10-bit

MT9P111 5 megapixels RGB, YCbCr, JPEG 8-bit

NT99141 ArduCAM 1 megapixel RGB, YCbCr, JPEG 8-bit

OV2640 ArduCAM 2 megapixels RGB, YCbCr, JPEG 8-bit, 10-bit

OV3660 3 megapixels RGB, YCbCr 8-bit, 10-bit

OV5640 ArduCAM 5 megapixels RGB, YCbCr, JPEG 8-bit, 10-bit

OV5642 ArduCAM 5 megapixels RGB, YCbCr, JPEG 8-bit, 10-bit

OV9655 ArduCAM 1.3 megapixels RGB, YCbCr 8-bit

S5k4ECGX 5 megapixels RGB, JPEG 10-bit

S5k5CAGA 3 megapixels RGB, JPEG 10-bit

AN5020
Supported devices

AN5020 - Rev 4 page 74/84

10 Conclusion

The DCMI represents an efficient interface to connect the camera modules to the STM32 MCUs supporting high
speed, high resolutions, and a variety of data formats/widths.
Together with the variety of peripherals and interfaces integrated in STM32 MCUs and benefiting from the STM32
smart architecture, the DCMI can be used in large and sophisticated imaging applications.
This application note covers the DCMI across the STM32 MCUs, providing all the necessary information to
correctly use the DCMI, and to succeed in implementing applications starting from the compatible camera module
selection to detailed examples implementation.

AN5020
Conclusion

AN5020 - Rev 4 page 75/84

Revision history

Table 16. Document revision history

Date Version Changes

3-Aug-2017 1 Initial release.

17-Oct-2022 2

Updated:
• Table 1. Applicable products
• Table 2. DCMI and related resources availability
• Section 3.2: DCMI in a smart architecture with all new products
• Table 6. DCMI and camera modules on STM32 boards
• Section 5.6.4: YCbCr, Y only
• Section 5.8: Image resizing (resolution modification)
• Table 7. DCMI operation in low-power modes
• Section 6.4.1: DMA configuration for DCMI-to-memory transfers
• Table 8. DMA stream selection across STM32 devices
• Section 6.4.4: DMA_SxNDTR/DMA_CNDTRx/GPDMA_CxBR1 register
• Table 13. Maximum data flow at maximum DCMI_PIXCLK
• Table 14. STM32Cube DCMI examples
• Section 8.3.2: Configuration of common examples
• Table 15. Examples of supported camera modules

24-Feb-2023 3

Updated:
• Table 1. Applicable products
• Table 2. DCMI and related resources availability
• Figure 7. DCMI slave AHB2 peripheral in the STM32F4
• Figure 8. DCMI slave AHB2 peripheral in the STM32F7
• Figure 9. DCMI slave AHB2 peripheral in the STM32H723/733, STM32H743/753,

STM32H742, STM32H725/735, STM32H730, and STM32H750 devices
• Figure 10. DCMI slave AHB2 peripheral in the STM32H745/755 and STM32H747/757

devices
• Figure 11. DCMI slave AHB2 peripheral in the STM32H7A3/B3
• Figure 12. DCMI slave AHB2 peripheral in STM32L496/4A6
• Figure 13. DCMI slave AHB2 peripheral in the STM32L4+
• Table 6. DCMI and camera modules on STM32 boards
• Figure 17. DCMI block diagram: example of 12-bit data width
• Section 6.4: DMA configuration
• Table 9. DMA stream selection across STM32 devices
• Table 13. Maximum data flow at maximum DCMI_PIXCLK
• Section 3.2.4.3: STM32H7A3/7B3 devices

Added:
• Section 3.2.8: STM32H5 system architecture
• Section 3.2.7: STM32U5 system architecture

20-Nov-2024 4 Document updated to add STM32H523/533 line and STM32N6 series to the scope of this
document.

