‘— AN5054
’l lite.augmented Application note

How to perform secure programming using
STM32CubeProgrammer

June 2024

Introduction

This document specifies the steps and tools required to prepare SFI (secure internal
firmware install), SFIx (secure external firmware install), SMI (secure module install) or SSP
(secure secret provisioning) images. It then describes how to program these into STM32
MCU devices that support SFI/SFIx on-chip internal memory, external flash memory or, for
the SSP install procedure, STM32 MPU devices. It is based on the
STM32CubeProgrammer tool set (STM32CubeProg). These tools are compatible with all
STM32 devices.

The main objective of the SFI/SFIx and SMI processes is the secure installation of OEM and
software-partner’s firmware, which prevents firmware cloning.

The STM32MP1 Series supports protection mechanisms allowing protection of critical
operations (such as cryptography algorithms) and critical data (such as secret keys) against
unexpected access.

This application note also gives an overview of the STM32 SSP solution with its associated
tool ecosystem, and explains how to use it to protect OEM secrets during the CM product
manufacturing stage.

Refer also to:

e AN4992 [1], which provides an overview of the secure firmware install (SFI) solution, and
how this provides a practical level of protection of the IP chain - from firmware
development up to programming the device on-chip flash memory.

e ANS5510 [3], which provides an overview of secure secret provisioning (SSP).

AN5054 Rev 16 1/169

www.st.com

http://www.st.com

Contents AN5054

Contents
1 Generalinformation i i 13
1.1 Licensing information 13
1.2 Acronyms and abbreviations o 13
2 How to generate an execute-only and position
independent library for SMl preparation 15
2.1 Requirements 15
22 Toolchains allowing SMl generation 15
2.3 Execute-only/position independent library scenario example
under EWARM e 16
2.3.1 Relocatable library preparationsteps 16
23.2 Relocatable SMI module preparationsteps 20
233 Application execution scenario, 21
3 Encrypted firmware (SFI) and module (SMl)
preparation using the STPCtool 23
3.1 Systemrequirements 23
3.2 SFlgeneration process 23
3.3 SFIx generation process i .. 31
Area E. .. 32
Area K. 32
3.4 SMI generation proCesst 35
3.5 SSP generation process 37
3.6 STM32 Trusted Package Creator tool in the command-line interface ... 39
3.6.1 Steps for SFl generation (CLI) 41
3.6.2 Steps for SMI generation (CLI), 43
3.6.3 Steps for SSP generation (CLI) 46
3.7 Using the STM32 Trusted Package Creator tool graphical user interface 47
3.7.1 SFl generation using STPCinGUImode 47
SFIGUItab fIeldSo oottt e e et 49
3.7.2 SFIx generation using STPCinGUImode 52
SFIxGUItabfields 53
3.7.3 SMI generation using STPCinGUImode 55
SMIGUItab fIeldSottt e 56

2/169 AN5054 Rev 16 ‘Yl

AN5054 Contents
3.7.4 SSP generation using STPCinGUImode 58
SSP GUItabfields 58
3.7.5 Settings 60
3.7.6 Loggeneration 61
3.7.7 SFl and SMI file checking function 62
4 Encrypted firmware (SFI/SFIx)/ module (SMI)
programming with STM32CubeProgrammer 63
4.1 Chip certificate authenticity check and license mechanism 63
411 Device authentication 63
41.2 License mechanism i 63
License mechanismgeneralscheme. 63
License distribution. 64
HSM programming by OEM for license distribution 64
4.2 Secure programming using a bootloader interface 65
421 Secure firmware installation using a bootloader interface flow 65
422 Secure module installation using a bootloader interface flow 67
423 STM32CubeProgrammer for SFI using a bootloader interface 67
424 STM32CubeProgrammer for SMI via a bootloader interface 68
425 STM32CubeProgrammer for SSP via a bootloader interface 69
4.2.6 STM32CubeProgrammer get certificate via a bootloader interface 71
4.3 Secure programming using the JTAG/SWD interface 71
4.3.1 SFI/SFIx programming using JTAG/SWD flow 71
43.2 SMI programming through JTAG/SWD flow 73
4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD . . 75
Example “getcertificate” command using JJTAG 75
Example “smi” command using SWD. 75
4.4 Secure programming using bootloader interface (UART/IZC/SPI/USB) .. 75
SFlexample 76
SFEIX example 76
5 Example of SFl programmingscenario......................... 77
5.1 SCeNArio OVEIVIEWo e 77
5.2 Hardware and software environment 77
53 Step-by-stepexecution........ 77
5.3.1 Build OEM application 77
5.3.2 Performing the option byte file generation (GUI mode) 77
5.3.3 Perform the SFI generation (GUImode) 78
‘,_l AN5054 Rev 16 3/169

Contents

ANS5054

4/169

534 Performing HSM programming for license generation using STPC

(GUIMOdE) ..o 80

5.3.5 Performing HSM programming for license generation using STPC
(CLIMOdE) . ..ot 82
Example of HSM version 1 provisioning. 82
Example of HSM version 2 provisioning. 83
Example of HSM getinformation, 83
5.3.6 Programming input conditions 84
5.3.7 Performing the SFI install using STM32CubeProgrammer 85
Using JTAG/SWDot e e 85
5.3.8 SFI with Integrity check (for STM32H73) 86
Usage example: e 86
Example of SFI programming scenario for STM32WL 90
6.1 Scenario OVeIVIEW 90
6.2 Hardware and software environment 90
6.3 Step-by-stepexecution 90
6.3.1 Build OEM application 90
6.3.2 Perform the SFIl generation (GUImode) 90
6.3.3 Programming input conditions o L. 92
6.3.4 Perform the SFl install using STM32CubeProgrammer 93
Example of SFI programming scenario for STM32U5 95
71 Scenario OVerVIEW 95
7.2 Hardware and software environment 95
7.3 Step-by-stepexecution........... 95
7.3.1 Build OEM application 95
7.3.2 Perform the SFI generation (GUImode) 95
7.3.3 Programming input conditions o L. 97
7.3.4 Perform the SFl install using STM32CubeProgrammer 97
Using JTAG/SWD e 97
Example of SFl programming scenario for STM32WBAS 100
8.1 SCeNario OVEIVIEW 100
8.2 Hardware and software environment 100
8.3 Step-by-stepexecution 100
8.3.1 Build OEM application 100
8.3.2 Perform the SFl generation (GUImode) 100

AN5054 Rev 16 ‘Yl

AN5054 Contents
8.3.3 Programming input conditions oL 101
8.3.4 Perform the SFl install using STM32CubeProgrammer 101
Using the UART interface. i 102
9 Example of SFIA programming scenario for STM32WBAS 107
9.1 Scenario OVEIVIEW 107
9.2 Hardware and software environment 107
9.3 Step-by-stepexecution 107
9.31 Build an OEM application, 107

9.3.2 Perform the HSM programming for the SFIA license generation (GUI

mode) 107

9.3.3 Perform the SFI generation (GUImode) 108
9.34 Programming input conditions 108
9.3.5 Perform the SFl installation using STM32CubeProgrammer 108
10 Example of SFI programming scenario for STM32H5 110
10.1 SCENArio OVEIVIEWttt e e e e 110
10.2 Hardware and software environment 110
10.3 Step-by-stepexecution........ i 110
10.3.1 Build OEM application 110
10.3.2 Perform the SFI generation (GUImode) 110
10.3.3 Programming input requirements 111
10.3.4 Perform the SFl install using STM32CubeProgrammer 112
Command-linemode 112
Graphical userinterfacemode 113
1" Example of SFl programming scenario for STM32H7RS 115
11.1 SCeNario OVEIVIEWttt e e 115
11.2 Hardware and software environment 115
11.3 Step-by-stepexecution....... 115
11.3.1 Buildan OEM application 115
11.3.2 Perform the SFl generation (GUImode) 115
11.3.3 Programming input requirements 116
11.3.4 Perform the SFl install using STM32CubeProgrammer 116
Command-linemode 117
Graphical userinterfacemode 117
‘,_l AN5054 Rev 16 5/169

Contents AN5054
12 Example of SMI programming scenario 119
12,1 Scenario OVEIVIEW 119
12.2 Hardware and software environment 119
12.3 Step-by-stepexecution........ 119
12.3.1 Build a third-party library 119
12.3.2 Performthe SMigeneration 120
12.3.3 Programming input conditions 121
12.3.4 Performthe SMlinstall, 121
Using JTAG/SWDo e 121
12.3.5 How totestfor SMlinstallsuccess 123
13 Example of SFIx programming scenario for STM32H7 125
13.1 ScCenario OVEIVIEWot e 125
13.2 Hardware and software environment 125
13.3 Step-by-stepexecution. 125
13.3.1 Build OEM application 125
13.3.2 Perform the SFiIx generation (GUImode) 125
13.3.3 Performing HSM programming for license generation using STPC
(GUIMOdE) ... 127
13.3.4 Performing HSM programming for license generation using STPC
(CLIMOdE) . .ot e 128
13.3.5 Programming input conditions, 128
13.3.6 Perform the SFlx installation using STM32CubeProgrammer 128
Using JTAG/SWDo e e 128
14 Example of SFIx programming scenario for STM32L5/STM32U5 ... 133
14.1 ScCenario OVEIVIEW i e e et 133
14.2 Hardware and software environment 133
14.3 Step-by-stepexecution........ 133
14.3.1 Build an OEM application 133
14.3.2 Perform the SFiIx generation (GUImode) 134
Use case 1: generation of SFIx without key area for STM32L5. 134
Use case 2: generation of SFIx with key area for STM32L5 136
Use case 3: generation of SFiIx without key area for STM32U5. 137
Use case 4: generation of SFIx with key area for STM32U5 138
14.3.3 Performing HSM programming for license generation using STPC
(GUIMOdE) ...t 140
6/169 AN5054 Rev 16 ‘,_l

AN5054

Contents

15

16

17

18

3

14.3.4 Performing HSM programming for license generation using STPC

(CLIMOdE) . ..ot 140

14.3.5 Programming inputconditions 140

14.3.6 Perform the SFIx installation using STM32CubeProgrammer 140
Example of SFIx programming scenario for STM32H5 143
15.1 Scenario OVervieWt 143
15.2 Hardware and software environment 143
15.3 Step-by-stepexecution...... 143
15.3.1 Buildan OEM application 143

15.3.2 Perform the SFiIx generation (GUImode) 144

15.3.3 Programming input conditions 145

15.3.4 Perform the SFIx installation using STM32CubeProgrammer CLI ... 145

Example of a combined SFI-SMI programming scenario 147
16.1 Scenario OVerview 147
16.2 Hardware and software environment 147
16.3 Step-by-stepexecution........ 147
16.3.1 UsingJTAG/SWD e e 149
16.3.2 How to test the combined SFlinstall success 151
Example of SSP programming scenario for STM32MP1 153
17.1 SCeNario OVEIVIEWottt e e e 153
17.2 Hardware and software environment 153
17.3 Step-by-stepexecution........ 153
17.3.1 Buildingasecretfile 153
17.3.2 Performing the SSP generation (GUImode) 154

17.3.3 Performing HSM programming for license generation using STPC
(GUIMOdE) ... 155
17.3.4 SSP programming conditions 156
17.3.5 Perform the SSP installation using STM32CubeProgrammer 156
Example of SSP-SFI programming scenario for STM32MP2 158
18.1 ScCenario OVEIVIEWot 158
18.2 Hardware and software environment 158
18.3 Step-by-stepexecution........ 158
18.3.1 Buildingasecretfile 158
AN5054 Rev 16 7/169

ANS5054

Contents
18.3.2 Building a backup memoryfile o L 159
18.3.3 Performing the SSP-SFI generation (GUImode) 160
18.3.4 Performing HSM programming (GUI mode) 161
18.3.5 SSP-SFI programming conditions 161
18.3.6 Perform the SSP installation using STM32CubeProgrammer 161
19 Referencedocumentscciiiiiiiiiiiiinnn. 163
20 Revision history e 164
8/169 AN5054 Rev 16 Kyy

AN5054 List of tables

List of tables

Table 1. List of abbreviations 13
Table 2. SSP preparation iNpuUtS. 39
Table 3. Document referencCes 163

Table 4. Document revision history

3

AN5054 Rev 16 9/169

List of figures AN5054

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

10/169

IAR example project overview 16
Update compiler extraoptions 17
Linker extra oplions 18
Setting post-build option 19
Postbuild batch file 20
How to exclude the “lib.o” file frombuild, 21
app.acffile . .. e 22
SFl preparation mechanism 23
SFlimage process generation i 24
RAM size and CT address inputsused for SFI. 25
'P'and ‘R’ area specifics versus aregular SFlarea 26
Error message when firmware files with address overlapsareused 27
Error message when SMI address overlaps with a firmware areaaddress 28
Error message when a SFI area address is not located in flash memory. 29
SFlformatlayout 30
SFlimage layoutincase of split 31
RAM size and CT address inputsused for SFIX. 33
SFIx format layout. e 34
SFIximage layoutincaseof split. 35
SMI preparation mechanism 35
SMIimage generation ProCESSttt 36
SMIformat layout 37
SSP preparation mechanism 38
Encryption file scheme e 39
STM32 Trusted Package Creator tool - SFI preparationoptions 40
STM32 Trusted Package Creator tool - SMI preparation options. 40
Option bytes file example 42
SFl generation example usingan ELFfile 43
SMIl generation example 45
SSP generation SUCCESS. oottt 47
SFlgeneration Tab 48
Firmware parsing example e 49
SFI successful generation in GUI mode example 51
SFIxgeneration Tab 52
Firmware parsing example e 53
SFIx successful generationin GUImode example. 54
SMigeneration Tab 55
SMI successful generationin GUImodeexample 57
SSP generationtab. 58
SSP outputinformation. 59
Settings icon and settings dialogbox 60
Log eXample e 61
Check SFIfile example. 62
HSM programming GUl inthe STPCtool 65
Secure programming via STM32CubeProgrammer overview on STM32H7 devices 66
Secure programming via STM32CubeProgrammer overview on STM32L4 devices 66
SSPinstallation SUCCESS. e 70
Example of getcertificate command execution using UART interface 71

AN5054 Rev 16 ‘Yl

AN5054 List of figures
Figure 49. SFI programming by JTAG/SWD flow overview
(monolithic SFl image example) e 72
Figure 50. SMI programming by JTAG flow overview i 74
Figure 51. Example of getcertificate command using JTAG 75
Figure 52. STMB32Trusted Package Creator SFIOB GUI 78
Figure 53. STPC GUI during SFlgeneration. i 79
Figure 54. Example of HSM programming using STPC GUI. 81
Figure 55. Example product ID e 82
Figure 56. HSM information in STM32 Trusted Package Creator CLImode. 83
Figure 57. STM32Trusted Package Creator SFI ‘hash Generator ‘check box. 86
Figure 58. SFl installation success using SWD connection (1) 88
Figure 59. SFl installation success using SWD connection (2) 89
Figure 60. STPC GUI showing the STPC GUI during the SFl generation. 91
Figure 61. Example -dsecurity command-line output. 92
Figure 62. Example -setdefaultob command-lineoutput 93
Figure 63. SFl installation via SWD execution command-lineoutput 94
Figure 64. STPC GUI duringthe SFlgeneration. 96
Figure 65. SFlinstallation via SWD execution (1) e 98
Figure 66. SFlinstallation via SWD execution - (2)t e 99
Figure 67. STPC GUI duringthe SFlgeneration. 101
Figure 68. SFlinstallation via UART executionusing CLI......... 103
Figure 69. STM32WBAS SFI successful programming via UART interface using GUI 106
Figure 70. Example of HSM programming (SFIA License) using STPCGU 108
Figure 71. SFl generation for STM32HS 111
Figure 72. STMicroelectronics global license generation for STM32H5 112
Figure 73. STM32HS5 SFI successful programmingvia CLI. o ... 113
Figure 74. STMB32HS5 SFI successful programmingviaGUI 114
Figure 75. Figure4 SFI generation for STM32H7RS 116
Figure 76. STM32H7RS SFI successful programmingviaCLI 117
Figure 77. STM32H7RS SFI successful programmingvia GUI. 118
Figure 78. STPC GUI during SMI generation i 120
Figure 79. SMl install success viadebuginterface L. 122
Figure 80. OB display command showing that a PCROP zone was activated after SMI. 123
Figure 81. Successful SFIx generation 126
Figure 82. Example of HSM programming using STPC GUI. 127
Figure 83. SFIx installation success using SWD connection (1) 129
Figure 84. SFIx installation success using SWD connection (2) 130
Figure 85. SFIx installation success using SWD connection (3) 131
Figure 86. SFIx installation success using SWD connection (4) 132
Figure 87. Successful SFIx generationusecase 1 135
Figure 88. Successful SFIx generationusecase 2 136
Figure 89. Successful SFIx generationusecase 3 137
Figure 90. Successful SFIx generation use case 3 for STM32U59xxx, STM32US5AxxX,
STM32US5FxxX, and STM32USGXXX. . . o v vt oot e et e e et e e e et e et e 138
Figure 91. Successful SFIx generationusecase 4 139
Figure 92. Successful SFIx generation use case 4 for STM32U59xxx, STM32US5AxxX,
STM32US5FxxX, and STM32USGXXX. . . o v vt oo et e e e e et e e et e e e e 139
Figure 93. SFIx installation success using SWD connection (1) 141
Figure 94. SFIx installation success using SWD connection (2) 141
Figure 95. SFIx installation success using SWD connection (3) 142
Figure 96. SFIx image generation for STM32H5 144
Figure 97. SFIxinstallation success for STM32HS5 146
Kys AN5054 Rev 16 11/169

List of figures AN5054

Figure 98.
Figure 99.

Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.

12/169

GUI of STPC during combined SFI-SMI generation. 148
Combined SFI-SMI programming success using debug connection 150
Option bytes after combined SFI-SMI installation success. 152
STM32 Trusted Package Creator SSP GUltab 154
Example of HSMv2 programming using STPC GUI 155
STM32MP1 SSP installation success. 157
Secrets Gen Window 159
SSP Backup memory Window. 160
SSP-SFlimage generation window 160
SSSP-SFlinstallation 162

3

AN5054 Rev 16

AN5054

General information

1.1

1.2

3

General information

Licensing information

STM32CubeProgrammer supports STM32 32-bit devices based on Arm®@)

Cortex®-M processors.

Acronyms and abbreviations

Table 1. List of abbreviations

arm

Abbreviations

Definition

AES Advanced encryption standard

CLI Command-line interface

CM Contract manufacturer

GCM Galois counter mode (one of the modes of AES)
GUI Graphical user interface

HSM Hardware security module

HW Hardware

MAC Message authentication code

MCU Microcontroller unit

OEM Original equipment manufacturer
oTP One-time programmable

PCROP Proprietary code read-out protection
Pl Position independent

ROP Read-out protection

RSS Root security service (secure)
RSSe Root security service extension

SFI Secure (internal) firmware install
SFIx Secure external firmware install

SMI Secure modules install

SSP Secure secret provisioning

STPC STM32 Trusted Package Creator
STM32 ST family of 32-bit Arm®-based microcontrollers

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5054 Rev 16

13/169

General information AN5054

Table 1. List of abbreviations (continued)

Abbreviations Definition

SW Software

XO Execute only

3

14/169 AN5054 Rev 16

AN5054 How to generate an execute-only and position independent library for SMI preparation

2 How to generate an execute-only and position
independent library for SMI preparation

This section describes the requirements and procedures for the preparation of an
execute-only (XO) and position independent (PI) library using a partner toolchain.

These kinds of libraries serve in encrypted SMI-module generation.

2.1 Requirements

SMI modules run in execute-only (XO) areas, also called PCROP areas, and must
be relocatable to be linkable with the final OEM application. Nevertheless, today,
third-party toolchains for STM32 devices (such as MDK-ARM™ for Arm, EWARM
for IAR™ and GCC based IDEs) do not allow both features to be activated at the
same time. So, starting from particular versions of third-party toolchains, the two
features below are possible for SMI support:

e Position independent support (code + rw data + ro data)

e No literal pool generation - needed for the PCROP feature.

2.2 Toolchains allowing SMI generation

Three toolchains allow SMI generation:
e EWARM

Version 7.42.0 allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “--ropi_cb” + “rwpi” + “--
no_literal_pool”.

— “—ropi_cb” + “rwpi” are needed for position independent support
— option “no_literal_pool” is needed for the PCROP feature.
e MDK-ARM

The customized version allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “~fropi-cb”, “~frwpi”, “-
mexecute-only”.

— “fropi-cb” is needed for ro data independent position
— “frwpi” is needed for rw data independent position
— option “-mexecute-only” is needed for the PCROP feature.

All library symbols being used in the final application must be added to the final project
in a “.txt” file format.

e GCC
The customized version of GCC-based toolchains allows execute-only (XO) and

position independent (PI) library generation for SMI support through the following
options: “-masset”.

Option “-masset” has the same role as “--ropi --ropi_cb --rwpi --no_literal_pool” options
used for the EWARM toolchain.

3

AN5054 Rev 16 15/169

How to generate an execute-only and position independent library for SMI preparation = AN5054

2.3 Execute-only/position independent library scenario example
under EWARM

To generate an execute-only (XO) and position independent (PI) library, a
customized version of the IAR toolchain must be used: version 7.42.0.
2.3.1 Relocatable library preparation steps

1. Open the project available in the “Example” folder: double-click on
“Example/AdvEx.eww”.

The project architecture is illustrated in Figure 1.

Figure 1. IAR example project overview

File Edit View Project Simulator Tools Window Help
D Hd S| % BR[| AV I PP EBIBURS DD
Workspace = |
[app-Debug v]
Files inoE
B B AdvEx
=G app - Debug v

ﬁ =

[postbuild bat

Lad

l_

F— [memory_proxy.c

l_
L B)teste

The following steps update the old “ib.o” linked to the example application by
making it support both Pl and XO features:
2. Within Lib-Debug options -> C/C++ Compiler. Go to the tab “Extra Options” and add the
following line:
“--ropi_cb”
This action is illustrated in Figure 2.

3

16/169 AN5054 Rev 16

AN5054 How to generate an execute-only and position independent library for SMI preparation

Figure 2. Update compiler extra options

Workspace * app.icf postbuild.bat
app - Debug b @echo off
Filas ge o D ﬁ Th:i.s iz a simple.script that ecr
using the tocols in (%1).
B [AdvEx
I—L——_Iﬂapp—DEbug v REM Make sure the old files are del
|] app.c . if exist $2.tmp (
| - D lib.o J del 22.tmp
| =801 Output if exist 23 (
del %3
1
-
memDr.y_pery.c Options for nede "Lib" | B
— [posthuild bat by
test.c
=1 (7 Output |
[Lib.out Categony: 1
General Options [Muilti-file Campilation
Static Analysis Digeard Unused Publics Le
Runtime Checking (h
| Diagnostics | MISRALC:2004 | MISRAC:1398 | Edra Options D -
Assembler
QOutput Converter
Custom Build
Build Actions lse command line options
Linker)) _
Debugger Command line options: (one per ling)
Simulator —ropi_ch -
Angel
CMSIS DAP
GOB Server
IAR. ROM-monitor
I-Het/TTAGet
JHink/J-Trace
T1 stellaris
Macraigor
PE micro
RDI i
STAINK
Third-Party Driver
TI DS
QK.] ’ Caticel
|

3

AN5054 Rev 16 17/169

How to generate an execute-only and position independent library for SMI preparation = AN5054

3. Within Lib-Debug options -> Linker. Go to the “Extra Options” tab and add the following

lines:

--no_literal_pool

--ropi_cb
--loadable
--no_entry

This action is illustrated in Figure 3.
— “ropi_cb” is needed for Position Independent support
— the “no_entry” is a linker option that sets the entry point field to zero.

Figure 3. Linker extra options

Workspace

app.icf postbuild.bat

[app - Diebug

v fecho off

Files

B B 4chEx

2 @ app - Debug
| app.c

| Do

| 3 Output

mMemony_proxy.c
— [postbuild bat

[teste
=1 (7 Output

[Lib.out

G P, REM This is & simple script that cr
BEM using the tools in (%1).

v BEM Make sure the old files are dels
x if exist F2.tmp |
del £2.tmp
)
if exist %3 |
del &3
1

-
Options for node "Lib™

[|

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Debugger
Simulator
Angel
CMSIS DAP
GDB Server
IAR ROM-monitor
I-et/TTAGjet
J-link/1-Trace
TI Stellaris
Macraigar
PE micro
RDI
STLINK
Third-Party Driver
TIXDS

Factory Settings =

| Output | List | #define | Disgnostics | Checksum | Bxra Options | [« [+ -

Use command line options

Command line options: (one per ling)

~no_literal_pool -
—opi_ch

—Joadable

—no_entry

[0K][Cancel]

—m—m—m—e——_—_TTTY€<€T€V€V€T?-éAAmY———————————————————

18/169

AN5054 Rev 16

3

AN5054 How to generate an execute-only and position independent library for SMI preparation

4. Within Lib-Debug options -> Build actions. In the post, build command line execute the

batch file “postbuild.bat” by inserting, if it is not already configured, the following
command line:

"$PROJ DIRS\postbuild.bat" "$TOOLKIT DIR$" "$TARGET PATHS"
"$PROJ DIR$\1lib.o"

This action is illustrated in Figure 4.

Figure 4. Setting post-build option

Project Simulator Tools Window Help

D@ &St kRl o -y el oerdh BURS| LY
Workspace' x

vEx -
File Edit View

app - Debug

Files

B B AdvEx

|51 F app - Debug

| Bleppc

| B Dliko

| [Output

(=N]Lik - Cebug
—Blibe
— B memony_prose. ¢
— [postouild bat

L Btestc

Categary:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler m‘
Assembler i)
Quiput Canverter Pre-build command line:
Custom Build E

Build Actions Post-build command line

b *$PROJ_DIRS\postbuid bat" "STOOLKIT_DIRS" "STARGET_PATF [|
Debugger

Simulator

Angel

CMSIS DAP

GDB Server

TAR ROM-monitor
T4jet/ITAGjet
JHlink/3-Trace

TI Stellaris
Macraigor

PE micro

RDI

ST-LINK
Third-Party Driver
TIXDS

The “postbuild.bat” file is used to perform some key actions:

e --wrap: adds veneers to library functions to initialize registers used for ropi code
. “‘iexe2obj.exe”: transforms the ELF file into a linkable object file.

See Figure 5.

3

AN5054 Rev 16 19/169

How to generate an execute-only and position independent library for SMI preparation

ANS5054

Figure 5. Postbuild batch file

[S U S

1

1 o N e L R O

feche off
EEM This is a simple script that creates and ckject file (%3) from an image (%2)
EEM using the tools in (%1).

EEM Make sure the old files are deleted before we try to generate the new cnes
if exist LEmp |
del . TR
1
if exist
del

echo Do magic encryption here (copy is just a placeholder)
copy -LIp

M AL lill heve 2 prapper ceperzrod

SET _ WRAP=--wrap ToString --wrap setup memory --wrap Setup memoryd I

REM convert the image to a linkable cbject file using _Lib as prefix

REM and keeping all mode symbols Jgs%ts a bit with debugging)
“binYiexe2obj.exe —-prefix Lik ——keep mode symbols . Lo I

2.3.2

20/169

5. Rebuild the project “Lib”

Relocatable SMI module preparation steps

From the object file created, “lib.0”, generate the SMI relocatable module using the
STM32 Trusted Package Creator tool “libr.smi” and its corresponding data clear
part (libr_clear.o: corresponding to the input “ib.o” without the protected section

code).

To execute this step, follow the steps explained for SMI generation under section

“Section 3.6.2: Steps for SMI generation (CLI)".

AN5054 Rev 16

3

AN5054 How to generate an execute-only and position independent library for SMI preparation

2.3.3 Application execution scenario

1. Flash the already generated SMI relocatable module to address 0x08080000 using
STM32CubeProgrammer v0.4.0 or newer (see Section Figure 66.: SFl installation via
SWD execution - (2) to perform this action).

2. Link the data clear part, “libr_clear.o”, generated from the STM32 Trusted Package
Creator tool to the final IAR example application instead of the old previously used
“lib.o”.

