
June 2024 AN5054 Rev 16 1/169
1

AN5054
Application note

How to perform secure programming using
STM32CubeProgrammer

Introduction
This document specifies the steps and tools required to prepare SFI (secure internal
firmware install), SFIx (secure external firmware install), SMI (secure module install) or SSP
(secure secret provisioning) images. It then describes how to program these into STM32
MCU devices that support SFI/SFIx on-chip internal memory, external flash memory or, for
the SSP install procedure, STM32 MPU devices. It is based on the
STM32CubeProgrammer tool set (STM32CubeProg). These tools are compatible with all
STM32 devices.

The main objective of the SFI/SFIx and SMI processes is the secure installation of OEM and
software-partner’s firmware, which prevents firmware cloning.

The STM32MP1 Series supports protection mechanisms allowing protection of critical
operations (such as cryptography algorithms) and critical data (such as secret keys) against
unexpected access.

This application note also gives an overview of the STM32 SSP solution with its associated
tool ecosystem, and explains how to use it to protect OEM secrets during the CM product
manufacturing stage.

Refer also to:
• AN4992 [1], which provides an overview of the secure firmware install (SFI) solution, and

how this provides a practical level of protection of the IP chain - from firmware
development up to programming the device on-chip flash memory.

• AN5510 [3], which provides an overview of secure secret provisioning (SSP).

www.st.com

http://www.st.com

Contents AN5054

2/169 AN5054 Rev 16

Contents

1 General information . 13
1.1 Licensing information . 13

1.2 Acronyms and abbreviations . 13

2 How to generate an execute-only and position
independent library for SMI preparation . 15
2.1 Requirements . 15

2.2 Toolchains allowing SMI generation . 15

2.3 Execute-only/position independent library scenario example
under EWARM . 16
2.3.1 Relocatable library preparation steps . 16

2.3.2 Relocatable SMI module preparation steps . 20
2.3.3 Application execution scenario . 21

3 Encrypted firmware (SFI) and module (SMI)
preparation using the STPC tool . 23
3.1 System requirements . 23

3.2 SFI generation process . 23

3.3 SFIx generation process . 31
Area E. .32
Area K. .32

3.4 SMI generation process . 35

3.5 SSP generation process . 37

3.6 STM32 Trusted Package Creator tool in the command-line interface . . . 39
3.6.1 Steps for SFI generation (CLI) . 41
3.6.2 Steps for SMI generation (CLI) . 43

3.6.3 Steps for SSP generation (CLI) . 46

3.7 Using the STM32 Trusted Package Creator tool graphical user interface 47
3.7.1 SFI generation using STPC in GUI mode . 47

SFI GUI tab fields .49

3.7.2 SFIx generation using STPC in GUI mode . 52
SFIx GUI tab fields .53

3.7.3 SMI generation using STPC in GUI mode . 55
SMI GUI tab fields .56

AN5054 Rev 16 3/169

AN5054 Contents

8

3.7.4 SSP generation using STPC in GUI mode . 58
SSP GUI tab fields .58

3.7.5 Settings . 60

3.7.6 Log generation . 61
3.7.7 SFI and SMI file checking function . 62

4 Encrypted firmware (SFI/SFIx)/ module (SMI)
programming with STM32CubeProgrammer . 63
4.1 Chip certificate authenticity check and license mechanism 63

4.1.1 Device authentication . 63
4.1.2 License mechanism . 63

License mechanism general scheme .63
License distribution. .64
HSM programming by OEM for license distribution .64

4.2 Secure programming using a bootloader interface 65
4.2.1 Secure firmware installation using a bootloader interface flow 65
4.2.2 Secure module installation using a bootloader interface flow 67

4.2.3 STM32CubeProgrammer for SFI using a bootloader interface 67
4.2.4 STM32CubeProgrammer for SMI via a bootloader interface 68
4.2.5 STM32CubeProgrammer for SSP via a bootloader interface 69

4.2.6 STM32CubeProgrammer get certificate via a bootloader interface 71

4.3 Secure programming using the JTAG/SWD interface 71
4.3.1 SFI/SFIx programming using JTAG/SWD flow 71
4.3.2 SMI programming through JTAG/SWD flow . 73
4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD . . 75

Example “getcertificate” command using JTAG .75
Example “smi” command using SWD. .75

4.4 Secure programming using bootloader interface (UART/I2C/SPI/USB) . . 75
SFI example .76
SFIx example .76

5 Example of SFI programming scenario . 77
5.1 Scenario overview . 77

5.2 Hardware and software environment . 77

5.3 Step-by-step execution . 77
5.3.1 Build OEM application . 77
5.3.2 Performing the option byte file generation (GUI mode) 77

5.3.3 Perform the SFI generation (GUI mode) . 78

Contents AN5054

4/169 AN5054 Rev 16

5.3.4 Performing HSM programming for license generation using STPC
(GUI mode) . 80

5.3.5 Performing HSM programming for license generation using STPC
(CLI mode) . 82
Example of HSM version 1 provisioning. .82
Example of HSM version 2 provisioning. .83
Example of HSM get information .83

5.3.6 Programming input conditions . 84
5.3.7 Performing the SFI install using STM32CubeProgrammer 85

Using JTAG/SWD. .85

5.3.8 SFI with Integrity check (for STM32H73) . 86
Usage example: .86

6 Example of SFI programming scenario for STM32WL 90
6.1 Scenario overview . 90

6.2 Hardware and software environment . 90

6.3 Step-by-step execution . 90
6.3.1 Build OEM application . 90
6.3.2 Perform the SFI generation (GUI mode) . 90

6.3.3 Programming input conditions . 92
6.3.4 Perform the SFI install using STM32CubeProgrammer 93

7 Example of SFI programming scenario for STM32U5 95
7.1 Scenario overview . 95

7.2 Hardware and software environment . 95

7.3 Step-by-step execution . 95
7.3.1 Build OEM application . 95
7.3.2 Perform the SFI generation (GUI mode) . 95
7.3.3 Programming input conditions . 97

7.3.4 Perform the SFI install using STM32CubeProgrammer 97
Using JTAG/SWD. .97

8 Example of SFI programming scenario for STM32WBA5 100
8.1 Scenario overview . 100

8.2 Hardware and software environment . 100

8.3 Step-by-step execution . 100
8.3.1 Build OEM application . 100
8.3.2 Perform the SFI generation (GUI mode) . 100

AN5054 Rev 16 5/169

AN5054 Contents

8

8.3.3 Programming input conditions . 101
8.3.4 Perform the SFI install using STM32CubeProgrammer 101

Using the UART interface. .102

9 Example of SFIA programming scenario for STM32WBA5 107
9.1 Scenario overview . 107

9.2 Hardware and software environment . 107

9.3 Step-by-step execution . 107
9.3.1 Build an OEM application . 107
9.3.2 Perform the HSM programming for the SFIA license generation (GUI

mode) 107

9.3.3 Perform the SFI generation (GUI mode) . 108
9.3.4 Programming input conditions . 108
9.3.5 Perform the SFI installation using STM32CubeProgrammer 108

10 Example of SFI programming scenario for STM32H5 110
10.1 Scenario overview .110

10.2 Hardware and software environment .110

10.3 Step-by-step execution .110
10.3.1 Build OEM application . 110
10.3.2 Perform the SFI generation (GUI mode) . 110

10.3.3 Programming input requirements . 111
10.3.4 Perform the SFI install using STM32CubeProgrammer 112

Command-line mode .112
Graphical user interface mode .113

11 Example of SFI programming scenario for STM32H7RS 115
11.1 Scenario overview .115

11.2 Hardware and software environment .115

11.3 Step-by-step execution .115
11.3.1 Build an OEM application . 115
11.3.2 Perform the SFI generation (GUI mode) . 115
11.3.3 Programming input requirements . 116

11.3.4 Perform the SFI install using STM32CubeProgrammer 116
Command-line mode .117
Graphical user interface mode .117

Contents AN5054

6/169 AN5054 Rev 16

12 Example of SMI programming scenario . 119
12.1 Scenario overview .119

12.2 Hardware and software environment .119

12.3 Step-by-step execution .119
12.3.1 Build a third-party library . 119
12.3.2 Perform the SMI generation . 120
12.3.3 Programming input conditions . 121

12.3.4 Perform the SMI install . 121
Using JTAG/SWD. .121

12.3.5 How to test for SMI install success . 123

13 Example of SFIx programming scenario for STM32H7 125
13.1 Scenario overview . 125

13.2 Hardware and software environment . 125

13.3 Step-by-step execution . 125
13.3.1 Build OEM application . 125
13.3.2 Perform the SFIx generation (GUI mode) . 125
13.3.3 Performing HSM programming for license generation using STPC

(GUI mode) . 127

13.3.4 Performing HSM programming for license generation using STPC
(CLI mode) . 128

13.3.5 Programming input conditions . 128
13.3.6 Perform the SFIx installation using STM32CubeProgrammer 128

Using JTAG/SWD. .128

14 Example of SFIx programming scenario for STM32L5/STM32U5 . . . 133
14.1 Scenario overview . 133

14.2 Hardware and software environment . 133

14.3 Step-by-step execution . 133
14.3.1 Build an OEM application . 133
14.3.2 Perform the SFIx generation (GUI mode) . 134

Use case 1: generation of SFIx without key area for STM32L5134
Use case 2: generation of SFIx with key area for STM32L5 136
Use case 3: generation of SFIx without key area for STM32U5.137
Use case 4: generation of SFIx with key area for STM32U5138

14.3.3 Performing HSM programming for license generation using STPC
(GUI mode) . 140

AN5054 Rev 16 7/169

AN5054 Contents

8

14.3.4 Performing HSM programming for license generation using STPC
(CLI mode) . 140

14.3.5 Programming input conditions . 140

14.3.6 Perform the SFIx installation using STM32CubeProgrammer 140

15 Example of SFIx programming scenario for STM32H5 143
15.1 Scenario overview . 143

15.2 Hardware and software environment . 143

15.3 Step-by-step execution . 143
15.3.1 Build an OEM application . 143

15.3.2 Perform the SFIx generation (GUI mode) . 144
15.3.3 Programming input conditions . 145
15.3.4 Perform the SFIx installation using STM32CubeProgrammer CLI . . . 145

16 Example of a combined SFI-SMI programming scenario 147
16.1 Scenario overview . 147

16.2 Hardware and software environment . 147

16.3 Step-by-step execution . 147
16.3.1 Using JTAG/SWD . 149
16.3.2 How to test the combined SFI install success 151

17 Example of SSP programming scenario for STM32MP1 153
17.1 Scenario overview . 153

17.2 Hardware and software environment . 153

17.3 Step-by-step execution . 153
17.3.1 Building a secret file . 153
17.3.2 Performing the SSP generation (GUI mode) . 154

17.3.3 Performing HSM programming for license generation using STPC
(GUI mode) . 155

17.3.4 SSP programming conditions . 156
17.3.5 Perform the SSP installation using STM32CubeProgrammer 156

18 Example of SSP-SFI programming scenario for STM32MP2 158
18.1 Scenario overview . 158

18.2 Hardware and software environment . 158

18.3 Step-by-step execution . 158
18.3.1 Building a secret file . 158

Contents AN5054

8/169 AN5054 Rev 16

18.3.2 Building a backup memory file . 159
18.3.3 Performing the SSP-SFI generation (GUI mode) 160
18.3.4 Performing HSM programming (GUI mode) . 161

18.3.5 SSP-SFI programming conditions . 161
18.3.6 Perform the SSP installation using STM32CubeProgrammer 161

19 Reference documents . 163

20 Revision history . 164

AN5054 Rev 16 9/169

AN5054 List of tables

9

List of tables

Table 1. List of abbreviations . 13
Table 2. SSP preparation inputs . 39
Table 3. Document references . 163
Table 4. Document revision history . 164

List of figures AN5054

10/169 AN5054 Rev 16

List of figures

Figure 1. IAR example project overview . 16
Figure 2. Update compiler extra options . 17
Figure 3. Linker extra options . 18
Figure 4. Setting post-build option . 19
Figure 5. Postbuild batch file . 20
Figure 6. How to exclude the “lib.o” file from build . 21
Figure 7. app.icf file . 22
Figure 8. SFI preparation mechanism . 23
Figure 9. SFI image process generation . 24
Figure 10. RAM size and CT address inputs used for SFI. 25
Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area . 26
Figure 12. Error message when firmware files with address overlaps are used 27
Figure 13. Error message when SMI address overlaps with a firmware area address 28
Figure 14. Error message when a SFI area address is not located in flash memory. 29
Figure 15. SFI format layout . 30
Figure 16. SFI image layout in case of split . 31
Figure 17. RAM size and CT address inputs used for SFIx . 33
Figure 18. SFIx format layout. 34
Figure 19. SFIx image layout in case of split . 35
Figure 20. SMI preparation mechanism . 35
Figure 21. SMI image generation process . 36
Figure 22. SMI format layout . 37
Figure 23. SSP preparation mechanism . 38
Figure 24. Encryption file scheme . 39
Figure 25. STM32 Trusted Package Creator tool - SFI preparation options . 40
Figure 26. STM32 Trusted Package Creator tool - SMI preparation options. 40
Figure 27. Option bytes file example . 42
Figure 28. SFI generation example using an ELF file . 43
Figure 29. SMI generation example . 45
Figure 30. SSP generation success. 47
Figure 31. SFI generation Tab . 48
Figure 32. Firmware parsing example . 49
Figure 33. SFI successful generation in GUI mode example . 51
Figure 34. SFIx generation Tab . 52
Figure 35. Firmware parsing example . 53
Figure 36. SFIx successful generation in GUI mode example . 54
Figure 37. SMI generation Tab . 55
Figure 38. SMI successful generation in GUI mode example . 57
Figure 39. SSP generation tab. 58
Figure 40. SSP output information. 59
Figure 41. Settings icon and settings dialog box . 60
Figure 42. Log example . 61
Figure 43. Check SFI file example. 62
Figure 44. HSM programming GUI in the STPC tool . 65
Figure 45. Secure programming via STM32CubeProgrammer overview on STM32H7 devices 66
Figure 46. Secure programming via STM32CubeProgrammer overview on STM32L4 devices 66
Figure 47. SSP installation success. 70
Figure 48. Example of getcertificate command execution using UART interface 71

AN5054 Rev 16 11/169

AN5054 List of figures

12

Figure 49. SFI programming by JTAG/SWD flow overview
(monolithic SFI image example) . 72