AN5020

AN5020 - Rev 4 page 76/84

Date Version Changes
Updated:
• Table 1. Applicable products: add new products in the scope of the document
• Section 2.1: Basic imaging concepts: title updated, and typos corrected inside the

section
• Section 3.1: DCMI availability and features across STM32 MCUs: Table 2
• Section 3.2: DCMI in a smart architecture
• Section 3.2.4.1: STM32H7x3, STM32H742, STM32H725/735, STM32H730, and

STM32H750 devices
• Section 3.2.5: STM32L4 system architecture
• Section 3.2.6: STM32L4+ system architecture including Figure 13. DCMI slave AHB2

peripheral in the STM32L4+
• Section 3.2.7: STM32U5 system architecture
• Section 3.2.8: STM32H5 system architecture
• CMOS sensors for STM32H7B3I-EVAL and STM32U575I-EVAL in Table 6. DCMI and

camera modules on STM32 boards
• Figure 17. DCMI block diagram: example of 12-bit data width
• Section 5.6: Data formats and storage
• Section 5.6.4: YCbCr, Y only
• Section 5.8: Image resizing (resolution modification)
• Table 7. DCMI operation in low-power modes
• Section 6.4: DMA configuration
• Section 6.4.1: DMA configuration for DCMI-to-memory transfers
• Section 6.4.3: DCMI channel and stream configuration including Table 9
• Section 6.4.5: FIFO and burst transfer configuration
• Section 6.4.7: Circular mode for low resolution in continuous capture
• Section 6.4.8: Double-buffer mode for medium resolutions (snapshot or continuous