3. Exclude ‘lib.o” from the build (Figure 6).

Figure 6. How to exclude the “lib.o” file from build
Workspace =
[app—Dabug -

Files £y
2 [EAdvEx
&1 (app - Debug v
| appc .
Ciutput ; —
LEﬂLib-Dl;bug v Options for node appA léj
lib.c .
Memary_arowy.c Exclude from build
h [postbuild bat Catogory
Eiteste
&3 1 Qutput

[Lib.out
II Custom Tool Corfiguration

Filename extensions:

[] Dveride inherited settings

Command ling

Qutput files {one per line):

Addtional input files (one per line):

[Run this tool before all other tools

4. Rebuild the application.
5. Do these modifications in an example application ICF file:
a) Define the region for PCROP block.
define symbol __ ICFEDIT _region_ PCROP_start = 0x08080000;
define symbol __ICFEDIT_region_PCROP_end__ = Ox0809FFFF;

define region PCROP_region = mem:[from __ ICFEDIT region_ PCROP_start
to__ ICFEDIT_region_PCROP_end__J;

b) Define the PCROP region as 'noload' (since it is already installed using the
STM32CubeProgrammer, there is no need to load it again.).

‘SMI’: place noload in PCROP_region { ro code section __code__Lib};

These modifications are illustrated within the “app.icf” file, which is shown in
Figure 7.

3

AN5054 Rev 16 21/169

How to generate an execute-only and position independent library for SMI preparation = AN5054

Figure 7. app.icf file

appic | fo -
/*###1CF#4# Section handled by ICF editor, den't touch! *+=+/
/*-Editor anmotation file-+/
11 KIT_DIR$\config\ide\

» Ll x

IcfEditor\cortex_vi_0.xml"” */

240000007
mory Regions—*/

__ICFEDIT region ROM start__ = 0x240000007
__ICFEDIT region ROM end = 0x24002FFF;
__ICFEDIT region RAM start__ = 0x24003000;
__ICFEDIT region RAM end_ = 0x2407FFFH;

— ICFEDIT region PCROE start = 005080000
—_ICFEDIT region PCROE end = 0x0809FFEF.

__ICFEDIT_size_cstack__ = 0x2000;
ICFEDIT size heap = 0x2000;
editor section. HEICF#3#+/

0x10000000;
0X1000FFFF;

__region REMI start_ =
__region RAMI end =
; mem with size
ROM_region

{ start__ to _ ICFEDIT region ROM end |:
{ start__ to _ ICFEDIT region RAM end |:
region RRML end

rom _ ICFEDIT region
rom _ICFEDIT region |
region RAM1 starc

m,

e block CSTACK with alignment

=8 CFEDIT_size_cstack__
e block HEAP with alignment = 8

1
CFEDIT_size_heap [

/*define block PCROE block with alignment = 256 {r0 code section _ code Lib}:*/

initialize by copy [readwrite };
do not initialize [section .noimit };

place at address mem: ICFEDIT intvec starc__ { readonly section .intvec };

place in ROM region { readonly }:
place in RAM_region | readurite,

block CSTACK, block EEAP };
place in RAMl region [section .stam };

l'Sl:’I": place noload in PCROP region | ro code section _ code Lib}: I

/*place in PCROP region [block ECROE_block }i*/

6. To check that the example application is executed successfully on the STM32H7
device:

a) Check that address 0x08080000 was protected with PCROP.
b) The expected “printf” packets appear in the terminal output.

3

22/169 AN5054 Rev 16

AN5054

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3

3.1

Note:

3.2

Encrypted firmware (SFl) and module (SMI)
preparation using the STPC tool

The STM32 Trusted Package Creator (STPC) tool allows the generation of SFI and
SMI images for STM32H7 devices. It is available in both CLI and GUI modes free of
charge from www.st.com.

System requirements

Using the STM32 Trusted Package Creator tool for SFI/SFIx, SMI, and SSP image
generation requires a PC running on either Windows®®), Linux®®) Ubuntu®©) or
Fedora®d). or macOS®©),

Refer to [4] or [5] for the supported operating systems and architectures.

SFIl generation process

The SFI format is an encryption format for internal firmware created by
STMicroelectronics that transforms internal firmware (in ELF, Hex, Bin, or Srec
formats) into encrypted and authenticated firmware in a SF| format using the AES-
GCM algorithm with a 128-bit key. The SFI preparation process used in the STM32
Trusted Package Creator tool is described in Figure 8.

Figure 8. SFI preparation mechanism

OEM FW Cleartext

+

OEM FW
[1]3.1[]{13? 5TM32TrustedPackageCreator %

Option Bytes 1010

OEM

FW Key —
P T ———

01101

Encrypted SFl image file

Enc - - MAC ENC

Nonce 01101
OEM FW 01010

w 10%n4

Option Bytesq r

3

Windows is a trademark of the Microsoft group of companies.
®

T o

Linux™ is a registered trademark of Linus Torvalds.

Ubuntu® is a registered trademark of Canonical Ltd.

o

d. Fedora®is a trademark of Red Hat, Inc.

e. macOS® is a trademark of Apple Inc., registered in the U.S. and other countries and regions.

AN5054 Rev 16 23/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

The SFI generation steps as currently implemented in the tool are described in
Figure 9.

Figure 9. SFl image process generation

Read Firmware files

Supporte:
formats?

Parse firmware files

H i
erge firmware

Perform AES-GCM
encryption

Create SFlfile

Before performing AES-GCM to encrypt an area, we calculate the initialization
vector (IV) as:

IV = nonce + area index

The tool partitions the firmware image into several encrypted parts corresponding to
different memory areas.

These encrypted parts appended to their corresponding descriptors (the
unencrypted descriptive header generated by the tool) are called areas.

3

24/169 AN5054 Rev 16

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

These areas can be of different types:
e ‘F’for a firmware area (a regular segment in the input firmware)

e ‘M’ for a module area (used in SFI-SMI combined-image generation, and corresponds
to input from an SMI module)

e ‘C’for a configuration area (used for option-byte configuration)
e ‘P’for a“pause” area
e ‘R’for a “resume area.

Areas ‘P’ and ‘R’ do not represent a real firmware area, but are created when an
SFl image is split into several parts, which is the case when the global size of the
SFl image exceeds the allowed RAM size predefined by the user during the SFI
image creation.

The STM32 Trusted Package Creator overview below (Figure 10) shows the ‘RAM size’
input as well as the ‘Continuation token address’ input, which is used to store states in flash
memory during SFI programming.

Figure 10. RAM size and CT address inputs used for SFI

y
{ {1, STM32 Trusted Package Creator o S
File Edit Options Help ‘
lite.augmented
i ﬁles
L
Remove
File name
Encryption key file
Size
M32TrustedPackageCreator /Input/SFI good test_firmware_key.bin m
Protocol version
Nonce file
Segments
fprojects/STM3ZTrustedPackageCreatorInput/SFI/good nonce. bin m
Index Type Size Address
Option bytes file
projects/SFMI-PreparationToolv0, 2,0_test1/Input/SFI good/ob.csv m
SMI files (Only for combined case) |
Image version |
24 |5
RAM size Continuation token address
Output SFI file I
C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder
l

‘YI AN5054 Rev 16 25/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

ANS5054

Figure 11 (below) shows the specifics of these new areas compared to a regular

SFI area.

Figure 11. 'P' and ‘R’ area specifics versus a regular SFl area

Area format

Type (F, ‘M, °C)
Version

Index

Size

Address

Total Nb of areas

Tag

Encrypted Area
Content

- Firmware

- Module

- Configuration

New Pause Area

New Resume Area

‘ Type ‘P’ | ‘ Type R’ ‘
Version Version
Index Index
Size = 0 | Size = 0 |

Address of CT

| Address of CT |

Total Nb of areas
Tag

Total Nb of areas

Tag

Note:

26/169

A top-level image header is generated and then authenticated.The tool performs
AES-GCM with authentication only (without encryption), using the SFl image
header as an AAD, and the nonce as IV.

An authentication tag is generated as output.

To prepare an SFl image from multiple firmware files, make sure that there is no overlap
between their segments, otherwise an error message appears (Figure 12: Error message
when firmware files with address overlaps are used).

AN5054 Rev 16

3

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 12. Error message when firmware files with address overlaps are used

|1

{4}, STM32 Trusted Package Creator [=@] =

File Edit Options Help ‘1’ S
lle.

Firmware files - = - -

Firmware information SFI information
|| tests.axf Overview
Remove
File name
Encryption key file
Type
M32TrustedPackageCreator Input/SFI good test_firmware_key.bin

T)

Overlap between segments, Unable to merge firmware files

Nonce file

fprojects/STM32TrustedPackageCreator,

Address
Option bytes file

‘projects/SFMI-PreparationToolv0, 2.0_

SMI files (Only for combined case)
Remove
Image version
24 |5
RAM size Continuation token address
Output SFI file
C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder

For combined SFI-SMI images, there is also an overlap check between firmware
and module areas. If the check fails, an error message appears (Figure 13).

3

AN5054 Rev 16 27169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

Figure 13. Error message when SMI address overlaps with a firmware area address

SFI SMI

Firmware files

Firmware information SFI information

Remove ToEn=s
Encryption key file File name STM32F4-DISCO0.smi
\aration_tool_v0.2.0_windows/bin/Input/SFLjtest_firmwd (¢ Error - : ﬂ
p— B
Nonce file / 1

Overlap between SFI areas

1.0/SFMIPreparation_tool_v0. 2.0_windows,bin/Input,S

“ Size Address
Option bytes file

262144 B 08000000

‘0. 2.0/SFMIPreparation_tool_v0. 2.0_windows /bin/Inpu

SMI files (Only for combined case)

Ll m

Image version

23 |5
Qutput SFI file

ol _w0.2.0/SFMIPreparation_tool_w0,2.0_windows/binfoutputfout.sfi FEE a5 =0

Also, all SFI areas must be located in flash memory, otherwise the generation fails,
and the following error message appears (Figure 14).

28/169 AN5054 Rev 16

3

AN5054

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 14. Error message when a SFl area address is not located in flash memory

{45 5TM32 Trusted Package Creator

File Edit

Firmware files

Options Help

|| tests.axf

Remove

Encryption key file

Nonce file

Option bytes file

Jfprojects/STM32TrustedPackageCreator /Input/SF

‘projects/SFMI-PreparationToolvd, 2.0_test1/Inpu

SMI files (Only for combined case)

M32TrustedPackageCreatorInput/SFIfgood/ /test_firmware_key.bin m

Firmware information SFI information

|1

|=|=] = |

"I life..augmented

Overview
File name out.sfi
Size 266.656 KB

Protocol version 01

S

—

Error: One or more SFI areas are not located in Flash memory

] g |
Remove
Image version
24 |5
RAM size Continuation token address
Output SFI file
C:/projects/5TM32TrustedPackageCreator foutput/out. sfi Select folder

4 Configuration El:)

Address
0x8000000

(0x8030000

(0x8000000

00

.

The final output from this generation process is a single file, which is the encrypted
and authenticated firmware in “.sfi” format. The SFI format layout is described in

Figure 15.

3

AN5054 Rev 16

29/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

ANS5054

30/169

“F" magic
Version of image
Area order number
Area size in bytes
Area Dest address
Total number of areas
Area Tag

Area

Encrypted data blob

“M" magic

Version of image
Area order number
Area size in bytes
Area Dest address
Total bumber of areas
Area tag

Area

Encrypted data blob
“C* magic
Version of image
Area order number (TotalN)
Area size in bytes
Area Dest address (0)
Total number of areas
Area Tag

Option bytes config

structure

Figure 15. SFI format layout

~ SFI signed header

~— Firmware area(s)

~ Module area(s)
(combined case)

~ Option bytes area

When the SFI image is split during generation, areas ‘P’ and ‘R’ appear in the SFI
image layout, as in the following example Figure 16.

AN5054 Rev 16

3

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 16. SFl image layout in case of split

Unsplit Image Split Image

Image Header Image Header

Area 1 ‘F Area1‘F

Area 2 ‘F Area 2 ‘F’

Area 3 ‘P’'ause

Area 3 ‘F Area 4 ‘R'esume

Aread4 ‘M’
Area 5 'C’

Area5'F

Area6 ‘M’
Area 7 'C

3.3 SFIx generation process

In addition to the SFI preparation process mentioned in the previous section, two
extra areas are added in the SFl image for the SFIx preparation process:

e ‘E’for an external firmware area
e ‘K for a key area (used for random keys generation)

The key ‘K’ area is optional and it can be stored in the area ‘F’.

3

AN5054 Rev 16 31/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

32/169

Area E

The area ‘E’ is for external flash memory. It includes the following information at the
beginning of an encrypted payload:

e OTFD region_number (uint32_t):

— 0...3: OTFD1 (STM32H7A3/7B3 and STM32H7B0, STM32H723/333 and
STM32H725/335, STM32L5, and STM32U5)

- 4...7: OTFD2 (STM32H7A3/7B3 and STM32H7B0, STM32H723/333,
STM32H725/335, and STM32U5)

e OTFD region_mode (uint32_t) bit [1:0]:

00: instruction only AES-CTR)

01: data only (AES-CTR)

10: instruction + data (AES-CTR)

11: instruction only (EnhancedCipher)

e OTFD key_address in internal flash memory (uint32_t).

After this first part, area ‘E’ includes the firmware payload (as for area ‘F’). The
destination address of area ‘E’ is in external flash memory (0x9... / 0x7...).

Area K

The area ‘K’ triggers the generation of random keys. It contains N couples; each
one defines a key area as follows:

e The size of the key area (uint32_t)
e The start address of the key area (uint32_t): address in internal flash memory.

Example of an area ‘K’:
0x00000010, 0x0C020000
0x00000010, 0x08000060

There are two key areas:
e The first key area starts at 0x08010000 with size = 0x80 (8 x 128-bit keys)
e The second key area starts at 0x08010100 with size 0x20 (256-bit key).

The STM32 Trusted Package Creator overview below (Figure 17: RAM size and CT
address inputs used for SFIx) shows the RAM size input for SFIx image generation,
and also the ‘Continuation token address’ input, which is used by SFIx to store
states in external/internal flash memory during SFIx programming.

The ‘Continuation token address’ is mandatory due to the image generation that
adds areas P and R whatever be the configuration.

3

AN5054 Rev 16

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 17. RAM size and CT address inputs used for SFiIx

5% STM32 Trusted Package Crestor - o *

File Edit Options Help

SF1 SFIx S5F WB SIGN SHI

Internal rmmrc Mcs Firmware information SFIx information

External firmware files

Overview

File name Type | Size |R¢gionnumh=r| Region mode I Key ad

[T otfd_part hex

Key area file

I — 3]

Segments

|c:!SF!xfo=Fd_her_a'e.5.km

E tion key file
e Index | Size Address |

e/ tpeny.bn

MNonee file

[c:/sFxpmence.bin

Option bytes file

[c:/sFtxfobcsn

Image version

1 E.
RAM size Continuation token address

—
Output SFI file

il e

|2 /sFIxfout.sfix

Note: To prepare an SFIx image from multiple firmware files, make sure that there is no overlap
between their segments (Intern and extern), otherwise an error message appears as same
as in the SFl use case.

The final output from this generation process is a single file, which is the encrypted
and authenticated internal/external firmware in “.sfix” format. The SFix format layout
is described in Figure 18.

‘YI AN5054 Rev 16 33/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

ANS5054

34/169

SFI Magic

Security protocol
version

Total number of area

Tag of the previous fields
using the firmware encryption
key
“F 7
Version of image
Area order number
Area size in bytes
Area Dest address r
Total number of areas
Area Tag

Area Encrypted data blob

“K.” Is optional
“M.”

Version of image
Area order number
Area size in bytes

Area Dest address
Total number of areas
Area Tag

Area Encrypted data blob
“E

Version of image

Area order number

Area size in bytes

Area Dest address —
Total number of areas
Area Tag

Area Encrypted data blob
“«c”

Version of image

Area order number (TotalN)
Area size in bytes

Area Dest address (0) -
Total number of areas

Area Tag

Option bytes config structure

Figure 18. SFiIx format layout

SFI Signed header

Internal firmware areas

Key area

Module areas

External firmware areas

Option bytes areas

When the SFIx image is split during generation, the areas ‘P’ and ‘R’ appear in the SFIx
image layout, as in the example below Figure 19.

AN5054 Rev 16

3

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 19. SFIx image layout in case of split

Unsplit Image

Image Header

Split Image

Area 'F

Area 'k’

Area 'P’
Area 'K’

Area 'EF’

Area 'P’
Area 'K’

Area 'M’
Area 'C’

3.4 SMI generation process

SMI is a format created by STMicroelectronics that aims to protect partners’
software (SW: software modules and libraries).

The SMI preparation process is described below (Figure 20).

Figure 20. SMI preparation mechanism

Library Cleartext

3

AN5054 Rev 16 35/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

The SMI generation steps as currently implemented in the tool are described in the
diagram below (Figure 21).

Figure 21. SMI image generation process
| Read ELFfile |

Parse the ELF file

arsing
successiull

Extract PCROP
section

v v
Perform AES-GCM
encryption

v

Make ShI structure

Fail

Create SMI file

The AES-GCM encryption is performed using the following inputs:
e 128-bit AES encryption key

e The input nonce as initialization vector (1V)

e The security version as additional authenticated data (AAD).

3

36/169 AN5054 Rev 16

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool
Before SMI image creation, PCROP checks are performed on the SMI image
validity:

e A PCROP section must be aligned on a flash memory word (256 bits), otherwise a
warning is shown.

e The section’s size must be at least two flash memory words (512 bits), otherwise a
warning is shown.

e The section must end on a flash memory word boundary (a 256-bit word), otherwise a
warning is shown.

e If the start address of the section immediately following the PCROP section overlaps
the last flash memory word of the PCROP section (after performing the PCROP
alignment constraint), the generation fails and an error message appears.

If everything is OK, tow outputs are created under the specified path:

e The SMIimage (Figure 22 represents the SMI format layout).

e The library data part.

Figure 22. SMI format layout
- SMI signed
header
Encrypted protected
module code =Ml Epceynted
section
3.5 SSP generation process

3

SSP is an encryption format that transforms customer secret files into encrypted
and authenticated firmware using an AES-GCM algorithm with a 128-bit key. The
SSP preparation process used in the STM32 Trusted Package Creator tool is
shown in Figure 23.

AN5054 Rev 16 37/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

Figure 23. SSP preparation mechanism

' secretfile |}

:’ | —

o, fmmmmmmmmmmmmmmmnn ,
' Password E : Output E
E RMA Unlock RMA relock E— i SSP f'l :
STM32TrustedPackage | EEEEE——) s :
L Enryption | Creator 5 7 i
' key nonce :—

! y 7

g e S
: el : a
| publckey || I

An SSP image must be created before SSP processing. The encrypted output file
follows a specific layout that guarantees a secure transaction during transport and
decryption based on the following inputs:

e Secret file: This 148-byte secret file must fit into the OTP area reserved for the
customer. There is no tool or template to create this file.

e RMA password: This password is chosen by the OEM. It is part of the secret file and is
placed as the first 4-byte word. To make RMA password creation easier and avoid
issues, the STM32 Trusted Package Creator tool add sit directly at the beginning of the
148-byte secret file.

e Encryption key: AES encryption key (128 bits).

e Encryption nonce: AES nonce (128 bits).

e OEM firmware key: This is the major part of the secure boot sequence. Based on
ECDSA verification, the key is used to validate the signature of the loaded binary.

The first layout part (SSP magic, protocol version, ECDSA public key, secret size) is
used as additional authenticated data (AAD) to generate the payload tag. This is
checked by the ROM code during decryption.

3

38/169 AN5054 Rev 16

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Table 2. SSP preparation inputs

Input Size (bytes) Content

SSP magic 4 ‘SSPP’: magic identifier for SSP Payload

SSP Protocol Version 4 Can be used to indicate how to parse the payload, if
payload format changes in future

OEM ECDSA public key 64 OEM ECDSA public key

OEM secret size 4 Size of OEM secrets, in bytes

Payload tag 16 Cry'pt.ograp'hlc signature of all fields above, to ensure
their integrity.

Encrypted OEM secrets 152 Encrypted OEM secrets. 152 is given by previous field.

This encrypted file is automatically generated by the STM32 Trusted Package
Creator tool.

Figure 24. Encryption file scheme

Encrypted Secret file
SSP Magic

SSP protocol version

l OEM ECDSA pubK

AES AAD

OEM Secrets size

RMA + OEM
o }—» AES128-GCM | + PajbadTag |

I [Encrypted OEM secrets]

‘ Key&IV

3.6 STM32 Trusted Package Creator tool in the command-line
interface
This section describes how to use the STM32 Trusted Package Creator tool from

the command-line interface to generate SFI/SFIx and SMI images. The available
commands are listed in Figure 25.

3

AN5054 Rev 16 39/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

Figure 25. STM32 Trusted Package Creator tool - SFl preparation options

: Generate SFI image,
ou also need to provide the information listed below
Add an input de 1D

rmwWare
irm_File>
- -Firmux

--nonce
<Nonce_File>

ersion>

ile

--module

-“outfile
<Output_File>»

Figure 26. STM32 Trusted Package Creator tool - SMI preparation options

-elf,
<ELF_File>

--smi,

: Device ID value of the concerning product

: Add an input firmware file
Supported firmware files are ELF HEX SREC BIN
dd input for external firmware file

se of BIN input file (in any
¢ base, [@:3]: OTFD1 (STM3
ase, only two bit [@:1] where B ruction only
: data onl A

11 : instruction only (Enhanc
ny base, random key values in internal flash memory
ption y
must be 16 bytes

key area for external firmware
/ file contains a set of couple (size,start address)
M nonce
size must be 12 bytes
Image version
Its value must be in <@..255> (
Option bytes configuration file
CsV file with ralues
dd an SMI file (optional for combined case)
MI file

in any base)

of a relocatable SMI (with Addre
railable ram (for multi-image)
e in bytes
ntinuation token address (for multi-im
ddress
: Generate Hash for integrity check
: Possible values e Hash generation disabled
Hash generation enabled
: By default if this option is not present the Hash is disabled
xample: -obk inputl.obk put2.obk input3.obk
Supported SSFI file extension is .b fi
: Add SSFI module for STM32 de wk upports this security feature.
Supported SSFI file extension is .bin
Generated SFI/SFIx file

: SFI/SFIx file to be created with st x extension

Generate SMI image
You also need to provide the
Input ELF file
ELF file
Section to be encrypted

information listed below
--elfile

--5ecC

<Section>
--key

<Key File>

--nonce
<Nonce_File>
, --sver
<SV_Files
--outfile
<Qutput_File>
--clear
<Clear_File>

40/169

Section name in the ELf file
] ption key
Bin file, its size must be 16 bytes
AES-GCM nonce
Bin file, its size must be 12 bytes
Security version
Its size must be 16 bytes
Generated SMI file
SMI file to be created
Clear ELF file
Clear ELF file to be generated

3

AN5054 Rev 16

AN5054

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.6.1

3

Steps for SFI generation (CLI)

To generate an SFI/SFIx image in CLI mode, the user must use the “-sfi, --sfi”
command followed by the appropriate inputs. Inputs for the “sfi” command are:

-devid, --deviceid

Description: specify devicelD. If this option is not used, P and R areas are generated by
default for all devices.

Syntax: -devid <device_id>
<device id> :Device ID

-fir, --firmware
Description: adds an input firmware file (supported formats are Bin, Hex, Srec, and ELF).

This option can be used more than once to add multiple firmware files.

Syntax: -fir <Firmware_file> [<Address>]
<Firmware_file> :Firmware file.

[<Address>] :Used only for binary firmware.
-firx, --firmwx

Description: Add an input for an external firmware file. Supported formats are
Bin, Hex, Srec, and ELF. This option can be used more than once to
add multiple firmware files.

Syntax: -firx <Firmware_file> [<Address>] [<Region_Number>]
[<Region_Mode>] [<key_address>]

<Firmware_file>: Supported external firmware files are ELF HEX
SREC BIN.

[<Address>]:Only in the case of BIN input file (in any base).

<Region_Number> : Only in the case of BIN input file (in any base):
[0:3]: OTFD1 (STM32H7A3/7B3, STM32H7B0, or STM32L5), [4:7]:
OTFD2 (STM32H7A3/7B3 and STM32H7BO0 case).

<Region_Mode>: Only in the case of BIN input file (in any base), only two
bits [0:1] where

00: instruction only (AES-CTR)

01: data only (AES-CTR)

10: instruction + data (AES-CTR)

11: instruction only (EnhancedCipher)

<key_address>: Only in the case of BIN input file (in any base), random
key values in internal flash memory.

k, —-key

Description: sets the AES-GCM encryption key.

Syntax: -k <Key_file>

AN5054 Rev 16 41/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

Note:

42/169

< Key _file> : A 16-byte binary file.

-n, --nonce

Description: sets the AES-GCM nonce.

Syntax: -n <Nonce_file>

<Nonce _file> A 12-byte binary file.

-V, --ver

Description: sets the image version.

Syntax: -v <Image_version>

<lmage_version> : A value between 0 and 255 in any base.
-ob, --obfile

Description: provides an option bytes configuration file.

The option bytes file field is only mandatory for SFI applications (first install) to allow
option bytes programming, otherwise it is optional.

Only csv (comma separated value) file format is supported as input for this field, it
is composed from two vectors: register name and register value respectively.

The number of rows in the CSV file is product dependent (refer to the example available for
each product). For instance there are nine rows for all STM32H7 products, with the last row
"reserved”, except for dual-core devices. It is important to neither change the order of, nor
delete, rows.

Example: for STM32H75x devices, nine option byte registers must be configured, and they
correspond to a total of nine lines in the csv file (Figure 27).

Syntax: -ob <CSV._file>

<CSV file >: A csv file with nine values.

Figure 27. Option bytes file example

FOFTSE_PRG, 0x1026RAD0
FPRAR PRG A, 0x81000200
FPRAR_PRG_B, 0x81000200
FSCAR_PRG_A, 0x81000200
FSCAR_PRG_B, 0x81000200
FWESN_FRG_A, UXFFFFFFFF
FWPSN_PRG_B, OXFFEFFEFF
FBOOT7_PRG, 0x24000800
RESERVED, 0x10000810

-m, --module

Description: adds an input SMI file.
This option can be used more than once to add multiple SMI files.
This is optional (used only for combined SFI-SMI).

Syntax: -m <SMI_file>

3

AN5054 Rev 16

AN5054

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Note:

3.6.2

3

<SMI_file >: SMI file.[<Address>]: Address is provided only for relocatable SMI.
-rs, --ramsize

Description: define the available ram size (in the case of SFI)

Syntax: -rs <Size>

< Size >: RAM available size in bytes

The maximum RAM size of each device is mentioned in the descriptor. For example the
maximum RAM size of the STM32WL is 20 Kbytes.

-ct, --token

Description: continuation token address (in the case of SFI)
Syntax: -ct <Address>

< Address >: continuation token flash memory address

-0, --outfile

Description: sets the output SFl file to be created.

Syntax: -0 <out file>

<out_file > : the SFI file to be generated (must have the “.sfi”
extension).

Example of SFI generation command using an ELF file:

STM32TrustedPackageCreator CLI.exe --sfi -fir firm.axf
-k encyption key.bin -n nonce.bin -ob SFI OB U5 4M.csv -v 1
-rs 0x55500 -devid 0x481 -o out.sfi

The result of the previous command is shown in Figure 28.

Figure 28. SFI generation example using an ELF file

-k encyption_key.bin -n nonce.bin

fi

DT48249V3

Steps for SMI generation (CLI)

In order to generate an SMI image in CLI mode, the user must use the “-smi, --smi’
command followed by the appropriate inputs.

Inputs for the “smi” command are:

-elf, --elfile

Description: sets the input ELF file (only ELF format is supported).
Syntax: -elf <ELF_file>

AN5054 Rev 16 43/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

44/169

<ELF_file> : ELF file. An ELF file can have any of the extensions: “.elf’, “.axf’,

“ ” ”

.0”, “.s0”,“.out”.

-S, --SecC

Description: sets the name of the section to be encrypted.
Syntax: -s <section_name>
<section_name> : Section name.

-k, --key

Description: sets the AES-GCM encryption key.
Syntax: -k <Key_file>

< Key _file> : A 16-byte binary file.

-n, --nonce

Description: sets the AES-GCM nonce.
Syntax: -n <Nonce_file>

<Nonce_file> : A 12-byte binary file.

-sv, --sver

Description: sets the security version file

The security version file is used to make the SMI image under preparation
compatible with a given RSS version, since it contains a corresponding identifying
code (almost the HASH of the RSS).

Syntax: -sv <SV_file>

<SV_file>: A 16-byte file.

-0, --outfile

Description: Sets the SMI file to be created as output

Syntax: -0 <out file>

<out_file > : SMI file to be generated, must have the .smi extension.
-C, --Clear

Description: Sets the clear ELF file to be created as output corresponding to the
data part of the input file

Syntax: -¢ <ELF_file>
<ELF_file >: Clear ELF file to be generated.