Figure 50. SMI programming by JTAG flow overview . 74
Figure 51. Example of getcertificate command using JTAG . 75
Figure 52. STM32Trusted Package Creator SFI OB GUI . 78
Figure 53. STPC GUI during SFI generation . 79
Figure 54. Example of HSM programming using STPC GUI . 81
Figure 55. Example product ID . 82
Figure 56. HSM information in STM32 Trusted Package Creator CLI mode. 83
Figure 57. STM32Trusted Package Creator SFI ‘hash Generator ‘check box. 86
Figure 58. SFI installation success using SWD connection (1) . 88
Figure 59. SFI installation success using SWD connection (2) . 89
Figure 60. STPC GUI showing the STPC GUI during the SFI generation . 91
Figure 61. Example -dsecurity command-line output. 92
Figure 62. Example -setdefaultob command-line output . 93
Figure 63. SFI installation via SWD execution command-line output . 94
Figure 64. STPC GUI during the SFI generation . 96
Figure 65. SFI installation via SWD execution (1) . 98
Figure 66. SFI installation via SWD execution - (2) . 99
Figure 67. STPC GUI during the SFI generation . 101
Figure 68. SFI installation via UART execution using CLI . 103
Figure 69. STM32WBA5 SFI successful programming via UART interface using GUI 106
Figure 70. Example of HSM programming (SFIA License) using STPC GU 108
Figure 71. SFI generation for STM32H5 . 111
Figure 72. STMicroelectronics global license generation for STM32H5 . 112
Figure 73. STM32H5 SFI successful programming via CLI . 113
Figure 74. STM32H5 SFI successful programming via GUI . 114
Figure 75. Figure4 SFI generation for STM32H7RS . 116
Figure 76. STM32H7RS SFI successful programming via CLI . 117
Figure 77. STM32H7RS SFI successful programming via GUI . 118
Figure 78. STPC GUI during SMI generation . 120
Figure 79. SMI install success via debug interface . 122
Figure 80. OB display command showing that a PCROP zone was activated after SMI. 123
Figure 81. Successful SFIx generation . 126
Figure 82. Example of HSM programming using STPC GUI . 127
Figure 83. SFIx installation success using SWD connection (1) . 129
Figure 84. SFIx installation success using SWD connection (2) . 130
Figure 85. SFIx installation success using SWD connection (3) . 131
Figure 86. SFIx installation success using SWD connection (4) . 132
Figure 87. Successful SFIx generation use case 1 . 135
Figure 88. Successful SFIx generation use case 2 . 136
Figure 89. Successful SFIx generation use case 3 . 137
Figure 90. Successful SFIx generation use case 3 for STM32U59xxx, STM32U5Axxx,

STM32U5Fxxx, and STM32U5Gxxx. 138
Figure 91. Successful SFIx generation use case 4 . 139
Figure 92. Successful SFIx generation use case 4 for STM32U59xxx, STM32U5Axxx,

STM32U5Fxxx, and STM32U5Gxxx. 139
Figure 93. SFIx installation success using SWD connection (1) . 141
Figure 94. SFIx installation success using SWD connection (2) . 141
Figure 95. SFIx installation success using SWD connection (3) . 142
Figure 96. SFIx image generation for STM32H5 . 144
Figure 97. SFIx installation success for STM32H5 . 146

List of figures AN5054

12/169 AN5054 Rev 16

Figure 98. GUI of STPC during combined SFI-SMI generation . 148
Figure 99. Combined SFI-SMI programming success using debug connection 150
Figure 100. Option bytes after combined SFI-SMI installation success. 152
Figure 101. STM32 Trusted Package Creator SSP GUI tab . 154
Figure 102. Example of HSMv2 programming using STPC GUI . 155
Figure 103. STM32MP1 SSP installation success. 157
Figure 104. Secrets Gen Window . 159
Figure 105. SSP Backup memory window. 160
Figure 106. SSP-SFI image generation window . 160
Figure 107. SSSP-SFI installation . 162

AN5054 Rev 16 13/169

AN5054 General information

168

1 General information

1.1 Licensing information
STM32CubeProgrammer supports STM32 32-bit devices based on Arm®(a)
Cortex®-M processors.

1.2 Acronyms and abbreviations

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. List of abbreviations
Abbreviations Definition

AES Advanced encryption standard

CLI Command-line interface

CM Contract manufacturer

GCM Galois counter mode (one of the modes of AES)

GUI Graphical user interface

HSM Hardware security module

HW Hardware

MAC Message authentication code

MCU Microcontroller unit

OEM Original equipment manufacturer

OTP One-time programmable

PCROP Proprietary code read-out protection

PI Position independent

ROP Read-out protection

RSS Root security service (secure)

RSSe Root security service extension

SFI Secure (internal) firmware install

SFIx Secure external firmware install

SMI Secure modules install

SSP Secure secret provisioning

STPC STM32 Trusted Package Creator

STM32 ST family of 32-bit Arm®-based microcontrollers

General information AN5054

14/169 AN5054 Rev 16

SW Software

XO Execute only

Table 1. List of abbreviations (continued)
Abbreviations Definition

AN5054 Rev 16 15/169

AN5054 How to generate an execute-only and position independent library for SMI preparation

168

2 How to generate an execute-only and position
independent library for SMI preparation

This section describes the requirements and procedures for the preparation of an
execute-only (XO) and position independent (PI) library using a partner toolchain.

These kinds of libraries serve in encrypted SMI-module generation.

2.1 Requirements
SMI modules run in execute-only (XO) areas, also called PCROP areas, and must
be relocatable to be linkable with the final OEM application. Nevertheless, today,
third-party toolchains for STM32 devices (such as MDK-ARM™ for Arm, EWARM
for IAR™ and GCC based IDEs) do not allow both features to be activated at the
same time. So, starting from particular versions of third-party toolchains, the two
features below are possible for SMI support:
• Position independent support (code + rw data + ro data)
• No literal pool generation - needed for the PCROP feature.

2.2 Toolchains allowing SMI generation
Three toolchains allow SMI generation:
• EWARM

Version 7.42.0 allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “--ropi_cb” + “rwpi” + “--
no_literal_pool”.
– “--ropi_cb” + “rwpi” are needed for position independent support
– option “no_literal_pool” is needed for the PCROP feature.

• MDK-ARM
The customized version allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “-fropi-cb”, “-frwpi”, “-
mexecute-only”.
– “fropi-cb” is needed for ro data independent position
– “frwpi” is needed for rw data independent position
– option “-mexecute-only” is needed for the PCROP feature.
All library symbols being used in the final application must be added to the final project
in a “.txt” file format.

• GCC
The customized version of GCC-based toolchains allows execute-only (XO) and
position independent (PI) library generation for SMI support through the following
options: “-masset”.
Option “-masset” has the same role as “--ropi --ropi_cb --rwpi --no_literal_pool” options
used for the EWARM toolchain.

How to generate an execute-only and position independent library for SMI preparation AN5054

16/169 AN5054 Rev 16

2.3 Execute-only/position independent library scenario example
under EWARM
To generate an execute-only (XO) and position independent (PI) library, a
customized version of the IAR toolchain must be used: version 7.42.0.

2.3.1 Relocatable library preparation steps
1. Open the project available in the “Example” folder: double-click on

“Example/AdvEx.eww”.
The project architecture is illustrated in Figure 1.

Figure 1. IAR example project overview

The following steps update the old “lib.o” linked to the example application by
making it support both PI and XO features:
2. Within Lib-Debug options -> C/C++ Compiler. Go to the tab “Extra Options” and add the

following line:
“--ropi_cb”
This action is illustrated in Figure 2.

AN5054 Rev 16 17/169

AN5054 How to generate an execute-only and position independent library for SMI preparation

168

Figure 2. Update compiler extra options

How to generate an execute-only and position independent library for SMI preparation AN5054

18/169 AN5054 Rev 16

3. Within Lib-Debug options -> Linker. Go to the “Extra Options” tab and add the following
lines:
--no_literal_pool
--ropi_cb
--loadable
--no_entry
This action is illustrated in Figure 3.
– “ropi_cb” is needed for Position Independent support
– the “no_entry” is a linker option that sets the entry point field to zero.

Figure 3. Linker extra options

AN5054 Rev 16 19/169

AN5054 How to generate an execute-only and position independent library for SMI preparation

168

4. Within Lib-Debug options -> Build actions. In the post, build command line execute the
batch file “postbuild.bat” by inserting, if it is not already configured, the following
command line:
"$PROJ_DIR$\postbuild.bat" "$TOOLKIT_DIR$" "$TARGET_PATH$"
"$PROJ_DIR$\lib.o"

This action is illustrated in Figure 4.

Figure 4. Setting post-build option

The “postbuild.bat” file is used to perform some key actions:
• --wrap: adds veneers to library functions to initialize registers used for ropi code
• “iexe2obj.exe”: transforms the ELF file into a linkable object file.

See Figure 5.

How to generate an execute-only and position independent library for SMI preparation AN5054

20/169 AN5054 Rev 16

Figure 5. Postbuild batch file

5. Rebuild the project “Lib”

2.3.2 Relocatable SMI module preparation steps
From the object file created, “lib.o”, generate the SMI relocatable module using the
STM32 Trusted Package Creator tool “libr.smi” and its corresponding data clear
part (libr_clear.o: corresponding to the input “lib.o” without the protected section
code).

To execute this step, follow the steps explained for SMI generation under section
“Section 3.6.2: Steps for SMI generation (CLI)”.

AN5054 Rev 16 21/169

AN5054 How to generate an execute-only and position independent library for SMI preparation

168

2.3.3 Application execution scenario
1. Flash the already generated SMI relocatable module to address 0x08080000 using

STM32CubeProgrammer v0.4.0 or newer (see Section Figure 66.: SFI installation via
SWD execution - (2) to perform this action).

2. Link the data clear part, “libr_clear.o”, generated from the STM32 Trusted Package
Creator tool to the final IAR example application instead of the old previously used
“lib.o”.

3. Exclude “lib.o” from the build (Figure 6).

Figure 6. How to exclude the “lib.o” file from build

4. Rebuild the application.
5. Do these modifications in an example application ICF file:

a) Define the region for PCROP block.
define symbol __ICFEDIT_region_PCROP_start__ = 0x08080000;
define symbol __ICFEDIT_region_PCROP_end__ = 0x0809FFFF;
define region PCROP_region = mem:[from __ICFEDIT_region_PCROP_start__
to __ICFEDIT_region_PCROP_end__];

b) Define the PCROP region as 'noload' (since it is already installed using the
STM32CubeProgrammer, there is no need to load it again.).
‘SMI’: place noload in PCROP_region { ro code section __code__Lib};

These modifications are illustrated within the “app.icf” file, which is shown in
Figure 7.

How to generate an execute-only and position independent library for SMI preparation AN5054

22/169 AN5054 Rev 16

Figure 7. app.icf file

6. To check that the example application is executed successfully on the STM32H7
device:
a) Check that address 0x08080000 was protected with PCROP.
b) The expected “printf” packets appear in the terminal output.

AN5054 Rev 16 23/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

3 Encrypted firmware (SFI) and module (SMI)
preparation using the STPC tool

The STM32 Trusted Package Creator (STPC) tool allows the generation of SFI and
SMI images for STM32H7 devices. It is available in both CLI and GUI modes free of
charge from www.st.com.

3.1 System requirements
Using the STM32 Trusted Package Creator tool for SFI/SFIx, SMI, and SSP image
generation requires a PC running on either Windows®(a), Linux®(b) Ubuntu®(c) or
Fedora®(d), or macOS®(e).

Note: Refer to [4] or [5] for the supported operating systems and architectures.

3.2 SFI generation process
The SFI format is an encryption format for internal firmware created by
STMicroelectronics that transforms internal firmware (in ELF, Hex, Bin, or Srec
formats) into encrypted and authenticated firmware in a SFI format using the AES-
GCM algorithm with a 128-bit key. The SFI preparation process used in the STM32
Trusted Package Creator tool is described in Figure 8.

Figure 8. SFI preparation mechanism

a. Windows is a trademark of the Microsoft group of companies.

b. Linux® is a registered trademark of Linus Torvalds.

c. Ubuntu® is a registered trademark of Canonical Ltd.

d. Fedora® is a trademark of Red Hat, Inc.

e. macOS® is a trademark of Apple Inc., registered in the U.S. and other countries and regions.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

24/169 AN5054 Rev 16

The SFI generation steps as currently implemented in the tool are described in
Figure 9.

Figure 9. SFI image process generation

Before performing AES-GCM to encrypt an area, we calculate the initialization
vector (IV) as:

IV = nonce + area index

The tool partitions the firmware image into several encrypted parts corresponding to
different memory areas.

These encrypted parts appended to their corresponding descriptors (the
unencrypted descriptive header generated by the tool) are called areas.

AN5054 Rev 16 25/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

These areas can be of different types:
• ‘F’ for a firmware area (a regular segment in the input firmware)
• ‘M’ for a module area (used in SFI-SMI combined-image generation, and corresponds

to input from an SMI module)
• ‘C’ for a configuration area (used for option-byte configuration)
• ‘P’ for a “pause” area
• ‘R’ for a “resume area.

Areas ‘P’ and ‘R’ do not represent a real firmware area, but are created when an
SFI image is split into several parts, which is the case when the global size of the
SFI image exceeds the allowed RAM size predefined by the user during the SFI
image creation.

The STM32 Trusted Package Creator overview below (Figure 10) shows the ‘RAM size’
input as well as the ‘Continuation token address’ input, which is used to store states in flash
memory during SFI programming.

Figure 10. RAM size and CT address inputs used for SFI

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

26/169 AN5054 Rev 16

Figure 11 (below) shows the specifics of these new areas compared to a regular
SFI area.

Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area

A top-level image header is generated and then authenticated.The tool performs
AES-GCM with authentication only (without encryption), using the SFI image
header as an AAD, and the nonce as IV.

An authentication tag is generated as output.
Note: To prepare an SFI image from multiple firmware files, make sure that there is no overlap

between their segments, otherwise an error message appears (Figure 12: Error message
when firmware files with address overlaps are used).

AN5054 Rev 16 27/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Figure 12. Error message when firmware files with address overlaps are used

For combined SFI-SMI images, there is also an overlap check between firmware
and module areas. If the check fails, an error message appears (Figure 13).

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

28/169 AN5054 Rev 16

Figure 13. Error message when SMI address overlaps with a firmware area address

Also, all SFI areas must be located in flash memory, otherwise the generation fails,
and the following error message appears (Figure 14).

AN5054 Rev 16 29/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Figure 14. Error message when a SFI area address is not located in flash memory

The final output from this generation process is a single file, which is the encrypted
and authenticated firmware in “.sfi” format. The SFI format layout is described in
Figure 15.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

30/169 AN5054 Rev 16

Figure 15. SFI format layout

When the SFI image is split during generation, areas ‘P’ and ‘R’ appear in the SFI
image layout, as in the following example Figure 16.

AN5054 Rev 16 31/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Figure 16. SFI image layout in case of split

3.3 SFIx generation process
In addition to the SFI preparation process mentioned in the previous section, two
extra areas are added in the SFI image for the SFIx preparation process:
• ‘E’ for an external firmware area
• ‘K’ for a key area (used for random keys generation)

The key ‘K’ area is optional and it can be stored in the area ‘F’.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

32/169 AN5054 Rev 16

Area E
The area ‘E’ is for external flash memory. It includes the following information at the
beginning of an encrypted payload:
• OTFD region_number (uint32_t):

– 0…3: OTFD1 (STM32H7A3/7B3 and STM32H7B0, STM32H723/333 and
STM32H725/335, STM32L5, and STM32U5)

– 4…7: OTFD2 (STM32H7A3/7B3 and STM32H7B0, STM32H723/333,
STM32H725/335, and STM32U5)

• OTFD region_mode (uint32_t) bit [1:0]:
– 00: instruction only AES-CTR)
– 01: data only (AES-CTR)
– 10: instruction + data (AES-CTR)
– 11: instruction only (EnhancedCipher)

• OTFD key_address in internal flash memory (uint32_t).