capture)
• Section 7.2: Performance
• Section 8.1: DCMI use cases

Added:
• Section 3.2.9: STM32N6 system architecture

AN5020

AN5020 - Rev 4 page 77/84

Contents

1 General information .2
2 Camera modules and basic concepts .3

2.1 Basic imaging concepts . 3

2.2 Camera module. 4
2.2.1 Camera module components . 4

2.2.2 Camera module interconnect (parallel interface) . 5

3 STM32 DCMI overview .6
3.1 DCMI availability and features across STM32 MCUs . 6

3.1.1 Availability of DCMI and related resources_ topic for table rotation 7

3.2 DCMI in a smart architecture . 9
3.2.1 STM32F2 system architecture . 9

3.2.2 STM32F4 system architecture . 9

3.2.3 STM32F7 system architecture . 11

3.2.4 STM32H7 system architecture . 13

3.2.5 STM32L4 system architecture. 16

3.2.6 STM32L4+ system architecture. 17

3.2.7 STM32U5 system architecture . 18

3.2.8 STM32H5 system architecture . 20

3.2.9 STM32N6 system architecture . 21

4 Reference boards with DCMI and/or camera modules .22
5 DCMI description .24

5.1 Hardware interface . 24

5.2 Camera module and DCMI interconnection . 27

5.3 DCMI functional description . 27

5.4 Data synchronization . 27
5.4.1 Hardware (or external) synchronization. 27

5.4.2 Embedded (or internal) synchronization . 28

5.5 Capture modes . 31
5.5.1 Snapshot mode. 31

5.5.2 Continuous grab mode . 31

5.6 Data formats and storage. 32
5.6.1 Monochrome. 33

5.6.2 RGB565 . 33

5.6.3 YCbCr . 33

5.6.4 YCbCr, Y only . 34

AN5020
Contents

AN5020 - Rev 4 page 78/84

5.6.5 JPEG . 34

5.7 Crop feature. 34

5.8 Image resizing (resolution modification) . 35

5.9 DCMI interrupts . 35

5.10 Low-power modes. 36

6 DCMI configuration .38
6.1 GPIO configuration . 38

6.2 Clock and timing configuration. 38
6.2.1 System clock configuration (HCLK). 38

6.2.2 DCMI clock and timing configuration (DCMI_PIXCLK) . 39

6.3 DCMI configuration . 41
6.3.1 Capture mode selection . 41

6.3.2 Data format selection . 41

6.3.3 Image resolution and size . 41

6.4 DMA configuration. 42
6.4.1 DMA configuration for DCMI-to-memory transfers. 42

6.4.2 DMA configuration versus image size and capture mode . 43

6.4.3 DCMI channel and stream configuration . 43

6.4.4 DMA_SxNDTR/DMA_CNDTRx/GPDMA_CxBR1 register . 44

6.4.5 FIFO and burst transfer configuration . 45

6.4.6 Normal mode for low resolution in snapshot capture . 45

6.4.7 Circular mode for low resolution in continuous capture . 45

6.4.8 Double-buffer mode for medium resolutions (snapshot or continuous capture) 46

6.4.9 DMA configuration for higher resolutions. 47

6.5 Camera module configuration . 49

7 Power consumption and performance. .50
7.1 Power consumption . 50

7.2 Performance . 50

8 DCMI application examples .52
8.1 DCMI use cases . 52

8.2 STM32Cube examples . 53

8.3 DCMI examples based on STM32CubeMX . 53
8.3.1 Hardware description . 55

8.3.2 Configuration of common examples . 57

8.3.3 RGB data capture and display . 68

8.3.4 YCbCr data capture . 68

8.3.5 Y only data capture . 69

AN5020
Contents

AN5020 - Rev 4 page 79/84

8.3.6 Resolution capture (YCbCr data format) . 70

8.3.7 JPEG data capture . 72

9 Supported devices. .74
10 Conclusion .75
Revision history .76
List of tables .81
List of figures. .82

AN5020
Contents

AN5020 - Rev 4 page 80/84

List of tables
Table 1. Applicable products . 1
Table 2. Availability of DCMI and related resources . 7
Table 3. SRAM availability in the STM32F4 series . 11
Table 4. SRAM availability in the STM32H723/733, STM32H743/753, STM32H742, STM32H725/735, STM32H730, and

STM32H750 devices . 15
Table 5. SRAM availability in the STM32U5 devices . 20
Table 6. DCMI and camera modules on STM32 boards. 22
Table 7. DCMI operation in low-power modes . 37
Table 8. DMA stream selection across STM32 devices . 44
Table 9. DMA stream selection across STM32 devices . 44
Table 10. Maximum number of bytes transferred during one DMA transfer . 44
Table 11. Maximum image resolution in normal mode. 45
Table 12. Maximum image resolution in double-buffer mode . 46
Table 13. Maximum data flow at maximum DCMI_PIXCLK . 50
Table 14. STM32Cube DCMI examples . 53
Table 15. Examples of supported camera modules. 74
Table 16. Document revision history . 76

AN5020
List of tables

AN5020 - Rev 4 page 81/84

List of figures
Figure 1. Original versus digital image. 3
Figure 2. Horizontal blanking illustration . 3
Figure 3. Vertical blanking illustration . 4
Figure 4. Camera module examples . 4
Figure 5. Interfacing a camera module with an STM32 MCU . 5
Figure 6. DCMI slave AHB2 peripheral in the STM32F2x7 . 9
Figure 7. DCMI slave AHB2 peripheral in the STM32F4 . 10
Figure 8. DCMI slave AHB2 peripheral in the STM32F7 . 12
Figure 9. DCMI slave AHB2 peripheral in the STM32H723/733, STM32H743/753, STM32H742, STM32H725/735,