Example SMI generation command:

STM32TrustedPackageCreator CLI.exe -smi -elf
FIR module.axf -s “ER_PCROP” -k test firmware key.bin
-n nonce.bin -sv svFile -0 test.smi -cC clear.smi

AN5054 Rev 16 ‘Yl

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 29. SMI generation example

C=“8FHIPreparation Tool vB.2_ B>EFHIPreparationTool CLI -=mi —elf FIR_module.axf
-z "ER_PCROP" -k test_firmware_key.bin -n nonce.bin —sv suFile —-o test.smi —c cl

ear.axf
The section does not end on a Flash word boundary
SUCCES

3

AN5054 Rev 16 45/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

3.6.3

46/169

Steps for SSP generation (CLI)

To generate an SSP image in CLI mode, the user must use the “-ssp, --ssp”
command followed by the appropriate inputs.

Inputs for the “ssp” command are:

-ru, --rma_unlock

Description: RMA unlock password

Syntax: -ru <RMA_Unlock>

<RMA_Unlock> : Hexadecimal value 0x0000 to Ox7FFF
-rr, --rma_relock

Description: RMA relock password

Syntax: -rr <relock_value>

<relock_value> : Hexadecimal value 0x0000 to Ox7FFF
-b, --blob

Description: Binary to encrypt

Syntax: -b <Blob>

<Blob> : Secrets file of size 148 bytes

-pk, --pubk

Description: OEM public key file

Syntax: -pk <PubK.pem>

<PubK> : pem file of size 178 bytes

-k, --key

Description: AES-GCM encryption key

Syntax: -k <Key File>

<Key_File> : Bin file, its size must be 16 bytes

-n, --nonce

Description: AES-GCM nonce

Syntax: -n <Nonce_File>

<Nonce_File> : Bin file, its size must be 16 bytes

-0, =--out

Description: Generate an SSP file

Syntax: -out <Output_File.ssp>

<Qutput_File> : SSP file to be created with (extension .ssp)

If all input fields are validated, an SSP file is generated in the directory path already
mentioned in the “-0” option.

AN5054 Rev 16 ‘Yl

AN5054

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7

3.71

3

Example SSP generation command:
STM32TrustedPackageCreator CLI -ssp —ru 0x312 —-rr OXECA

-b “C:\SSP\secrets\secrets.bin”
-pk “C:\SSP\OEMPublicKey.pem” -k “C:\SSP\key.bin”
-n “C:\SSP\nonce.bin” -o "“C:\out.ssp”

Once the operation is done, a green message is displayed to indicate that the
generation was finished successfully. Otherwise, an error occurred.

Figure 30. SSP generation success

Using the STM32 Trusted Package Creator tool graphical
user interface

The STPC is also available in graphical mode. This section describes its use. The STM32
Trusted Package Creator tool GUI presents two tabs, one for SFI generation, one for SFix
generation and one for SMI generation.

SFl generation using STPC in GUI mode

Figure 31 shows the graphical user interface tab corresponding to SFI generation.

AN5054 Rev 16 47/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054
Figure 31. SFl generation Tab
', STM32 Trusted Package Creator [0 S]

File Edit

Firmware files

Options Help

.

Overview

K,’ lite.augmented

Firmware information SFI information

Encryption key file

M32TrustedPackageCreator Input/SFI/good/test_firmware_key.bin

Nonce file

fprojects/5TM32TrustedPackageCreator Input/SFI/good fnonce. bin

Option bytes file

‘projects/SFMI-PreparationToolv0. 2.0 _test1/Input/SFIfgood fob.csv

SMI files (Only for combined case)

File name tests.axf

Type ELF
Size 815.887 KB
Segments
Index Size
1 844 B
2 9884 B

|| STM32F4-DISCO0.smi

7 5

Image version

24 £

RAM size

Qutput SFI file

C:/fprojects/STM32TrustedPackageCreator foutputfout.sfi Select folder

Continuation token address

Address
0x8000000

(0x8030000

To generate an SFI image successfully from the supported input firmware formats,

the user must fill in the interface fields with valid values.

48/169

AN5054 Rev 16

3

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

SFI GUI tab fields

e Firmware files:
The user needs to add the input firmware files with the “Add” button.

If the file is valid, it is appended to the “input firmware files® list, otherwise an error
message box appears to notify the user that either the file could not be opened, or the
file is not valid.

Clicking on “input firmware file* causes related information to appear in the “Firmware
information” section (Figure 32).

Figure 32. Firmware parsing example

{43, 5TM32 Trusted Package Creator NEIES

File Edit Options Help ‘,’ e
lle.

Firmware files Firmware information SFI information

Overview
File name | tests.axf -
Encryption key file
- Type ELF
Iﬂ_Pad(age_Creabor_v1.0.Zﬂnput,.’SFIIgoodfhest_ﬁrmware_key.bln
Size 815.887 KB -
Nonce file _I
Segments
I'M32_Trushed_Pad<age_Creahor_v1.0.2ﬂnputf5FIfgoodfnonce.bin m
Wex Size Address
Option bytes file 1 844 B 0x8000000
32_Trusted_Package_Creator_v1.0. FI djfob. m
I,.’STM _Trusted_Package_Creator_v1.0.2/Input/5FI /good job. csv 2 G BITETTET

SMI files (Only for combined case)

Image version

I:LZ 33
RAM size I Continuation token address I

Dutput SFI file

lloads,.’STMSZ_Trushed_Pad(age_Creahor_v 1.0.2foutputfout_totol, FEEERan NS

3

AN5054 Rev 16 49/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

Note:

Note:

50/169

Encryption key and nonce file:

The encryption key and nonce file are selected by entering their paths (absolute or
relative), or by selecting them with the “Open” button. Notice that sizes must be
respected (16 bytes for the key and 12 bytes for the nonce).

Option bytes file:

The option bytes file is selected the same way as the encryption key and nonce. Only
csv files are supported.

STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammenr\vx.x.x\bi'\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

SMl files:

SMI files are added the same way as the firmware files. Selecting a file causes related
information to appear in the “Firmware information” section.

Image version:

Choose the image version value of the SFI under generation within this interval:
[0..255].

Output file:

Sets the folder path in which the SFI image is to be created. This is done by entering
the folder path (absolute or relative) or by using the “Select folder” button.

By using the “Select folder” button, the name “out.sfi” is automatically suggested. This can
be kept or changed.

‘Generate SFI’ button:
Once all fields are filled in properly, the “Generate SFI” button becomes enabled. The
user can generate the SFl file by a single click on it.

If everything goes well, a message box indicating successful generation appears
(Figure 33: SFI successful generation in GUI mode example) and information about the
generated SFl file is displayed in the SFI information section.

3

AN5054 Rev 16

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 33. SFI successful generation in GUl mode example

{43 STM32 Trusted Package Creator (== = |

File Edit Options Help ‘1’ T

Firmware files Firmware information SFI information

Overview

-
Remove

[»

File name out_totol.sfi

Encryption key file

Size 10627 KB
Iﬂ_Pad(age_Creator_vl.O.Zﬂnput,.’SFIIgoodfhest_ﬁrmware_ke i

{3} Success g 01 LI

. SHI successfully created
— Iype Size Address

Option bytes file [ok] I'nware 8448 (x8000000
32 Trusted_Package_Creator_vL0. R e
|/sTM32_Trusted_Package_Creator_v1.0.2/Input/SFLfgoad e 9884 B 0x8030000

SMI files (Only for combined case) 3 Configuration 6B 00

Nonce file

I'M32_Trushed_Pad<age_Creahor_v 1.0.2{Input/SF1/good /noni

Remove

Image version

|12 33
RAM size I Continuation token address I

Output SFI file

lIoads{STMSZ_Trushed_Pad(age_Creator_v 1.0.2foutputfout_toto1, FEEEEETLES

AN5054 Rev 16 51/169

3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

3.7.2 SFIx generation using STPC in GUI mode

Figure 34 shows the graphical user interface tab corresponding to SFIx generation.

Figure 34. SFIx generation Tab

$h STM32 Trusted Package Creator — [m] x

File Edit Options Help ‘
life.augmented

SFL SFIx ssP WB SIGN smI HSM
Hemlbarets Firmware information SFlx information
‘ Add
Remove
Overview
External firmware files
s T File name Type Size Region number | Region mode Key address
)
otfd_part1.hex Intel Hex
Key area file
- 0 3
[ce/srixfotfd_key sreas.kesw {8 STM32 Trusted Packa... 7 X m
— H Segments
Encryption key file External firmware file: otfd_partLhex
L Index Size Address
|c:/sFixkey.bin Startaddress: |0x30000000 m
| Regionnumber: [o=] b
Nonce file
Region mode: 0 3: [
|c:/sFIx/nance.bin [open]
Key address: 0x3000000

Optienbytesfle [_oc |
e o

Image version

1 3:

RAM size Continuation token address

Output SFI file
[cx/sFixjout.sfix Select folder

To generate an SFIx image successfully from the supported input firmware formats,
the user must fill in the interface fields with valid values.

3

52/169 AN5054 Rev 16

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

SFIx GUI tab fields

Firmware files: The user needs to add the input firmware files with the “Add” button.
If the file is valid, it is appended to the “input firmware files “list, otherwise an error
message box appears to notify the user that either the file could not be opened, or
the file is not valid. Clicking on “input firmware file“ causes information related
information to appear in the “Firmware information” section (Figure 35).

Figure 35. Firmware parsing example

{4 STM32 Trusted Package Creator — [m] pe

File Edit Options Help "I oA

Internal firmware files Firmware information SFIxinformation
[-
Remove
Overview
— 1ze on ni T 5SS

External firmware files ————

T
T ermentie -

[c:sFixfotfd_key_areas.kesv

Encryption key file

| /sFix/key.bin

Nonce file

|c:sFre/nonce.bin

Option bytes file

[c/sFixfob.csw

Image version

P
RAM size Continuation token address

Output SFI file

[sFixout sfix

As is the case for the SFI use case, once all fields are filled in properly, the
“Generate SFIx” button becomes enabled. The user can generate the SFix file by a
single click on it. If everything goes well, a message box indicating successful
generation appears (Figure 36: SFiIx successful generation in GUI mode example)
and information about the generated SFlx file is displayed in the SFIx information
section.

3

AN5054 Rev 16 53/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054
Figure 36. SFIx successful generation in GUI mode example
{$h STM32 Trusted Package Creator — O *

File Edit

Options

Help

5F1 SFIx 55p WB SIGH SMI H5M
Internal firmware files Firmware information SFIx information
ID firmware.hex Add
Remove
Overview
External firmware files
File name Size Image version | Internal segme
ID External.hex Add
Remove
Key area file
IC:!‘SFIfoey_areas.kcsv £ Success x

Encryption key file

IC:!‘SFI)(,.’I(ey.bin

SFlx successfully created

Nonce file

IC:I‘SFI)(Inonoe.bin

Option bytes file

IC:;’SFIx;’ob.csv

Type

Pause 32B

Address
(xB010000

00

4 Resume 32B

External

& Pause 32B

Image version

|1 33
RAM size I Continuation token address |0x08010000
Qutput SFIx file

IC:!‘SFIxfout.sﬁx Select folder

Configuration

Parse SFIx file

54/169

AN5054 Rev 16

3

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7.3 SMI generation using STPC in GUIl mode

Figure 37 shows the graphical user interface tab corresponding to SMI generation.

Figure 37. SMI generation Tab

r Y
{4}, 5TM32 Trusted Package Creator o |al=l g

File Edit Options Help ‘ , I S
e,

ELF file ELF information SMI information

Overview

Encryption key file File name

ELF Machine

Nonce file

Size LI

Sections

Security version file Index Name Type Size |

Section to encrypt
Output SMI file
Select folder
Output clear ELF file
4 I I 3
Select folder —I

To generate an SMI image successfully from an ELF file, the user must fill in the
interface fields with valid values.

3

AN5054 Rev 16 55/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

Note:

56/169

SMI GUI tab fields

ELF file:
In this case, the input file can only be an ELF file.

If the file is valid, information is displayed in the “ELF information” tab, otherwise an
error message box appears to notify the user that either the file could not be opened or
the file is not valid.

Encryption key and nonce file:

As for SFI, the encryption key and nonce file are selected in the same way as the ELF
file. Notice that sizes must be respected (16 bytes for the key and 12 bytes for the
nonce file).

Security version file:

The security version file is used for the same purpose as explained in the CLI section.
The security version file size must be 16 bytes.

Section:

This is a section list that can be used to select the name of the section to be encrypted.
Output files:

Sets the folder path into which the SMI image and its clear part are to be created. This
is done by entering the folder path (absolute or relative) or by using the “Select folder”
button.

For both output fields, when using the “Select folder” button, a name is suggested
automatically. This can be kept or changed.

‘Generate SMI’ button:

When all fields are filled in properly the ‘Generate SMI’ button is enabled, and the user
can generate the SMI file and its corresponding clear data part by a single click on it.

A message box informing the user that generation was successful must appear
(Figure 38: SMI successful generation in GUI mode example), with additional
information about the generated SMI file displayed in the ‘SMI information’ section. In
the case of invalid input data, an error message box appears instead.

3

AN5054 Rev 16

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

Figure 38. SMI successful generation in GUI mode example

|1

{43, STM32 Trusted Package Creator =@ =

File Edit Options Help ‘,’ ;

=.augmented

ELF file ELF information SMI information

kkage_Creahor_v1.0.Zﬂnput,.’SMIIgoodfMDK—ARM]FIR_moduIe.axf m Overview

Encryption key file Original file name | FIR_module.smi

LPad(age_Creahor_v1.0.Zﬂnput,.’SMIIgoodfhest_ﬁrmware_key.bin blumberot files .

£}, Information s3] 164844 k8

— 0x8080000 =
. SMI successfully created _I

k. * 4

Nonce file

lVISZ_Trushed_Pad(age_Creahor_v 1.0.2{Input/SMIfgood /i

Security version file

IsJSTMSZ_Trushed_Pad@ge_Creator_v 1.0.2/Input/SMIgood fsvFile

Section to encrypt
IER_PCROP = I

Output SMI file

ITSTM32_Trushed_Pad<age_Creahor_v 1.0.2foutput/FIR_module.smi B2 S80S

Output clear ELF file

h_Trusted_Pad(age_Creamr_v1.U.Zfoun:luthIR_moduIe_dear.axf

Generate SMI

3

AN5054 Rev 16 57/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

3.74 SSP generation using STPC in GUI mode
Figure 39 shows the SSP generation graphical user interface tab.
Figure 39. SSP generation tab
{5 STM32 Trusted Package Creator - O x
File Edit Options Help "’ ——

Password :

Secrets file

SFIx s5p WE SEIGN SMI HSM

T Y —
Overview

File name Type Size

C:/SSP_Input/secrets/148bytes_secrets.bin

Encryption key file

148bytes_secret... Binary

[c:/s5P_tnput/aes_key/key.bin

OEM public key file

C:/SSP_Input/OEMPublickey. pem

Honce file

'C:/S5P_Input/aes_key/iv.bin

Dutput S5P file

i
ERER

|C:/sspiout.ssp

58/169

To generate an SSP image successfully from the supported firmware input formats,
the user must fill in the interface fields with valid values.

SSP GUI tab fields

RMA Lock: Unlock password, hexadecimal value from 0x0000 to Ox7FFF
RMA Relock: Relock password, hexadecimal value from 0x0000 to Ox7FFF

Secrets file: Binary file of size 148 bytes to be encrypted. Can be selected by
entering the file path (absolute or relative), or by selection with the Open button.

Encryption key and nonce files: The encryption key and nonce file can be
selected by entering their paths (absolute or relative), or by selection with the Open
button. Notice that sizes must be respected (16 bytes for the key and 12 bytes for
the nonce).

OEM public key file: 178-byte .pem file.

3

AN5054 Rev 16

AN5054

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3

Output SSP file: Select the output directory by entering the SSP file name to be
created with a .ssp extension.

When all fields are properly filled in, the user can start the generation by clicking on
the Generate SSP button (the button becomes active).

Figure 40. SSP output information

Secrets file information SSP information

Overview

File name Type Size

out.ssp

When the generation is complete, SSP information is available in the SSP overview
section.

e File name: SSP output file name.
e Type: SSP format.
e Size: indicates the generated file size including all data fields.

AN5054 Rev 16 59/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

3.7.5 Settings

The STPC allows generation to be performed respecting some user-defined
settings. The settings dialog is displayed by clicking the settings icon (see
Figure 41) in the tool bar or in the menu bar by choosing: Options -> settings.

Figure 41. Settings icon and settings dialog box
&4 STM32 Trusted Package Creator o) |

File Edit Options Help ‘, ’ a3

SF1 SMI SFU H5M
Firmware files Firmware information SFI information

.

Overview

File name tests.axf
Encryption key file

Type ELF
M3ZTrustedPackageCreator,/Input/SFIfgood/test_firmware_key.bin
Size 815887 KB
Nonce file
Segments
Jfprojects [STM32ZTrustedPackageCreator /Input/SFI/good nonce. bin
Index Size Address
ntielivies e 1 844 B 08000000
‘projects/SFMI-PreparationToolv, 2.0_test1/Input/SFI /good job. cav 2 9884 B 0+8030000

SMI files (Only for combined case)

|| STM32F4-DISCO0.5mi

7 F
g g
i i

Image version

24 5

RAM size Continuation token address
Qutput SFI file
C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder

Settings can be performed on:
e Padding byte:

When parsing Hex and Srec files, padding can be added to fill gaps between close
segments to merge them and reduce the number of segments. The user might choose
to perform padding either with OxFF (the default value) or 0x00.

e Settings file:

When checked, a “settings.ini” file is generated in the executable folder. It saves the
application state: window size and field contents.

e Logfile:
When checked, a log file is generated in the selected path.

3

60/169 AN5054 Rev 16

AN5054

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

3.7.6

Log generation

A log can be visualized by clicking the “log” icon in the tool bar or menu bar:

Options-> log.

Figure 42 shows a log example:

Figure 42. Log example

{¢% STM32 Trusted Package Creator

f—|

log icon

Options

BT —) T

Lyys...om-

ELF file

kkage_creamr_\r 1.0.2{Input,/sMI good MDD}

Encryption key file

LPackage_Creabar_v 1.0.2{Input/SMI/good

Nonce file

i"l32_Trusbed_Pad(age_Creabor_v 1.0, 2{Inpt

Security version file

Section to encrypt

ER_PCROP ~|

Output SMI file

IEISTM32_Trusbed_Pad<age_Creabor_v1.0.2 |

I’STMSZ_Trushed_Pad(age_Creator_v 1.0.2/

Output clear ELF file

09:15:06:674 SFI preparation started

09:15:06:788 Area 1 prepared with size 844 : firmware area
09:15:06: 788 Area 2 prepared with size 9884 : firmware area
09:15:06: 788 Area 3 prepared with size 36 : option bytes area
09:15:06:788 SFI header prepared

09:15:06: 788 SFI preparation finished

10:18:27:531 SMI preparation started

18:27:531 15MI to prepare

18:27:532 5MI data prepared with size 1640

18:27:532 SMI header prepared
18:

10:
10:
10:
10:

27:532 SMI preparation finished

I’Z_Trushed_Pad(age_Creahor_v1.0.Zfouh:lut,.fFIR_moduIe_dear.axf

I SMI information

mi

‘Generate SMI

3

AN5054 Rev 16

61/169

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

3.7.7 SFI and SMil file checking function
This function checks the validity and information parsing of an SFIl or SMI file.

It is accessed by clicking the Check SFI/SMI button in the tool bar or the menu bar:
File -> Check SFI/SMI.

Figure 43 shows a check SFI example:

Figure 43. Check SFl file example

= O x

m ackage Ci

‘,’ life.augmented

Firmware identifier HSM information
. -
[Firmware 1D
Max counter
Encryption key file HSM status ﬂ
|
|
Monce file
|
l Maximum counter
0 Eli

™ Set HSM to operational state (HSM will be locked)

3

62/169 AN5054 Rev 16

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

4

4.1

41.1

41.2

3

Encrypted firmware (SFI/SFIx)/ module (SMI)
programming with STM32CubeProgrammer

STM32CubeProgrammer is a tool for programming STM32 devices through UART,
USB, SPI, CAN, IZC, JTAG, and SWD interfaces. So far, programming via
JTAG/SWD is only supported with an STLINK probe.

The STM32CubeProgrammer tool currently also supports secure programming of
SFl and SMI images using UART, USB, SPI, JTAG/SWD interfaces, and SFIx using
only JTAG/SWD interfaces. The tool is currently available only in CLI mode, it is
available free of charge from www.st.com.

Chip certificate authenticity check and license mechanism

The SFI solution was implemented to provide a practical level of IP protection chain
from the firmware development up to flashing the device, and to attain this
objective, security assets are used, specifically device authentication and license
mechanisms.

Device authentication
The device authentication is guaranteed by the device’s own key.

In fact, a certificate is related to the device’s public key and is used to authenticate
this public key in an asymmetric transfer: the certificate is the public key signed by a
Certificate Authority (CA) private key. (This CA is considered as fully trusted).

This asset is used to counteract usurpation by any attackers who could substitute
the public key with their own key.

License mechanism

One important secure flashing feature is the ability of the firmware provider to
control the number of chips that can be programmed. This is where the concept of
licenses comes in to play. The license is an encrypted version of the firmware key,
unique to each device and session. It is computed by a derivation function from the
device’s own key and a random number chosen from each session (the nonce).

Using this license mechanism, the OEM is able to control the number of devices to
be programmed, since each license is specific to a unique chip, identified by its
public key.

License mechanism general scheme

When a firmware provider wants to distribute new firmware, they generate a
firmware key, and use it to encrypt the firmware.

When a customer wants to download the firmware to a chip, they send a chip
identifier to the provider server, HSM, or any provider license generator tool, which

AN5054 Rev 16 63/169

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

returns a license for the identified chip. The license contains the encrypted firmware
key, and only this chip can decrypt it.

License distribution

There are many possible ways for the firmware provider to generate and distribute
licenses.

ST solution is based on STM32HSM: a standalone chip in a smartcard form factor
that could be programmed during the SFI/SMI preparation then used on the device
production line. This solution is securing end to end transport of the firmware. Only
the STM32 is capable to authenticate and decrypt the firmware. In addition, an ST
solution based on STM32HSM is protecting device production against cloning.

Other solutions could be considered and STMicroelectronics, through its
partnership program, is offering programming services. Find yours from the
following link:

HSM programming by OEM for license distribution

Before an OEM delivers an HSM to a programming house for deployment as a license
generation tool for programming of relevant STM32 devices, some customization of the
HSM must be done first.

The HSM needs to be programmed with all the data needed for the license scheme
deployment. In the production line, a dedicated APl is available for HSM
personalization and provisioning.

This data is as follows:

e The counter: the counter is set to a maximum value that corresponds to the maximum
number of licenses that can be delivered by the HSM. It aims to prevent
overprogramming.

It is decremented with each license delivered by the HSM.

No more licenses are delivered by the HSM once the counter is equal to zero.

The maximum counter value must not exceed a maximum predefined value, which
depends on the HSM used.

e The firmware key: the key size is 32 bytes. It is composed of two fields: the
initialization vector field (IV) and the key field, which are used for AES128-GCM
firmware encryption.

Both fields are 16 bytes long, but the last 4 bytes of the IV must be zero (only 96 bits of
IV are used in the AES128-GCM algorithm).

Both fields must remain secret; that is why there are encrypted before being sent to the
chip.

The key and IV remains the same for all licenses for a given piece of firmware.
However, they must be different for different firmware or different versions of the same
firmware.

e The firmware identifier: allows the correct HSM to be identified for a given firmware.
e The personalization data: this is specific to each MCU and delivered inside the TPC
directory. More info about personalization data in Section 5.3.5: Performing HSM

programming for license generation using STPC (CLI mode).

64/169 AN5054 Rev 16 ‘Yl

https://www.st.com/en/partner-products-and-services/global-services-from-partners.html

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

The HSM must be in “OPERATIONAL STATE” (locked) when shipped by the OEM
to guarantee the OEM’s data confidentiality and privacy.

STMicroelectronics provides the tools needed to support SFI/SFIx via HSM. In fact,
HSM programming is supported by the STM32 Trusted Package Creator tool.
Figure 44 shows the GUI for HSM programming in the STPC tool.

Figure 44. HSM programming GUI in the STPC tool

{54 STM32 Trusted Package Creator -] x
File Edit Options Help ‘ ,’ S
=] Firmware D
| —
|:l;::|:kt:n:evﬁle
|e:/sFrnonce i m
During SFl install, STM32CubeProgrammer communicates with the device to get
the chip certificate, upload it into the HSM to request the license. Once the license
is generated by the HSM, it gives it back to the STM32 device.
4.2 Secure programming using a bootloader interface
4.2.1 Secure firmware installation using a bootloader interface flow
The production equipment on the OEM-CM production line needs to be equipped
with a flashing tool (FT) supporting the programming of SFl images. The flashing
tool to be used on OEM-CM production line is STM32CubeProgrammer, which is
given the data blob prepared by the STPC, containing the image header and the
encrypted image data blob.
Note: The SFl install is performed successfully only if a valid license is given to the flashing tool.

3

STM32CubeProgrammer supports secure firmware install for such devices as well
as all STM32H7, STM32L4, STM32L5, STM32WL, STM32U5, and STM32MP1
devices available so far.

AN5054 Rev 16 65/169

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

66/169

For more details on SFI over these STM32 devices, refer to AN4992 [1]. This

document is available on www.st.com.

The general flow of the secure firmware installation using a bootloader interface on
a chip for STM32H7 and STM32L4 secure devices is shown respectively in
Figure 45 and Figure 46 below.

Figure 45. Secure programming via STM32CubeProgrammer overview on STM32H7

devices

HOST

5$TM32CubeProgrammer

USART, SPI, USB

FLASH

STM32

USART |-» 4
7777777 =
w
=== 1 N
. SPI | »F
_______ 2
o
777777 2
| UsB_ 18

Figure 46. Secure programming via STM32CubeProgrammer overview on STM32L4

devices

USART, SPI

Host

[5TM32CubeProgrammey

STM32L4

— =

Flash memory

-

- Secure

bootloader

Y

AN5054 Rev 16

3

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

4.2.2

Note:

4.2.3

3

Secure module installation using a bootloader interface flow

As explained in Section 3.4: SMI generation process, outputs are generated for this
particular use case:

e The first part, not encrypted: this is a regular ELF/AXF file, containing all the sections
except the code section extracted by the STPC to prepare the SMI module.

e The encrypted SMI module, which contains the protected code.

The first part is programmed into the chip using any means (JTAG flasher, UART
bootloader, and so on, as for any regular ELF/AXF file.

The full content of the SMI image file and its corresponding license are given to
STM32CubeProgrammer that places them in RAM.

The SMI has to be invoked via the secure bootloader.

The SMiI install is performed successfully only if the adequate license is given to the flashing
tool.

STM32CubeProgrammer for SFl using a bootloader interface

For SFI programming, the STM32CubeProgrammer is used in CLI mode (the only
mode so far available) by launching the following command:

-sfi, --sfi
Syntax: -sfi protocol=<Ptype> <file_path> <licenseFile path>

[<protocol=Ptype>] : Protocol type to be used: static/live
Only a static protocol is supported so far

Default value static
<file_path> : Path of sfi file to be programmed

[hsm=0|1] : Set a user option for HSM use value in
{0 (do not use HSM), 1 (use HSM)}
Default value : hsm =0

<lic_path|slot=slotID> : Path to the SFI license file (if hsm = 0)
or reader slot ID if HSM is used (hsm = 1)

[<licMod_path>|slot=slotID]: List of the integrated SMI license file paths
If hsm = 1, the user must provide the slot ID parameter.

If hsm = 0, the user must provide the license path file that can be generated
separately using the following command line, provided an HSM card is available:

-hsmgetlicense

During th SFI process, the generated license can be used multiple times with the
same MCU, without the need of an HSM card.

Example using the UART bootloader interface:

To use an HSM, the command is:

STM32 Programmer.exe -c port=COM1 br=115200 -sfi "C:\SFI\data.sfi"
hsm=1 slot=1

AN5054 Rev 16 67/169

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

To use a license file, the command is:

STM32 Programmer.exe -c port=COM1 br=115200 -sfi
"C:\SFI\data.sfi" --sfi hsm=0 "C:\SFI\license.bin"

This command allows secure installation of firmware “data.sfi” into a dedicated flash
memory address.