After this first part, area ‘E’ includes the firmware payload (as for area ‘F’). The
destination address of area ‘E’ is in external flash memory (0x9… / 0x7…).

Area K
The area ‘K’ triggers the generation of random keys. It contains N couples; each
one defines a key area as follows:
• The size of the key area (uint32_t)
• The start address of the key area (uint32_t): address in internal flash memory.

Example of an area ‘K’:
0x00000010, 0x0C020000
0x00000010, 0x08000060

There are two key areas:
• The first key area starts at 0x08010000 with size = 0x80 (8 x 128-bit keys)
• The second key area starts at 0x08010100 with size 0x20 (256-bit key).

The STM32 Trusted Package Creator overview below (Figure 17: RAM size and CT
address inputs used for SFIx) shows the RAM size input for SFIx image generation,
and also the ‘Continuation token address’ input, which is used by SFIx to store
states in external/internal flash memory during SFIx programming.

The ‘Continuation token address’ is mandatory due to the image generation that
adds areas P and R whatever be the configuration.

AN5054 Rev 16 33/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Figure 17. RAM size and CT address inputs used for SFIx

Note: To prepare an SFIx image from multiple firmware files, make sure that there is no overlap
between their segments (Intern and extern), otherwise an error message appears as same
as in the SFI use case.

The final output from this generation process is a single file, which is the encrypted
and authenticated internal/external firmware in “.sfix” format. The SFIx format layout
is described in Figure 18.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

34/169 AN5054 Rev 16

Figure 18. SFIx format layout

When the SFIx image is split during generation, the areas ‘P’ and ‘R’ appear in the SFIx
image layout, as in the example below Figure 19.

AN5054 Rev 16 35/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Figure 19. SFIx image layout in case of split

3.4 SMI generation process
SMI is a format created by STMicroelectronics that aims to protect partners’
software (SW: software modules and libraries).

The SMI preparation process is described below (Figure 20).

Figure 20. SMI preparation mechanism

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

36/169 AN5054 Rev 16

The SMI generation steps as currently implemented in the tool are described in the
diagram below (Figure 21).

Figure 21. SMI image generation process

The AES-GCM encryption is performed using the following inputs:
• 128-bit AES encryption key
• The input nonce as initialization vector (IV)
• The security version as additional authenticated data (AAD).

AN5054 Rev 16 37/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Before SMI image creation, PCROP checks are performed on the SMI image
validity:
• A PCROP section must be aligned on a flash memory word (256 bits), otherwise a

warning is shown.
• The section’s size must be at least two flash memory words (512 bits), otherwise a

warning is shown.
• The section must end on a flash memory word boundary (a 256-bit word), otherwise a

warning is shown.
• If the start address of the section immediately following the PCROP section overlaps

the last flash memory word of the PCROP section (after performing the PCROP
alignment constraint), the generation fails and an error message appears.

If everything is OK, tow outputs are created under the specified path:
• The SMI image (Figure 22 represents the SMI format layout).
• The library data part.

Figure 22. SMI format layout

3.5 SSP generation process
SSP is an encryption format that transforms customer secret files into encrypted
and authenticated firmware using an AES-GCM algorithm with a 128-bit key. The
SSP preparation process used in the STM32 Trusted Package Creator tool is
shown in Figure 23.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

38/169 AN5054 Rev 16

Figure 23. SSP preparation mechanism

An SSP image must be created before SSP processing. The encrypted output file
follows a specific layout that guarantees a secure transaction during transport and
decryption based on the following inputs:
• Secret file: This 148-byte secret file must fit into the OTP area reserved for the

customer. There is no tool or template to create this file.
• RMA password: This password is chosen by the OEM. It is part of the secret file and is

placed as the first 4-byte word. To make RMA password creation easier and avoid
issues, the STM32 Trusted Package Creator tool add sit directly at the beginning of the
148-byte secret file.

• Encryption key: AES encryption key (128 bits).
• Encryption nonce: AES nonce (128 bits).
• OEM firmware key: This is the major part of the secure boot sequence. Based on

ECDSA verification, the key is used to validate the signature of the loaded binary.

The first layout part (SSP magic, protocol version, ECDSA public key, secret size) is
used as additional authenticated data (AAD) to generate the payload tag. This is
checked by the ROM code during decryption.

AN5054 Rev 16 39/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

This encrypted file is automatically generated by the STM32 Trusted Package
Creator tool.

Figure 24. Encryption file scheme

3.6 STM32 Trusted Package Creator tool in the command-line
interface
This section describes how to use the STM32 Trusted Package Creator tool from
the command-line interface to generate SFI/SFIx and SMI images. The available
commands are listed in Figure 25.

Table 2. SSP preparation inputs
Input Size (bytes) Content

SSP magic 4 ‘SSPP’: magic identifier for SSP Payload

SSP Protocol Version 4 Can be used to indicate how to parse the payload, if
payload format changes in future

OEM ECDSA public key 64 OEM ECDSA public key

OEM secret size 4 Size of OEM secrets, in bytes

Payload tag 16 Cryptographic signature of all fields above, to ensure
their integrity.

Encrypted OEM secrets 152 Encrypted OEM secrets. 152 is given by previous field.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

40/169 AN5054 Rev 16

Figure 25. STM32 Trusted Package Creator tool - SFI preparation options

Figure 26. STM32 Trusted Package Creator tool - SMI preparation options

AN5054 Rev 16 41/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

3.6.1 Steps for SFI generation (CLI)
To generate an SFI/SFIx image in CLI mode, the user must use the “-sfi, --sfi”
command followed by the appropriate inputs. Inputs for the “sfi” command are:

-devid, --deviceid

Description: specify deviceID. If this option is not used, P and R areas are generated by
default for all devices.

Syntax: -devid <device_id>

<device_id> :Device ID

-fir, --firmware
Description: adds an input firmware file (supported formats are Bin, Hex, Srec, and ELF).
This option can be used more than once to add multiple firmware files.

Syntax: -fir <Firmware_file> [<Address>]

 <Firmware_file> :Firmware file.

[<Address>] :Used only for binary firmware.

-firx, --firmwx
Description: Add an input for an external firmware file. Supported formats are
Bin, Hex, Srec, and ELF. This option can be used more than once to
add multiple firmware files.

Syntax: -firx <Firmware_file> [<Address>] [<Region_Number>]

[<Region_Mode>] [<key_address>]

<Firmware_file>: Supported external firmware files are ELF HEX
 SREC BIN.

[<Address>]:Only in the case of BIN input file (in any base).

<Region_Number> : Only in the case of BIN input file (in any base):
 [0:3]: OTFD1 (STM32H7A3/7B3, STM32H7B0, or STM32L5), [4:7]:
 OTFD2 (STM32H7A3/7B3 and STM32H7B0 case).

<Region_Mode>: Only in the case of BIN input file (in any base), only two
 bits [0:1] where

 00: instruction only (AES-CTR)
 01: data only (AES-CTR)
 10: instruction + data (AES-CTR)
 11: instruction only (EnhancedCipher)

<key_address>: Only in the case of BIN input file (in any base), random
key values in internal flash memory.

-k, --key

Description: sets the AES-GCM encryption key.

Syntax: -k <Key_file>

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

42/169 AN5054 Rev 16

< Key _file> : A 16-byte binary file.

-n, --nonce

Description: sets the AES-GCM nonce.

Syntax: -n <Nonce_file>

<Nonce _file> A 12-byte binary file.

-v, --ver

Description: sets the image version.

Syntax: -v <Image_version>

<Image_version> : A value between 0 and 255 in any base.

-ob, --obfile

Description: provides an option bytes configuration file.
The option bytes file field is only mandatory for SFI applications (first install) to allow
option bytes programming, otherwise it is optional.
Only csv (comma separated value) file format is supported as input for this field, it
is composed from two vectors: register name and register value respectively.

Note: The number of rows in the CSV file is product dependent (refer to the example available for
each product). For instance there are nine rows for all STM32H7 products, with the last row
"reserved", except for dual-core devices. It is important to neither change the order of, nor
delete, rows.

Example: for STM32H75x devices, nine option byte registers must be configured, and they
correspond to a total of nine lines in the csv file (Figure 27).

Syntax: -ob <CSV_file>

<CSV_file >: A csv file with nine values.

Figure 27. Option bytes file example

-m, --module
Description: adds an input SMI file.
This option can be used more than once to add multiple SMI files.
This is optional (used only for combined SFI-SMI).

Syntax: -m <SMI_file>

AN5054 Rev 16 43/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

<SMI_file >: SMI file.[<Address>]: Address is provided only for relocatable SMI.

-rs, --ramsize

Description: define the available ram size (in the case of SFI)

Syntax: -rs <Size>

< Size >: RAM available size in bytes
Note: The maximum RAM size of each device is mentioned in the descriptor. For example the

maximum RAM size of the STM32WL is 20 Kbytes.

-ct, --token

Description: continuation token address (in the case of SFI)

Syntax: -ct <Address>

< Address >: continuation token flash memory address

-o, --outfile
Description: sets the output SFI file to be created.

Syntax: -o <out_file>

<out_file > : the SFI file to be generated (must have the “.sfi”
extension).

Example of SFI generation command using an ELF file:

STM32TrustedPackageCreator_CLI.exe --sfi -fir firm.axf
-k encyption_key.bin -n nonce.bin -ob SFI_OB_U5_4M.csv -v 1
-rs 0x55500 -devid 0x481 -o out.sfi

The result of the previous command is shown in Figure 28.

Figure 28. SFI generation example using an ELF file

3.6.2 Steps for SMI generation (CLI)
In order to generate an SMI image in CLI mode, the user must use the “-smi, --smi”
command followed by the appropriate inputs.

Inputs for the “smi” command are:

-elf, --elfile

Description: sets the input ELF file (only ELF format is supported).

Syntax: - elf <ELF_file>

DT48249V3

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

44/169 AN5054 Rev 16

<ELF_file> : ELF file. An ELF file can have any of the extensions: “.elf”, “.axf”,
“.o”, “.so”,“.out”.

-s, --sec
Description: sets the name of the section to be encrypted.

Syntax: -s <section_name>

<section_name> : Section name.

-k, --key

Description: sets the AES-GCM encryption key.

Syntax: -k <Key_file>

< Key _file> : A 16-byte binary file.

-n, --nonce

Description: sets the AES-GCM nonce.

Syntax: -n <Nonce_file>

<Nonce_file> : A 12-byte binary file.

-sv, --sver

Description: sets the security version file

The security version file is used to make the SMI image under preparation
compatible with a given RSS version, since it contains a corresponding identifying
code (almost the HASH of the RSS).

Syntax: -sv <SV_file>

<SV_file> : A 16-byte file.

-o, --outfile

Description: Sets the SMI file to be created as output

Syntax: -o <out_file>

<out_file > : SMI file to be generated, must have the .smi extension.

-c, --clear

Description: Sets the clear ELF file to be created as output corresponding to the
data part of the input file

Syntax: -c <ELF_file>

<ELF_file >: Clear ELF file to be generated.

Example SMI generation command:
STM32TrustedPackageCreator_CLI.exe –smi -elf
FIR_module.axf -s “ER_PCROP” -k test_firmware_key.bin
-n nonce.bin -sv svFile -o test.smi -c clear.smi

AN5054 Rev 16 45/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Figure 29. SMI generation example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

46/169 AN5054 Rev 16

3.6.3 Steps for SSP generation (CLI)
To generate an SSP image in CLI mode, the user must use the “-ssp, --ssp”
command followed by the appropriate inputs.

Inputs for the “ssp” command are:

-ru, --rma_unlock

Description: RMA unlock password

Syntax: -ru <RMA_Unlock>

<RMA_Unlock> : Hexadecimal value 0x0000 to 0x7FFF

-rr, --rma_relock
Description: RMA relock password

Syntax: -rr <relock_value>

<relock_value> : Hexadecimal value 0x0000 to 0x7FFF

-b, --blob

Description: Binary to encrypt

Syntax: -b <Blob>

<Blob> : Secrets file of size 148 bytes

-pk, --pubk

Description: OEM public key file

Syntax: -pk <PubK.pem>

<PubK> : pem file of size 178 bytes

-k, --key

Description: AES-GCM encryption key

Syntax: -k <Key_File>

 <Key_File> : Bin file, its size must be 16 bytes

-n, --nonce

Description: AES-GCM nonce

Syntax: -n <Nonce_File>

<Nonce_File> : Bin file, its size must be 16 bytes

-o, --out
Description: Generate an SSP file

Syntax: -out <Output_File.ssp>

 <Output_File> : SSP file to be created with (extension .ssp)

If all input fields are validated, an SSP file is generated in the directory path already
mentioned in the “-o” option.

AN5054 Rev 16 47/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Example SSP generation command:
STM32TrustedPackageCreator_CLI –ssp –ru 0x312 –rr 0xECA

–b “C:\SSP\secrets\secrets.bin”

–pk “C:\SSP\OEMPublicKey.pem” –k “C:\SSP\key.bin”

–n “C:\SSP\nonce.bin” –o “C:\out.ssp”

Once the operation is done, a green message is displayed to indicate that the
generation was finished successfully. Otherwise, an error occurred.

Figure 30. SSP generation success

3.7 Using the STM32 Trusted Package Creator tool graphical
user interface
The STPC is also available in graphical mode. This section describes its use. The STM32
Trusted Package Creator tool GUI presents two tabs, one for SFI generation, one for SFIx
generation and one for SMI generation.

3.7.1 SFI generation using STPC in GUI mode
Figure 31 shows the graphical user interface tab corresponding to SFI generation.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

48/169 AN5054 Rev 16

Figure 31. SFI generation Tab

To generate an SFI image successfully from the supported input firmware formats,
the user must fill in the interface fields with valid values.

AN5054 Rev 16 49/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

SFI GUI tab fields
• Firmware files:

The user needs to add the input firmware files with the “Add” button.
If the file is valid, it is appended to the “input firmware files“ list, otherwise an error
message box appears to notify the user that either the file could not be opened, or the
file is not valid.
Clicking on “input firmware file“ causes related information to appear in the “Firmware
information” section (Figure 32).

Figure 32. Firmware parsing example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

50/169 AN5054 Rev 16

• Encryption key and nonce file:
The encryption key and nonce file are selected by entering their paths (absolute or
relative), or by selecting them with the “Open” button. Notice that sizes must be
respected (16 bytes for the key and 12 bytes for the nonce).

• Option bytes file:
The option bytes file is selected the same way as the encryption key and nonce. Only
csv files are supported.

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES
The option bytes are described in the product reference manual.
In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.
• SMI files:

SMI files are added the same way as the firmware files. Selecting a file causes related
information to appear in the “Firmware information” section.

• Image version:
Choose the image version value of the SFI under generation within this interval:
[0..255].

• Output file:
Sets the folder path in which the SFI image is to be created. This is done by entering
the folder path (absolute or relative) or by using the “Select folder” button.