STM32H730, and STM32H750 devices . 14
Figure 10. DCMI slave AHB2 peripheral in the STM32H745/755 and STM32H747/757 devices 15
Figure 11. DCMI slave AHB2 peripheral in the STM32H7A3/B3 . 16
Figure 12. DCMI slave AHB2 peripheral in STM32L496/4A6 . 17
Figure 13. DCMI slave AHB2 peripheral in the STM32L4+. 18
Figure 14. DCMI slave AHB2 peripheral in the STM32U5 devices . 19
Figure 15. DCMI slave AHB2 peripheral for the STM32H562 and STM32H563/573 . 20
Figure 16. DCMI signals . 24
Figure 17. DCMI block diagram: example of 12-bit data width . 25
Figure 18. Data register filled for 8-bit data width . 26
Figure 19. Data register filled for 10-bit data width . 26
Figure 20. Data register filled for 12-bit data width . 26
Figure 21. Data register filled for 14-bit data width . 26
Figure 22. STM32 MCU and camera module interconnection. 27
Figure 23. Frame structure in hardware synchronization mode. 28
Figure 24. Embedded code bytes . 28
Figure 25. Frame structure in embedded synchronization mode 1 . 29
Figure 26. Frame structure in embedded synchronization mode 2 . 30
Figure 27. Embedded code unmasking . 30
Figure 28. Frame reception in snapshot mode . 31
Figure 29. Frame reception in continuous grab mode . 32
Figure 30. Pixel raster scan order. 32
Figure 31. DCMI data register filled with monochrome data . 33
Figure 32. DCMI data register filled with RGB data . 33
Figure 33. DCMI data register filled with YCbCr data . 33
Figure 34. DCMI data register filled with Y only data . 34
Figure 35. JPEG data reception . 34
Figure 36. Frame resolution modification. 35
Figure 37. DCMI interrupts and registers . 36
Figure 38. DCMI_ESCR register bytes . 39
Figure 39. FEC structure . 39
Figure 40. LEC structure . 40
Figure 41. FSC structure . 40
Figure 42. LSC structure . 40
Figure 43. Frame structure in embedded synchronization mode . 41
Figure 44. Data transfer through the DMA . 43
Figure 45. Frame buffer and DMA_SxNDTR register in circular mode . 46
Figure 46. Frame buffer and DMA_SxNDTR register in double-buffer mode. 47
Figure 47. DMA operation in high resolution case. 48
Figure 48. STM32 DCMI application example . 52
Figure 49. Data path in capture and display application . 54
Figure 50. 32F746GDISCOVERY and STM32F4DIS-CAM interconnection . 55
Figure 51. Camera connector on 32F746GDISCOVERY . 56
Figure 52. Camera connector on STM32F4DIS-CAM . 57

AN5020
List of figures

AN5020 - Rev 4 page 82/84

Figure 53. STM32CubeMX - DCMI synchronization mode selection . 58
Figure 54. STM32CubeMX - GPIO settings selection . 58
Figure 55. STM32CubeMX - DCMI pin selection . 59
Figure 56. STM32CubeMX - GPIO no pull-up and no pull-down selection . 59
Figure 57. STM32CubeMX - Parameter Settings tab. 59
Figure 58. STM32CubeMX - DCMI control signals and capture mode . 59
Figure 59. STM32CubeMX - Configuration of DCMI interrupts . 60
Figure 60. STM32CubeMX - DMA Settings tab . 60
Figure 61. STM32CubeMX - Add button . 60
Figure 62. STM32CubeMX - DMA stream configuration . 60
Figure 63. STM32CubeMX - DMA configuration . 61
Figure 64. STM32CubeMX - PH13 pin configuration . 61
Figure 65. STM32CubeMX - GPIO button . 61
Figure 66. STM32CubeMX - DCMI power pin configuration . 62
Figure 67. STM32CubeMX - HSE configuration . 62
Figure 68. STM32CubeMX - Clock configuration . 63

AN5020
List of figures

AN5020 - Rev 4 page 83/84

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN5020

AN5020 - Rev 4 page 84/84

http://www.st.com/trademarks

	AN5020
	Introduction
	1 General information
	2 Camera modules and basic concepts
	2.1 Basic imaging concepts
	2.2 Camera module
	2.2.1 Camera module components
	2.2.2 Camera module interconnect (parallel interface)

	3 STM32 DCMI overview
	3.1 DCMI availability and features across STM32 MCUs
	3.1.1 Availability of DCMI and related resources_ topic for table rotation