4.2.4 STM32CubeProgrammer for SMI via a bootloader interface

For SMI programming, STM32CubeProgrammer is used in CLI mode by launching
the following command:

-Smi, --smi
Syntax: -smi protocol=<Ptype> <file_path> [<address>] <licenseFile_path>

<protocol=Ptype> : Protocol type to be used: static/live
Only a static protocol is supported so far
Default value static

<file_path> : Path of smi file to be programmed

[hsm=0|1] : Set user option for HSM use
value in {0 (do not use HSM), 1 (use HSM)}
Default value: hsm=0

[<address>] : Destination address of the smi module
needed only for relocatable SMI

<lic_path|slot=slotID> : Path to the SMI license file (if hsm=0) or reader
slot ID if HSM is used (hsm=1)

Example using the UART bootloader interface:

STM32 Programmer.exe -c port=COM1 br=115200 -sfi
"C:\SFI\data.sfi" hsm=0 "C:\SFI\license.bin"

This command allows programming of the SMI specified file “data.smi” into a
dedicated PCROPed area.

3

68/169 AN5054 Rev 16

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

4.2.5

Note:

3

STM32CubeProgrammer for SSP via a bootloader interface

In this part, the STM32CubeProgrammer tool is used in CLI mode (the only mode
available so far for secure programming) to program the SSP image already
created with STM32 Trusted Package Creator. STM32CubeProgrammer supports
communication with STMicroelectronics HSMs (hardware secure modules based
on smartcard) to generate a license for the connected STM32 MPU device during
SSP install.

The SSP flow can be performed using both USB or UART interfaces (not the
STLINK interface).

STM32CubeProgrammer exports a simple SSP command with some options to
perform the SSP programming flow.

-ssp, --SSp
Description: Program an SSP file

Syntax: -ssp <ssp_file_path> <ssp-fw-path> <hsm=0|1>
<license_path|slot=slotID>

<ssp_file_path> : SSP file path to be programmed, bin, or ssp extensions
<ssp-fw-path> : SSP signed firmware path
<hsm=0|1> : Set user option for HSM use (do not use HSM / use HSM)
Default value : hsm=0
<license_path|slot=slotID> :Path to the license file (if hsm=0)
Reader slot ID if HSM is used (if hsm=1)

Example using USB DFU bootloader interface:

”

STM32_Programmer_CLl.exe -c port=usb1 —ssp “out.ssp
dk2-trusted.stm32” hsm=1 slot=1

All SSP traces are shown on the output console.

tf-a-ssp-stm32mp157f-

AN5054 Rev 16 69/169

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

Figure 47. SSP installation success

tequesting Chip Certificate...

or the current STM32 device

Init Communication ...

ldm_LoadModule(): loading module “stlibpll_SAM.d11" ..

ldm LoadModule({WIN22}: 0K loading library "stlibpll SAM.d11": 000008 ...

_GetFunctionlist() returned @xPE00008@, g pFunctionlList=0x62

Dpening :

Closing session with reader slot ID 1...

Closing communication with HSM. ..

Starting Firmware Install operation...

Writing blob

gtach command executed

If there is any faulty input, the SSP process is aborted, and an error message is
displayed to indicate the root cause of the issue.

70/169 AN5054 Rev 16

3

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

4.2.6

4.3

4.3.1

3

STM32CubeProgrammer get certificate via a bootloader interface

To get the chip certificate, STM32CubeProgrammer is used in CLI mode by
launching the following command:

-gc, --getcertificate
Syntax: —gc <file_path>
Example using the UART bootloader interface:

STM32 Programmer.exe -c port=COM1 -gc
"C:\Demo_certificate.bin"

This command allows the chip certificate to be read and uploaded into the specified
file: "C:\Demo__certificate.bin"

The execution results are shown in Figure 48.

Flgure 48. Example of getcertlflcate command executlon using UART interface

“1onflqura .Hnarltu = none udrate = 115280, data-bit = 8,
fh]p ID UH&SU)

stop-hit = 1. lmlml-]ﬂ flow-control = off

3.1
: C:\Demo cprtlfluate bin

writing chip certificate Jemo_certificate.bin finished successf

Secure programming using the JTAG/SWD interface

SFI/SFIx programming using JTAG/SWD flow

It is also possible to program the SFI/SFIx image using the JTAG interface. Here the
readout protection mechanism (RDP level 1) cannot be used during SFI/SFIx as user flash
memory is not accessible after firmware chunks are written to RAM through the JTAG
interface.

The whole process happens in RDP level 0. In the case of SFIx programming the code is
protected by the OTFDEC encryption.

SFl via debug interface is currently supported for STM32H753XI, STM32H7A3/7B3
and STM32H7B0, STM32H723/333 and STM32H725/335, and STM32L5 devices.

SFIx via debug interface is currently supported for STM32H7A3/7B3 and
STM32H7B0, STM32H723/733, STM32L5, and STM32U5 devices.

For these devices, there is around 1 Mbyte of RAM available, with 512 Kbytes in
main SRAM. This means that the maximum image size supported is 1 Mbyte, and
the maximum area size is 512 Kbytes.

To remedy this, the SFI/SFIx image is split into several parts, so that each part fits
into the allowed RAM size.

AN5054 Rev 16 71/169

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

An SFI/SFIx is then performed. Once all its SFI/SFIx parts are successfully installed, the
global SFI/SFIx image install is successful.

Other limitations are that security must be left activated in the configuration area if there is a
PCROP area. In the case of STM32L5 and STM32U5 devices, STM32CubeProgrammer
sets the RDP Level on 0.5.

The SFI flow for programming through JTAG is described in Figure 49.

Figure 49. SFl programming by JTAG/SWD flow overview
(monolithic SFl image example)

=| Preparing programmation Ir

3 write licensa 1o RAM

L 4

6 wmita imags haader io RAK

op A [for each areas in image]
¥ wiite area headar to RAM

g

8 wiite area payload to RAM

9 waite global headar with links to all the parls fo RAM
*

II Flashing areas r'
| 10 ue!:-']-pl heanse
[S—
| 11 authenticate image headar
»)
In.uE } [for each areas in global hesder)
| 12 authenticate area i ad i
[S
| 13 decrypt area payload and flash o
-
ll Finishing Lr

14 wan urlil n's fnished

{ SFI saicoess }

3

72/169 AN5054 Rev 16

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

4.3.2 SMI programming through JTAG/SWD flow

For SMI programming through JTAG/SWD the process flow is similar to that using
the UART bootloader.

This means that the whole SMI image and its corresponding license must be

transferred to RAM before starting. Then, there are two options to access SMI

services through JTAG:

e Write a small program in RAM that calls the public APl (API details are available under
a nondisclosure agreement)

e Use the secure API directly.

The essential steps of the SMI programming by JTAG flow are described in
Figure 50: SMI programming by JTAG flow overview.

3

AN5054 Rev 16 73/169

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

Figure 50. SMI programming by JTAG flow overview

L17] |

args = 2| Set write mode
for SMI

— .
@) exit
failure

address = 0x24050000

Write license in RAM
No exit
failure
es

Is img len No

multiple of 4
add padding

bytes

-]

mod_dest_add = write module img in RAM |
license_dest+len(License)

Is wiite
memaory

No
Abort n exit
!/J failure

reset+decrypt+authenticate+install
protected module into PCROP
area

args= license_add,
img_hdr_add,
mod_daia_add

No exit
failure
yes
get security state
Mo
exit failure
ES

exit success

3

74/169 AN5054 Rev 16

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

4.3.3

Note:

4.4

3

STM32CubeProgrammer for secure programming using JTAG/SWD

The only modification in the STM32CubeProgrammer secure command syntax is
the connection type that must be set to “jtag” or “swd”, otherwise all secure
programming syntax for supported commands is identical.

Using a debug connection “HOTPLUG” mode must be used with the connect command.
Example “getcertificate” command using JTAG

STM32 Programmer.exe -c port=jtag mode=HOTPLUG -gcC
testJTAG Certif.bin

The result of this example is shown in Figure 51.

Figure 51. Example of getcertificate command using JTAG

I —LINK Firmware version = U2J2856
TAG Frequency 7888 KH=
Connection mode: Hot Plug

device ID: Bx4508

Ceptificate File = testJTAG_Certif _bin

Requesting Chip Certificate using debug interface...

tif .bin
- o0 file testJIAG_Certif.bin finished successfully
ime elapsed during the getcertificate operation is: BB:80:08.832

Example “smi” command using SWD

-c port=swd mode=HOTPLUG -smi protocol=static
"RefSMI MDK/FIR module.smi" "RefSMI MDK/licenseSMI.bin" -vb 3
-log

Secure grogramming using bootloader interface
(UART/I“C/SPI/USB)

It is also possible to program the SFI/SFIx image using the bootloader interface
(UART/IZC/SPI/USB). FDCAN is not supported by STLINK-V3.

The whole process happens in RDP level 0.5. In the case of SFIx programming the
code is protected by the OTFDEC encryption.

SFI via the bootloader interface (UARTllzC/SPI/USB) is currently supported for
STM32L5 devices. It needs to load an external loader using the -elbl command in
the SRAM.

For STM32L5 devices, 1 Mbyte of SRAM is available, with 512 Kbytes in the main
SRAM. This means that the maximum image size supported is 1 Mbyte, and the
maximum area size is 512 Kbytes.

To remedy this, the SFI/SFIx image is split into several parts, so that each part fits
into the allowed SRAM size.

AN5054 Rev 16 75/169

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

76/169

An SFI/SFIx is then performed. Once all its SFI/SFIx parts are successfully
installed, the global SFI/SFIx image install is successful.

SFl example

STM32 Programmer CLI.exe -c port=usbl -sfi out.sfix hsm=0
license.bin -rsse RSSe\L5\enc signed RSSe sfi bl.bin

SFIx example

STM32 Programmer CLI.exe -c port=usbl -elbl
MX25LM51245G STM32L552E-EVAL-SFIX-BL.stldr -sfi out.sfix
hsm=0 license.bin -rsse RSSe\L5\enc signed RSSe sfi bl.bin

3

AN5054 Rev 16

AN5054

Example of SFl programming scenario

5

5.1

5.2

Note:

5.3

5.3.1

5.3.2

3

Example of SFI programming scenario

Scenario overview

The actual user application to be installed on the STM32H753XI| (or STM32L5)
device makes “print £’ packets appear in serial terminals. The application was
encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned
SFI application.

Hardware and software environment

For successful SFI programming, some hardware and software prerequisites apply:
e STM32H743I-EVAL board

e STM32H753XI with bootloader and RSS programmed

e RS-232 cable for SFI programming via UART

e Micro-B USB for debug connection

e PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

e STM32 Trusted Package Creator v0.2.0 (or greater) package available from
www.st.com

e STM32CubeProgrammer v0.4.0 (or greater) package available from www.st.com

Refer to [4] or [5] for the supported operating systems and architectures.

Step-by-step execution

Build OEM application

OEM application developers can use any IDE to build their own firmware.

Performing the option byte file generation (GUI mode)

The STM32 Trusted Package Creator tool GUI presents an SFI OB tab to generate
an option bytes CSV file with a custom option byte value.

To generate an SFI CSV option bytes file, the user must:

1. Select the concerned product.

2. Fill the option bytes fields with desired values.

3. Select the generation path.

4. Click on the Generate OB button.

AN5054 Rev 16 77/169

Example of SFl programming scenario AN5054

Figure 52. STM32Trusted Package Creator SFI OB GUI

{3 STM32 Trusted Package Creator = =] *
File Edit Options Help Doc "I i oo i
B/ 2
SFI SFIx SFIOB 55p WB SIGN SMI HSM
Microcontroller STMIZHTZNHT3x ~ Option bytes generated values

Reqgister Value

Register Bitfield
e T — FLASH_OPTSR_... Ox103EAADO

FLASH_PRAR_P... 0x0000000F
FLASH_SCAR_PRG 0x81000200
FLASH_WPSN_P... 0x000000FF

FLASH_BOOT P... Ox1FFO0800
> |FLASH_OPTSR_PRG

08 generation path

Generate 08

5.3.3 Perform the SFI generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is
provided in AXF format in addition to a CSV file to set the option bytes
configuration. A 128-bit AES encryption key and a 96-bit nonce are also provided to
the tool. They are available in the “SFI_ImagePreparation” directory.

An “sfi”image is then generated (out.sfi).

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each

product.
It is located in the directory: STM32CubeProgrammenr\vx.x.x\bil\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

Note: If you want to reopen the Device using the Debug Authentication mechanism, a DA ObKey
file must be included in the SFl image, otherwise the device becomes inaccessible.

Figure 53: STPC GUI during SFI generation shows the STPC GUI during the SFI
generation.

3

78/169 AN5054 Rev 16

AN5054

Example of SFl programming scenario

Figure 53. STPC GUI during SFI generation

{£% STM32 Trusted Package Creator

=E]

File Edit Options Help

‘ 'I lile.augrmented

2|

Remove

Image version

12 =
RAM size I Continuation token address
Output SFI file

lloadsJ‘STM32_Trusted_Pad<age_Creator_v 1.0.2foutputfout_totol, EEE&a0 TS

’ | 1
Overview
Remove
File name out_totol.sfi -
Encryption key file
Size 10627 KB
Iﬂ_Package_Creamr_vl.U.ZﬂnputJ‘SFIfgoodfhest_ﬁrmware_ke
{4 Success g 01 LI
Nonce file
I'M32_Trusbed_Pad<age_Creabor_v1.0.2ﬂr1puthFI,|fgood,|fnor| < SFI successfully created
Size Address
O hEse 844 B 0x8000000
/STM32_Trusted_Package_Creator_v1.0.2/Iny FI/good,
I - - = - 2finput/SFifg 9884 B 0x8030000
SMI files (Only for combined case) 3 Configuration BB 00

Generate SFI

3

AN5054 Rev 16

79/169

Example of SFl programming scenario AN5054

5.34

80/169

Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house to be
used for license generation during the SFl install process.

In this example, HSMs are used as license generation tools in the field. See
Section 4.1.2: License mechanism for HSM use and programming.

Figure 54 shows an example for HSM programming by OEM to be used for SFI
install.

The maximum number of licenses delivered by the HSM in this example is 1000.

This example uses HSM version 2, and is also valid for version 1 when the ’version’
field is set accordingly. The HSM version can be identified before performing the
programming operation by clicking the Refresh button to make the version number
appear in the ‘version’ field.

The STM32 Trusted Package Creator tool provides all personalization package files
ready to be used on SFI/SFIx and SSP flows. To get all the supported packages, go
to the PersoPackages directory residing in the tool’s install path.

Each file name starts with a number, which is the product ID of the device. Select
the correct one.

To obtain the appropriate personalization data, you first need to obtain the product
ID:

e Use the STM32CubeProgrammer tool to launch a Get Certificate command to
generate a certificate file containing some chip security information, bearing in mind
that this command is only recognized only for devices that support the security feature:

STM32_ Programmer CLI -c port=swd -gc "certificate.bin"

A file named “certificate.bin” is created in the same path of the
STM32CubeProgrammer executable file.

e Open the certificate file with a text editor tool, then read the eight characters from the
header, which represents the product ID.

For example:
— When using the STM32H7 device, you find: 45002001.
— When using the STM32L4 device, you find: 46201002.
Once you have the product ID, you can differentiate the personalization package to
be used on the HSM provisioning step respecting the following naming convention:
ProdcutlD_FlowType_LicenseVersion_SecurityVersion.enc.bin

For example: 47201003_SFI._01000000_00000000.enc.bin

Based on this name we can retrieve the associated information:

e Product ID = 47201003 for STM32L5 devices (0x472 as device ID).
e Type = SFlI

e License version = 01 (Large endian)

e Security version =0

3

AN5054 Rev 16

AN5054 Example of SFl programming scenario

Figure 54. Example of HSM programming using STPC GUI

= O X

'E'.', STM32 Trusted Package Creator

File Edit Options Help ‘,’ T
lile.

SFI SFIx SMI HSM
HSM card index HSM information
E Firmware 1D | HSMw2_SLOT_1 -
Max counter | 1000
Firmuare identifier HSM status | OPERATIONAL_STATE
HSMw2_SLOT_1 Version 2
Type SFI LI
ey e =
|2/ TrustedFies/key.bin
Honce fila

IC:ﬁrushedFllEfnonoe.b'ln

Personalization data file

IC:HrushedHIEfenc_Sl'_Persn_l_‘i.b'ln

Maximum counter

Program HSM

Note: When using HSM version1, the “Personalization data file” field is ignored when
programming starts. It is only used with HSM version 2.

When the card is successfully programmed, a popup window message “HSM successfully
programmed” appears, and the HSM is locked. Otherwise, an error message is displayed.

AN5054 Rev 16 81/169

3

Example of SFl programming scenario AN5054

5.3.5 Performing HSM programming for license generation using STPC
(CLI mode)
STM32 Trusted Package Creator provides CLI commands to program HSM cards.
To configure the HSM before programming, the user must provide the mandatory
inputs by using the specific options.
Example of HSM version 1 provisioning
STM32TrustedPackageCreator CLI -hsm -i 1 -k "C:\TrustedFiles\key.bin" -n
"C:\TrustedFiles\nonce.bin" -id HSMvl_ SLOT 1-mc2000
e - select the slot ID
e -k: set the encryption key file path
e -n: set the nonce file path
e -id: set the firmware identifier
e -mc: set the maximum number of licenses.
HSMv2 allows users to personalize their own HSM to achieve, for example,
compatibility with the desired STM32 device. This solution covers the limitations of
HSMv1 (static behavior), so it is possible to support new devices that are not
available on HSMv1.
To perform this operation the user first needs to know the product ID of the device.
This information is provided in the STM32 device certificate, which can be obtained
with the following command:
STM32_ Programmer.exe -c port=COM1l -gc "C:\SFI\Certificate.bin"
After getting the binary file of the device certificate, it is necessary to open this file
using a HEX editor application. Once these steps are done the user can read the
product ID.
Figure 55. Example product ID
00000000 | 00 01 02 03 04 05 06 07 08 09 0a Ob Oc 0d Oe Of
00000000 39 37 30 31 30 30 35 07 47 &0 &5 98 2a fe 36 49T701005.%"e"*bE
00000010 | 29 ca 5% £3 d5 28 Sb 99 f£7 a3 4e c0 bb 15 5f dl VEYA0) »™2eNAs. W
00000020 | 1d 82 £4 8a %a 13 2d d3 c% 2a %a 02 c0 90 de 10 . B85, -0E* 5. A0,
00000030 fc 2d 28 45 9 77 bc 4c ba 38 5k 15 &5 b0 8d bd 'Z:'l—iﬁTEWH.L‘“E[.é" =
00000040 dl 4d c3 4a e9% dl 24 &b ag fcoc 3f 51 af 42 41 dd EMAEJERSKE G20 BAY
00000050 be b3 =4 Bk 77 48 14 fa 4k dé 3k bk &7 44 =5 al %% E»wH. UKD »gD&;
00000060 | 63 ca 76 6b db a3 20 cf e0 61 £3 01 07 05 dd 6c cEvkUe€Ilaasd...T1
00000070 74 fe 25 23 17 8f bkd e7 cS ck 3a 5c Oe 5b 58 a3 td) #. !-sv._:ﬁf!:\. [XE
00000080 8Bc do 8d 13 87 le ab 52 EJ .—.«R
00000050
The product ID of the STM32WL used is: 49701005
In the second step, the users provision their own HSMv2 by programming it using
STPC. The personalization data file .bin can be found under
"..\bin\PersoPackages".
82/169 AN5054 Rev 16 Kyy

AN5054

Example of SFl programming scenario

Note:

3

Example of HSM version 2 provisioning

A new option [-pd] must be inserted to include the personalization data:

STM32TrustedPackageCreator CLI -hsm -i 1 -k "C:\TrustedFiles\key.bin" -n
"C:\TrustedFiles\nonce.bin" -id HSMv2_ SLOT 2 -mc 2000 -pd
"C:\TrustedFiles\enc_ ST Perso L5.bin"

e -pd: Set the personalization data file path.
To obtain the appropriate personalization data file and for further information, refer

to Section 5.3.5: Performing HSM programming for license generation using STPC
(CLI mode).

A green message display indicates that the programming operation succeeded, otherwise a
red error message is displayed.

If the HSM is already programmed and there is a new attempt to reprogram it, an error
message being displayed to indicate that the operation failed, and the HSM is locked.

HSM v1 supports a list of a limited number of STM32 devices such as STM32L4, STM32H?7,
STM32L5, and STM32WL.

Example of HSM get information

If the HSM is already programmed or is virgin yet and whatever the version, a get
information command can be used to show state details of the current HSM by
using the command below:

STM32TrustedPackageCreator CLI -hsm -i 1 -info

Figure 56. HSM information in STM32 Trusted Package Creator CLI mode

ldm_LoadModule(): loading module "stlibpll SAM.dI11™ ...
ldm_LoadModule(WIN32): OK loading library "stlibpll SAM.d11": @x71CB@gge ...
C_GetFunctionlist() returned @x6660060606, g_pFunctionlist=6x71D2F566

llowing Information from HSM slot 1
HSM STATE : OPERATIONAL_STATE
HSM FW IDENTIFIER : HSMv2_SLOT_2
H5M COUNTER : 2806
H5M WVERSION : 2

HSM TYPE : SFI

AN5054 Rev 16 83/169

Example of SFl programming scenario AN5054

5.3.6

84/169

Programming input conditions

Before performing an SFl install make sure that:

Flash memory is erased.
No PCROPed zone is active, otherwise destroy it.
The chip must support security (a security bit must be present in the option bytes).

When using a UART interface, the user security bit in option bytes must be enabled
before launching the SFI command. For this, the following STM32CubeProgrammer
command is launched:

— Launch the following command (UART bootloader used => Boot0 pin set to VDD):
-Cc port=COM9 -ob SECURITY=1

When using a UART interface the BootO pin must be set to VSS:

— After enabling security (boot0 pin set to VDD), a power off/power on is needed

when switching the Boot0 pin from VDD to VSS: power off, switch pin then power
on.

When performing an SFl install using the UART bootloader then, no debug interface
must be connected to any USB host. If a debug interface is still connected, disconnect
it then perform a power off/power on before launching the SFl install to avoid any
debug intrusion problem.

Boot0 pin set to VDD When using a debug interface.

A valid license generated for the currently used chip must be at your disposal, or a
license generation tool to generate the license during SFl install (HSM).

For STM32L5 products, TZEN must be set at 0 (TZEN=0).

3

AN5054 Rev 16

AN5054

Example of SFl programming scenario

5.3.7

Note:

3

Performing the SFl install using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode (the only
mode so-far available for secure programming) to program the SFl image “out.sfi”
already created in the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(Hardware secure modules based on smartcard) to generate a license for the
connected STM32 device during SFl install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal
and go to <STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32 Programmer CLI.exe -c¢ port=swd mode=HOTPLUG -sfi protocol=static
"<local path>/out.sfi" hsm=1 slot=<slot_ ids>

In the case of an STM32L5 device the SFl install uses the RSSe and its binary file is located
in the STM32CubeProgrammer bin/RSSe folder.

The STM32CubeProgrammer command is as follows:

STM32_ Programmer CLI.exe -c¢ port=swd mode=HOTPLUG -sfi protocol=static
"<local path>/out.sfi" hsm=1 slot=<slot_ id> -rsse <RSSe path>

AN5054 Rev 16 85/169

Example of SFl programming scenario AN5054

5.3.8 SFI with Integrity check (for STM32H73)

For the STM32H73, an integrity check mechanism is implemented. STM32 Trusted
Package Creator calculates the input firmware hash and integrates it into the SFI
firmware. The STM32H73 MCU is able to use this hash input to check the firmware
integrity.

Enabling this mechanism is mandatory for STM32H73, and it can be done through
GUI and CLI.

For the GUI part, hash is enabled by checking Generate hash.

Figure 57. STM32Trusted Package Creator SFIl ‘hash Generator ‘check box

L STMALT Tt Pecieage Cmalm X
Filu Edit Optioes gy [‘ﬁ gt
o w S E i | b T el [Erthry B
IRAS i
- =
ERCrypitien key e .;-;:-- -
Segnmsdy
Ban (e tarbes S Fedrl

Diption frptes il

Sl Sl [Ovily Tor comdvised civie)

Imsoe wersha 0 Gaseaabe Hagh
Belert MOW ; =) Ausilshie AAM wre | Cretrmssne token mieess |

Oulpal 51 Biw

(oo]
=
| tpn |
| _Aal |
o
| St il |

For the CLI part SFI command line must integrate the -hash option.

Usage example:

STM32TrustedPackageCreator CLI.exe -sfi -fir OEM Dev.bin
0x08000000 -k aeskey.bin -n nonce.bin -ob ob.csv -v 0 --
ramsize 0x1E000 --token 0x080FF000 -hash 1 -o outCLI.sfi

3

86/169 AN5054 Rev 16

AN5054 Example of SFl programming scenario

Figure 58 shows the SFl install via SWD execution and the HSM as license
generation tool in the field.

3

AN5054 Rev 16 87/169

Example of SFlI programming scenario

AN5054

88/169

Figure 58. SFl installation success using SWD connection (1)

~LINK SN: B672FF554949677067034831
-LINK Firmware version: U2J3BM1Y
Target voltage: 3.21U
SWD fregquency: 4888 KHz
Connection mode: Hot Plug
Device ID: Bx458

Device name: STM3I2H7xx

Device type: MCU

Device CPU : Cortex—M?7/M4
Protocol Information

8FI File Information

SFI file path : out_EH.sfi
SFI ID = 111
SFI header information
SFI protocol version
SFI total number of areas
SF1 image version
SFI Areas information

Parsing Area 1/3 H
Area type : F
Area size : B44
Area destination address : Bx8BABRBA

Parsing Area 2/3 H

Area type

Area size : 168528

Area destination address : Bx8B3P00PA
Parsing Area 3/3 H

Area type - G

Area size : 36

Area destination address : B

Reading the chip Certificate...

Requesting Chip Certificate using debug interface...
Get Certificate done successfully

Requesting Licesne for firmware with ID = 111
requesting license for the current STHM32 device

Init Communication ...

ldm_LoadModule<?>: loading module “stlibpli_ SAM_d11" _.

ldm_LoadModule(WIN32>: OK loading library “'stlibpll_ SAM.A11": BxSFCOOEO0 . .

C_GetFunctionList(> returned BxBBBBAAAB,. g_pFunctionList=Bx5FCCBA7E
Init Communication with slot 2 Success?

Succeed to generate license for the current 5TM32 device
Closing communication with HSM...

Communication closed with HSM

Succeed to get License for Firmware with ID 111

Starting Firmware Install operation...

Activating security...

Warning: Option Byte: SECURITY. value: Bx1. was not modified.
Harning: Option Bytes are unchanged. Data won’t be downloaded
fActivating security Success

Setting write mode to SFI

Warning: Option Byte: SECURITY. value: Bxl1. was not modified.
Warning: Option Byte: ST_RAM_SIZE, value: Bx3,. was not modified.
Succeed to set write mode for SFI

Starting SFI part 1

Hl'tlng license to address Bx24030880
ng Img header to address Bx2483100808
Writing areasz and areas wrapper.
all areas processed
RS8S process started...

R58 cummaqd execution 0K

ANS5054 Rev 16

3

AN5054

Example of SFI programming scenario

3

Figure 59. SFl installation success using SWD connection (2)

RS5 command execution 0K
Reconnecting. .

ST-LINK SN: 0672FF554949677067034831
ST-LINK Firmware version: UZJ30M1%?
Target voltage: 3.21U

Error: ST-LINK error <DEU_NO_DEUICE>
...pretrying. ..

ST-LINK SH: ©8672FF554949677067034831
ET-LINK Firmuware version: UZJ36M1?
Target voltage: 3_21U

SWD frequency: 4HHH KH=

Connection mode: Hot Plug

Device ID: Bx458

Reconnected ¢

Requesting security state...
SECURITY State Success

SFI SUCCESS!

EFI file out_EH.zfi Install Operation Success

ANS5054 Rev 16

89/169

Example of SFl programming scenario for STM32WL AN5054

6

6.1

6.2

Note:

6.3

6.3.1

6.3.2

90/169

Example of SFI programming scenario for STM32WL

Scenario overview

The user application is developed by the OEM and encrypted by STPC. The OEM
provides the following elements to the programming house:

e The encrypted firmware of STM32WL
e HSMv1 or provisioned HSMv2
e STM32CubeProgrammer

With these inputs, the untrusted manufacturer is able to securely program the
encrypted firmware.

Hardware and software environment

For successful SFI programming, the following hardware and software prerequisites
apply:

e STM32WL5x board with bootloader and RSS programmed

e RS-232 cable for SFI programming via UART

e Micro-B USB for debug connection

e PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

e STM32 Trusted Package Creator v1.7.0 (or greater) package available from
www.st.com

e STM32CubeProgrammer v2.16.0 (or greater) package available from www.st.com
e HSMv1 or HSMv2

Refer to [4] or [5] for the supported operating systems and architectures.