Note: By using the “Select folder” button, the name “out.sfi” is automatically suggested. This can
be kept or changed.
• ‘Generate SFI’ button:

Once all fields are filled in properly, the “Generate SFI” button becomes enabled. The
user can generate the SFI file by a single click on it.
If everything goes well, a message box indicating successful generation appears
(Figure 33: SFI successful generation in GUI mode example) and information about the
generated SFI file is displayed in the SFI information section.

AN5054 Rev 16 51/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Figure 33. SFI successful generation in GUI mode example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

52/169 AN5054 Rev 16

3.7.2 SFIx generation using STPC in GUI mode
Figure 34 shows the graphical user interface tab corresponding to SFIx generation.

Figure 34. SFIx generation Tab

To generate an SFIx image successfully from the supported input firmware formats,
the user must fill in the interface fields with valid values.

AN5054 Rev 16 53/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

SFIx GUI tab fields

Firmware files: The user needs to add the input firmware files with the “Add” button.
If the file is valid, it is appended to the “input firmware files “list, otherwise an error
message box appears to notify the user that either the file could not be opened, or
the file is not valid. Clicking on “input firmware file“ causes information related
information to appear in the “Firmware information” section (Figure 35).

Figure 35. Firmware parsing example

As is the case for the SFI use case, once all fields are filled in properly, the
“Generate SFIx” button becomes enabled. The user can generate the SFIx file by a
single click on it. If everything goes well, a message box indicating successful
generation appears (Figure 36: SFIx successful generation in GUI mode example)
and information about the generated SFIx file is displayed in the SFIx information
section.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

54/169 AN5054 Rev 16

Figure 36. SFIx successful generation in GUI mode example

AN5054 Rev 16 55/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

3.7.3 SMI generation using STPC in GUI mode
Figure 37 shows the graphical user interface tab corresponding to SMI generation.

Figure 37. SMI generation Tab

To generate an SMI image successfully from an ELF file, the user must fill in the
interface fields with valid values.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

56/169 AN5054 Rev 16

SMI GUI tab fields
• ELF file:

In this case, the input file can only be an ELF file.
If the file is valid, information is displayed in the “ELF information” tab, otherwise an
error message box appears to notify the user that either the file could not be opened or
the file is not valid.

• Encryption key and nonce file:
As for SFI, the encryption key and nonce file are selected in the same way as the ELF
file. Notice that sizes must be respected (16 bytes for the key and 12 bytes for the
nonce file).

• Security version file:
The security version file is used for the same purpose as explained in the CLI section.
The security version file size must be 16 bytes.

• Section:
This is a section list that can be used to select the name of the section to be encrypted.

• Output files:
Sets the folder path into which the SMI image and its clear part are to be created. This
is done by entering the folder path (absolute or relative) or by using the “Select folder”
button.

Note: For both output fields, when using the “Select folder” button, a name is suggested
automatically. This can be kept or changed.
• ‘Generate SMI’ button:

When all fields are filled in properly the ‘Generate SMI’ button is enabled, and the user
can generate the SMI file and its corresponding clear data part by a single click on it.
A message box informing the user that generation was successful must appear
(Figure 38: SMI successful generation in GUI mode example), with additional
information about the generated SMI file displayed in the ‘SMI information’ section. In
the case of invalid input data, an error message box appears instead.

AN5054 Rev 16 57/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Figure 38. SMI successful generation in GUI mode example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

58/169 AN5054 Rev 16

3.7.4 SSP generation using STPC in GUI mode
Figure 39 shows the SSP generation graphical user interface tab.

Figure 39. SSP generation tab

To generate an SSP image successfully from the supported firmware input formats,
the user must fill in the interface fields with valid values.

SSP GUI tab fields

RMA Lock: Unlock password, hexadecimal value from 0x0000 to 0x7FFF

RMA Relock: Relock password, hexadecimal value from 0x0000 to 0x7FFF

Secrets file: Binary file of size 148 bytes to be encrypted. Can be selected by
entering the file path (absolute or relative), or by selection with the Open button.

Encryption key and nonce files: The encryption key and nonce file can be
selected by entering their paths (absolute or relative), or by selection with the Open
button. Notice that sizes must be respected (16 bytes for the key and 12 bytes for
the nonce).

OEM public key file: 178-byte .pem file.

AN5054 Rev 16 59/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

Output SSP file: Select the output directory by entering the SSP file name to be
created with a .ssp extension.

When all fields are properly filled in, the user can start the generation by clicking on
the Generate SSP button (the button becomes active).

Figure 40. SSP output information

When the generation is complete, SSP information is available in the SSP overview
section.
• File name: SSP output file name.
• Type: SSP format.
• Size: indicates the generated file size including all data fields.

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

60/169 AN5054 Rev 16

3.7.5 Settings
The STPC allows generation to be performed respecting some user-defined
settings. The settings dialog is displayed by clicking the settings icon (see
Figure 41) in the tool bar or in the menu bar by choosing: Options -> settings.

Figure 41. Settings icon and settings dialog box

Settings can be performed on:
• Padding byte:

When parsing Hex and Srec files, padding can be added to fill gaps between close
segments to merge them and reduce the number of segments. The user might choose
to perform padding either with 0xFF (the default value) or 0x00.

• Settings file:
When checked, a “settings.ini” file is generated in the executable folder. It saves the
application state: window size and field contents.

• Log file:
When checked, a log file is generated in the selected path.

AN5054 Rev 16 61/169

AN5054 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool

168

3.7.6 Log generation
A log can be visualized by clicking the “log” icon in the tool bar or menu bar:
Options-> log.

Figure 42 shows a log example:

Figure 42. Log example

Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool AN5054

62/169 AN5054 Rev 16

3.7.7 SFI and SMI file checking function
This function checks the validity and information parsing of an SFI or SMI file.

It is accessed by clicking the Check SFI/SMI button in the tool bar or the menu bar:
File -> Check SFI/SMI.

Figure 43 shows a check SFI example:

Figure 43. Check SFI file example

AN5054 Rev 16 63/169

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

168

4 Encrypted firmware (SFI/SFIx)/ module (SMI)
programming with STM32CubeProgrammer

STM32CubeProgrammer is a tool for programming STM32 devices through UART,
USB, SPI, CAN, I2C, JTAG, and SWD interfaces. So far, programming via
JTAG/SWD is only supported with an STLINK probe.

The STM32CubeProgrammer tool currently also supports secure programming of
SFI and SMI images using UART, USB, SPI, JTAG/SWD interfaces, and SFIx using
only JTAG/SWD interfaces. The tool is currently available only in CLI mode, it is
available free of charge from www.st.com.

4.1 Chip certificate authenticity check and license mechanism
The SFI solution was implemented to provide a practical level of IP protection chain
from the firmware development up to flashing the device, and to attain this
objective, security assets are used, specifically device authentication and license
mechanisms.

4.1.1 Device authentication
The device authentication is guaranteed by the device’s own key.

In fact, a certificate is related to the device’s public key and is used to authenticate
this public key in an asymmetric transfer: the certificate is the public key signed by a
Certificate Authority (CA) private key. (This CA is considered as fully trusted).

This asset is used to counteract usurpation by any attackers who could substitute
the public key with their own key.

4.1.2 License mechanism
One important secure flashing feature is the ability of the firmware provider to
control the number of chips that can be programmed. This is where the concept of
licenses comes in to play. The license is an encrypted version of the firmware key,
unique to each device and session. It is computed by a derivation function from the
device’s own key and a random number chosen from each session (the nonce).

Using this license mechanism, the OEM is able to control the number of devices to
be programmed, since each license is specific to a unique chip, identified by its
public key.

License mechanism general scheme

When a firmware provider wants to distribute new firmware, they generate a
firmware key, and use it to encrypt the firmware.

When a customer wants to download the firmware to a chip, they send a chip
identifier to the provider server, HSM, or any provider license generator tool, which

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

64/169 AN5054 Rev 16

returns a license for the identified chip. The license contains the encrypted firmware
key, and only this chip can decrypt it.

License distribution

There are many possible ways for the firmware provider to generate and distribute
licenses.

ST solution is based on STM32HSM: a standalone chip in a smartcard form factor
that could be programmed during the SFI/SMI preparation then used on the device
production line. This solution is securing end to end transport of the firmware. Only
the STM32 is capable to authenticate and decrypt the firmware. In addition, an ST
solution based on STM32HSM is protecting device production against cloning.

Other solutions could be considered and STMicroelectronics, through its
partnership program, is offering programming services. Find yours from the
following link: Global Services from Partners - STMicroelectronics.

HSM programming by OEM for license distribution

Before an OEM delivers an HSM to a programming house for deployment as a license
generation tool for programming of relevant STM32 devices, some customization of the
HSM must be done first.

The HSM needs to be programmed with all the data needed for the license scheme
deployment. In the production line, a dedicated API is available for HSM
personalization and provisioning.

This data is as follows:
• The counter: the counter is set to a maximum value that corresponds to the maximum

number of licenses that can be delivered by the HSM. It aims to prevent
overprogramming.
It is decremented with each license delivered by the HSM.
No more licenses are delivered by the HSM once the counter is equal to zero.
The maximum counter value must not exceed a maximum predefined value, which
depends on the HSM used.

• The firmware key: the key size is 32 bytes. It is composed of two fields: the
initialization vector field (IV) and the key field, which are used for AES128-GCM
firmware encryption.
Both fields are 16 bytes long, but the last 4 bytes of the IV must be zero (only 96 bits of
IV are used in the AES128-GCM algorithm).
Both fields must remain secret; that is why there are encrypted before being sent to the
chip.
The key and IV remains the same for all licenses for a given piece of firmware.
However, they must be different for different firmware or different versions of the same
firmware.

• The firmware identifier: allows the correct HSM to be identified for a given firmware.
• The personalization data: this is specific to each MCU and delivered inside the TPC

directory. More info about personalization data in Section 5.3.5: Performing HSM
programming for license generation using STPC (CLI mode).

https://www.st.com/en/partner-products-and-services/global-services-from-partners.html

AN5054 Rev 16 65/169

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

168

The HSM must be in “OPERATIONAL STATE” (locked) when shipped by the OEM
to guarantee the OEM’s data confidentiality and privacy.

STMicroelectronics provides the tools needed to support SFI/SFIx via HSM. In fact,
HSM programming is supported by the STM32 Trusted Package Creator tool.
Figure 44 shows the GUI for HSM programming in the STPC tool.

Figure 44. HSM programming GUI in the STPC tool

During SFI install, STM32CubeProgrammer communicates with the device to get
the chip certificate, upload it into the HSM to request the license. Once the license
is generated by the HSM, it gives it back to the STM32 device.

4.2 Secure programming using a bootloader interface

4.2.1 Secure firmware installation using a bootloader interface flow
The production equipment on the OEM-CM production line needs to be equipped
with a flashing tool (FT) supporting the programming of SFI images. The flashing
tool to be used on OEM-CM production line is STM32CubeProgrammer, which is
given the data blob prepared by the STPC, containing the image header and the
encrypted image data blob.

Note: The SFI install is performed successfully only if a valid license is given to the flashing tool.

STM32CubeProgrammer supports secure firmware install for such devices as well
as all STM32H7, STM32L4, STM32L5, STM32WL, STM32U5, and STM32MP1
devices available so far.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

66/169 AN5054 Rev 16

For more details on SFI over these STM32 devices, refer to AN4992 [1]. This
document is available on www.st.com.

The general flow of the secure firmware installation using a bootloader interface on
a chip for STM32H7 and STM32L4 secure devices is shown respectively in
Figure 45 and Figure 46 below.

Figure 45. Secure programming via STM32CubeProgrammer overview on STM32H7
devices

Figure 46. Secure programming via STM32CubeProgrammer overview on STM32L4
devices

AN5054 Rev 16 67/169

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

168

4.2.2 Secure module installation using a bootloader interface flow
As explained in Section 3.4: SMI generation process, outputs are generated for this
particular use case:
• The first part, not encrypted: this is a regular ELF/AXF file, containing all the sections

except the code section extracted by the STPC to prepare the SMI module.
• The encrypted SMI module, which contains the protected code.

The first part is programmed into the chip using any means (JTAG flasher, UART
bootloader, and so on, as for any regular ELF/AXF file.

The full content of the SMI image file and its corresponding license are given to
STM32CubeProgrammer that places them in RAM.

The SMI has to be invoked via the secure bootloader.
Note: The SMI install is performed successfully only if the adequate license is given to the flashing

tool.

4.2.3 STM32CubeProgrammer for SFI using a bootloader interface
For SFI programming, the STM32CubeProgrammer is used in CLI mode (the only
mode so far available) by launching the following command:

-sfi, --sfi
Syntax: -sfi protocol=<Ptype> <file_path> <licenseFile_path>

[<protocol=Ptype>] : Protocol type to be used: static/live
 Only a static protocol is supported so far

 Default value static

<file_path> : Path of sfi file to be programmed

[hsm=0|1] : Set a user option for HSM use value in
 {0 (do not use HSM), 1 (use HSM)}
 Default value : hsm = 0

<lic_path|slot=slotID> : Path to the SFI license file (if hsm = 0)
 or reader slot ID if HSM is used (hsm = 1)

[<licMod_path>|slot=slotID]: List of the integrated SMI license file paths

If hsm = 1, the user must provide the slot ID parameter.

If hsm = 0, the user must provide the license path file that can be generated
separately using the following command line, provided an HSM card is available:
-hsmgetlicense

During th SFI process, the generated license can be used multiple times with the
same MCU, without the need of an HSM card.

Example using the UART bootloader interface:

To use an HSM, the command is:
STM32_Programmer.exe -c port=COM1 br=115200 -sfi "C:\SFI\data.sfi"
hsm=1 slot=1

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

68/169 AN5054 Rev 16

To use a license file, the command is:

STM32_Programmer.exe -c port=COM1 br=115200 -sfi
"C:\SFI\data.sfi" --sfi hsm=0 "C:\SFI\license.bin"

This command allows secure installation of firmware “data.sfi” into a dedicated flash
memory address.

4.2.4 STM32CubeProgrammer for SMI via a bootloader interface
For SMI programming, STM32CubeProgrammer is used in CLI mode by launching
the following command:

-smi, --smi

Syntax: -smi protocol=<Ptype> <file_path> [<address>] <licenseFile_path>

<protocol=Ptype> : Protocol type to be used: static/live
 Only a static protocol is supported so far
 Default value static

<file_path> : Path of smi file to be programmed

[hsm=0|1] : Set user option for HSM use
 value in {0 (do not use HSM), 1 (use HSM)}
 Default value: hsm=0

[<address>] : Destination address of the smi module
 needed only for relocatable SMI

<lic_path|slot=slotID> : Path to the SMI license file (if hsm=0) or reader
 slot ID if HSM is used (hsm=1)

Example using the UART bootloader interface:

STM32_Programmer.exe -c port=COM1 br=115200 -sfi
"C:\SFI\data.sfi" hsm=0 "C:\SFI\license.bin"

This command allows programming of the SMI specified file “data.smi” into a
dedicated PCROPed area.

AN5054 Rev 16 69/169

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

168

4.2.5 STM32CubeProgrammer for SSP via a bootloader interface
In this part, the STM32CubeProgrammer tool is used in CLI mode (the only mode
available so far for secure programming) to program the SSP image already
created with STM32 Trusted Package Creator. STM32CubeProgrammer supports
communication with STMicroelectronics HSMs (hardware secure modules based
on smartcard) to generate a license for the connected STM32 MPU device during
SSP install.