	3.2 DCMI in a smart architecture
	3.2.1 STM32F2 system architecture
	3.2.2 STM32F4 system architecture
	3.2.3 STM32F7 system architecture
	3.2.4 STM32H7 system architecture
	3.2.4.1 STM32H7x3, STM32H742, STM32H725/735, STM32H730, and STM32H750 devices
	3.2.4.2 STM32H745/755 and STM32H747/757 devices
	3.2.4.3 STM32H7A3/7B3 devices

	3.2.5 STM32L4 system architecture
	3.2.6 STM32L4+ system architecture
	3.2.7 STM32U5 system architecture
	3.2.8 STM32H5 system architecture
	3.2.9 STM32N6 system architecture

	4 Reference boards with DCMI and/or camera modules
	5 DCMI description
	5.1 Hardware interface
	5.2 Camera module and DCMI interconnection
	5.3 DCMI functional description
	5.4 Data synchronization
	5.4.1 Hardware (or external) synchronization
	5.4.2 Embedded (or internal) synchronization
	5.4.2.1 Mode 1
	5.4.2.2 Mode 2
	5.4.2.3 Embedded unmask codes

	5.5 Capture modes
	5.5.1 Snapshot mode
	5.5.2 Continuous grab mode

	5.6 Data formats and storage
	5.6.1 Monochrome
	5.6.2 RGB565
	5.6.3 YCbCr
	5.6.4 YCbCr, Y only
	5.6.5 JPEG

	5.7 Crop feature
	5.8 Image resizing (resolution modification)
	5.9 DCMI interrupts
	5.10 Low-power modes

	6 DCMI configuration
	6.1 GPIO configuration
	6.2 Clock and timing configuration
	6.2.1 System clock configuration (HCLK)
	6.2.2 DCMI clock and timing configuration (DCMI_PIXCLK)
	6.2.2.1 DCMI clock configuration in hardware synchronization
	6.2.2.2 DCMI clock configuration in embedded synchronization

	6.3 DCMI configuration
	6.3.1 Capture mode selection
	6.3.2 Data format selection
	6.3.3 Image resolution and size

	6.4 DMA configuration
	6.4.1 DMA configuration for DCMI-to-memory transfers
	6.4.2 DMA configuration versus image size and capture mode
	6.4.3 DCMI channel and stream configuration
	6.4.4 DMA_SxNDTR/DMA_CNDTRx/GPDMA_CxBR1 register
	6.4.5 FIFO and burst transfer configuration
	6.4.6 Normal mode for low resolution in snapshot capture
	6.4.7 Circular mode for low resolution in continuous capture
	6.4.8 Double-buffer mode for medium resolutions (snapshot or continuous capture)
	6.4.9 DMA configuration for higher resolutions

	6.5 Camera module configuration

	7 Power consumption and performance
	7.1 Power consumption
	7.2 Performance

	8 DCMI application examples
	8.1 DCMI use cases
	8.2 STM32Cube examples
	8.3 DCMI examples based on STM32CubeMX
	8.3.1 Hardware description
	8.3.2 Configuration of common examples
	8.3.2.1 STM32CubeMX - Configuration of DCMI GPIOs
	8.3.2.2 STM32CubeMX - Configuration of DCMI control signals and capture mode
	8.3.2.3 STM32CubeMX - Enable DCMI interrupts
	8.3.2.4 STM32CubeMX - DMA configuration
	8.3.2.5 STM32CubeMX - Camera module power-up pins
	8.3.2.6 STM32CubeMX - System clock configuration
	8.3.2.7 Adding files to the project
	8.3.2.8 Modifications in main.c file
	8.3.2.9 Modifications in main.h file

	8.3.3 RGB data capture and display
	8.3.4 YCbCr data capture
	8.3.5 Y only data capture
	8.3.6 Resolution capture (YCbCr data format)
	8.3.7 JPEG data capture

	9 Supported devices
	10 Conclusion
	Revision history
	Contents
	List of tables
	List of figures