Step-by-step execution

Build OEM application

OEM application developers can use any IDE to build their own firmware.

Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32 devices is the encryption of
the user OEM firmware (already provided in AXF format) using the STM32 Trusted
Package Creator tool.

This is done by adding the following files in the STPC tool:
e OEM firmware

e A .csv file containing option bytes configuration

e A 128-bit AES encryption key

e A96-bit nonce

3

AN5054 Rev 16

AN5054 Example of SFI programming scenario for STM32WL

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each

product.
It is located in the directory: STM32CubeProgrammenr\vx.x.x\bim\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

A programmed HSM card must be inserted in the PC, and an “out.sfi”image is then
generated.

Figure 60. STPC GUI showing the STPC GUI during the SFI generation

- o *

File Edit Options Help Doc mme.nugmamed
B/ OB

SFI SFIx 'SFI Option Bytes SMI HSM
SFI Microcontroller | STM32WL |

i &5 GPI0_I0Toggle.hex

[Hs]

Firmware files

Encryption key file

(% &000000

[c:n WL_SFL_E b

0

[ccn y g

[en _SF1_Exemple/SFI_OB_WL.csv

Random Key area file (Optional)

| Parse sfi sfi, mcsv file

Image version H Generate Hash r!; Available RAM size (Byte) 2000 Continuation token address ,_ !F‘A i A m
DT54151V2
Note: To perform HSM programming for license generation using STPC (GUI mode and CLI

mode) refer to the following sections:

Section 5.3.4: Performing HSM programming for license generation using STPC (GUI
mode)

Section 5.3.5: Performing HSM programming for license generation using STPC (CLI
mode)

3

AN5054 Rev 16 91/169

Example of SFl programming scenario for STM32WL AN5054

6.3.3 Programming input conditions

Before performing an SFl install on STM32WL devices make sure that:

e Flash memory is erased

e No PCROPed zone is active, otherwise remove it

e The chip supports security (a security bit must be present in the option bytes)

e The security must be disabled, if activated

e The option bytes of the device are set to default values. This step is done by the two
commands given below.

-desurity: this option allows the user to disable security. After executing this
command, a power OFF / power ON must be done.

Example:
STM32_ Programmer CLI.exe -c¢ port=swd mode=hotplug -dsecurity

Figure 61 hows the resulting output on the command line.

Figure 61. Example -dsecurity command-line output

B CoWvindows) System32h cmdexe O X

celectromicshSTHIZCube \STMIZCubeProprammaerivy .. 6.6 i 32 Programmer CLI.exe -C

3 TH3IZCubeFra grammer vZ.6.8

3

92/169 AN5054 Rev 16

AN5054 Example of SFI programming scenario for STM32WL
-setdefaultob: this command allows the user to configure option bytes to their
default values. After executing this command, a power OFF/power ON must be
done.

Example:
STM32 Programmer CLI.exe -c port=swd mode=hotplug -setdefaultob
Figure 62 shows the resulting output on the command line.
Figure 62. Example -setdefaultob command-line output
I = CiWindowws! Systern 33 crnd . exe d =

anlcsh STHI X uhe' STHIZCubeProgrammeriv2 . 6. 8 \bin>STHA2_Programmer _CLI exe - po

6.3.4

3

Perform the SFl install using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode (the only
mode so-far available for secure programming) to program the SFl image “out.sfi”
already created in the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(Hardware secure modules based on smartcard) to generate a license for the
connected STM32 device during SFl install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal
and go to <STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi
"<local path>/out.sfi" hsm=1 slot=<slot_id> -rsse "< RSSe path >"

AN5054 Rev 16 93/169

Example of SFl programming scenario for STM32WL AN5054

Note: The RSSe and its binary file are located in the STM32CubeProgrammer bin/RSSe/WL
folder.

Figure 63 shows the SFl install via SWD execution.

Figure 63. SFl installation via SWD execution command-line output

_Exemple\out

Protocol Information
SFI File Information

I_Exemple\out
enple\11 . ul.bin

SFI header
FI proto
FI total number

all operation: 0@:00:07.7.

DT54154V2

3

94/169 AN5054 Rev 16

AN5054 Example of SFI programming scenario for STM32U5
7 Example of SFI programming scenario for STM32U5
71 Scenario overview
The actual user application to be installed on the STM32U5 device makes
“printf” packets appear in serial terminals. The application was encrypted using
the STPC.
The OEM provides tools to the CM to get the appropriate license for the concerned
SFI application.
7.2 Hardware and software environment
For successful SFI programming, some hardware and software prerequisites apply:
e STM32U5 board with bootloader and RSS programmed
e RS-232 cable for SFI programming via UART
e Micro-B USB for debug connection
e PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®
e STM32 Trusted Package Creator v1.2.0 (or greater) package available from
www.st.com
e STM32CubeProgrammer v2.8.0 (or greater) package available from www.st.com
e HSMv2
Note: Refer to [4] or [5] for the supported operating systems and architectures.
7.3 Step-by-step execution
7.31 Build OEM application
OEM application developers can use any IDE to build their own firmware.
7.3.2 Perform the SFI generation (GUI mode)

3

The first step to install the secure firmware on STM32 devices is the encryption of
the user OEM firmware (already provided in AXF format) using the STM32 Trusted
Package Creator tool. This step is done by adding the following files in the STPC
tool:

e An OEM firmware

e A .csv file containing option bytes configuration
e A 128-bit AES encryption key

e A 96-bit nonce

AN5054 Rev 16 95/169

Example of SFI programming scenario for STM32U5 AN5054

Note:

STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammenr\vx.x.x\bim\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

In addition, a programmed HSM card must be inserted in the PC. An “out.sfi” image
is then generated.

Figure 64 shows the STPC GUI during SFI generation.

Figure 64. STPC GUI during the SFI generation

Trusted Package Creator B o -

Edit Options Help ‘,’ a5
lite.augmented

SFI SFIx ssP WB SIGN SMI HSM
et
Remove ==l
. X -
File name out.sfi
Size 5.78 KB
hd
Encryption key file Segments
[C:/sTMaa0s ey bin — ISR R — Size Address
{3} Success X

Nonce file

08000000

IC:,’STMSZU 5/nonce.bin

Option bytes file

o SFI successfully created i 0x0

|€:/5TM32US ob_bk1s_bkans_tzen_rdp 0_S.csv

SMI files (Only for combined case)

Image version

=
RAM size I— ‘Continuation token address I—
Parse SFI file
Qutput SFI file
e I
Note: To perform HSM programming for license generation using STPC (GUI and CLI modes),
refer to Section 5.3.4: Performing HSM programming for license generation using STPC
(GUI mode) and Section 5.3.5: Performing HSM programming for license generation using
STPC (CLI mode).
96/169 AN5054 Rev 16 Kyy

AN5054

Example of SFI programming scenario for STM32U5

7.3.3

7.3.4

Note:

3

Programming input conditions

Before performing an SFI install on STM32U5 devices, make sure that:

e The flash memory is erased.

¢ No WRP zone is active, otherwise destroy it.

e The chip supports security (a security bit must be present in the option bytes).
e If the security is activated, disable it.

Perform the SFl install using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode (the only
mode so far available for secure programming) to program the SFl image “out.sfi’
already created in the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(hardware secure modules based on smartcards) to generate a license for the
connected STM32 device during the SFI install process.

Using JTAG/SWD

First make sure that all the input conditions are respected, then open a cmd
terminal, go to <STM32CubeProgrammer_package path>/bin and launch the
following STM32CubeProgrammer command:

STM32_ Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi

"<local path>/out.sfi" hsm=1 slot=<slot_ id> -rsse "< RSSe path >"

The RSSe and the corresponding binary file are located in the STM32CubeProgrammer
bin/RSSe/U5 folder.

Figure 65 and Figure 66 show the STM32CubeProgrammer command used for the
SFl install process via SWD execution.

AN5054 Rev 16 97/169

Example of SFI programming scenario for STM32U5

ANS5054

Figure 65. SFl installation via SWD execution (1)

Reconnecting...
Reconnected !

requesting license for the current STM32 device

Init Communication ..

): OK loading library “stli 1_SAM.d11": ex
() returned O» 0008, g pFunctionlist=8x85A32FD8

g session with solt ID 1...

Closing communication with HSM...

Starting Firmware Install operation...

: Option CWM1_PEND, value: @x7F, was not modified.
SECH STRT, wal 0x@, was not modified.

Data won't be downloaded
2_PEND, value: @x7F, was not modified.
RT, value: @ not modified.

ged, Data won't be downloaded

Memory Programming ...
Opening and parsing file: c_sign RSSe_sfi_bl_cut2.bin
:en ¢

File download complete
Time elapsed during download operation: 00:00:00.200

98/169 AN5054 Rev 16

3

AN5054 Example of SFI programming scenario for STM32U5

Figure 66. SFIl installation via SWD execution - (2)

Reconnecting...
Reconnected !

requesting license for the current STM32 device
Init Communication ...

ldm_LoadModule(): loading module "stlibpl M:d1a R
ldm_LoadModule (WIN32): OK loading library 1libp11_SAM.d11":
C_GetFunctionlist() returned Gx00! 0@, g_pFunctionlList=0x

Opening session with solt ID 1...

on with reader

Closing communication with HSM...

Starting Firmware Install operation...

Warning: Option WM1_PEND, value: @x7 was not modifie
MWarning: Option 11_PSTRT, value B, was not modified.
i Option chang ata wo be downloaded
Option | e: @x7F, was not modified.
Jption By 2_PSTR : 0x@, was not modified.

be downloaded

Memory Programming ...

Opening and parsing fi c_signed_RSSe_sfi_bl_cut2.bin
File 1 enc ned_| _sfi_bl_cut2.bin
Size \
Address : ©x20048300

sing memc
Download in Progres

File download complete
Time elapsed during download operation: 00:00:00.200

3

AN5054 Rev 16 99/169

Example of SFI programming scenario for STM32WBA5 AN5054

8 Example of SFI programming scenario for
STM32WBAS
8.1 Scenario overview

The actual user application to be installed on the STM32WBAS5 device. The
application was encrypted using the STPC. The OEM provides tools to the CM to
get the appropriate license for the concerned SFI application

8.2 Hardware and software environment

For successful SFI programming, some hardware and software prerequisites apply:
e STM32WBAS board with bootloader and RSS programmed

e RS-232 cable for SFI programming via UART

e Micro-B USB for debug connection

e PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

e STM32 Trusted Package Creator v1.7.0 (or greater) package available from

www.Sst.com
e STM32CubeProgrammer v2.16.0 (or greater) package available from www.st.com
e HSMv2
Note: Refer to [4] or [5] for the supported operating systems and architectures.

8.3 Step-by-step execution

8.3.1 Build OEM application

OEM application developers can use any IDE to build their own firmware.

8.3.2 Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32 devices is the encryption of
the user OEM firmware (already provided in AXF format) using the STM32 Trusted
Package Creator tool. This step is done by adding the following files in the STPC
tool:
e An OEM firmware
e A .csv file containing option bytes configuration
e A128-bit AES encryption key
e A96-bit nonce

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each

product. It is located in the directory:
STM32CubeProgrammer\vx.x.x\bil\SFI_OB_CSV_FILES

3

100/169 AN5054 Rev 16

AN5054 Example of SFl programming scenario for STM32WBA5

The option bytes are described in the product reference manual. In the case of
customization of a provided example file, care must be taken not to change the
number of rows, or their order.

In addition, a programmed HSM card must be inserted in the PC. An “output-
WBADS5.sfi” image is then generated.

Figure 67 shows the STPC GUI during SFI generation.

Figure 67. STPC GUI during the SFI generation

s
BT rricrocontrotier [STIM32WBASKNH =

Firmuare files

e rarne output-WBAS fi j

[nos]
=T 1288
Protace version 2)

Inchex Type Sae

1 Fimware 6363KB
Encryption key e 2 Firmware 6363 KB
[c:/Users/bizids/Documents/chloé Keys HSM/key.bin

|3 Fimware 7688
4 | Configura..| 48B

(C;/Mulsersjbizldstocumenl.sf:hloé-Kevs HSM/nonce.bin _—“ﬂ ===
|C:/Program Files/STMicroelectronics/STM32Cube/STM32CubeProgrammerv2.12.0-B05/bin/SFI_OB_CSV_FILES/SFI_OB_WBA.csv [open |
Random Key arca file (Optional)
=
e e e Avolbic RAM se (byie) [OFEDD Comtmotintokemoddress | !Cj:se-sfbmmd;fvesmv/wwWBAS5” T
Note: To perform HSM programming for license generation using STPC (GUI and CLI modes),

refer to Section 13.3.3: Performing HSM programming for license generation using STPC
(GUI mode) and Section 5.3.5: Performing HSM programming for license generation using
STPC (CLI mode).

8.3.3 Programming input conditions

Before performing an SFl install on STM32WBAS devices, make sure that:
e The flash memory is erased.

e No WRP zone is active, otherwise destroy it.

e The chip supports security (a security bit must be present in the option bytes).
e If the security is activated, disable it.

8.34 Perform the SFl install using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode to program
the SFI image “output-WBAJS.sfi” already created in the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(hardware secure modules based on smartcards) to generate a license for the
connected STM32 device during the SFI install process.

3

AN5054 Rev 16 101/169

Example of SFI programming scenario for STM32WBA5 AN5054

Note:

102/169

Using the UART interface

First make sure that all the input conditions are respected, then open a cmd
terminal, go to /bin and launch the following STM32CubeProgrammer command:

STM32_Programmer_CLl.exe -¢ port=COM204 -sfi protocol=static "/output-
WBADS5.sfi" hsm=1 slot=1 -rsse "< RSSe_path >"

The RSSe and the corresponding binary file are located in the STM32CubeProgrammer
bin/RSSe/WBA folder.

Figure 68 shows the STM32CubeProgrammer command used for the SFI install
process via UART execution.

3

AN5054 Rev 16

AN5054 Example of SFl programming scenario for STM32WBA5

Figure 68. SFl installation via UART execution using CLI

Pport configuration: parity = even, baudrate = 115280
stop-bit = 1.8, flow-control =

Joard o--
Chip ID: @x492
lootLoader protocol version: 3.1
evice name : STM32WBAS52/54/55
Flash size : 1 MBytes (default)
ce type : MCU
evision ID
device CPU
Protocol Information

SFI File Information

SFI file path : C:\Users\bizids\Desktop\output-WBAS.sf1
SFI HSM slot ID : 1
SFI header information
SFI protocol version
SFI total number of areas
SFI image version
SFI Areas information

Parsing Area 1/4
Area type
Area size
Area destination addre

arsing Area 2/4
Area type
Area size
Area destination addres

arsing Area 3/4
Area type
Area size
Area destination address
rsing Area 4/4
Area type
Area size

=
stination address

eading the chip Certificate...

equesting Chip Certificate from device

3

AN5054 Rev 16 103/169

Example of SFI programming scenario for STM32WBA5 AN5054

ldm_LoadModule(): loading module "C:/Program Files/STMicroelectronics/STM32Cube/STM32C
ldm_LoadModule(WIN32): OK loading library "C:/Program Files/STMicroelectronics/STM32Cu
t{) returned 9x9800000008, g pFunctionlList=0x5CF643F@

Opening session with slot ID 1...

Closing session with reader slot ID 1...

Closing communication with HSM...

Starting Firmware Install operation...

Reconnection after Option Bytes Programming

Time elapsed during option Bytes configuration: @@8:80:02.177
Warning: Option Byte: SECWM_PEND, value: 8x7F, was not modified.
Warning: Option Byte: SECWM_PSTRT, value: @x@, was not modified.
Warning: Option Bytes are unchanged, Data won't be downloaded
Time elapsed during option Bytes configuration: ©0:00:20.006

Reconnection after Option Bytes Programming

Time elapsed during option Bytes configuration: 8@:88:62.193
Jarning: Option Byte: SRAM2 RST, wvalue: 8xl1l, was not modified.
Warning: Option Bytes are unchanged, Data won't be downloaded
Time elapsed during option Bytes configuration: ©9:809:00.286

Reconnection after Option Bytes Programming
Verifying Read Out Protection...

Time elapsed during option Bytes configuration:
Installing RSSe

Memory Programming

Opening and parsing file: enc ned RSSe_sfi_ WBAS _1M.bin

File : Eﬂc_sigﬂe5_5552_5¥i_dBLS_iP.biﬂ
i ! 31.92 KB
Gx2e0081068

Erasing memory corresponding to segment 8:
Mot flash Memory : No erase done

Progo

104/169 AN5054 Rev 16

AN5054 Example of SFl programming scenario for STM32WBA5

Option Byte: TZEN, value: 8x1, was not modified.
darning: Option Byte: nBoot®, value: 8x8, was not modified.
darning: Option Byte: nSWBoot@, value: @x@, was not modified.
darning: Option Bytes are unchang Data won't be downloaded

ng option Bytes T n: 60:00:00.007

op\ou .51 Insts Operation

install operat

MSv737¢

3

AN5054 Rev 16 105/169

Example of SFI programming scenario for STM32WBA5 AN5054

e programming

Graphical user interface mode

Open the STM32CubeProgrammer and connect the board through the UART
interface with the right COM port. Press on the "Security" panel and select the
SFI/SFIx from the tab options with the following inputs:

» License source selection: "Using License from HSM"

» SFI/SFIx path: output-WBAS _sfi

* RSSe: /RSSe/WBA/enc_signed RSSe_sfi WBA5 1M.bin

Click on the "Start SFI/SFIx" button to launch the SFI installation.

Figure 69. STM32WBAS5 SFI successful programming via UART interface using GUI

© 6o o7

Secure Firmware Install

Using License from fie
® Using License from HSM

T

& SFUSFIxPatn | C\Users\bizid:

SFI/SFix Information
Segments

Address
0x8000000

0:800/e80

5\0eskiop\GUpUL-WEAS 51 % 3 ware 7 0801100

Rsse CaProgram Filesy

Ext Loader

%ﬂ R
Tru

Log

TS0y PO ATes T
1556148 : Get RSSe status.

155648 : Processing Ares 2
15156156 : Gat RSSe status.

106/169

<

st

3

AN5054 Rev 16

AN5054 Example of SFIA programming scenario for STM32WBA5
9 Example of SFIA programming scenario for
STM32WBAS
9.1 Scenario overview
SFIA is an SFI operation without a mass erase. It means that the user should
perform an SFI install when all the flash memory is empty, or when the data written
in the user flash memory is outside of the SFI firmware to install. (For more details
refer to [1]).
In this example, the SFl is installed when the flash memory is already empty. The
actual user application to be installed on the STM32WBAS5 device. The application
is encrypted using the STPC. The OEM provides the tools to the CM to get the
appropriate license for the concerned SFIA application.
9.2 Hardware and software environment
For a successful SFIA programming, the following hardware and software
prerequisites are needed:
e An STM32WBAS5 board with boot loader and RSS programmed
e An RS-232 cable for SFIA programming via UART
e A Micro-B USB for debug connection
e APC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®
e STM32 Trusted Package Creator v2.17.0 (or greater) package available from
www.Sst.com
e STM32CubeProgrammer v2.17.0 (or greater) package available from www.st.com
e HSMv2 (To generate the SFIA license)
Note: Refer to [4] or [5] for the supported operating systems and architectures.
9.3 Step-by-step execution
9.3.1 Build an OEM application
OEM application developers can use any IDE to build their own firmware.
9.3.2 Perform the HSM programming for the SFIA license generation (GUI

3

mode)

The STM32 Trusted Package Creator tool provides all the personalization package
files ready to be used on the SFI/SFIA/SFIx and SSP flows. To get all the supported
SFIA packages, go to the PersoPackages/SFIA directory in the install path of the
tool. Each file name starts with a number, which is the product ID of the device.
Select the correct one.

In this case, select: STM32WBA5_49202013_SFIA_01000000_00000000.enc.bin
to program the HSM card.

AN5054 Rev 16 107/169

Example of SFIA programming scenario for STM32WBA5 AN5054

Figure 70. Example of HSM programming (SFIA License) using STPC GU

SFI SFhx SFI Option Bytes sMI HSM
HSM smart card reader : slot number
=
Firmware identifier
[weas-sFia
Encryption key file
[C/Users/bizids/Documents/SFl-saifFiles/CobraEV_SFI/SFI/key.bin
Nonce file
C/Users/biids/Documents/SFl-saifFiles/ CobraEV_SFI/SFl/nonce.bin
Personalization data file
SelectMCU [STM32WBA | [STMicroclectronics/STM32Cube/STM32CubeProgrammen2.17.0-B04/bin/PersoPackages: SFIA/STMEZWBAS_49202013_SFIA_D1000000_00000000.enc.bin (S ol
Maximum number of images to program
1000000 —|

9.3.3 Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32 devices is the encryption of
the user OEM firmware. The firmware is already provided in AXF format. The
installation is done using the STM32 Trusted Package Creator tool.

The steps described in Section 8.3.2: Perform the SFI generation (GUI mode) can
be followed.

9.34 Programming input conditions

Before performing an SFl install on STM32WBADS5 devices, the user must ensure
that:

e The flash memory is erased.

e No WRP zone is active, otherwise it should be destroyed.

e The chip supports security (a security bit must be present in the option bytes).
e The security is disabled.

9.3.5 Perform the SFl installation using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode to program
the SFI image "output-WBAS.sfi" that was created in the previous section.

The STM32CubeProgrammer supports communication with STMicroelectronics
HSMs (hardware secure modules based on smartcards) to generate a license for
the connected STM32 device during the SFl install process.

3

108/169 AN5054 Rev 16

AN5054 Example of SFIA programming scenario for STM32WBA5

The user must ensure that all the input conditions are respected, and then follow
the steps described in Section 8.3.4: Perform the SFl install using
STM32CubeProgrammer.

3

AN5054 Rev 16 109/169

Example of SFI programming scenario for STM32H5 AN5054

10

10.1

10.2

Note:

10.3

10.3.1

10.3.2

110/169

Example of SFI programming scenario for STM32H5

Scenario overview

The user application is developed by the OEM and encrypted by STPC. The OEM
provides the following elements to the programming house:

e The encrypted STM32HS5 firmware
e Aglobal license binary
e STM32CubeProgrammer

The untrusted manufacturer is then required to securely program the encrypted
firmware using these inputs.

Hardware and software environment

For successful SFI programming, the following hardware and software prerequisites
apply:

e STM32H5-based board with bootloader and RSS programmed

e SFI programming via UART (use RS-232 cable or STLINK VCOM)

e PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

e aSTM32 Trusted Package Creator v2.14.0 (or greater) package available from
www.st.com

e STM32CubeProgrammer v2.14.0 (or greater) package available from www.st.com

Refer to [4] or [5] for the supported operating systems and architectures.

Step-by-step execution

Build OEM application

OEM application developers can use any IDE to build their own firmware.

Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32H5 devices is the encryption
of the user OEM firmware using the STM32 Trusted Package Creator tool.

This step is done by including the following files in the STPC tool:
e An OEM firmware

e A .csv file containing option bytes configuration

e A 128-bit AES encryption key

e A96-bit nonce

e OBKey files for device configuration (optional)

e An SSFl file to integrate the STMicroelectronics SFI image (optional, only for
STM32H573)

3

AN5054 Rev 16

AN5054 Example of SFI programming scenario for STM32H5

Note: It is recommended to use the "SFI Option Bytes" feature from the "H5" panel of the STM32
Trusted Package Creator tool to obtain the option bytes file (.csv file).

Note: If you want to reopen the device using the Debug Authentication mechanism, a DA ObKey
file must be included in the SFIl image, otherwise the device becomes inaccessible.

Figure 71. SFIl generation for STM32H5

4 STM22 Trusted Package Creatol - o X

Lys ..o
sn()pm Bytes smMr HsM
m Microcontroller |STM32H5 |

Firmware files

lp roject nsbin

Encryption key file
[c: s _sFL_mpuT/key.bin

Nonce file
[c2prs_sF1_meuT/nonce bin successfully cr

Option bytes file
[czps_sF1_pUT/ob.c o |

Random Key area file (Optional)

‘0BKey files (Optional)

SSF1 file (Optional)

Hodules file (Optional)

[open | Parse sfi, ssfi, mcsv file

Imageversion [0 =] Hash [Available RAM size (Byte) [x19000 Continuation token addre: fess_sr1_euriouts

DT72099V1

10.3.3 Programming input requirements

Before performing an SFl install on STM32H5 devices, make sure that:

e Flash memory erased

e Chip supporting cryptography for a Secure Manager usage

e Product state open: OXED

e Boot on bootloader: UART interface

e RSSe binary

e STMicroelectronics global license file (no need for an HSM card in this use case)

Note: The RSSe binary file is in the STM32CubeProgrammer bin/RSSe/H5 folder.

Note: To embed an SSFI image into the SFI image, it is recommended to follow a specific secure
sequence and choose an adequate start address of the nonsecure application that depends
on the SSFI configuration. See the details in STM32CubeH5 MCU Package available from
www.st.com.

To generate an STMicroelectronics global license binary, use the “H5” panel of the
STM32 Trusted Package Creator GUI and select the "License Gen" option. Then,
include the same key and nonce previously used to generate the SFl image (see
the figure below).

3

AN5054 Rev 16 111/169

Example of SFI programming scenario for STM32H5 AN5054

Figure 72. STMicroelectronics global license generation for STM32H5

- a

B
‘ £
life.augmented |

o

SFI Option Bytes

Over
C e
ile name
:
5
Firmware Encryption Symetric Key
e T BT
|| Output License file
Honce file -
@ information X |G H5_SFI_INPUT Kicense Vo i
o License file generated successfully !
|2 H5_sFT_INPUTjnonce bin
T
Image version

=N
©

DT73500V1

10.3.4 Perform the SFl install using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode to program the SFI
image “out.sfi” already created in the previous section.

STM32CubeProgrammer communicates with the device through the UART interface after it
is confirmed that all the input conditions are respected.

Note that the same operation is possible using STLINK (SWD/JTAG) or any
bootloader interface.

Command-line mode

Open a cmd terminal, go to /bin in the install path, and then launch the following
command:

STM32 Programmer CLI.exe -c port=COMS8

-sfi "out.sfi" hsm=0 "ST Global License VO.bin"

-rsse "\RSSe\H5\enc signed RSSe SFI STM32H5 v2.0.0.0"

Figure 73 shows the SFI execution traces.

3

112/169 AN5054 Rev 16

AN5054 Example of SFI programming scenario for STM32H5

Figure 73. STM32H5 SFI successful programming via CLI

Installing RSSe

Memory Programming ...
i H5_2M.bin
.bin
Size
Address

Erasing memory corresponding to segment ©:
Not flash Memory : No erase done
Download in Progress:

File download complete
Time elapsed during download operation: ©0:86:85.242
Get R55e status...

RSS wersion = 1.12.8

RSSe version = 1.8.8
Starting SFI

Processing license...
Get R55e status...
Processing Image Header
Get R55e status...
Processing Area 1...
Get RS55e status...

Area Address

Area Type

Processing Area 2...
Get R55e status

Area Address

Area Type

Processing Area 3...
Get RSSe status

Area Address

Area Type

Processing Area 4...
Can not verify last area
Area Address = 8xB

Area Type £

SFI Process Finished!
SFI file out.sfi Install Operation Success

Time elapsed during SFI install operation: ©6:86:22.172

DT73501V1

Graphical user interface mode

Open the STM32CubeProgrammer and connect the board through the UART
interface with the right COM port. Press on the "Security" panel and select the
SFI/SFIx from the tab options with the following inputs:

e License source selection: "Using License from file"
e SFI/SFIx path: out.sfi
e RSSe: \RSSe\H5\ enc_signed RSSe_ SFI_STM32H5 v2.0.0.0.bin

3

AN5054 Rev 16 113/169

Example of SFI programming scenario for STM32H5 AN5054

Click on the "Start SFI/SFIx" button to launch the SFI installation.