The SSP flow can be performed using both USB or UART interfaces (not the
STLINK interface).

STM32CubeProgrammer exports a simple SSP command with some options to
perform the SSP programming flow.

-ssp, --ssp

Description: Program an SSP file

Syntax: -ssp <ssp_file_path> <ssp-fw-path> <hsm=0|1>
<license_path|slot=slotID>

 <ssp_file_path> : SSP file path to be programmed, bin, or ssp extensions

 <ssp-fw-path> : SSP signed firmware path

 <hsm=0|1> : Set user option for HSM use (do not use HSM / use HSM)

Default value : hsm=0

<license_path|slot=slotID> :Path to the license file (if hsm=0)

Reader slot ID if HSM is used (if hsm=1)

Example using USB DFU bootloader interface:

STM32_Programmer_CLI.exe -c port=usb1 –ssp “out.ssp” “tf-a-ssp-stm32mp157f-
dk2-trusted.stm32” hsm=1 slot=1

Note: All SSP traces are shown on the output console.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

70/169 AN5054 Rev 16

Figure 47. SSP installation success

If there is any faulty input, the SSP process is aborted, and an error message is
displayed to indicate the root cause of the issue.

AN5054 Rev 16 71/169

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

168

4.2.6 STM32CubeProgrammer get certificate via a bootloader interface
To get the chip certificate, STM32CubeProgrammer is used in CLI mode by
launching the following command:

-gc, --getcertificate

Syntax: –gc <file_path>

Example using the UART bootloader interface:

STM32_Programmer.exe -c port=COM1 -gc
"C:\Demo_certificate.bin"

This command allows the chip certificate to be read and uploaded into the specified
file: "C:\Demo_certificate.bin"

The execution results are shown in Figure 48.

Figure 48. Example of getcertificate command execution using UART interface

4.3 Secure programming using the JTAG/SWD interface

4.3.1 SFI/SFIx programming using JTAG/SWD flow
It is also possible to program the SFI/SFIx image using the JTAG interface. Here the
readout protection mechanism (RDP level 1) cannot be used during SFI/SFIx as user flash
memory is not accessible after firmware chunks are written to RAM through the JTAG
interface.

The whole process happens in RDP level 0. In the case of SFIx programming the code is
protected by the OTFDEC encryption.

SFI via debug interface is currently supported for STM32H753XI, STM32H7A3/7B3
and STM32H7B0, STM32H723/333 and STM32H725/335, and STM32L5 devices.

SFIx via debug interface is currently supported for STM32H7A3/7B3 and
STM32H7B0, STM32H723/733, STM32L5, and STM32U5 devices.

For these devices, there is around 1 Mbyte of RAM available, with 512 Kbytes in
main SRAM. This means that the maximum image size supported is 1 Mbyte, and
the maximum area size is 512 Kbytes.

To remedy this, the SFI/SFIx image is split into several parts, so that each part fits
into the allowed RAM size.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

72/169 AN5054 Rev 16

An SFI/SFIx is then performed. Once all its SFI/SFIx parts are successfully installed, the
global SFI/SFIx image install is successful.

Other limitations are that security must be left activated in the configuration area if there is a
PCROP area. In the case of STM32L5 and STM32U5 devices, STM32CubeProgrammer
sets the RDP Level on 0.5.

The SFI flow for programming through JTAG is described in Figure 49.

Figure 49. SFI programming by JTAG/SWD flow overview
(monolithic SFI image example)

AN5054 Rev 16 73/169

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

168

4.3.2 SMI programming through JTAG/SWD flow
For SMI programming through JTAG/SWD the process flow is similar to that using
the UART bootloader.

This means that the whole SMI image and its corresponding license must be
transferred to RAM before starting. Then, there are two options to access SMI
services through JTAG:
• Write a small program in RAM that calls the public API (API details are available under

a nondisclosure agreement)
• Use the secure API directly.

The essential steps of the SMI programming by JTAG flow are described in
Figure 50: SMI programming by JTAG flow overview.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

74/169 AN5054 Rev 16

Figure 50. SMI programming by JTAG flow overview

AN5054 Rev 16 75/169

AN5054 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer

168

4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD
The only modification in the STM32CubeProgrammer secure command syntax is
the connection type that must be set to “jtag” or “swd”, otherwise all secure
programming syntax for supported commands is identical.

Note: Using a debug connection “HOTPLUG” mode must be used with the connect command.

Example “getcertificate” command using JTAG

STM32_Programmer.exe –c port=jtag mode=HOTPLUG -gc
testJTAG_Certif.bin

The result of this example is shown in Figure 51.

Figure 51. Example of getcertificate command using JTAG

Example “smi” command using SWD

-c port=swd mode=HOTPLUG -smi protocol=static
"RefSMI_MDK/FIR_module.smi" "RefSMI_MDK/licenseSMI.bin" -vb 3
-log

4.4 Secure programming using bootloader interface
(UART/I2C/SPI/USB)
It is also possible to program the SFI/SFIx image using the bootloader interface
(UART/I2C/SPI/USB). FDCAN is not supported by STLINK-V3.

The whole process happens in RDP level 0.5. In the case of SFIx programming the
code is protected by the OTFDEC encryption.

SFI via the bootloader interface (UART/I2C/SPI/USB) is currently supported for
STM32L5 devices. It needs to load an external loader using the -elbl command in
the SRAM.

For STM32L5 devices, 1 Mbyte of SRAM is available, with 512 Kbytes in the main
SRAM. This means that the maximum image size supported is 1 Mbyte, and the
maximum area size is 512 Kbytes.

To remedy this, the SFI/SFIx image is split into several parts, so that each part fits
into the allowed SRAM size.

Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer AN5054

76/169 AN5054 Rev 16

An SFI/SFIx is then performed. Once all its SFI/SFIx parts are successfully
installed, the global SFI/SFIx image install is successful.

SFI example

STM32_Programmer_CLI.exe -c port=usb1 -sfi out.sfix hsm=0
license.bin -rsse RSSe\L5\enc_signed_RSSe_sfi_bl.bin

SFIx example

STM32_Programmer_CLI.exe -c port=usb1 -elbl
MX25LM51245G_STM32L552E-EVAL-SFIX-BL.stldr -sfi out.sfix
hsm=0 license.bin -rsse RSSe\L5\enc_signed_RSSe_sfi_bl.bin

AN5054 Rev 16 77/169

AN5054 Example of SFI programming scenario

168

5 Example of SFI programming scenario

5.1 Scenario overview
The actual user application to be installed on the STM32H753XI (or STM32L5)
device makes “printf” packets appear in serial terminals. The application was
encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned
SFI application.

5.2 Hardware and software environment
For successful SFI programming, some hardware and software prerequisites apply:
• STM32H743I-EVAL board
• STM32H753XI with bootloader and RSS programmed
• RS-232 cable for SFI programming via UART
• Micro-B USB for debug connection
• PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• STM32 Trusted Package Creator v0.2.0 (or greater) package available from
www.st.com

• STM32CubeProgrammer v0.4.0 (or greater) package available from www.st.com

Note: Refer to [4] or [5] for the supported operating systems and architectures.

5.3 Step-by-step execution

5.3.1 Build OEM application
OEM application developers can use any IDE to build their own firmware.

5.3.2 Performing the option byte file generation (GUI mode)
The STM32 Trusted Package Creator tool GUI presents an SFI OB tab to generate
an option bytes CSV file with a custom option byte value.

To generate an SFI CSV option bytes file, the user must:
1. Select the concerned product.
2. Fill the option bytes fields with desired values.
3. Select the generation path.
4. Click on the Generate OB button.

Example of SFI programming scenario AN5054

78/169 AN5054 Rev 16

Figure 52. STM32Trusted Package Creator SFI OB GUI

5.3.3 Perform the SFI generation (GUI mode)
To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is
provided in AXF format in addition to a CSV file to set the option bytes
configuration. A 128-bit AES encryption key and a 96-bit nonce are also provided to
the tool. They are available in the “SFI_ImagePreparation” directory.

An “.sfi” image is then generated (out.sfi).
Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each

product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES
The option bytes are described in the product reference manual.
In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

Note: If you want to reopen the Device using the Debug Authentication mechanism, a DA ObKey
file must be included in the SFI image, otherwise the device becomes inaccessible.

Figure 53: STPC GUI during SFI generation shows the STPC GUI during the SFI
generation.

AN5054 Rev 16 79/169

AN5054 Example of SFI programming scenario

168

Figure 53. STPC GUI during SFI generation

Example of SFI programming scenario AN5054

80/169 AN5054 Rev 16

5.3.4 Performing HSM programming for license generation using STPC
(GUI mode)
The OEM must provide a license generation tool to the programming house to be
used for license generation during the SFI install process.

In this example, HSMs are used as license generation tools in the field. See
Section 4.1.2: License mechanism for HSM use and programming.

Figure 54 shows an example for HSM programming by OEM to be used for SFI
install.

The maximum number of licenses delivered by the HSM in this example is 1000.

This example uses HSM version 2, and is also valid for version 1 when the ’version’
field is set accordingly. The HSM version can be identified before performing the
programming operation by clicking the Refresh button to make the version number
appear in the ‘version’ field.

The STM32 Trusted Package Creator tool provides all personalization package files
ready to be used on SFI/SFIx and SSP flows. To get all the supported packages, go
to the PersoPackages directory residing in the tool’s install path.

Each file name starts with a number, which is the product ID of the device. Select
the correct one.

To obtain the appropriate personalization data, you first need to obtain the product
ID:
• Use the STM32CubeProgrammer tool to launch a Get Certificate command to

generate a certificate file containing some chip security information, bearing in mind
that this command is only recognized only for devices that support the security feature:
STM32_Programmer_CLI –c port=swd –gc "certificate.bin"

A file named “certificate.bin” is created in the same path of the
STM32CubeProgrammer executable file.

• Open the certificate file with a text editor tool, then read the eight characters from the
header, which represents the product ID.
For example:
– When using the STM32H7 device, you find: 45002001.
– When using the STM32L4 device, you find: 46201002.

Once you have the product ID, you can differentiate the personalization package to
be used on the HSM provisioning step respecting the following naming convention:

ProdcutID_FlowType_LicenseVersion_SecurityVersion.enc.bin

For example: 47201003_SFI._01000000_00000000.enc.bin

Based on this name we can retrieve the associated information:
• Product ID = 47201003 for STM32L5 devices (0x472 as device ID).
• Type = SFI
• License version = 01 (Large endian)
• Security version = 0

AN5054 Rev 16 81/169

AN5054 Example of SFI programming scenario

168

Figure 54. Example of HSM programming using STPC GUI

Note: When using HSM version1, the “Personalization data file” field is ignored when
programming starts. It is only used with HSM version 2.
When the card is successfully programmed, a popup window message “HSM successfully
programmed” appears, and the HSM is locked. Otherwise, an error message is displayed.

Example of SFI programming scenario AN5054

82/169 AN5054 Rev 16

5.3.5 Performing HSM programming for license generation using STPC
(CLI mode)
STM32 Trusted Package Creator provides CLI commands to program HSM cards.
To configure the HSM before programming, the user must provide the mandatory
inputs by using the specific options.

Example of HSM version 1 provisioning
STM32TrustedPackageCreator_CLI -hsm -i 1 -k "C:\TrustedFiles\key.bin" –n
"C:\TrustedFiles\nonce.bin" -id HSMv1_SLOT_1-mc2000

• -i: select the slot ID
• -k: set the encryption key file path
• -n: set the nonce file path
• -id: set the firmware identifier
• -mc: set the maximum number of licenses.

HSMv2 allows users to personalize their own HSM to achieve, for example,
compatibility with the desired STM32 device. This solution covers the limitations of
HSMv1 (static behavior), so it is possible to support new devices that are not
available on HSMv1.

To perform this operation the user first needs to know the product ID of the device.
This information is provided in the STM32 device certificate, which can be obtained
with the following command:
STM32_Programmer.exe -c port=COM1 –gc "C:\SFI\Certificate.bin"

After getting the binary file of the device certificate, it is necessary to open this file
using a HEX editor application. Once these steps are done the user can read the
product ID.

Figure 55. Example product ID

The product ID of the STM32WL used is: 49701005

In the second step, the users provision their own HSMv2 by programming it using
STPC. The personalization data file .bin can be found under
"..\bin\PersoPackages".

AN5054 Rev 16 83/169

AN5054 Example of SFI programming scenario

168

Example of HSM version 2 provisioning

A new option [-pd] must be inserted to include the personalization data:
STM32TrustedPackageCreator_CLI -hsm -i 1 -k "C:\TrustedFiles\key.bin" –n
"C:\TrustedFiles\nonce.bin" -id HSMv2_SLOT_2 -mc 2000 -pd
"C:\TrustedFiles\enc_ST_Perso_L5.bin"

• -pd: Set the personalization data file path.

To obtain the appropriate personalization data file and for further information, refer
to Section 5.3.5: Performing HSM programming for license generation using STPC
(CLI mode).

Note: A green message display indicates that the programming operation succeeded, otherwise a
red error message is displayed.
If the HSM is already programmed and there is a new attempt to reprogram it, an error
message being displayed to indicate that the operation failed, and the HSM is locked.
HSM v1 supports a list of a limited number of STM32 devices such as STM32L4, STM32H7,
STM32L5, and STM32WL.

Example of HSM get information

If the HSM is already programmed or is virgin yet and whatever the version, a get
information command can be used to show state details of the current HSM by
using the command below:
STM32TrustedPackageCreator_CLI -hsm –i 1 –info

Figure 56. HSM information in STM32 Trusted Package Creator CLI mode

Example of SFI programming scenario AN5054

84/169 AN5054 Rev 16

5.3.6 Programming input conditions
Before performing an SFI install make sure that:
• Flash memory is erased.
• No PCROPed zone is active, otherwise destroy it.
• The chip must support security (a security bit must be present in the option bytes).
• When using a UART interface, the user security bit in option bytes must be enabled

before launching the SFI command. For this, the following STM32CubeProgrammer
command is launched:
– Launch the following command (UART bootloader used => Boot0 pin set to VDD):

-c port=COM9 -ob SECURITY=1

• When using a UART interface the Boot0 pin must be set to VSS:
– After enabling security (boot0 pin set to VDD), a power off/power on is needed

when switching the Boot0 pin from VDD to VSS: power off, switch pin then power
on.

• When performing an SFI install using the UART bootloader then, no debug interface
must be connected to any USB host. If a debug interface is still connected, disconnect
it then perform a power off/power on before launching the SFI install to avoid any
debug intrusion problem.

• Boot0 pin set to VDD When using a debug interface.
• A valid license generated for the currently used chip must be at your disposal, or a

license generation tool to generate the license during SFI install (HSM).
• For STM32L5 products, TZEN must be set at 0 (TZEN=0).