Figure 74. STM32H5 SFI successful programming via GUI

0 sszCubebrogrammer

o ®
= Secure programming

~ P
Secure Firmware Install SFI/SFix Information

B

Seqments .
Firmware ID:
Bl oo e rome

Index Type Size re Max Counter:

Using License rom HSM A
’ ! " i HSM Status:
o 2 OBKey 12 070100 Version:

(@I sriseixpan | crusersiesioutst 3 Foae 20 o000

Rsse CAProgram Files\ST!) Option
4 s 48 00

Ext Loader

Modules

(ﬂ STM32 U
Trust

STM32HSM-V2
sa sTMa2

(CLCEIEIY product 1D : 48402011

Live Update Verbosity level 1

9: Areasize 2
Area destination address : OXFFD0100
Parsing Area 3/4

Targel informat

DT73502V1

3

114/169 AN5054 Rev 16

AN5054 Example of SFl programming scenario for STM32H7RS
1 Example of SFI programming scenario for
STM32H7RS
11.1 Scenario overview
There are three steps during this scenario:
e Generate STM32H7RS encrypted firmware using the STPC
e HSM card provisioning via STPC
e Use STM32CubeProgramer to perform the SFI process.
11.2 Hardware and software environment
For successful SFI programming, some hardware and software prerequisites apply:
e An STM32H7RS-based board and system flash security package (SFSP) v1.1.0 or
greater
e USB Type-C® cable for SWD connection
e APC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®
e An STM32 Trusted Package Creator v2.16.0 (or later) package is available from
www.st.com
e An STM32CubeProgrammer v2.16.0 (or later) package is available from www.st.com
e An HSMv2 smartcard
Note: Refer to [4] or [5] for the supported operating systems and architectures.
11.3 Step-by-step execution
11.31 Build an OEM application
OEM application developers can use any IDE to build their own firmware.
11.3.2 Perform the SFI generation (GUI mode)
The first step to install the secure firmware on STM32H7RS devices is the
encryption of the user OEM firmware using the STM32 Trusted Package Creator
tool.
This step is done by including the following files in the STPC tool:
e An OEM firmware
e A .csv file containing option bytes configuration
e A 128-bit AES encryption key
e A96-bit nonce
e Random key area file (optional)
e OBKey files for device configuration (optional)
Note: It is recommended to use the "SFI Option Bytes" feature of the STM32 Trusted Package

3

Creator tool to obtain the option bytes file (.csv file).

AN5054 Rev 16 115/169

Example of SFl programming scenario for STM32H7RS AN5054

Note:

If you want to reopen the device using the Debug Authentication mechanism, a DA ObKey
file must be included in the SFIl image, otherwise the device becomes inaccessible.

Figure 75. Figure4 SFI generation for STM32H7RS

SFix SFl Option Bytes SMI HSM

PSIll| Microcontroller [STMG2HTRS -
Firmware files
GpioToggleApp.bin
Encryption key file
[CUsers/dkhilals/OneDrive - STMicroelectronics/ Desktop/testH7RS1.1.0/fw_keybin [open [Generate |
Nonce file
[er OneDrive - STMier s/ Desktop/testHTRS 1.1 bi [Open |
Option bytes file
bram Files/STMicr 'Cube/STM32C 16.0-RO/bin/SFI_OB_CSV_FILES/SFI_OB_H7RS.csv
Random Key area file (Optional)
I m o SFl successfully created
OBKey files (Optional [ok]
obkeyFileDA _certficate.obk T
Parse sfi, ssfi, mosv file
Imageversion |0 —] Generate Hash v Available RAM size (Byte) Continuation token address ET Criebine = ics/DesElopl m
. . .
11.3.3 Programming input requirements

Note:

Note:

11.3.4

116/169

Before performing an SFl install on STM32H7RS devices, make sure that:
Product state is open: 0x39

A ready generated SFI image using the STPC tool

e RSSe binary

e STMicroelectronics global license file (no need for an HSM card in this use case)

Using a non STM32H7RS sfi image may result in errors or issues during the installation
process.

The RSSe binary file is in the STM32CubeProgrammer bin/RSSe/H7RS folder.

Perform the SFl install using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode to program
the SFI image “out.sfi” already created in the previous section.

STM32CubeProgrammer communicates with the device through the SWD interface
after it is confirmed that all the input conditions are respected.

Note that the same operation is possible using STLINK (SWD/JTAG) or any
bootloader interface.

3

AN5054 Rev 16

AN5054 Example of SFl programming scenario for STM32H7RS

Command-line mode

Open a cmd terminal, go to /bin in the install path, and then launch the following
command:

STM32_ Programmer CLI.exe -c port=swd mode=hotplug -sfi "out.sfi"
hsm=0 "ST Global License V0.bin" -rsse "\RSSe\H7RS\
enc_signed RSSe sfi.bin"

Figure 5 shows the SFI execution traces.

Figure 76. STM32H7RS SFI successful programming via CLI

BE C\Windows\Systemn32\emd.exe - O x

sfi.bin

wnload operation

found! If your pr £ Debug Authen tion, please perform a d y using Deb
-DK
found! If u tion, please perform a d

e perform a d

e perform a

Debug Authen t , please perform a d

tion, please perform a d

1.1.8\out.sfi Install Operation S

Graphical user interface mode

Open the STM32CubeProgrammer and connect the board through the SWD. Go to
the security panel and select the SFI/SFIx from the tab options with the following
inputs:

3

AN5054 Rev 16 117/169

Example of SFl programming scenario for STM32H7RS AN5054

e License source selection: "Using License from file"
e SFI/SFIx path: out.sfi
e RSSe: \RSSe\H7RS\ enc_signed_RSSe_sfi.bin

Click on the "Start SFI/SFIx" button to launch the SFI installation.

Figure 77. STM32H7RS SFI successful programming via GUI

o [Y——— N N S/
. Connected

£
Ve

SFUSFix Path | C:\Users\dkhilals\CneDrive - STMicroelectronics\Desktop\testH7RS1.1.0hout.sfi > [}

RSSe C\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgrammerv2. 16.0-RO\bIn\RSSe\HTRS\e =

Ext Loader

ﬂf;ﬂ st

Live Update Verbosity level LI

3

118/169 AN5054 Rev 16

AN5054 Example of SMI programming scenario
12 Example of SMI programming scenario
12.1 Scenario overview
In this scenario, the third-party library to be installed on the STM32H753XI device
makes “printf” packets appear in the serial terminal if the library code execution
called by the application does not crash.
The library code was encrypted using the STPC.
The OEM provides tools to the CM to get the appropriate license for the concerned
SMI module.
12.2 Hardware and software environment
The same environment as explained in Section 4.1.1: Device authentication.
12.3 Step-by-step execution
12.3.1 Build a third-party library

3

STMicroelectronics or third-party developers can use any IDE to build the library to
be encrypted and installed into the STM32H7 device.

In this scenario, the SMI module based on the built library is not relocatable. The
destination address is hardcoded in the SMI module to the following value:
0x08080000.

AN5054 Rev 16 119/169

Example of SMI programming scenario

ANS5054

12.3.2 Perform the SMI generation
For encryption with the STM32 Trusted Package Creator tool, the third-party
module is provided in ELF format. A 128-bit AES encryption key, a 96-bit nonce and
a security version file are also provided to the tool. They are available in the
“SMI_ImagePreparation” directory. After choosing the name of the section to be
encrypted, a “.smi” image is then generated (FIR_module.smi).
The clear data part of the library without the encrypted section is also created in
ELF format (FIR_module_clear.axf).
Figure 78 shows the STPC GUI during SMI generation.
Figure 78. STPC GUI during SMI generation
4 STM32 Trusted Package Creato - | ®
File Edit Options He Doc ‘,I lito.cugmentod

SFI Dption Bytes ssp

‘WB SIGN SMI HSM

ELF file

IC:\[SMI_HEJF[R_m:dub.arF

Encryption kay file

Owverview

ELF information

IC;{SM[_HIEJH'WMAre_key.b’m

Honce file

Original file name

FIR_modulesmi

])

| €%, Information X

SMI successfully created

Ic-\fsm_mwmmmn

Sacurity version file

1

1.66 KB

IC:\[SMI_F\E\[xuﬁty_vErshn.h'm

Saction to encrypt

ER_PCROP |

Output SMI file

Generate Hash e

[c:/sm_Fies/rn_moduiesmi

‘Qutput clear ELF file

[c:ist_Fies/ R _modute_cearat

Select folder

Lo L[]

‘Generate SMI

120/169

AN5054 Rev 16

3

AN5054 Example of SMI programming scenario
12.3.3 Programming input conditions

Before performing the SMI install make sure that:

e The SMI module destination address is not already PCROPed, otherwise destroy this
PCROPed area.

e The BootO pin is set to VDD.

e The chip supports security (existing security bit in option bytes).

e When performing an SMI install using the UART bootloader, no debug interface is
connected to any USB host. If a debug interface is still connected, disconnect it then
perform a power off/power on before launching the SMI install to avoid any debug
intrusion problem.

e The proper license generated for the currently used chip must be at your disposal (or
an HSM or secure server to generate it during SMI programming).

12.3.4 Perform the SMI install

3

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal
and go to <STM32CubeProgrammer_package path>/bin, then launch the following
STM32CubeProgrammer command:

STM32 Programmer CLI.exe -c port=swd mode=HOTPLUG -smi
protocol=static "<local path>/FIR module.smi"
"<local path>/<licenseSMI.bins>"

This command allows the SMI specified file “FIR_module.smi” to be programmed
into a dedicated PCROPed area at address (0x08080000).

Figure 79: SMI install success via debug interface shows the SMI install via SWD
execution.

AN5054 Rev 16 121/169

Example of SMI programming scenario AN5054

122/169

Figure 79. SMI install success via debug interface

EX Administrator: C\Windows\system32iemd.exe = &

Microzoft Windows [Uersion 6.1.76811
Copyright <c> 288? Microsoft Corporation. All rights reserved.

C:~Usersshannachi*cd C:“Usersshannachi~Documents“Projects*STM3I2H? _projectsdocs™d
ocs_forSTMIZH7Re lease~AN“Su_packagessstmdZ_programmer_package_vHA.4.8

C:“Usersshannachi~Documents>Projects*8STHIZHY projectrdocs docs_FforSTHIZH7Re lease
~AN“Sw_packages»stm3d2_programmer_package_vB.4.8>cd hin

C:sUzeprsshannachisxDocuments»Frojects E8THIZH? _project docssdocs _forSTHIZH7Release
~AN~Sw_packagessstmd2_programmer_package vB_4_8~bin>83TH3Z2_Programmer_CLI .exe —c
port=swd mode=HOTPLUG —smi protocol=static "C:Users-hannachisxDocumentsz“Projects
~ETH3IZH? _project docs docs_forETMH3ZHY7RHe leaze AN~SHI_ImagePreparation~FIR_module.
emi" "C:isUszersshannachisDocumentssProjects E8THIZH? projectdocs docs_forSTHIZHYR
eleaze~AN~SHI _ImagePreparation~licenszeSHI .hin"

ST-LINK Firmware version U2J27M15
SUD frequency = 480A KH=z

Connection mode: Hot Plug

Device ID: Bx45%8

PPntncnl @ static
= GC:slUsersshannachisDocumentssProjects \STHIZH? projectsdocs™
furSTH32H?Releaue\HN\SHI_ImagePreparatiun\FIR_mndule.smi

Etarting SMI install operation for file : CGC:slUsersshannachisDocumentssProjects™
STMIZH? _projectdocsdocs_forSTM32ZH7Release AN\EMI_ImagePreparation“FIR_module.s

mi ...
EMI File Information H

EMI file path : C:sUsersshannachisxDocunentssProjects~5THIZH
7 prugect\ducé\ducg _for5THIZHYRelease~AN~EMI _InagePreparation“FIR_module.zmi

licenze file path : C:sUsersshannachisxDocunentssProjects~5THIZH
?_projectsdocssdocs_forS8TH32H?Releaze~AN~SHI _ImagePreparationslicenseSHI .hin
SMI code destination addressz : BxBAEEHBA
SMI code zice : 1688

Setting write mode to SMI
Succeed to set write mode for SHMI
Writing license @ address HAx248568068. ..

License file successfully written at adress Bx24@5608008
Writing SMI module image to addressz BxZ24858883.._.

EMI image successfully written at address BxZ24850833
Starting SMI process with license B Bx248588008 and image @ Bx2405%0088. ..

REE process started. ..
REE command execution OK
Heconnecting. ..

—LINK Firmware version = U2J27M15
WD frequency = 4888 KH=
Connection mode: Hot Plug
Device ID: Bx45%8

Heconnected *

Requesting security state...

SECURITY State Success

SMI SUCCESS?

SMI file C:sUsershannachisDocuments»Projects~STM3I2ZH? _projectsdocssdocs_forSTHIZ
H7Re lease~ANSMI _ImagePreparation“FIR_module.smi Install Operation Success

Time elapsed during the SMI install operation iz: BB:08:83_294

C:sUzeprszsshannachixDocumentsz»Frojects E8THIZH? _project docssdocs _forSTHIZH7?Release
~AN~Sw_packagessstmd2_programmer_package vB_4_8-hin>

3

ANS5054 Rev 16

AN5054

Example of SMI programming scenario

12.3.5

3

How to test for SMI install success

1. Flash the clear data part “FIR_module_clear.hex” (available under the “Tests” directory)
into address 0x08084000 using STM32Cubeprogrammer or any other flashing tool.

flash the test application “tests.hex” (which is based on the SMI module), available

under the “Tests” directory at start user flash memory address “0x08000000” using
STM32Cubeprogrammer or any other flashing tool.

The option bytes configuration becomes as below (Figure 80).

Figure 80. OB display command showing that a PCROP zone was activated after SMI

OPTION BYTES BANK: B
Read Out Protection:

RDP : BxAA (Level B, no protectiond

RES:

RSS51 Bx@ (Mo 5FI process on going)

BOR Level:

BOR_LEV : BxB {(reset level is set to 2.1 U>

User Configuartion:

IWDG1L : Bx1 (Independent watchdog iz controlled by hardwarel
MRST_STOP_D1 Bx1l ¢(STOP mode on Domain 1 is entering without reset)
MRST_STBY_D1 Bx1 (STANDBY mode on Domain 1 is entering without reset)
FZ_IWDG_STOP Bx1 <Independent watchdog is running in STOP mode?
FZ_IWDG_SDBY Bx1 <{Independent watchdog is running in STANDBY mode>
SECURITY Bx1 (Security feature enabled>

BCM? @x1 (CM-7 bhoot enahled>

MRST_STOP_D2 Bx1l ¢(STOP mode on Domain 2 is entering without reset)
NRST_STEY_D2 Bx1 <STANDBY mode on Domain 2 is entering without reset?
SUAP_BANK BxB {after hoot loading. no swap for user sectors?

DMEFPA Bx1 ¢{delete PcROP protection and earse protected aread

DMESA Bx1 (delete Secure protection and erase protected areal

Boot address Option Bytes:
BOOT_CHM7_ADDA: 8x888 (BxBOBOABE)
BOOT_CH7_ADD1: 8x1FF@ <Bx1FFOB008>

PCROP Protection:

: Bx888 (PxBO106888>

PCROPA_str
PCROPA_end : Bx886 (PxBOBO6BA)
Secure Protection:

SECA_str : BxFF <(BxBBO1FEB>
SECA_end : BB <BxBOBOBFF>
DICM RAM Protection:

ST_RAM_SIZE : Bx2
Urite Protection:

nl/RF@ CUWrite protection
nWRP1 (Urite protection
nWRP2 {Urite protection
nWRP3 {Urite protection
nWRP4 CUrite protection
nl/RFS CWrite protection
nl/RF6 CUWrite protection

nWRP? {Urite protection

active sector)

active sector)
active sector)
active sectord
active sector)
active sector)
active sector)

active sector?

ANS5054 Rev 16

123/169

Example of SMI programming scenario AN5054

3. If a UART connection is available on the board used, open the “Hercule.exe” serial
terminal available under the “Tests” directory, open the connection. On reset, the
dedicated “printf” packet appears.

3

124/169 AN5054 Rev 16

AN5054 Example of SFIx programming scenario for STM32H7

13 Example of SFIx programming scenario for STM32H7

13.1 Scenario overview

There are three steps during this scenario:

e Generate an SFIx image using the STPC.

e Provisioning HSM card via STPC.

e Use the STM32CubeProgrammer to perform the SFIx process.

Once this scenario is successfully installed on the STM32H7B3I-EVAL, follow the

steps below:

e Write internal firmware data in the internal flash memory starting at the address
0x08000000.

e Write external firmware data in the external flash memory starting at the address
0x90000000.

e \Verify that the option bytes were correctly programmed (depends on area C).

13.2 Hardware and software environment

For successful SFIx programming, some hardware and software prerequisites apply:
e STM32H7B3I-EVAL board containing external flash memory.

e Micro-B USB for debug connection.

e PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

e STM32 Trusted Package Creator v1.2.0 (or greater) package available from
www.Sst.com

e STM32CubeProgrammer v2.3.0 (or greater) package available from www.st.com
e HSMv1.1 card

Note: Refer to [4] or [5] for the supported operating systems and architectures.

13.3 Step-by-step execution

13.3.1 Build OEM application

OEM application developers can use any IDE to build their own firmware.

Note: In this use case, there are different user codes. Each one is specific to a flash memory type
(internal/external).

13.3.2 Perform the SFIx generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
Bin/Hex/AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit
AES encryption key and a 96-bit nonce are also provided to the tool.

3

AN5054 Rev 16 125/169

Example of SFIx programming scenario for STM32H7

AN5054

Note:
product.

STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each

It is located in the directory: STM32CubeProgrammenr\vx.x.x\bim\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

An “sfix”image is then generated (out.sfix).

Figure 81. Successful SFIx generation

{?;, 5TM32 Trusted Package Creator

File Edit

Options

SFI SFIx ssp

Help

WB SIGN

Internal firmware files

|D firmware.hex

External firmware files

|D External hex

Key area file

Overview

Firmware information SFIx information
Add
MOV

File name

|C 1 [5FIx key_areas.kosv

IC 1 f5FIxfkey.bin

{th Success

Encryption key file o

x

Size

Image version | Internal segme

SFIx successfully created

Monce file

IC 1/5FIx/nonce. bin

Option bytes file

IC 1 fSFIxjob.csv

Image version

1 =

I Continuation token address

Qutput SFIx file

RAM size

|C 1 [SFIx fout. sfix

Address

(2010000

Ox0

IOXUSO 10000

Parse SFIx file

126/169

AN5054 Rev 16

3

AN5054

Example of SFIx programming scenario for STM32H7

13.3.3

Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house to be used for
license generation during the SFI install process.

In this example, HSMs are used as license generation tools in the field. See Section 4.1.2:
License mechanism for HSM use and programming.

Figure 82: Example of HSM programming using STPC GUI shows an example for
HSM programming by OEM to be used for SFIx install.

The maximum number of licenses delivered by the HSM in this example is 1000.

This example uses HSM version 1. The HSM version can be identified before performing
the programming operation by clicking the “Refresh” button to make the version number
appear in the version field.

Figure 82. Example of HSM programming using STPC GUI

File

{*4 5TM32 Trusted Package Creator — O >

Edit Qptions Help ‘, ’ e

SFIx S5pP 'WB SIGN

HSM card index HSM information

=

Firmware identifier HSM status OEM_STATE

Firrnware 1D test

Max counter 92

Jtest

Version 1

Type

Encryption key file
e] e

|c:HsMpkey.bin

Nonce file

IC 1fHSM/nonce. bin

Personalization data file

Maximum counter

bd =

3

AN5054 Rev 16 127/169

Example of SFIx programming scenario for STM32H7 AN5054

Note:

13.3.4

13.3.5

13.3.6

128/169

When using HSM version 1, the “Personalization data file” field is ignored when
programming starts. It is only used with HSM version 2.

When the card is successfully programmed, a popup window message “HSM successfully
programmed” appears, and the HSM is locked. Otherwise, an error message is displayed.

Performing HSM programming for license generation using STPC
(CLI mode)

Refer to Section 5.3.5: Performing HSM programming for license generation using
STPC (CLI mode).

Programming input conditions

Before performing an SFIx install, make sure that:

e Use the JTAG/SWD interface.

¢ No PCROPed zone is active, otherwise disable it.

e The chip must support security (a security bit must be present in the option bytes).

e The SFiIx image must be encrypted by the same key/nonce used in the HSM
provisioning.

Perform the SFIx installation using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFIx image “out.sfix” already created in
the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(hardware secure modules based on smartcard) to generate a license for the connected
STM32 device during SFIx install.

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package path>/bin, then launch the following
STM32CubeProgrammer command:

Using JTAG/SWD

STM32 Programmer CLI.exe -c¢ port=swd mode=HOTPLUG -sfi protocol=static
"<local path>/out.sfix" hsm=1 slot=<slot_id> -el <ExternallLoader Paths

Figure 83: SFIx installation success using SWD connection (1) through Figure 86:
SFIx installation success using SWD connection (4) shows the SFIx install via SWD
execution and the HSM as license generation tool in the field.

3

AN5054 Rev 16

AN5054 Example of SFIx programming scenario for STM32H7

Figure 83. SFlx installation success using SWD connection (1)

mode :

t mode
ID H
name : STM32H7A/B
Flash size : 2 MBytes
Dev : MCU
Device CPU : Cortex-M7

Protocol Information
SFI File Information

SFI file path

SFI HSM slot ID

SFI header information
SFI protocel version
SFI total number of areas
SFI image version

SFI Areas information

Parsing Area 1/7
Area type
Area size
Area destination address

Parsing Area 2/7
Area type
Area size
Area destination address

Parsing Area 3/7
Area type
Area siz
Area destination address

Parsing Area 4/7
Area type
Area size :
Area destination address 1 @9x900060000

3

ANS5054 Rev 16 129/169

Example of SFIx programming scenario for STM32H7 AN5054

Figure 84. SFlx installation success using SWD connection (2)

Parsing Area 5/7
Area type
Area size ;32
Area destination address : BxB8001028
Parsing Area 6/7
Area type
Area size
Area destination address
Parsing Area 7/7
Area type
Area size

Area destination address

Reading the chip Certificate...

Requesting Chip Certificate from device ...
Get Certi e don fully
requesting license for the current STM32 device

Init Communication ...

ldm_LoadModule(): loading module “stlibpll SAM.d11™ ...
ldm_LoadModule(WIN32): OK loading library “stlibpll SAM.d11": Bx62087@000 ...
GetFunctionlist() returned 8x88080080, g pFunctionlist=Bx628EFS568
1 1ib initialization S

g session with solt ID 1...

Closing
Communi

= from HS
Starting Firmware Install operation...

Erase external flash size : 513 startAddress : 8x90000000 endAddress : @x90000200
Erasing external memory sector @

3

130/169 ANS5054 Rev 16

AN5054 Example of SFIx programming scenario for STM32H7

Figure 85. SFlx installation success using SWD connection (3)
Mctivating security...

Warning: Option Byte: SECURITY, value: ©@x1, was not modified.

Warning: Option Bytes are unchanged, Data won't be downloaded

Activating security Success

Setting write mode to SFI

Warning: Option Byte: SECURITY, wvalue: 8x1, was not modified.

Warning: Option Byte: ST_RAM_SIZE, value: 8x3, was not modified.

Warning: Option Bytes are unchanged, Data won't be downloaded

Succeed to set write mode for SFI

Starting SFI part 1

Writing license to address @x2403080@
Writing Img header to address @x24831000
Writing areas and areas wrapper...

RSS process started...

RSS command execution OK
RSS complete Value = @x@
Reconnecting. ..

ST-LINK SN : ©e4988193837510B35333131
ST-LINK FW : V3JIM1
Voltage : 3.28V

SWD freq 1 24800 KHz
Connect mode: Hot Plug
Reset mode : Core reset
Device ID 1 Bx48
Reconnected !

Requesting security state...
Warning: Could not wverify security state after last chunk programming

Starting SFI part 2

Writing license to address @x2403080@
Writing Img header to address @x24831000
Writing areas and areas wrapper...

RSS process started...

RSS command execution OK
RSS complete Value = @x@
Reconnecting. ..

ST-LINK SN : @e4880193837518B35333131
ST-LINK FW : V3J1M1
Voltage

SHD freq 1 248088 KHz
Connect mode: Hot Plug
Reset mode : Core reset
Device ID 1 Bx48
Reconnected !

Requesting security state...
Warning: Could not wverify security state after last chunk programming

3

ANS5054 Rev 16 131/169

Example of SFIx programming scenario for STM32H7 AN5054

Figure 86. SFIx installation success using SWD connection (4)

|Downloading area [3] data for external flash memory at address ©x980800080...
[Data download complete

Starting SFI part 3

Writing license to address @x24838800
Writing Img header to address @x24831000
Writing areas and areas wrapper...

all areas processed

RSS process started...

RSS command execution OK
Warning: Could not verify security state after last chunk programming

Time elapsed during SFI install operation: ©0:00:44.321

3

132/169 AN5054 Rev 16

AN5054

Example of SFIx programming scenario for STM32L5/STM32U5

14

14.1

14.2

Note:

14.3

14.3.1

3

Example of SFIx programming scenario for
STM32L5/STM32U5

Scenario overview

There are three steps during this scenario:

1. Generate an SFIx image using the STPC

2. HSM card provisioning via STPC

3. Use STM32CubePrg to perform the SFIx process.

Successful installation of this scenario on the STM32L5 provides the following
results:

e The internal flash memory is readable from base addresses 0x08000000 and
0x08040000. It contains the internal firmware.

e The external flash memory is programmed so as to be readable with the external flash
memory loader. You can then read the external flash memory encrypted by the
OTFDEC keys. The pattern of values must be present in the binary files of external
firmware.

e If the application works correctly, the onboard LED blinks.

Hardware and software environment

For successful SFIx programming, some hardware and software prerequisites apply:

e An STM32L5/STM32U5-based evaluation board containing external flash memory
e A Micro-B USB for debug connection

e APC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

e An STM32 Trusted Package Creator v2.11.0 (or greater) package is available from
www.st.com

e An STM32CubeProgrammer v2.11.0 (or greater) package is available from
www.st.com

e An HSMv1.1 card

Refer to [4] or [5] for the supported operating systems and architectures.

Step-by-step execution

Build an OEM application

OEM application developers can use any IDE to build their own firmware. Note that in this
use case there are different user codes, each being specific for a flash memory type
(internal/external).

AN5054 Rev 16 133/169

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

14.3.2

Note:

134/169

Perform the SFix generation (GUI mode)

To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
Bin/Hex/AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit
AES encryption key and a 96-bit nonce are also provided to the tool.

STM32CubeProgrammer v2.11.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammenr\vx.x.x\bil\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.
In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

An “sfix” image is then generated (out.sfix).

Use case 1: generation of SFIx without key area for STM32L5

Internal firmware files:
1. Add a nonsecure binary with a start address equal to 0x08040000.

2. Add an internal binary file at 0x0C000000 (application to be executed after
downloading SFIx to verify full process success by blinking an LED).

3. Add an OTFDEC key binary at 0x0C020000 (to be used as the key in OTFD ENC-
DEC).

External firmware files: add an external binary at 0x90000000 with these
parameters:

e Region number =0
e Region mode = 0x2
e Key address = 0x0C020000 (same as the OTFDEC key binary).

Encryption key: use the same key as HSM.
Nonce file: use the same nonce as HSM.
Option bytes file: use .csv contains the option-byte configuration.

RAM size: 0x19000 to split the input areas avoiding memory overflow.

3

AN5054 Rev 16

AN5054

Example of SFIx programming scenario for STM32L5/STM32U5

Figure 87. Successful SFIx generation use case 1

Microcontroller

Options Help Doc

SFI Option Bytes SMI HSM

§TM32L5

Internal firmware files

|& GPIO_OToggle_TrustZone_S.hex

External firmware files

Firmware information

Overview

] X
Lyyg......

SFIx information 4/

{2 Success K

|& cleatData.bin

Random Key area file (Optional)

a SFlx successfully created

File name

Image version Intern

Encryption key file

!m 5_SF1§ bin

Nonce file

Option bytes file

= 5 SFL_Evenple MyGPIO_Togge_Trustzon

Index Type

Firmware

Firmware

Firmware

External

Configuration

Address

03040000

xC000000

0xCO3E000

GenerateHash [Available RAM size (Byte) 19000 Continuation token address

Generate SFIx

DT53097V2

3

AN5054 Rev 16

135/169

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

Use case 2: generation of SFIx with key area for STM32L5

This is essentially the same process as test case1. The main difference is:
e Adda "kesv” file (to be used in OTFD ENC-DEC during SFIx downloading) in the key
area field, instead of using an OTFDEC key binary file.

e The key address for external firmware files is the first address of the area ‘K’ key file,
which is 0x0C020000.

Figure 88. Successful SFIx generation use case 2

— o x

n: Help D ‘
Options elp o¢ life.ougmenited

— SFI SFIx SFI Option Bytes SMI HSM

Microcontroller |STM32L5 ¥

Internal firmware files

&Gmo |0Toggle_TrustZone_S.hex

External firmware files
& Success
‘& clearDate.bin
SFlx successfully created
n e ize ress

Random Key area file (Optional) !
[o -~ [o] imware : 8040000
| 5 SFLE _areakesv

imware 563 0xC000000
Encryption key file
= oy A — neEm
Nonce file 3 i
J 5 xtes 2568 0x30000000
Option bytes file o

Imageversion [0 —| GenerateHash |v Available RAM size (Byte) (19000 Continuation token address

DT53098V2

After the generation of the SFIx image in this use case the output file contains 12
internal segments (F area), and 166 external segments (E area).

3

136/169 AN5054 Rev 16

AN5054 Example of SFIx programming scenario for STM32L5/STM32U5

Use case 3: generation of SFIx without key area for STM32U5
Find below an example for STM32U585xx.

Internal firmware files:
1. Add a nonsecure binary with a start address equal to 0x08100000.

2. Add an internal binary file at 0x0C000000 (application to be executed after
downloading SFIx to verify full process success by blinking an LED).

3. Add an OTFDEC key binary at 0x0800A000 (to be used as the key in OTFD ENC-
DEC).

External firmware files: add an external binary (at 0x70000000 for STM32U585xx)
with these parameters:

e Region number = 4
e Region mode =1
e Key address = 0x0800A000 (same as the OTFDEC key binary).

Encryption key: use the same key as HSM.
Nonce file: use the same nonce as HSM.
Option bytes file: use .csv contains the option-byte configuration.

RAM size: 0x55500 to split the input areas avoiding memory overflow.

Figure 89. Successful SFIx generation use case 3

{5 STM32 Trusted Package Creator - =] x

Microcontroller | smvazus Ea)
[Project_nseut
| Projeaseou ez
5 arcaEkeykin
5 clearDate.bin “ . -
[Index | ype ‘ Size ‘ Address
| o= |
Encrypuion key file
T r———— e ==
| —— T —— m
Option bytes file
|cituserioesiacpiprosrams s srobey m
’G Generats Hash [Avzilable RAM size (Byte) ﬁ Cantinuation fnleen sddress l_
crrmr——rr e=rm | oo |
Find below an example for STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and
STM32U5GxxX.
Kys AN5054 Rev 16 137/169

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

Internal firmware files:
1. Add a nonsecure binary with a start address equal to 0x08100000.

2. Add an internal binary file at 0x0C000000. It is an application to be executed after
downloading SFIx to verify the full process success through a blinking LED.

3. Add an OTFDEC key binary at 0x0800A000. It is used as the key in OTFD ENCDEC.
External firmware files:

Add an external binary at 0x90000000 with these parameters:

e Region number =3

e Region mode = 1

o Key address = 0x0800A000. It is the same as the OTFDEC key binary.

Encryption key: use the same key as HSM.

Nonce file: use the same nonce as HSM.

Option bytes file: use the .csv file that contains an option-byte configuration.

o RAM size: it is 0x55500 to split the input areas to avoid a memory overflow.

Figure 90. Successful SFIx generation use case 3 for STM32U59xxx, STM32U5Axxx,
STM32U5Fxxx, and STM32U5Gxxx

i STM32 Trusted Package Crestor

External firmware files

B8 ceaDaabin

Random Key area file (Optional)
I o]
Encryption key file
e e =)
Wonce file
[Coisersizds Documents/CobraEV_SFsafFies/CobraEY_SF/SFxjponce.bin [open | cenerate |
Option bytes file
f ST, 802/bin/SF1_0B_CS_FILES/5F ETe [open |
Parse SFIx fle
mmmmmmmm [— Avaable At sze (yte) o555 Continstiontokenaddvess [|| | =)
9 m

DT72095V1

Use case 4: generation of SFIx with key area for STM32U5

This is essentially the same process as test case1. The main difference is:

e Add a “.kcsv” file (to be used in OTFD ENC-DEC during SFIx downloading) in the key
area field, instead of using an OTFDEC key binary file.

e The key address for external firmware files is the first address of the area ‘K’ key file,
which is 0x0800A000.

138/169 AN5054 Rev 16 ‘YI

AN5054 Example of SFIx programming scenario for STM32L5/STM32U5

Figure 91. Successful SFIx generation use case 4

©h STM32 Trusted Package Creator — o S
g

File Edit ‘Options Help Doc ‘ " life.ougmented

SFT Option Bylac

Microcontroller e

Firmware information SFIx information

File name size Image version

Tntarnal firmuars filss

7 Projest_nsout

Internal segments | Extemal segments Tota

| Project s.out

External firmware files

55 dearbata.bin

Indlex Type Size Address

Firmware Dx8100000
Key area tie
T Firmware 0xC000000
I
Firmware Dxc0felD0
Encryption key file

Key 8 0
B re—

External
Honce file

bl
f ,
g a0nomom.

[e:/usestosshavprorcramses/us_seisjnonse.in

Option bytes file

[r——

Tmags varsion

[[T IV ey

Parse SFIx file
Output SFIx file

2/ Users/Desktopjprog amsFI/US_SFTzfhut sfic

Figure 92. Successful SFIx generation use case 4 for STM32U59xxx, STM32U5Axxx,
STM32U5Fxxx, and STM32U5Gxxx

£ STME2 Trusted Package Creator - x

File Edit Options Help Doc " l 1,
ite.ougrmented

sa SIx SF1 Option Bytes s HSM
Microcontroller |STM32U59x/5Ax/5Fx/5Gx ~| irmware informats

Internal firmware files
3 Overview
m T Project nsout

[Project siout Fie name Imsge version | Intemal segments] xteral segments| Totl segments

Index Type Size Address

o -
Frre oo
JE—
fe— ooz
BT []
= -
p—
Random Key area file (Optional)
e
[CToersiacs Docments/CobeaEV_SFsaFes CobraEY_SFISF ey 5 [open | cenerate |
—
oot Docmens/ebray STty S xhonee ==
Option bytes file
= T T T =1

Parse SFIxfile

mgeveson [3 cenenterosh Avatabe At s oyl 535507 Contuatontokenaddress [|| | =]

DT72096V1

3

AN5054 Rev 16 139/169

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

14.3.3

14.3.4

14.3.5

14.3.6

Note:

140/169

Performing HSM programming for license generation using STPC
(GUI mode)

Refer to Section 13.3.3: Performing HSM programming for license generation using
STPC (GUI mode).

Performing HSM programming for license generation using STPC
(CLI mode)

Refer to Section 13.3.4: Performing HSM programming for license generation using
STPC (CLI mode).

Programming input conditions

Before performing an SFix install, make sure that:
e A JTAG/SWD interface is used
e The chip supports security (a security bit must be present in the option bytes)
e The SFiIx image is encrypted by the same key/nonce as is used in the HSM
provisioning.
e The option bytes are:
— DBank=1
— nSWBOOTO0=1
- nBOOTO0=1
— RDP=AA

Perform the SFIx installation using STM32CubeProgrammer

In this section, the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFix image “out.sfix” already created in
the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(Hardware secure modules based on smartcard) to generate a license for the connected
STM32 device during SFIx install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package path>/bin, then launch the following
STM32CubeProgrammer command:

STM32 Programmer CLI.exe -c¢ port=swd mode=HOTPLUG -sfi protocol=static

"<local path>/out.sfix" hsm=1 slot=<slot id> -rsse <RSSe Path> -el
<ExternalLoader Path>

The RSSe binary file is located in the STM32CubeProgrammer install path in the bin/RSSe
folder.

Figure 93: SFIx installation success using SWD connection (1) through Figure 95:
SFIx installation success using SWD connection (3) show the SFIx install via SWD
execution and the HSM as license generation tool in the field.

AN5054 Rev 16 ‘Yl

AN5054 Example of SFIx programming scenario for STM32L5/STM32U5

Figure 93. SFix installation success using SWD connection (1)

gram Files\STMicroelectronics\STM32Cube\STM32CubeProgrammery2.14.0-RO\bin>STH32_Programmer_Cl eq=8 p. Ci\Users\dkhilals\Desktop\STM32L5_SFI_Exemple\out.sfix" h
Users\dkhilals\Desktop\STH32L5_SFI_Exemple\STH32L552E_Li " -el "C:\Program Files\STl i Programmerv2.14.8-801\bin\Externalloader\MX25LH512456_STH32L552E - EVAL

e
stldr” -rsse "C:\Program Files\STMicroelectronics\STH32Cube\STM32CubeProgrammery2

BL Version : @
Protocol Information
SFI File Information

SFI file path \Users\dkhilals\Desktop\STH32L5_SFI_Exemple\out.sfix
SFI license file path \Users\dkhilals\Desktop\STM32L5_SFI_Exemple\STM32L552€_License.bin
SFI header
SFI protocel version
SFI total number of areas
SFI image version
SFI Areas information

3
Area siz 4912
Area dest. address ©x8040000

address

Parsing Area 3/6
rea type
Area size
Area destination address

address

Area destis address

Parsing Area 6/6
Area type
Area size

DT53099Vv2

option Bytes configuration: o
e: SECWMI_PEND, value: @x7F
SECWM1_PSTRT, value: @x®, was not modified
tes are unchanged, Data uon't be downloaded
[Time elapsed during option Bytes configurat B
arn Option Byte: SECHMZ_PEND,
i te: SECWM2_PSTRT, : 0x0, was not modified
't be downloaded
0:00. 027

t modified.

igned RSSe_sfi.bin
_sfi.bin

S6 KB
©x20605160

g memory corresponding to segment ©:
Dounload in Progress:

File download complete
dovnload operation: 89:00:00.273
EN, value:
nBoot®, value
nskBoote s not modified.
be downloaded
o 8:00.624

guration: ©:00:04.386

TZEN, valu exl, w ot medified.
nBoot®, value: @x8, was not modifie
Boot! alu > was not modified.
tes are unchanged, Data won't be downloaded
Time elapsed during option Bytes configuration: ee: 621

version

e version

DT53400V2

3

AN5054 Rev 16 141/169

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

Figure 95. SFix installation success using SWD connection (3)

E Area Full Size =

E Area Data Size =

: ©x90000880 endAddre 2x90000110

M32L5_SFI_Exemple\ou Install Operatior

all operation: €0:00:11

DT53401V2

142/169

3

AN5054 Rev 16

AN5054

Example of SFIx programming scenario for STM32H5

15

15.1

15.2

Note:

15.3

15.3.1

3

Example of SFIx programming scenario for STM32H5

Scenario overview

There are three steps during this scenario:

1. Generate an SFIx image using the STPC

2. HSM card provisioning via STPC

3. Use STM32CubePrg to perform the SFIx process.

Hardware and software environment

For successful SFIx programming, some hardware and software prerequisites apply:

e An STM32H5-based board with an external flash memory and system flash security
package (SFSP) v2.4.0 or greater

e SFl programming via SWD
e APC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

e An STM32 Trusted Package Creator v2.14.0 (or greater) package is available from
www.st.com

e An STM32CubeProgrammer v2.14.0 (or greater) package is available from
www.st.com

e An HSMv2 smartcard

Refer to [4] or [5] for the supported operating systems and architectures.

Step-by-step execution

Build an OEM application

OEM application developers can use any IDE to build their own firmware.

AN5054 Rev 16 143/169

Example of SFIx programming scenario for STM32H5 AN5054

15.3.2 Perform the SFix generation (GUI mode)

The first step to install the secure firmware on STM32H5 devices is the encryption
of the user OEM firmware using the STM32 Trusted Package Creator tool. This
step is done by including the following files:

e An OEM firmware at 0x08100000

e A .csv file containing option bytes configuration

e A 128-bit AES encryption key

e A 96-bit nonce

e Abinary file for an external firmware file

o OBKey files for device configuration

e An SSFl file to integrate the STMicroelectronics SFl image

e An OTFDEC key binary at 0x081FFFFO (to be used as the key in OTFD ENC/DEC)

e External firmware files. Add an external binary at 0x90000000 with the following
parameters:

— Region number = 0
— Region mode = 0x2
— Key address = 0x081FFFFO (same as the OTFDEC key binary)

e An MCSYV file to insert the modules list:
./module.bin, ./LicenseV0.bin, 0x8172000

Figure 96. SFIx image generation for STM32H5

i STM32 Tusted Package Crestor

Image Gen

Random Key area file (Optional)

Encryption key file

IG5 5D EPE image Jrpao Fey o (oo

08100000

OUBIFFFFO

Nonce file

[c:Hs_SF1_meUT/SFIX/SFIX mage_Inputs/nonce.bin [oven |

Option bytes file

[C:/H5_SFL_INPUT/SFIX/SFIX_Image_Tnputs/ob.csv

OBKey files (Optional)

E8 HOPL2_for3NS Configrobk
8 DA_Configobk

SSF file (Optional)

[C:/H5 _SFL_INPUT/SFIX/SFIX_Image_Inputs/STinstalableServices.ssfi

HModules file (Optional)

[c:/M5_SFL_INPUT/module INPUT fmodies.mesv

WWWWWWWW — T) Avalsble RAM size (oyte) [ox000 Continuationtokenaddress | || | ===
==
DT72097V1
144/169 AN5054 Rev 16 ‘YI

AN5054

Example of SFIx programming scenario for STM32H5

15.3.3

Note:
Note:

15.3.4

3

Programming input conditions

Before performing an SFix install on STM32H5 devices, make sure that:

e There is an accessible external memory loader file such as
MX25LM51245G_STM32H5731-DK-RevB-SFIx.stldr

e The chip supports security and boots on system memory

e The product state is open: OxED

e An RSSe binary is available

e The HSMv2 is provisioned for the STM32H5 product

The RSSe binary file is in the STM32CubeProgrammer bin/RSSe/H5 folder.

To embed an SSFI image into the SFI image, it is recommended to follow a specific secure
sequence and choose an adequate start address of the nonsecure application that depends
on the SSFI configuration. See the details in STM32CubeH5 MCU Package available from
www.st.com.

Perform the SFix installation using STM32CubeProgrammer CLI

In this section, the STM32CubeProgrammer tool is used in CLI mode to program the SFlx
image “out.sfix” already created in the previous section.

STM32CubeProgrammer communicates with the device through the SWD interface after it
is confirmed that all the input conditions are respected.

Open a cmd terminal, go to /bin in the install path, and then launch the following
command:

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package path>/bin, then launch the following
STM32CubeProgrammer command:

STM32 Programmer CLI.exe -c¢ port=swd mode=hotplug ap=1

-sfi "out.sfix" hsm=1 slot=1 -rsse
"\RSSe\H5\enc_signed RSSe SFI STM32H5 v2.0.0.0.bin"

-el "\ExternalLoader\MX25LM51245G STM32H573I-DK-RevB-
SFIx.stldr"

-mcsv ".\modules.mcsv"

AN5054 Rev 16 145/169

Example of SFIx programming scenario for STM32H5

AN5054

146/169

Figure 97. SFIx installation success for STM32H5

file p
al modul

DT72098V1

AN5054 Rev 16

3

AN5054

Example of a combined SFI-SMI programming scenario

16

16.1

16.2

16.3

3

Example of a combined SFI-SMI programming
scenario

Scenario overview

The user application to be installed on the STM32H753XI| device makes “printf”
packets appear in the serial terminal.

In this case, the OEM application is built based on a third-party’s library as
explained in IAR example (Section 2.3: Execute-only/position independent library
scenario example under EWARM).

The application is encrypted using the STPC, the SMI module corresponding to
third-party’s library code is uploaded as input during combined SFI generation and
represented as an area of type ‘M’ within firmware application areas.

The SFI OEM application firmware can then be uploaded (on an OEM server for
example) with all the inputs needed for license generation by the CM.

The OEM provides tools to the CM to get the appropriate licenses for the SFI
application concerned and one or more integrated SMI modules.

Hardware and software environment

The same environment as explained in Section 5.2: Hardware and software
environment.

Step-by-step execution

1. Build the OEM application.

OEM application developers may use any IDE to build their firmware as well as using
SMI modules provided by STMicroelectronics or third parties for example.

In this example, we use firmware based on a single library (just one SMI module is
integrated in the SFI image).

2. Perform the SFI generation.

For encryption with the STM32 Trusted Package Creator tool, OEM firmware and the
clear data part are both provided in Hex format (corresponding to the SMI module to be
integrated within the SFI image). A CSV file to set the option bytes configuration is also
necessary. The SMI module used is also provided as an input to the tool, in addition to
a 128-bit AES encryption key and a 96-bit nonce. All inputs needed are available in the
“SFI_ImagePreparation/Combined” directory. A “.sfi” image is then generated
(out_comb.sfi).

AN5054 Rev 16 147/169

Example of a combined SFI-SMI programming scenario AN5054

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammenr\vx.x.x\bim\SFI_OB_CSV_FILES

The option bytes are described in the product reference manual.

In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

Figure 98 shows the STPC GUI during combined SFI generation.

Figure 98. GUI of STPC during combined SFI-SMI generation

{1, STM32 Trusted Package Creator = @ &

File Edit Options Help ‘,’ s
life.augmen

Firmware files Firmware information SFIinformation

‘._. FIR_data.hex

Overview
Remove

File name out_comb.sfi =
Encryption key file

Size 13.9336 KB

Iad@ge_Creahor_vl.O.Z(1}![npuh’SFIIgoodfhest_ﬁrmware_ke .bin Dpe
| £ Success ﬂ 01 ﬂ

Nonce file

I’Z_Trushed_Pad@ge_Creahor_v 1.0.2 (1)/Input/SFI good fnoni SH successfully created

Type Size Address

GricubvESEe [ok | - 12280 B (x8000000
ckage_Creator_v1.0.2 (1] FI_SMI bined/FIR, S —
Podage. Creator.v1.0.2 (/Input/SFSMI_combined FIR T ——T i e 1168 0xB084000

SMI files (Only for combined case) 3 Module 1688 B 08080000
LJ FIR_perop.smi [Add | 4 Configuration 6B 0:0
Remove
Image version
IZU 33
RAM size I Continuation token address I
Output SFI file
ISTM32_Trusted_Pad<age_Creator_v1.0.2(1},|fouu:|ut,|’out_comb.sﬁ

3. Programming input conditions are the same as for the SFI programming scenario
(Section 5.3.5: Performing HSM programming for license generation using STPC (CLI
mode)).

4. Perform the SFl install using the SWD/JTAG or a bootloader interface (here the SWD
interface is used).

148/169 AN5054 Rev 16 ‘YI

AN5054

Example of a combined SFI-SMI programming scenario

16.3.1

3

Using JTAG/SWD

Once all input conditions are respected, go to the
“stm32_programmer_package vO0.4.1/bin” directory and launch the following
command:

STM32 Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local paths>/out comb.sfi" "<local paths/
<licenseSFI.bin>"

Once all input conditions are respected, go to the
“<STM32CubeProgrammer_package path>/bin” directory and launch the following
command:

STM32 Programmer CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local paths>/out comb.sfi"
"<local path>/<licenseSFI.bin>"

Figure 99: Combined SFI-SMI programming success using debug connection
shows the combined SFI-SMI install trace success.

AN5054 Rev 16 149/169

Example of a combined SFI-SMI programming scenario AN5054

150/169

Figure 99. Combined SFI-SMI programming success using debug connection

ST-LIMK Firmware version : U2J26M15
SWD fregquency = 4888 KHz

Connection mode: Hot Pluyg

Device ID: Ax45@

Protocol
SFI File

static
Ref 8F1_MDK-8FI_Combined~out_comb.sfi

Starting SFI install operation for file : RefSFI_MDK-SFI_Combined~-out_comb.sfi
"SFI File Information

SFI file path RefSFI_MDK-SFI_Combined/out_comh_sfi
8FI license file path Ref SFI_MDK-SFI _Combhined-licenseSFIcombh_h?53hEH.

S8FI header information
SFI protocol version 1
8FI total number of areas 4
SFI image wversion 2
SFI Areas information H

3

Parzing Area 1.4 H
Area tupe F
Area size 12280
Area destination address Bx8AARBAA

Parszing Area 2.-4 H
Area type F
Area size 116
Area destination address Bx80348000

Parsing Area 3-4 H
Area tupe M
Area size 1688
Area destination address Bx8A3ABHA

Parzing Area 4.4 H
Area type [
Area size 36
Area destination address

write mode to SFI
to set write mode for SFI
license to address BxZ24807800
Img header to addressz Bx2400808000
areas and areas wrapper...

R85 process started. ..

RSS command execution 0K
Reconnecting. ..

ST-LIMK Firmware version : U2J26M15
SWD freguency = 4888 KHz

Connection mode: Hot Plug

Device ID: BAx458

Reconnected *

Requesting security state...

SECURITY State Success

SFI SUCCESSt

SFI file RefSFI_MDK-SFI_Combhined-out_combh.sfi Install Operation Success

Time elapzed during the SFI install operation is: 00:80:-04.85%6
Press <RETURN> to close this window...

ANS5054 Rev 16

3

AN5054 Example of a combined SFI-SMI programming scenario

16.3.2 How to test the combined SFl install success

The option bytes configuration must be modified as shown in Figure 100: Option
bytes after combined SFI-SMI installation success.

e Third-party library module is programed into a PCROP area
e The SFl image is protected using RDP level1.
If a UART connection is available on the board used, open the “Hercule.exe” serial

terminal available under the “Tests” directory, open the connection and on reset the
dedicated “printf” packets appears.

3

AN5054 Rev 16 151/169

Example of a combined SFI-SMI programming scenario

ANS5054

Figure 100. Option bytes after combined SFI-SMI installation success

OFTION BYTES BANK: @

Read Out Protection:
RDP : BxA (Level 1, read protection of memories)

RSE:
R851 BxB (No SFI process on goingl

BOR Level:
BOR_LEU : Bx2 (reset level is set to 2.7 U

User Configuartion:
IWDG1 : Bx1l <(Independent watchdog is controlled by harduware?
1UDG2 Bx1 (Window watchdog is controlled by hardware?
MRST_STOP_D1 Bx1 (STOP mode on Domain 1 is entering without reset?
NRST_STBY_D1 Bx1 (STANDBY mode on Domain 1 is entering without reset)
FZ_IWDG_STOP Bx1 (Independent watchdog iz running in STOP mode?
FZ_IWDG_SDBY Bx1 (Independent watchdog is running in STANDEBEY mode>
SECURITY Bx1 (Security feature enabled>

BCM? Bx1 (CM-7 boot enahbhled>

MRST_STOP_D2 Bx1 (STOP mode on Domain 2 is entering without reset?
NRST_STBY_D2 Bx1 (STANDBY mode on Domain 2 is entering without reset)
SUAP_BANK Bx@ C(after boot loading,. no swap for user sectors)

DHEPA Bx1 (delete PcROP protection and earse protected area?

DMESA Bx1 (delete Secure protection and erase protected aread

Boot address Option Buyutes:
BOOT_CHM7_ADDA: Bx80@ (BAxEAROBAA>
BOOT_CM?7_ADD1: Bx1FF1 {B@x1FFi8808>

PCROP Protection:
PCROPA_str 1 BxBBA (BxBB10008>
PCROPA_end : BxBB6 <(BxBBB0688>

Secure Protection:
SECA_str : BxFFF <(Bx8B1FFE@>
SECA_end : BxB (OxBABBOFF>

DTCH RAM Protection:
ST_RAM_SIZE : Bx3 <16 KB>

Write Protection:
nWRPB (lrite protection active sector)
nWRP1 (Urite protection active sector)
nWRP2 (Urite protection active sector)
nWRP3 (Urite protection active sector)
nW/RP4 (Urite protection active zsector)
nWRPS CUrite protection active sector)
nWRP6 (Urite protection active sector)

nWRP? (lrite protection active sector)

ANS5054 Rev 16

3

AN5054 Example of SSP programming scenario for STM32MP1

17 Example of SSP programming scenario for
STM32MP1
17.1 Scenario overview

On each SSP install step, STM32 ecosystem tools are used to manage the secure
programming and SSP flow.

Three main steps are done using SSP tools:

e Encrypted secret file generation with STM32 Trusted Package Creator

e HSM provisioning with STM32 Trusted Package Creator

e SSP procedure with STM32CubeProgrammer.

17.2 Hardware and software environment

The following prerequisites are needed for successful SSP programming:
¢ an STM32MP157F-DK2 board

e a Micro-B USB for DFU connection

e aPC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

e STM32 Trusted Package Creator v1.2.0 (or greater) package available from
www.st.com

e STM32CubeProgrammer v2.5.0 (or greater) package available from www.st.com
e an HSMv2 card

Note: Refer to [4] or [5] for the supported operating systems and architectures.

17.3 Step-by-step execution

17.3.1 Building a secret file

A secret file must be created before SSP processing. This secret file must fit into
the OTP area reserved for the customer. OTP memory is organized as 32-bit
words.

On an STM32MP1 microprocessor:

e One OTP word is reserved for RMA password (unlock/relock): OTP 56.

e 37 free words are reserved for customer use. The secret size can be up to 148 bytes:
OTP 59 to 95.

There is no tool or template to create this file. A 148-byte binary file must be used
as the reference to construct the secret file.

3

AN5054 Rev 16 153/169

Example of SSP programming scenario for STM32MP1 AN5054

17.3.2 Performing the SSP generation (GUI mode)

For encryption with the STM32 Trusted Package Creator tool, the secret file is
provided in BIN format in addition to the RMA password values.

An OEM public key, a 128-bit AES encryption key and a 96-bit nonce are also
provided to the tool.

An “ssp”image is then generated (out.ssp).

Figure 101. STM32 Trusted Package Creator SSP GUI tab

{2}y STM32 Trusted Package Creator — O X
9

File Edit Options Help Doc "l lite.augmented

SF1 SFIx Option Byles 55P WB SIGN SMI HSM
Device : IFI'MSZMP]S = RIMA Unlock IUxSJz RIMA Relock IUxECA Secrets file information 55P information
secrets file Ouerview
File name 148bytes_secrets.bin
I 148bvtes_secrets.bin m R
Type Binary
OEM public key file Size 1438
e o]
Encryption key file
Honce file
Output SSP file
IC:,.Users,.’userl"Deskbop,l'out‘ssp
154/169 AN5054 Rev 16 Kys

AN5054 Example of SSP programming scenario for STM32MP1

17.3.3 Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house, to be
used for license generation during the SSP install process. In this example, HSMs
are used as license generation tools in the field.

See Section 4.1.2: License mechanism for HSM use and programming details.

This example uses HSM version 2. The HSM version can be identified before
performing the programming operation by clicking the Refresh button to make the
version number appear in the version field.

Note: HSM version 2 must be used for STM32 MPU devices.

Figure 102. Example of HSMv2 programming using STPC GUI

{:h STM32 Trusted Package Creator - O X

File Edit Options Help

HSM card index HSM information
= B
Max counter 13
Firmware identifier HSM status OPERATIONAL_STATE
|ssP_mru| Version 2
Type SSP =
Encryption kev file
[C:/ssp/key.bin [open |
Nonce file
|:/ssp/nonce.bin m
Personalization data file
Jeckages/50003004_SSF._01000000_00000000.encbin (RS ol
Maximum counter
0 3?
Program

The STM32 Trusted Package Creator tool provides all personalization package
files, ready to be used on SSP flow. To obtain all the supported packages, go to the
“PersoPackages” directory residing in the tool’s install path. Each file name starts

‘YI AN5054 Rev 16 155/169

Example of SSP programming scenario for STM32MP1 AN5054

17.3.4

17.3.5

156/169

with a number, which is the product ID of the device. The correct one must be
selected.

SSP programming conditions

Before performing an SSP flow make sure that:
e only DFU or UART interfaces are used
e the chip supports security

e the SSP image is encrypted by the same key/nonce as used in the HSM provisioning
step.

e There is an adequate Trusted Firmware-A file, which is previously signed and ready for
SSP use via USB or UART interface.

Perform the SSP installation using STM32CubeProgrammer

In this step, the STM32CubeProgrammer tool is used in CLI mode (the only mode
available so far for secure programming) to program the SSP image already
created with STM32 Trusted Package Creator. STM32CubeProgrammer supports
communication with STMicroelectronics HSMs (hardware secure modules based
on a smartcard) to generate a license for the connected STM32 MPU device during
SSP install.

Example using USB DFU bootloader interface:

STM32 Programmer CLI.exe -c port=usbl -ssp “out.ssp” “tf-a-
ssp-stm32mpl57f-dk2-trusted.stm32” hsm=1 slot=1

All SSP traces are shown on the output console (Figure 103).

3

AN5054 Rev 16

AN5054

Example of SSP programming scenario for STM32MP1

3

Figure 103. STM32MP1 SSP installation success

Requesting Chip Certificate...

requesting license for the current 5TM32 device
Init Communication

ldm_LoadModule(): loading module "stlibpll SAM.d11" ...
ldm_LoadModul 3 0K loading library "stlibpll_SAM.d11"
C_GetFunctionList() returned Bx0e 308, g pFunctionList=@

Opening session with solt ID 1...

Closing session with reader slot ID 1...

Closing communication with HSM...

Starting Firmware Install operation...