AN5054 Rev 16 85/169

AN5054 Example of SFI programming scenario

168

5.3.7 Performing the SFI install using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode (the only
mode so-far available for secure programming) to program the SFI image “out.sfi”
already created in the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(Hardware secure modules based on smartcard) to generate a license for the
connected STM32 device during SFI install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal
and go to <STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:
STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfi" hsm=1 slot=<slot_id>

Note: In the case of an STM32L5 device the SFI install uses the RSSe and its binary file is located
in the STM32CubeProgrammer bin/RSSe folder.
The STM32CubeProgrammer command is as follows:
STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfi" hsm=1 slot=<slot_id> -rsse <RSSe_path>

Example of SFI programming scenario AN5054

86/169 AN5054 Rev 16

5.3.8 SFI with Integrity check (for STM32H73)
For the STM32H73, an integrity check mechanism is implemented. STM32 Trusted
Package Creator calculates the input firmware hash and integrates it into the SFI
firmware. The STM32H73 MCU is able to use this hash input to check the firmware
integrity.

Enabling this mechanism is mandatory for STM32H73, and it can be done through
GUI and CLI.

For the GUI part, hash is enabled by checking Generate hash.

Figure 57. STM32Trusted Package Creator SFI ‘hash Generator ‘check box

For the CLI part SFI command line must integrate the -hash option.

Usage example:

STM32TrustedPackageCreator_CLI.exe -sfi -fir OEM_Dev.bin
0x08000000 -k aeskey.bin -n nonce.bin -ob ob.csv -v 0 --
ramsize 0x1E000 --token 0x080FF000 -hash 1 -o outCLI.sfi

AN5054 Rev 16 87/169

AN5054 Example of SFI programming scenario

168

Figure 58 shows the SFI install via SWD execution and the HSM as license
generation tool in the field.

Example of SFI programming scenario AN5054

88/169 AN5054 Rev 16

Figure 58. SFI installation success using SWD connection (1)

AN5054 Rev 16 89/169

AN5054 Example of SFI programming scenario

168

Figure 59. SFI installation success using SWD connection (2)

Example of SFI programming scenario for STM32WL AN5054

90/169 AN5054 Rev 16

6 Example of SFI programming scenario for STM32WL

6.1 Scenario overview
The user application is developed by the OEM and encrypted by STPC. The OEM
provides the following elements to the programming house:
• The encrypted firmware of STM32WL
• HSMv1 or provisioned HSMv2
• STM32CubeProgrammer

With these inputs, the untrusted manufacturer is able to securely program the
encrypted firmware.

6.2 Hardware and software environment
For successful SFI programming, the following hardware and software prerequisites
apply:
• STM32WL5x board with bootloader and RSS programmed
• RS-232 cable for SFI programming via UART
• Micro-B USB for debug connection
• PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• STM32 Trusted Package Creator v1.7.0 (or greater) package available from
www.st.com

• STM32CubeProgrammer v2.16.0 (or greater) package available from www.st.com
• HSMv1 or HSMv2

Note: Refer to [4] or [5] for the supported operating systems and architectures.

6.3 Step-by-step execution

6.3.1 Build OEM application
OEM application developers can use any IDE to build their own firmware.

6.3.2 Perform the SFI generation (GUI mode)
The first step to install the secure firmware on STM32 devices is the encryption of
the user OEM firmware (already provided in AXF format) using the STM32 Trusted
Package Creator tool.

This is done by adding the following files in the STPC tool:
• OEM firmware
• A .csv file containing option bytes configuration
• A 128-bit AES encryption key
• A 96-bit nonce

AN5054 Rev 16 91/169

AN5054 Example of SFI programming scenario for STM32WL

168

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES
The option bytes are described in the product reference manual.
In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

A programmed HSM card must be inserted in the PC, and an “out.sfi” image is then
generated.

Figure 60. STPC GUI showing the STPC GUI during the SFI generation

Note: To perform HSM programming for license generation using STPC (GUI mode and CLI
mode) refer to the following sections:
Section 5.3.4: Performing HSM programming for license generation using STPC (GUI
mode)
Section 5.3.5: Performing HSM programming for license generation using STPC (CLI
mode)

DT54151V2

Example of SFI programming scenario for STM32WL AN5054

92/169 AN5054 Rev 16

6.3.3 Programming input conditions
Before performing an SFI install on STM32WL devices make sure that:
• Flash memory is erased
• No PCROPed zone is active, otherwise remove it
• The chip supports security (a security bit must be present in the option bytes)
• The security must be disabled, if activated
• The option bytes of the device are set to default values. This step is done by the two

commands given below.

-desurity: this option allows the user to disable security. After executing this
command, a power OFF / power ON must be done.

Example:
STM32_Programmer_CLI.exe -c port=swd mode=hotplug -dsecurity

Figure 61 hows the resulting output on the command line.

Figure 61. Example -dsecurity command-line output

AN5054 Rev 16 93/169

AN5054 Example of SFI programming scenario for STM32WL

168

-setdefaultob: this command allows the user to configure option bytes to their
default values. After executing this command, a power OFF/power ON must be
done.

Example:
STM32_Programmer_CLI.exe -c port=swd mode=hotplug -setdefaultob

Figure 62 shows the resulting output on the command line.

Figure 62. Example -setdefaultob command-line output

6.3.4 Perform the SFI install using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode (the only
mode so-far available for secure programming) to program the SFI image “out.sfi”
already created in the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(Hardware secure modules based on smartcard) to generate a license for the
connected STM32 device during SFI install.
Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal
and go to <STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:
STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
"<local_path>/out.sfi" hsm=1 slot=<slot_id> -rsse "< RSSe_path >"

Example of SFI programming scenario for STM32WL AN5054

94/169 AN5054 Rev 16

Note: The RSSe and its binary file are located in the STM32CubeProgrammer bin/RSSe/WL
folder.

Figure 63 shows the SFI install via SWD execution.

Figure 63. SFI installation via SWD execution command-line output

DT54154V2

AN5054 Rev 16 95/169

AN5054 Example of SFI programming scenario for STM32U5

168

7 Example of SFI programming scenario for STM32U5

7.1 Scenario overview
The actual user application to be installed on the STM32U5 device makes
“printf” packets appear in serial terminals. The application was encrypted using
the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned
SFI application.

7.2 Hardware and software environment
For successful SFI programming, some hardware and software prerequisites apply:
• STM32U5 board with bootloader and RSS programmed
• RS-232 cable for SFI programming via UART
• Micro-B USB for debug connection
• PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• STM32 Trusted Package Creator v1.2.0 (or greater) package available from
www.st.com

• STM32CubeProgrammer v2.8.0 (or greater) package available from www.st.com
• HSMv2

Note: Refer to [4] or [5] for the supported operating systems and architectures.

7.3 Step-by-step execution

7.3.1 Build OEM application
OEM application developers can use any IDE to build their own firmware.

7.3.2 Perform the SFI generation (GUI mode)
The first step to install the secure firmware on STM32 devices is the encryption of
the user OEM firmware (already provided in AXF format) using the STM32 Trusted
Package Creator tool. This step is done by adding the following files in the STPC
tool:
• An OEM firmware
• A .csv file containing option bytes configuration
• A 128-bit AES encryption key
• A 96-bit nonce

Example of SFI programming scenario for STM32U5 AN5054

96/169 AN5054 Rev 16

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES
The option bytes are described in the product reference manual.
In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

In addition, a programmed HSM card must be inserted in the PC. An “out.sfi” image
is then generated.

Figure 64 shows the STPC GUI during SFI generation.

Figure 64. STPC GUI during the SFI generation

Note: To perform HSM programming for license generation using STPC (GUI and CLI modes),
refer to Section 5.3.4: Performing HSM programming for license generation using STPC
(GUI mode) and Section 5.3.5: Performing HSM programming for license generation using
STPC (CLI mode).

AN5054 Rev 16 97/169

AN5054 Example of SFI programming scenario for STM32U5

168

7.3.3 Programming input conditions
Before performing an SFI install on STM32U5 devices, make sure that:
• The flash memory is erased.
• No WRP zone is active, otherwise destroy it.
• The chip supports security (a security bit must be present in the option bytes).
• If the security is activated, disable it.

7.3.4 Perform the SFI install using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode (the only
mode so far available for secure programming) to program the SFI image “out.sfi”
already created in the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(hardware secure modules based on smartcards) to generate a license for the
connected STM32 device during the SFI install process.

Using JTAG/SWD

First make sure that all the input conditions are respected, then open a cmd
terminal, go to <STM32CubeProgrammer_package_path>/bin and launch the
following STM32CubeProgrammer command:
STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
"<local_path>/out.sfi" hsm=1 slot=<slot_id> -rsse "< RSSe_path >"

Note: The RSSe and the corresponding binary file are located in the STM32CubeProgrammer
bin/RSSe/U5 folder.

Figure 65 and Figure 66 show the STM32CubeProgrammer command used for the
SFI install process via SWD execution.

Example of SFI programming scenario for STM32U5 AN5054

98/169 AN5054 Rev 16

Figure 65. SFI installation via SWD execution (1)

AN5054 Rev 16 99/169

AN5054 Example of SFI programming scenario for STM32U5

168

Figure 66. SFI installation via SWD execution - (2)

Example of SFI programming scenario for STM32WBA5 AN5054

100/169 AN5054 Rev 16

8 Example of SFI programming scenario for
STM32WBA5

8.1 Scenario overview
The actual user application to be installed on the STM32WBA5 device. The
application was encrypted using the STPC. The OEM provides tools to the CM to
get the appropriate license for the concerned SFI application

8.2 Hardware and software environment
For successful SFI programming, some hardware and software prerequisites apply:
• STM32WBA5 board with bootloader and RSS programmed
• RS-232 cable for SFI programming via UART
• Micro-B USB for debug connection
• PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®
• STM32 Trusted Package Creator v1.7.0 (or greater) package available from

www.st.com
• STM32CubeProgrammer v2.16.0 (or greater) package available from www.st.com
• HSMv2

Note: Refer to [4] or [5] for the supported operating systems and architectures.

8.3 Step-by-step execution

8.3.1 Build OEM application
OEM application developers can use any IDE to build their own firmware.

8.3.2 Perform the SFI generation (GUI mode)

The first step to install the secure firmware on STM32 devices is the encryption of
the user OEM firmware (already provided in AXF format) using the STM32 Trusted
Package Creator tool. This step is done by adding the following files in the STPC
tool:
• An OEM firmware
• A .csv file containing option bytes configuration
• A128-bit AES encryption key
• A 96-bit nonce

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product. It is located in the directory:
STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES

AN5054 Rev 16 101/169

AN5054 Example of SFI programming scenario for STM32WBA5

168

The option bytes are described in the product reference manual. In the case of
customization of a provided example file, care must be taken not to change the
number of rows, or their order.

In addition, a programmed HSM card must be inserted in the PC. An “output-
WBA5.sfi” image is then generated.

Figure 67 shows the STPC GUI during SFI generation.

Figure 67. STPC GUI during the SFI generation

Note: To perform HSM programming for license generation using STPC (GUI and CLI modes),
refer to Section 13.3.3: Performing HSM programming for license generation using STPC
(GUI mode) and Section 5.3.5: Performing HSM programming for license generation using
STPC (CLI mode).

8.3.3 Programming input conditions
Before performing an SFI install on STM32WBA5 devices, make sure that:
• The flash memory is erased.
• No WRP zone is active, otherwise destroy it.
• The chip supports security (a security bit must be present in the option bytes).
• If the security is activated, disable it.

8.3.4 Perform the SFI install using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode to program
the SFI image “output-WBA5.sfi” already created in the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(hardware secure modules based on smartcards) to generate a license for the
connected STM32 device during the SFI install process.

Example of SFI programming scenario for STM32WBA5 AN5054

102/169 AN5054 Rev 16

Using the UART interface

First make sure that all the input conditions are respected, then open a cmd
terminal, go to /bin and launch the following STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=COM204 -sfi protocol=static "/output-
WBA5.sfi" hsm=1 slot=1 -rsse "< RSSe_path >"

Note: The RSSe and the corresponding binary file are located in the STM32CubeProgrammer
bin/RSSe/WBA folder.

Figure 68 shows the STM32CubeProgrammer command used for the SFI install
process via UART execution.

AN5054 Rev 16 103/169

AN5054 Example of SFI programming scenario for STM32WBA5

168

Figure 68. SFI installation via UART execution using CLI

Example of SFI programming scenario for STM32WBA5 AN5054

104/169 AN5054 Rev 16

AN5054 Rev 16 105/169

AN5054 Example of SFI programming scenario for STM32WBA5

168

MSv7379

Example of SFI programming scenario for STM32WBA5 AN5054

106/169 AN5054 Rev 16

Graphical user interface mode
Open the STM32CubeProgrammer and connect the board through the UART
interface with the right COM port. Press on the "Security" panel and select the
SFI/SFIx from the tab options with the following inputs:
• License source selection: "Using License from HSM"
• SFI/SFIx path: output-WBA5.sfi
• RSSe: /RSSe/WBA/enc_signed_RSSe_sfi_WBA5_1M.bin
Click on the "Start SFI/SFIx" button to launch the SFI installation.

Figure 69. STM32WBA5 SFI successful programming via UART interface using GUI

AN5054 Rev 16 107/169

AN5054 Example of SFIA programming scenario for STM32WBA5

168

9 Example of SFIA programming scenario for
STM32WBA5

9.1 Scenario overview
SFIA is an SFI operation without a mass erase. It means that the user should
perform an SFI install when all the flash memory is empty, or when the data written
in the user flash memory is outside of the SFI firmware to install. (For more details
refer to [1]).

In this example, the SFI is installed when the flash memory is already empty. The
actual user application to be installed on the STM32WBA5 device. The application
is encrypted using the STPC. The OEM provides the tools to the CM to get the
appropriate license for the concerned SFIA application.

9.2 Hardware and software environment
For a successful SFIA programming, the following hardware and software
prerequisites are needed:
• An STM32WBA5 board with boot loader and RSS programmed
• An RS-232 cable for SFIA programming via UART
• A Micro-B USB for debug connection
• A PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®
• STM32 Trusted Package Creator v2.17.0 (or greater) package available from

www.st.com
• STM32CubeProgrammer v2.17.0 (or greater) package available from www.st.com
• HSMv2 (To generate the SFIA license)

Note: Refer to [4] or [5] for the supported operating systems and architectures.

9.3 Step-by-step execution

9.3.1 Build an OEM application
OEM application developers can use any IDE to build their own firmware.

9.3.2 Perform the HSM programming for the SFIA license generation (GUI
mode)
The STM32 Trusted Package Creator tool provides all the personalization package
files ready to be used on the SFI/SFIA/SFIx and SSP flows. To get all the supported
SFIA packages, go to the PersoPackages/SFIA directory in the install path of the
tool. Each file name starts with a number, which is the product ID of the device.
Select the correct one.

In this case, select: STM32WBA5_49202013_SFIA_01000000_00000000.enc.bin
to program the HSM card.

Example of SFIA programming scenario for STM32WBA5 AN5054

108/169 AN5054 Rev 16

Figure 70. Example of HSM programming (SFIA License) using STPC GU

9.3.3 Perform the SFI generation (GUI mode)
The first step to install the secure firmware on STM32 devices is the encryption of
the user OEM firmware. The firmware is already provided in AXF format. The
installation is done using the STM32 Trusted Package Creator tool.