Writing blob

Detach command executed

AN5054 Rev 16 157/169

Example of SSP-SFI programming scenario for STM32MP2 AN5054

18

18.1

18.2

Note:

18.3

18.3.1

158/169

Example of SSP-SFI programming scenario for
STM32MP2

Scenario overview

On each SSP-SFl installation step, the STM32 ecosystem tools are used to
manage the secure programming and the SSP flow.

Five main steps are done using SSP tools:

e Secrets generation with STM32 Trusted Package Creator

e Backup memory generation with STM32 Trusted Package Creator (optional)

e SSP-SFI file generation with STM32 Trusted Package Creator

e HSM provisioning with STM32 Trusted Package Creator

e SSP-SFI procedure with STM32CubeProgrammer.

Hardware and software environment

The following prerequisites are needed for a successful SSP-SFI programming:
e An STM32MP2 board

e AUSB-C cable for DFU connection

e APC running on either Windows®, Linux

e The STM32 Trusted Package Creator v2.17.0 (or greater) package available from
www.Sst.com

® or macOS®

e STM32CubeProgrammer v2.17.0 (or greater) package available from www.st.com
e An HSMv2 card

Refer to [4] or [5] for the supported operating systems and architectures.

Step-by-step execution

Building a secret file

A secret file must be created before the SSP processing. This secret file must fit
into the OTP area reserved for the customer. OTP memory is organized as 32-bit
words.

The STM32Trusted Package Creator offers a graphical interface to edit and
customize the secrets binary.

From the SSP panel, select the "Secrets Gen" tab and start the editing.

3

AN5054 Rev 16

ANS5054

Example of SSP-SFI programming scenario for STM32MP2

Figure 104. Secrets Gen Window

............................

> (EInBOCTOM cONIe.2

(OT916)B00TROM.CONFI7 Fuse

18.3.2

3

Building a backup memory file

It is optional to integrate a backup file into an SSP-SFI image by specifying the
backup input file.

The STM32Trusted Package Creator offers a graphical interface to edit and
customize the secrets of the backup memory file.

From the SSP panel, select the "Backup Gen" tab and start the editing.

If all necessary elements are present,pressing the "Generate Backup" button
initiates the preparation of the image. The resulting image is saved into a binary file,
which is specified in the "Output Backup binary file" field.

AN5054 Rev 16 159/169

Example of SSP-SFI programming scenario for STM32MP2

AN5054

Figure 105. SSP Backup memory window

ssp. HSM

Backup Gen

E Device |STM32MP25 v Input Json config | C:/STM32/55P/Backup/backup-outjson

E Backup Files List

|EEEED © oot Backapbinay e

Overview
File nams backup-outbin
s 568

Backup 1 path: [C/ST3/S59/Backup/dtal bin
@ pipath: | p

Offset [0<00000000 Lock [Ves =

No Encryption -

Bacup 2 pth: [C/STVER/S5/Backup/atazbin

Offset [0<00800000 Lock [No =

No Encryption -

3 Success x|

o SSP Backup file successfully created

Segments

| = Index Offzet Protecton Data Size
1 00 0180000000 168
2 ox800000 00 168

Parse backup binary

Performing the SSP-SFI generation (GUI mode)

The STM32Trusted Package Creator tool GUI presents an SSP-SFI tab located in
the SSP panel to generate an SSP image in SFI format. The user must fill in the
input fields with valid values.

Figure 106. SSP-SFIl image generation window

j Device |STM32MP25 v

SFI]
@ Secrets file

[CrsEzSPotpareabin

Encryption key file

[crsmszSPiey i

[C/sTESP/bkp g areniin

OEM extra payloads (Optional)

o SSP S successfully created |

P—

Output SSP SFi file

C/STM32/S5P/out-sfssp

'SSP SFl information

Overview
File nams outisfissp
s 1838

Parse ssp-sfifile

C/STM32/S5P/out-sfssp

160/169

AN5054 Rev 16

5 [

AN5054

Example of SSP-SFI programming scenario for STM32MP2

18.3.4

18.3.5

18.3.6

3

Performing HSM programming (GUI mode)

Refer to Section 17.3.3: Performing HSM programming for license generation using
STPC (GUI mode).

SSP-SFI programming conditions

Before performing an SSP flow make sure that:
e Only DFU or UART interfaces are used.
e The chip supports security to deploy the SSP flow.

e The SSP image is encrypted by the same key/nonce that is used in the HSM
provisioning step.
e Atrusted RSSe SSP binary provided by STMicroelectronics is used.

Perform the SSP installation using STM32CubeProgrammer

In this step, the STM32CubeProgrammer tool is used in CLI mode (in a similar way
the GUI mode with the Security window can be used) to program the SSP-SFI
image already created with STM32 Trusted Package Creator.

The STM32CubeProgrammer supports the communication with STMicroelectronics
HSMs (hardware secure modules based on a smartcard) to generate a license for
the connected STM32MP2 device during the SSP installation.

Example using USB DFU bootloader interface:

STM32_ Programmer CLI.exe -c port=usbl -ssp "image.ssp"
"EncBootExt STM32 RSSE SSP.bin" hsm=1 slot=1

The file EncBootExt_STM32_RSSE_SSP.bin is located in the
STM32CubeProgrammer install path under the /bin/RSSe/MP25 folder.

All the SSP traces are shown on the output console.

AN5054 Rev 16 161/169

Example of SSP-SFI programming scenario for STM32MP2

AN5054

Figure 107. SSSP-SFI installation

rea size 65536
Area destination address : 8xCeoesoee

g Area

type

a size
Area destination address

Current phase ID : @x@1

Reading the chip certificate...

Requestir ip Certificate...

Product ID 5850208E

Set certificate is done successfully
requesting license for the current STM32 de

[nit Communication
Ldm_LoadModule() i s/ i 2C TM32CubeProgrammer2.17.0 /

Ldm_LoadModule (WIN i ibrary STHi ics/STM32Cube/STM32CubeProgrammer? . 1
C GetFunctionlist() returned @x@0@eeeee, g pFunctionlList-ex28

Dpening session with slot ID

g session with reader slot ID

Closing communication with HSM

writing blob

Memory Programming . ..
file: EncBootExt_STM32_RSSE_SSP_CubeProg_validation_Tool v@.1.8.bin
File 0OtExt_STM32_RSSE_ Prog Validation Tool v@.1.@.bin

Size 6 KB

partition ID

Download in Progre

rime elapsed during download operation: @0:00:86.861

Send deta
Detach com

Time elapsed

162/169 AN5054 Rev 16

3

AN5054 Reference documents

19 Reference documents

Table 3. Document references

Reference Document title

Application note STM32 MCUs secure firmware install (SFI) overview (AN4992),
STMicroelectronics.

(]

2] User manual Hardware secure module (HSM) for STM32CubeProgrammer secure
firmware install (SFI) (UM2428), STMicroelectronics.

3] Application note Overview of the secure secret provisioning (SSP) on STM32MP1
series (AN5510), STMicroelectronics.

4] Release note STM32CubeProgrammer release vx.y.z (RN0109),
STMicroelectronics.

[5] User manual STM32 Trusted Package Creator tool software description (UM2238),

STMicroelectronics.

3

AN5054 Rev 16 163/169

Revision history

ANS5054

20

164/169

Revision history

Table 4. Document revision history

Date

Revision

Changes

03-Aug-2018

1

Initial release.

18-Apr-2019

2

Updated publication scope from ‘ST restricted’ to
‘Public’.

16-Oct-2019

Updated:

Section 4.1.2: License mechanism

Section 5.3.4: Performing HSM programming for license

generation using STPC (GUI mode)

Figure 44: HSM programming GUI in the STPC tool (title

caption)

— Figure 54: Example of HSM programming using STPC
GUL.

03-Feb-2020

Replaced occurrences of STM32L451CE with
STM32L462CE in Section 4.2.1: Secure firmware
installation using a bootloader interface flow.

Updated document to cover secure programming with
SFIx.

26-Feb-2020

Updated:

Section 4.3.1: SFI/SFIx programming using JTAG/SWD
flow

Section 5.3.4: Performing HSM programming for license
generation using STPC (GUI mode)

Section 5.3.5: Performing HSM programming for license
generation using STPC (CLI mode)

Figure 72: SFIx installation success using SWD
connection (1)

Figure 75: SFIx installation success using SWD
connection (4).

27-Jul-2020

Updated:

Introduction

Section 3.1: System requirements
Added:

Section 3.5: SSP generation process

Section 3.6.3: Steps for SSP generation (CLI)

Section 3.7.4: SSP generation using STPC in GUI mode

Section 4.2.5: STM32CubeProgrammer for SSP via a

bootloader interface

— Section 12: Example of SSP programming scenario
for STM32MP1.

AN5054 Rev 16

3

AN5054

Revision history

3

Table 4. Document revision history (continued)

Date Revision Changes

Updated:
Introduction on cover page
License mechanism general scheme
HSM programming by OEM for license distribution
Section 5.3.5: Performing HSM programming for license

19-Nov-2020 7 generation using STPC (CLI mode).
Added:
Section 4.4: Secure programming using bootloader
interface (UART/I2C/SPI/USB)
— Section 6: Example of SFI programming scenario for

STM32WL.

Updated:
In the whole document, replaced STM32H7A/B by
STM32H7A3/7B3 and STM32H7B0, STM32H72/3 by
STM32H723/333 and STM32H725/335, STM32H7B
board by STM32H7B3I-EVAL
Replaced BL by bootloader.
Section 3.2: SFI generation process: removed refer-
ences to RSS.
Section 4.1.2: License mechanism: removed Figure
HSM programming toolchain.
Section 4.2: Secure programming using a bootloader
interface,
Section 4.2.2: Secure module installation using a boot-
loader interface flow,
Section 4.2.3: STM32CubeProgrammer for SF| using a
bootloader interface

29-Jun-2021 8 Section 4.3.1: SFI/SFIx programming using JTAG/SWD
flow and Section 4.3.2: SMI programming through
JTAG/SWD flow.
Section 4.4: Secure programming using bootloader
interface (UART/I2C/SPI/USB)
Example of SFI programming scenario/
Section 5.2: Hardware and software environment and
Example of SFI programming scenario for STM32WL/
Section 6.2: Hardware and software environment:
removed bootloader and RSS versions
Section 5.3.5: Performing HSM programming for license
generation using STPC (CLI mode): removed STM32L4
from the list of devices that support SFI via debug inter-
face.
Added:
Support for STM32U5 Series.
— Section 7: Example of SFI programming scenario for

STM32U5.
AN5054 Rev 16 165/169

Revision history

ANS5054

166/169

Table 4. Document revision history (continued)

Date

Revision

Changes

02-Aug-2021

Added note about CSV file in Section 3.6.1: Steps for
SFI generation (CLI) and Figure 27: Option bytes file
example.

Corrected binary file names in Section 4.4: Secure pro-
gramming using bootloader interface
(UART/I2C/SPI/USB).

Section 3.6.1: Steps for SFI generation (CLI)

Added note about option byte file example in:

Section 3.7.1: SFI generation using STPC in GUI mode
Section 5.3.3: Perform the SFI generation (GUI mode)
Section 6.3.2: Perform the SFI generation (GUI mode)
Section 7.3.2: Perform the SFI generation (GUI mode)
Section 9.3.2: Perform the SFIx generation (GUI mode)
Section 10.3.2: Perform the SFIx generation (GUI mode)
Section 11.3: Step-by-step execution.

Updated Corrected board name in Section 4.2: Secure
programming using a bootloader interface.

Corrected board name in Section 7.2: Hardware and
software environment.

04-Mar-2022

10

Updated Section 3.3: SFIx generation process.

Added:

Section 5.3.2: Performing the option bytes file genera-

tion (GUI mode)

— Section 5.3.8: SFI with Integrity check (for
STM32H73).

29-Jun-2022

1

Updated:
— Section 3.3: SFIx generation process

— Section 4.2.3: STM32CubeProgrammer for SFl using
a bootloader interface

— Section 10.1: Scenario overview

— Section 10.2: Hardware and software environment

— Section 10.3.2: Perform the SFIx generation (GUI
mode) STM32CubeProgrammer version, use cases 1
and 2 scope STM32L5, and added subsections for
use cases 3 and 4 for STM32US5, listed below.

— Figure 67: STPC GUI during SMI generation

— Figure 88: STM32 Trusted Package Creator SSP GUI
tab

— Section 12.3.4: SSP programming conditions

Added:

— Use case 3: generation of SFIx without key area for
STM32U5

— Figure : Use case 4: generation of SFIx with key area
for STM32U5

25-Nov-2022

12

Updated Section 3.2: SF| generation process.
Removed “multi install” from document.

AN5054 Rev 16

3

AN5054

Revision history

3

Table 4. Document revision history (continued)

Date

Revision

Changes

24-Feb-2023

13

Updated:
— Section 3.6: STM32 Trusted Package Creator tool in
the command line interface

— Section 3.6.1: Steps for SFI generation (CLI)

04-Aug-2023

14

Global document update, and compatibility with the
STM32H5 series and extended STM32U5 series.
Updated:

— Figure 28: SFI generation example using an ELF file
and the related command line example

— Figure 60: STPC GUI showing the STPC GUI during
the SFI generation

— Figure 63: SFl installation via SWD execution
command-line output

— Figure 86: Successful SFIx generation use case 1

— Figure 87: Successful SFIx generation use case 2

— Figure 92: SFIx installation success using SWD
connection (1)

— Figure 93: SFIx installation success using SWD
connection (2)

— Figure 94: SFIx installation success using SWD
connection (3)

Removed:

— Figure 83. SFIx installation success using SWD
connection (4)

— Figure 84. SFIx installation success using SWD
connection (5)

Added:

— Chapter 9: Example of SFI programming scenario for
STM32H5

— Chapter 14: Example of SFIx programming scenario
for STM32H5

— Figure 89: Successful SFIx generation use case 3 for
STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and
STM32U5Gxxx

— Figure 91: Successful SFIx generation use case 4 for
STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and
STM32U5Gxxx

Minor text edits across the document.

AN5054 Rev 16 167/169

Revision history

ANS5054

168/169

Table 4. Document revision history (continued)

Date

Revision

Changes

22-Mar-2024

15

Added:

— Example of SFI programming scenario for
STM32WBAS

— Example of SFI programming scenario for
STM32H7RS

Updated:

— Updated the document title

— License mechanism

— Perform the SFI generation (GUI mode)

— Performing the SFl install using
STM32CubeProgrammer

24-Jun-2024

16

Added:

— Section 9: Example of SFIA programming scenatrio for

STM32WBAS

— Section 18: Example of SSP-SFI programming

scenario for STM32MP2

AN5054 Rev 16

3

AN5054

IMPORTANT NOTICE — READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product
or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics — All rights reserved

3

AN5054 Rev 16 169/169

	1 General information
	1.1 Licensing information
	1.2 Acronyms and abbreviations
	Table 1. List of abbreviations

	2 How to generate an execute-only and position independent library for SMI preparation
	2.1 Requirements
	2.2 Toolchains allowing SMI generation
	2.3 Execute-only/position independent library scenario example under EWARM
	2.3.1 Relocatable library preparation steps
	Figure 1. IAR example project overview
	Figure 2. Update compiler extra options
	Figure 3. Linker extra options
	Figure 4. Setting post-build option
	Figure 5. Postbuild batch file

	2.3.2 Relocatable SMI module preparation steps
	2.3.3 Application execution scenario
	Figure 6. How to exclude the “lib.o” file from build
	Figure 7. app.icf file

	3 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool
	3.1 System requirements
	3.2 SFI generation process
	Figure 8. SFI preparation mechanism
	Figure 9. SFI image process generation
	Figure 10. RAM size and CT address inputs used for SFI
	Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area
	Figure 12. Error message when firmware files with address overlaps are used
	Figure 13. Error message when SMI address overlaps with a firmware area address
	Figure 14. Error message when a SFI area address is not located in flash memory
	Figure 15. SFI format layout
	Figure 16. SFI image layout in case of split

	3.3 SFIx generation process
	Area E
	Area K
	Figure 17. RAM size and CT address inputs used for SFIx
	Figure 18. SFIx format layout
	Figure 19. SFIx image layout in case of split

	3.4 SMI generation process
	Figure 20. SMI preparation mechanism
	Figure 21. SMI image generation process
	Figure 22. SMI format layout

	3.5 SSP generation process
	Figure 23. SSP preparation mechanism
	Table 2. SSP preparation inputs
	Figure 24. Encryption file scheme

	3.6 STM32 Trusted Package Creator tool in the command-line interface
	Figure 25. STM32 Trusted Package Creator tool - SFI preparation options
	Figure 26. STM32 Trusted Package Creator tool - SMI preparation options
	3.6.1 Steps for SFI generation (CLI)
	Figure 27. Option bytes file example
	Figure 28. SFI generation example using an ELF file

	3.6.2 Steps for SMI generation (CLI)
	Figure 29. SMI generation example

	3.6.3 Steps for SSP generation (CLI)
	Figure 30. SSP generation success

	3.7 Using the STM32 Trusted Package Creator tool graphical user interface
	3.7.1 SFI generation using STPC in GUI mode
	Figure 31. SFI generation Tab
	SFI GUI tab fields
	Figure 32. Firmware parsing example
	Figure 33. SFI successful generation in GUI mode example

	3.7.2 SFIx generation using STPC in GUI mode
	Figure 34. SFIx generation Tab
	SFIx GUI tab fields
	Figure 35. Firmware parsing example
	Figure 36. SFIx successful generation in GUI mode example

	3.7.3 SMI generation using STPC in GUI mode
	Figure 37. SMI generation Tab
	SMI GUI tab fields
	Figure 38. SMI successful generation in GUI mode example

	3.7.4 SSP generation using STPC in GUI mode
	Figure 39. SSP generation tab
	SSP GUI tab fields
	Figure 40. SSP output information

	3.7.5 Settings
	Figure 41. Settings icon and settings dialog box

	3.7.6 Log generation
	Figure 42. Log example

	3.7.7 SFI and SMI file checking function
	Figure 43. Check SFI file example

	4 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer
	4.1 Chip certificate authenticity check and license mechanism
	4.1.1 Device authentication
	4.1.2 License mechanism
	License mechanism general scheme
	License distribution
	HSM programming by OEM for license distribution
	Figure 44. HSM programming GUI in the STPC tool

	4.2 Secure programming using a bootloader interface
	4.2.1 Secure firmware installation using a bootloader interface flow
	Figure 45. Secure programming via STM32CubeProgrammer overview on STM32H7 devices
	Figure 46. Secure programming via STM32CubeProgrammer overview on STM32L4 devices

	4.2.2 Secure module installation using a bootloader interface flow
	4.2.3 STM32CubeProgrammer for SFI using a bootloader interface
	4.2.4 STM32CubeProgrammer for SMI via a bootloader interface
	4.2.5 STM32CubeProgrammer for SSP via a bootloader interface
	Figure 47. SSP installation success

	4.2.6 STM32CubeProgrammer get certificate via a bootloader interface
	Figure 48. Example of getcertificate command execution using UART interface

	4.3 Secure programming using the JTAG/SWD interface
	4.3.1 SFI/SFIx programming using JTAG/SWD flow
	Figure 49. SFI programming by JTAG/SWD flow overview (monolithic SFI image example)

	4.3.2 SMI programming through JTAG/SWD flow
	Figure 50. SMI programming by JTAG flow overview

	4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD
	Example “getcertificate” command using JTAG
	Figure 51. Example of getcertificate command using JTAG
	Example “smi” command using SWD

	4.4 Secure programming using bootloader interface (UART/I2C/SPI/USB)
	SFI example
	SFIx example

	5 Example of SFI programming scenario
	5.1 Scenario overview
	5.2 Hardware and software environment
	5.3 Step-by-step execution
	5.3.1 Build OEM application
	5.3.2 Performing the option byte file generation (GUI mode)
	Figure 52. STM32Trusted Package Creator SFI OB GUI

	5.3.3 Perform the SFI generation (GUI mode)
	Figure 53. STPC GUI during SFI generation

	5.3.4 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 54. Example of HSM programming using STPC GUI

	5.3.5 Performing HSM programming for license generation using STPC (CLI mode)
	Example of HSM version 1 provisioning
	Figure 55. Example product ID
	Example of HSM version 2 provisioning
	Example of HSM get information
	Figure 56. HSM information in STM32 Trusted Package Creator CLI mode

	5.3.6 Programming input conditions
	5.3.7 Performing the SFI install using STM32CubeProgrammer
	Using JTAG/SWD

	5.3.8 SFI with Integrity check (for STM32H73)
	Figure 57. STM32Trusted Package Creator SFI ‘hash Generator ‘check box
	Usage example:
	Figure 58. SFI installation success using SWD connection (1)
	Figure 59. SFI installation success using SWD connection (2)

	6 Example of SFI programming scenario for STM32WL
	6.1 Scenario overview
	6.2 Hardware and software environment
	6.3 Step-by-step execution
	6.3.1 Build OEM application
	6.3.2 Perform the SFI generation (GUI mode)
	Figure 60. STPC GUI showing the STPC GUI during the SFI generation

	6.3.3 Programming input conditions
	Figure 61. Example -dsecurity command-line output
	Figure 62. Example -setdefaultob command-line output

	6.3.4 Perform the SFI install using STM32CubeProgrammer
	Figure 63. SFI installation via SWD execution command-line output

	7 Example of SFI programming scenario for STM32U5
	7.1 Scenario overview
	7.2 Hardware and software environment
	7.3 Step-by-step execution
	7.3.1 Build OEM application
	7.3.2 Perform the SFI generation (GUI mode)
	Figure 64. STPC GUI during the SFI generation

	7.3.3 Programming input conditions
	7.3.4 Perform the SFI install using STM32CubeProgrammer
	Using JTAG/SWD
	Figure 65. SFI installation via SWD execution (1)
	Figure 66. SFI installation via SWD execution - (2)

	8 Example of SFI programming scenario for STM32WBA5
	8.1 Scenario overview
	8.2 Hardware and software environment
	8.3 Step-by-step execution
	8.3.1 Build OEM application
	8.3.2 Perform the SFI generation (GUI mode)
	Figure 67. STPC GUI during the SFI generation

	8.3.3 Programming input conditions
	8.3.4 Perform the SFI install using STM32CubeProgrammer
	Using the UART interface
	Figure 68. SFI installation via UART execution using CLI
	Figure 69. STM32WBA5 SFI successful programming via UART interface using GUI

	9 Example of SFIA programming scenario for STM32WBA5
	9.1 Scenario overview
	9.2 Hardware and software environment
	9.3 Step-by-step execution
	9.3.1 Build an OEM application
	9.3.2 Perform the HSM programming for the SFIA license generation (GUI mode)
	Figure 70. Example of HSM programming (SFIA License) using STPC GU

	9.3.3 Perform the SFI generation (GUI mode)
	9.3.4 Programming input conditions
	9.3.5 Perform the SFI installation using STM32CubeProgrammer

	10 Example of SFI programming scenario for STM32H5
	10.1 Scenario overview
	10.2 Hardware and software environment
	10.3 Step-by-step execution
	10.3.1 Build OEM application
	10.3.2 Perform the SFI generation (GUI mode)
	Figure 71. SFI generation for STM32H5

	10.3.3 Programming input requirements
	Figure 72. STMicroelectronics global license generation for STM32H5

	10.3.4 Perform the SFI install using STM32CubeProgrammer
	Command-line mode
	Figure 73. STM32H5 SFI successful programming via CLI
	Graphical user interface mode
	Figure 74. STM32H5 SFI successful programming via GUI

	11 Example of SFI programming scenario for STM32H7RS
	11.1 Scenario overview
	11.2 Hardware and software environment
	11.3 Step-by-step execution
	11.3.1 Build an OEM application
	11.3.2 Perform the SFI generation (GUI mode)
	Figure 75. Figure4 SFI generation for STM32H7RS

	11.3.3 Programming input requirements
	11.3.4 Perform the SFI install using STM32CubeProgrammer
	Command-line mode
	Figure 76. STM32H7RS SFI successful programming via CLI
	Graphical user interface mode
	Figure 77. STM32H7RS SFI successful programming via GUI

	12 Example of SMI programming scenario
	12.1 Scenario overview
	12.2 Hardware and software environment
	12.3 Step-by-step execution
	12.3.1 Build a third-party library
	12.3.2 Perform the SMI generation
	Figure 78. STPC GUI during SMI generation

	12.3.3 Programming input conditions
	12.3.4 Perform the SMI install
	Using JTAG/SWD
	Figure 79. SMI install success via debug interface

	12.3.5 How to test for SMI install success
	Figure 80. OB display command showing that a PCROP zone was activated after SMI

	13 Example of SFIx programming scenario for STM32H7
	13.1 Scenario overview
	13.2 Hardware and software environment
	13.3 Step-by-step execution
	13.3.1 Build OEM application
	13.3.2 Perform the SFIx generation (GUI mode)
	Figure 81. Successful SFIx generation

	13.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 82. Example of HSM programming using STPC GUI

	13.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	13.3.5 Programming input conditions
	13.3.6 Perform the SFIx installation using STM32CubeProgrammer
	Using JTAG/SWD
	Figure 83. SFIx installation success using SWD connection (1)
	Figure 84. SFIx installation success using SWD connection (2)
	Figure 85. SFIx installation success using SWD connection (3)
	Figure 86. SFIx installation success using SWD connection (4)

	14 Example of SFIx programming scenario for STM32L5/STM32U5
	14.1 Scenario overview
	14.2 Hardware and software environment
	14.3 Step-by-step execution
	14.3.1 Build an OEM application
	14.3.2 Perform the SFIx generation (GUI mode)
	Use case 1: generation of SFIx without key area for STM32L5
	Figure 87. Successful SFIx generation use case 1
	Use case 2: generation of SFIx with key area for STM32L5
	Figure 88. Successful SFIx generation use case 2
	Use case 3: generation of SFIx without key area for STM32U5
	Figure 89. Successful SFIx generation use case 3
	Figure 90. Successful SFIx generation use case 3 for STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and STM32U5Gxxx
	Use case 4: generation of SFIx with key area for STM32U5
	Figure 91. Successful SFIx generation use case 4
	Figure 92. Successful SFIx generation use case 4 for STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and STM32U5Gxxx

	14.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	14.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	14.3.5 Programming input conditions
	14.3.6 Perform the SFIx installation using STM32CubeProgrammer
	Figure 93. SFIx installation success using SWD connection (1)
	Figure 94. SFIx installation success using SWD connection (2)
	Figure 95. SFIx installation success using SWD connection (3)

	15 Example of SFIx programming scenario for STM32H5
	15.1 Scenario overview
	15.2 Hardware and software environment
	15.3 Step-by-step execution
	15.3.1 Build an OEM application
	15.3.2 Perform the SFIx generation (GUI mode)
	Figure 96. SFIx image generation for STM32H5

	15.3.3 Programming input conditions
	15.3.4 Perform the SFIx installation using STM32CubeProgrammer CLI
	Figure 97. SFIx installation success for STM32H5

	16 Example of a combined SFI-SMI programming scenario
	16.1 Scenario overview
	16.2 Hardware and software environment
	16.3 Step-by-step execution
	Figure 98. GUI of STPC during combined SFI-SMI generation
	16.3.1 Using JTAG/SWD
	Figure 99. Combined SFI-SMI programming success using debug connection

	16.3.2 How to test the combined SFI install success
	Figure 100. Option bytes after combined SFI-SMI installation success

	17 Example of SSP programming scenario for STM32MP1
	17.1 Scenario overview
	17.2 Hardware and software environment
	17.3 Step-by-step execution
	17.3.1 Building a secret file
	17.3.2 Performing the SSP generation (GUI mode)
	Figure 101. STM32 Trusted Package Creator SSP GUI tab

	17.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 102. Example of HSMv2 programming using STPC GUI

	17.3.4 SSP programming conditions
	17.3.5 Perform the SSP installation using STM32CubeProgrammer
	Figure 103. STM32MP1 SSP installation success

	18 Example of SSP-SFI programming scenario for STM32MP2
	18.1 Scenario overview
	18.2 Hardware and software environment
	18.3 Step-by-step execution
	18.3.1 Building a secret file
	Figure 104. Secrets Gen Window

	18.3.2 Building a backup memory file
	Figure 105. SSP Backup memory window

	18.3.3 Performing the SSP-SFI generation (GUI mode)
	Figure 106. SSP-SFI image generation window

	18.3.4 Performing HSM programming (GUI mode)
	18.3.5 SSP-SFI programming conditions
	18.3.6 Perform the SSP installation using STM32CubeProgrammer
	Figure 107. SSSP-SFI installation

	19 Reference documents
	Table 3. Document references

	20 Revision history
	Table 4. Document revision history