The steps described in Section 8.3.2: Perform the SFI generation (GUI mode) can
be followed.

9.3.4 Programming input conditions
Before performing an SFI install on STM32WBA5 devices, the user must ensure
that:
• The flash memory is erased.
• No WRP zone is active, otherwise it should be destroyed.
• The chip supports security (a security bit must be present in the option bytes).
• The security is disabled.

9.3.5 Perform the SFI installation using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode to program
the SFI image "output-WBA5.sfi" that was created in the previous section.

The STM32CubeProgrammer supports communication with STMicroelectronics
HSMs (hardware secure modules based on smartcards) to generate a license for
the connected STM32 device during the SFI install process.

AN5054 Rev 16 109/169

AN5054 Example of SFIA programming scenario for STM32WBA5

168

The user must ensure that all the input conditions are respected, and then follow
the steps described in Section 8.3.4: Perform the SFI install using
STM32CubeProgrammer.

Example of SFI programming scenario for STM32H5 AN5054

110/169 AN5054 Rev 16

10 Example of SFI programming scenario for STM32H5

10.1 Scenario overview
The user application is developed by the OEM and encrypted by STPC. The OEM
provides the following elements to the programming house:
• The encrypted STM32H5 firmware
• A global license binary
• STM32CubeProgrammer

The untrusted manufacturer is then required to securely program the encrypted
firmware using these inputs.

10.2 Hardware and software environment
For successful SFI programming, the following hardware and software prerequisites
apply:
• STM32H5-based board with bootloader and RSS programmed
• SFI programming via UART (use RS-232 cable or STLINK VCOM)
• PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• aSTM32 Trusted Package Creator v2.14.0 (or greater) package available from
www.st.com

• STM32CubeProgrammer v2.14.0 (or greater) package available from www.st.com

Note: Refer to [4] or [5] for the supported operating systems and architectures.

10.3 Step-by-step execution

10.3.1 Build OEM application
OEM application developers can use any IDE to build their own firmware.

10.3.2 Perform the SFI generation (GUI mode)
The first step to install the secure firmware on STM32H5 devices is the encryption
of the user OEM firmware using the STM32 Trusted Package Creator tool.

This step is done by including the following files in the STPC tool:
• An OEM firmware
• A .csv file containing option bytes configuration
• A 128-bit AES encryption key
• A 96-bit nonce
• OBKey files for device configuration (optional)
• An SSFI file to integrate the STMicroelectronics SFI image (optional, only for

STM32H573)

AN5054 Rev 16 111/169

AN5054 Example of SFI programming scenario for STM32H5

168

Note: It is recommended to use the "SFI Option Bytes" feature from the "H5" panel of the STM32
Trusted Package Creator tool to obtain the option bytes file (.csv file).

Note: If you want to reopen the device using the Debug Authentication mechanism, a DA ObKey
file must be included in the SFI image, otherwise the device becomes inaccessible.

Figure 71. SFI generation for STM32H5

10.3.3 Programming input requirements
Before performing an SFI install on STM32H5 devices, make sure that:
• Flash memory erased
• Chip supporting cryptography for a Secure Manager usage
• Product state open: 0xED
• Boot on bootloader: UART interface
• RSSe binary
• STMicroelectronics global license file (no need for an HSM card in this use case)

Note: The RSSe binary file is in the STM32CubeProgrammer bin/RSSe/H5 folder.

Note: To embed an SSFI image into the SFI image, it is recommended to follow a specific secure
sequence and choose an adequate start address of the nonsecure application that depends
on the SSFI configuration. See the details in STM32CubeH5 MCU Package available from
www.st.com.

To generate an STMicroelectronics global license binary, use the “H5” panel of the
STM32 Trusted Package Creator GUI and select the "License Gen" option. Then,
include the same key and nonce previously used to generate the SFI image (see
the figure below).

DT72099V1

Example of SFI programming scenario for STM32H5 AN5054

112/169 AN5054 Rev 16

Figure 72. STMicroelectronics global license generation for STM32H5

10.3.4 Perform the SFI install using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode to program the SFI
image “out.sfi” already created in the previous section.

STM32CubeProgrammer communicates with the device through the UART interface after it
is confirmed that all the input conditions are respected.

Note that the same operation is possible using STLINK (SWD/JTAG) or any
bootloader interface.

Command-line mode

Open a cmd terminal, go to /bin in the install path, and then launch the following
command:
STM32_Programmer_CLI.exe -c port=COM8
-sfi "out.sfi" hsm=0 "ST_Global_License_V0.bin"
-rsse "\RSSe\H5\enc_signed_RSSe_SFI_STM32H5_v2.0.0.0"

Figure 73 shows the SFI execution traces.

DT73500V1

AN5054 Rev 16 113/169

AN5054 Example of SFI programming scenario for STM32H5

168

Figure 73. STM32H5 SFI successful programming via CLI

Graphical user interface mode

Open the STM32CubeProgrammer and connect the board through the UART
interface with the right COM port. Press on the "Security" panel and select the
SFI/SFIx from the tab options with the following inputs:
• License source selection: "Using License from file"
• SFI/SFIx path: out.sfi
• RSSe: \RSSe\H5\ enc_signed_RSSe_SFI_STM32H5_v2.0.0.0.bin

DT73501V1

Example of SFI programming scenario for STM32H5 AN5054

114/169 AN5054 Rev 16

Click on the "Start SFI/SFIx" button to launch the SFI installation.

Figure 74. STM32H5 SFI successful programming via GUI

DT73502V1

AN5054 Rev 16 115/169

AN5054 Example of SFI programming scenario for STM32H7RS

168

11 Example of SFI programming scenario for
STM32H7RS

11.1 Scenario overview
There are three steps during this scenario:
• Generate STM32H7RS encrypted firmware using the STPC
• HSM card provisioning via STPC
• Use STM32CubeProgramer to perform the SFI process.

11.2 Hardware and software environment
For successful SFI programming, some hardware and software prerequisites apply:
• An STM32H7RS-based board and system flash security package (SFSP) v1.1.0 or

greater
• USB Type-C® cable for SWD connection
• A PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• An STM32 Trusted Package Creator v2.16.0 (or later) package is available from
www.st.com

• An STM32CubeProgrammer v2.16.0 (or later) package is available from www.st.com
• An HSMv2 smartcard

Note: Refer to [4] or [5] for the supported operating systems and architectures.

11.3 Step-by-step execution

11.3.1 Build an OEM application
OEM application developers can use any IDE to build their own firmware.

11.3.2 Perform the SFI generation (GUI mode)
The first step to install the secure firmware on STM32H7RS devices is the
encryption of the user OEM firmware using the STM32 Trusted Package Creator
tool.

This step is done by including the following files in the STPC tool:
• An OEM firmware
• A .csv file containing option bytes configuration
• A 128-bit AES encryption key
• A 96-bit nonce
• Random key area file (optional)
• OBKey files for device configuration (optional)

Note: It is recommended to use the "SFI Option Bytes" feature of the STM32 Trusted Package
Creator tool to obtain the option bytes file (.csv file).

Example of SFI programming scenario for STM32H7RS AN5054

116/169 AN5054 Rev 16

Note: If you want to reopen the device using the Debug Authentication mechanism, a DA ObKey
file must be included in the SFI image, otherwise the device becomes inaccessible.

Figure 75. Figure4 SFI generation for STM32H7RS

11.3.3 Programming input requirements
Before performing an SFI install on STM32H7RS devices, make sure that:
• Product state is open: 0x39
• A ready generated SFI image using the STPC tool
• RSSe binary
• STMicroelectronics global license file (no need for an HSM card in this use case)

Note: Using a non STM32H7RS sfi image may result in errors or issues during the installation
process.

Note: The RSSe binary file is in the STM32CubeProgrammer bin/RSSe/H7RS folder.

11.3.4 Perform the SFI install using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode to program
the SFI image “out.sfi” already created in the previous section.

STM32CubeProgrammer communicates with the device through the SWD interface
after it is confirmed that all the input conditions are respected.

Note that the same operation is possible using STLINK (SWD/JTAG) or any
bootloader interface.

AN5054 Rev 16 117/169

AN5054 Example of SFI programming scenario for STM32H7RS

168

Command-line mode

Open a cmd terminal, go to /bin in the install path, and then launch the following
command:
STM32_Programmer_CLI.exe -c port=swd mode=hotplug -sfi "out.sfi"
hsm=0 "ST_Global_License_V0.bin" -rsse "\RSSe\H7RS\
enc_signed_RSSe_sfi.bin"

Figure 5 shows the SFI execution traces.

Figure 76. STM32H7RS SFI successful programming via CLI

Graphical user interface mode

Open the STM32CubeProgrammer and connect the board through the SWD. Go to
the security panel and select the SFI/SFIx from the tab options with the following
inputs:

Example of SFI programming scenario for STM32H7RS AN5054

118/169 AN5054 Rev 16

• License source selection: "Using License from file"
• SFI/SFIx path: out.sfi
• RSSe: \RSSe\H7RS\ enc_signed_RSSe_sfi.bin

Click on the "Start SFI/SFIx" button to launch the SFI installation.

Figure 77. STM32H7RS SFI successful programming via GUI

AN5054 Rev 16 119/169

AN5054 Example of SMI programming scenario

168

12 Example of SMI programming scenario

12.1 Scenario overview
In this scenario, the third-party library to be installed on the STM32H753XI device
makes “printf” packets appear in the serial terminal if the library code execution
called by the application does not crash.

The library code was encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned
SMI module.

12.2 Hardware and software environment
The same environment as explained in Section 4.1.1: Device authentication.

12.3 Step-by-step execution

12.3.1 Build a third-party library
STMicroelectronics or third-party developers can use any IDE to build the library to
be encrypted and installed into the STM32H7 device.

In this scenario, the SMI module based on the built library is not relocatable. The
destination address is hardcoded in the SMI module to the following value:
0x08080000.

Example of SMI programming scenario AN5054

120/169 AN5054 Rev 16

12.3.2 Perform the SMI generation
For encryption with the STM32 Trusted Package Creator tool, the third-party
module is provided in ELF format. A 128-bit AES encryption key, a 96-bit nonce and
a security version file are also provided to the tool. They are available in the
“SMI_ImagePreparation” directory. After choosing the name of the section to be
encrypted, a “.smi” image is then generated (FIR_module.smi).

The clear data part of the library without the encrypted section is also created in
ELF format (FIR_module_clear.axf).

Figure 78 shows the STPC GUI during SMI generation.

Figure 78. STPC GUI during SMI generation

AN5054 Rev 16 121/169

AN5054 Example of SMI programming scenario

168

12.3.3 Programming input conditions
Before performing the SMI install make sure that:
• The SMI module destination address is not already PCROPed, otherwise destroy this

PCROPed area.
• The Boot0 pin is set to VDD.
• The chip supports security (existing security bit in option bytes).
• When performing an SMI install using the UART bootloader, no debug interface is

connected to any USB host. If a debug interface is still connected, disconnect it then
perform a power off/power on before launching the SMI install to avoid any debug
intrusion problem.

• The proper license generated for the currently used chip must be at your disposal (or
an HSM or secure server to generate it during SMI programming).

12.3.4 Perform the SMI install

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal
and go to <STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -smi
protocol=static "<local_path>/FIR_module.smi"
"<local_path>/<licenseSMI.bin>"

This command allows the SMI specified file “FIR_module.smi” to be programmed
into a dedicated PCROPed area at address (0x08080000).

Figure 79: SMI install success via debug interface shows the SMI install via SWD
execution.

Example of SMI programming scenario AN5054

122/169 AN5054 Rev 16

Figure 79. SMI install success via debug interface

AN5054 Rev 16 123/169

AN5054 Example of SMI programming scenario

168

12.3.5 How to test for SMI install success
1. Flash the clear data part “FIR_module_clear.hex” (available under the “Tests” directory)

into address 0x08084000 using STM32Cubeprogrammer or any other flashing tool.
2. flash the test application “tests.hex” (which is based on the SMI module), available

under the “Tests” directory at start user flash memory address “0x08000000” using
STM32Cubeprogrammer or any other flashing tool.
The option bytes configuration becomes as below (Figure 80).

Figure 80. OB display command showing that a PCROP zone was activated after SMI

Example of SMI programming scenario AN5054

124/169 AN5054 Rev 16

3. If a UART connection is available on the board used, open the “Hercule.exe” serial
terminal available under the “Tests” directory, open the connection. On reset, the
dedicated “printf” packet appears.

AN5054 Rev 16 125/169

AN5054 Example of SFIx programming scenario for STM32H7

168

13 Example of SFIx programming scenario for STM32H7

13.1 Scenario overview
There are three steps during this scenario:
• Generate an SFIx image using the STPC.
• Provisioning HSM card via STPC.
• Use the STM32CubeProgrammer to perform the SFIx process.

Once this scenario is successfully installed on the STM32H7B3I-EVAL, follow the
steps below:
• Write internal firmware data in the internal flash memory starting at the address

0x08000000.
• Write external firmware data in the external flash memory starting at the address

0x90000000.
• Verify that the option bytes were correctly programmed (depends on area C).

13.2 Hardware and software environment
For successful SFIx programming, some hardware and software prerequisites apply:
• STM32H7B3I-EVAL board containing external flash memory.
• Micro-B USB for debug connection.
• PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• STM32 Trusted Package Creator v1.2.0 (or greater) package available from
www.st.com

• STM32CubeProgrammer v2.3.0 (or greater) package available from www.st.com
• HSMv1.1 card

Note: Refer to [4] or [5] for the supported operating systems and architectures.

13.3 Step-by-step execution

13.3.1 Build OEM application
OEM application developers can use any IDE to build their own firmware.

Note: In this use case, there are different user codes. Each one is specific to a flash memory type
(internal/external).

13.3.2 Perform the SFIx generation (GUI mode)
To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
Bin/Hex/AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit
AES encryption key and a 96-bit nonce are also provided to the tool.

Example of SFIx programming scenario for STM32H7 AN5054

126/169 AN5054 Rev 16

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES
The option bytes are described in the product reference manual.
In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

An “.sfix” image is then generated (out.sfix).

Figure 81. Successful SFIx generation

AN5054 Rev 16 127/169

AN5054 Example of SFIx programming scenario for STM32H7

168

13.3.3 Performing HSM programming for license generation using STPC
(GUI mode)
The OEM must provide a license generation tool to the programming house to be used for
license generation during the SFI install process.

In this example, HSMs are used as license generation tools in the field. See Section 4.1.2:
License mechanism for HSM use and programming.

Figure 82: Example of HSM programming using STPC GUI shows an example for
HSM programming by OEM to be used for SFIx install.

The maximum number of licenses delivered by the HSM in this example is 1000.

This example uses HSM version 1. The HSM version can be identified before performing
the programming operation by clicking the “Refresh” button to make the version number
appear in the version field.

Figure 82. Example of HSM programming using STPC GUI

Example of SFIx programming scenario for STM32H7 AN5054

128/169 AN5054 Rev 16

Note: When using HSM version 1, the “Personalization data file” field is ignored when
programming starts. It is only used with HSM version 2.
When the card is successfully programmed, a popup window message “HSM successfully
programmed” appears, and the HSM is locked. Otherwise, an error message is displayed.

13.3.4 Performing HSM programming for license generation using STPC
(CLI mode)
Refer to Section 5.3.5: Performing HSM programming for license generation using
STPC (CLI mode).

13.3.5 Programming input conditions
Before performing an SFIx install, make sure that:
• Use the JTAG/SWD interface.
• No PCROPed zone is active, otherwise disable it.
• The chip must support security (a security bit must be present in the option bytes).
• The SFIx image must be encrypted by the same key/nonce used in the HSM

provisioning.

13.3.6 Perform the SFIx installation using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFIx image “out.sfix” already created in
the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(hardware secure modules based on smartcard) to generate a license for the connected
STM32 device during SFIx install.

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

Using JTAG/SWD
STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfix" hsm=1 slot=<slot_id> -el <ExternalLoader_Path>

Figure 83: SFIx installation success using SWD connection (1) through Figure 86:
SFIx installation success using SWD connection (4) shows the SFIx install via SWD
execution and the HSM as license generation tool in the field.

AN5054 Rev 16 129/169

AN5054 Example of SFIx programming scenario for STM32H7

168

Figure 83. SFIx installation success using SWD connection (1)

Example of SFIx programming scenario for STM32H7 AN5054

130/169 AN5054 Rev 16

Figure 84. SFIx installation success using SWD connection (2)

AN5054 Rev 16 131/169

AN5054 Example of SFIx programming scenario for STM32H7

168

Figure 85. SFIx installation success using SWD connection (3)

Example of SFIx programming scenario for STM32H7 AN5054

132/169 AN5054 Rev 16

Figure 86. SFIx installation success using SWD connection (4)

AN5054 Rev 16 133/169

AN5054 Example of SFIx programming scenario for STM32L5/STM32U5

168

14 Example of SFIx programming scenario for
STM32L5/STM32U5

14.1 Scenario overview
There are three steps during this scenario:
1. Generate an SFIx image using the STPC
2. HSM card provisioning via STPC
3. Use STM32CubePrg to perform the SFIx process.

Successful installation of this scenario on the STM32L5 provides the following
results:
• The internal flash memory is readable from base addresses 0x08000000 and

0x08040000. It contains the internal firmware.
• The external flash memory is programmed so as to be readable with the external flash

memory loader. You can then read the external flash memory encrypted by the
OTFDEC keys. The pattern of values must be present in the binary files of external
firmware.

• If the application works correctly, the onboard LED blinks.

14.2 Hardware and software environment
For successful SFIx programming, some hardware and software prerequisites apply:
• An STM32L5/STM32U5-based evaluation board containing external flash memory
• A Micro-B USB for debug connection
• A PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• An STM32 Trusted Package Creator v2.11.0 (or greater) package is available from
www.st.com

• An STM32CubeProgrammer v2.11.0 (or greater) package is available from
www.st.com

• An HSMv1.1 card

Note: Refer to [4] or [5] for the supported operating systems and architectures.

14.3 Step-by-step execution

14.3.1 Build an OEM application
OEM application developers can use any IDE to build their own firmware. Note that in this
use case there are different user codes, each being specific for a flash memory type
(internal/external).

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

134/169 AN5054 Rev 16

14.3.2 Perform the SFIx generation (GUI mode)
To be encrypted with the STM32 Trusted Package Creator tool, OEM firmware is provided in
Bin/Hex/AXF format in addition to a CSV file to set the option bytes configuration. A 128-bit
AES encryption key and a 96-bit nonce are also provided to the tool.

Note: STM32CubeProgrammer v2.11.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES
The option bytes are described in the product reference manual.
In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

An “.sfix” image is then generated (out.sfix).

Use case 1: generation of SFIx without key area for STM32L5

Internal firmware files:
1. Add a nonsecure binary with a start address equal to 0x08040000.
2. Add an internal binary file at 0x0C000000 (application to be executed after

downloading SFIx to verify full process success by blinking an LED).
3. Add an OTFDEC key binary at 0x0C020000 (to be used as the key in OTFD ENC-

DEC).

External firmware files: add an external binary at 0x90000000 with these
parameters:
• Region number = 0
• Region mode = 0x2
• Key address = 0x0C020000 (same as the OTFDEC key binary).

Encryption key: use the same key as HSM.

Nonce file: use the same nonce as HSM.

Option bytes file: use .csv contains the option-byte configuration.

RAM size: 0x19000 to split the input areas avoiding memory overflow.

AN5054 Rev 16 135/169

AN5054 Example of SFIx programming scenario for STM32L5/STM32U5

168

Figure 87. Successful SFIx generation use case 1

DT53097V2

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

136/169 AN5054 Rev 16

Use case 2: generation of SFIx with key area for STM32L5

This is essentially the same process as test case1. The main difference is:
• Add a “.kcsv” file (to be used in OTFD ENC-DEC during SFIx downloading) in the key

area field, instead of using an OTFDEC key binary file.
• The key address for external firmware files is the first address of the area ‘K’ key file,

which is 0x0C020000.

Figure 88. Successful SFIx generation use case 2

After the generation of the SFIx image in this use case the output file contains 12
internal segments (F area), and 166 external segments (E area).

DT53098V2

AN5054 Rev 16 137/169

AN5054 Example of SFIx programming scenario for STM32L5/STM32U5

168

Use case 3: generation of SFIx without key area for STM32U5

Find below an example for STM32U585xx.

Internal firmware files:
1. Add a nonsecure binary with a start address equal to 0x08100000.
2. Add an internal binary file at 0x0C000000 (application to be executed after

downloading SFIx to verify full process success by blinking an LED).
3. Add an OTFDEC key binary at 0x0800A000 (to be used as the key in OTFD ENC-

DEC).

External firmware files: add an external binary (at 0x70000000 for STM32U585xx)
with these parameters:
• Region number = 4
• Region mode = 1
• Key address = 0x0800A000 (same as the OTFDEC key binary).

Encryption key: use the same key as HSM.

Nonce file: use the same nonce as HSM.

Option bytes file: use .csv contains the option-byte configuration.

RAM size: 0x55500 to split the input areas avoiding memory overflow.

Figure 89. Successful SFIx generation use case 3

Find below an example for STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and
STM32U5Gxxx.

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

138/169 AN5054 Rev 16

Internal firmware files:
1. Add a nonsecure binary with a start address equal to 0x08100000.
2. Add an internal binary file at 0x0C000000. It is an application to be executed after

downloading SFIx to verify the full process success through a blinking LED.
3. Add an OTFDEC key binary at 0x0800A000. It is used as the key in OTFD ENCDEC.
External firmware files:
Add an external binary at 0x90000000 with these parameters:
• Region number = 3
• Region mode = 1
• Key address = 0x0800A000. It is the same as the OTFDEC key binary.
Encryption key: use the same key as HSM.
Nonce file: use the same nonce as HSM.
Option bytes file: use the .csv file that contains an option-byte configuration.
• RAM size: it is 0x55500 to split the input areas to avoid a memory overflow.

Figure 90. Successful SFIx generation use case 3 for STM32U59xxx, STM32U5Axxx,
STM32U5Fxxx, and STM32U5Gxxx

Use case 4: generation of SFIx with key area for STM32U5

This is essentially the same process as test case1. The main difference is:
• Add a “.kcsv” file (to be used in OTFD ENC-DEC during SFIx downloading) in the key

area field, instead of using an OTFDEC key binary file.
• The key address for external firmware files is the first address of the area ‘K’ key file,

which is 0x0800A000.

DT72095V1

AN5054 Rev 16 139/169

AN5054 Example of SFIx programming scenario for STM32L5/STM32U5

168

Figure 91. Successful SFIx generation use case 4

Figure 92. Successful SFIx generation use case 4 for STM32U59xxx, STM32U5Axxx,
STM32U5Fxxx, and STM32U5Gxxx

DT72096V1

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

140/169 AN5054 Rev 16

14.3.3 Performing HSM programming for license generation using STPC
(GUI mode)
Refer to Section 13.3.3: Performing HSM programming for license generation using
STPC (GUI mode).

14.3.4 Performing HSM programming for license generation using STPC
(CLI mode)
Refer to Section 13.3.4: Performing HSM programming for license generation using
STPC (CLI mode).

14.3.5 Programming input conditions
Before performing an SFIx install, make sure that:
• A JTAG/SWD interface is used
• The chip supports security (a security bit must be present in the option bytes)
• The SFIx image is encrypted by the same key/nonce as is used in the HSM

provisioning.
• The option bytes are:

– DBank=1
– nSWBOOT0=1
– nBOOT0=1
– RDP=AA

14.3.6 Perform the SFIx installation using STM32CubeProgrammer
In this section, the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFIx image “out.sfix” already created in
the previous section.

STM32CubeProgrammer supports communication with STMicroelectronics HSMs
(Hardware secure modules based on smartcard) to generate a license for the connected
STM32 device during SFIx install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:
STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfix" hsm=1 slot=<slot_id> -rsse <RSSe_Path> -el
<ExternalLoader_Path>

Note: The RSSe binary file is located in the STM32CubeProgrammer install path in the bin/RSSe
folder.

Figure 93: SFIx installation success using SWD connection (1) through Figure 95:
SFIx installation success using SWD connection (3) show the SFIx install via SWD
execution and the HSM as license generation tool in the field.

AN5054 Rev 16 141/169

AN5054 Example of SFIx programming scenario for STM32L5/STM32U5

168

Figure 93. SFIx installation success using SWD connection (1)

Figure 94. SFIx installation success using SWD connection (2)

DT53099V2

DT53400V2

Example of SFIx programming scenario for STM32L5/STM32U5 AN5054

142/169 AN5054 Rev 16

Figure 95. SFIx installation success using SWD connection (3)

DT53401V2

AN5054 Rev 16 143/169

AN5054 Example of SFIx programming scenario for STM32H5

168

15 Example of SFIx programming scenario for STM32H5

15.1 Scenario overview
There are three steps during this scenario:
1. Generate an SFIx image using the STPC
2. HSM card provisioning via STPC
3. Use STM32CubePrg to perform the SFIx process.

15.2 Hardware and software environment
For successful SFIx programming, some hardware and software prerequisites apply:
• An STM32H5-based board with an external flash memory and system flash security

package (SFSP) v2.4.0 or greater
• SFI programming via SWD
• A PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• An STM32 Trusted Package Creator v2.14.0 (or greater) package is available from
www.st.com

• An STM32CubeProgrammer v2.14.0 (or greater) package is available from
www.st.com

• An HSMv2 smartcard

Note: Refer to [4] or [5] for the supported operating systems and architectures.

15.3 Step-by-step execution

15.3.1 Build an OEM application
OEM application developers can use any IDE to build their own firmware.

Example of SFIx programming scenario for STM32H5 AN5054

144/169 AN5054 Rev 16

15.3.2 Perform the SFIx generation (GUI mode)
The first step to install the secure firmware on STM32H5 devices is the encryption
of the user OEM firmware using the STM32 Trusted Package Creator tool. This
step is done by including the following files:
• An OEM firmware at 0x08100000
• A .csv file containing option bytes configuration
• A 128-bit AES encryption key
• A 96-bit nonce
• A binary file for an external firmware file
• OBKey files for device configuration
• An SSFI file to integrate the STMicroelectronics SFI image
• An OTFDEC key binary at 0x081FFFF0 (to be used as the key in OTFD ENC/DEC)
• External firmware files. Add an external binary at 0x90000000 with the following

parameters:
– Region number = 0
– Region mode = 0x2
– Key address = 0x081FFFF0 (same as the OTFDEC key binary)

• An MCSV file to insert the modules list:
./module.bin, ./LicenseV0.bin, 0x8172000

Figure 96. SFIx image generation for STM32H5

DT72097V1

AN5054 Rev 16 145/169

AN5054 Example of SFIx programming scenario for STM32H5

168

15.3.3 Programming input conditions
Before performing an SFIx install on STM32H5 devices, make sure that:
• There is an accessible external memory loader file such as

MX25LM51245G_STM32H573I-DK-RevB-SFIx.stldr
• The chip supports security and boots on system memory
• The product state is open: 0xED
• An RSSe binary is available
• The HSMv2 is provisioned for the STM32H5 product

Note: The RSSe binary file is in the STM32CubeProgrammer bin/RSSe/H5 folder.

Note: To embed an SSFI image into the SFI image, it is recommended to follow a specific secure
sequence and choose an adequate start address of the nonsecure application that depends
on the SSFI configuration. See the details in STM32CubeH5 MCU Package available from
www.st.com.

15.3.4 Perform the SFIx installation using STM32CubeProgrammer CLI
In this section, the STM32CubeProgrammer tool is used in CLI mode to program the SFIx
image “out.sfix” already created in the previous section.

STM32CubeProgrammer communicates with the device through the SWD interface after it
is confirmed that all the input conditions are respected.

Open a cmd terminal, go to /bin in the install path, and then launch the following
command:

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:
STM32_Programmer_CLI.exe -c port=swd mode=hotplug ap=1
-sfi "out.sfix" hsm=1 slot=1 -rsse
"\RSSe\H5\enc_signed_RSSe_SFI_STM32H5_v2.0.0.0.bin"
-el "\ExternalLoader\MX25LM51245G_STM32H573I-DK-RevB-
SFIx.stldr"
-mcsv ".\modules.mcsv"

Example of SFIx programming scenario for STM32H5 AN5054

146/169 AN5054 Rev 16

Figure 97. SFIx installation success for STM32H5

DT72098V1

AN5054 Rev 16 147/169

AN5054 Example of a combined SFI-SMI programming scenario

168

16 Example of a combined SFI-SMI programming
scenario

16.1 Scenario overview
The user application to be installed on the STM32H753XI device makes “printf”
packets appear in the serial terminal.

In this case, the OEM application is built based on a third-party’s library as
explained in IAR example (Section 2.3: Execute-only/position independent library
scenario example under EWARM).

The application is encrypted using the STPC, the SMI module corresponding to
third-party’s library code is uploaded as input during combined SFI generation and
represented as an area of type ‘M’ within firmware application areas.

The SFI OEM application firmware can then be uploaded (on an OEM server for
example) with all the inputs needed for license generation by the CM.

The OEM provides tools to the CM to get the appropriate licenses for the SFI
application concerned and one or more integrated SMI modules.

16.2 Hardware and software environment
The same environment as explained in Section 5.2: Hardware and software
environment.

16.3 Step-by-step execution
1. Build the OEM application.

OEM application developers may use any IDE to build their firmware as well as using
SMI modules provided by STMicroelectronics or third parties for example.
In this example, we use firmware based on a single library (just one SMI module is
integrated in the SFI image).

2. Perform the SFI generation.
For encryption with the STM32 Trusted Package Creator tool, OEM firmware and the
clear data part are both provided in Hex format (corresponding to the SMI module to be
integrated within the SFI image). A CSV file to set the option bytes configuration is also
necessary. The SMI module used is also provided as an input to the tool, in addition to
a 128-bit AES encryption key and a 96-bit nonce. All inputs needed are available in the
“SFI_ImagePreparation/Combined” directory. A “.sfi” image is then generated
(out_comb.sfi).

Example of a combined SFI-SMI programming scenario AN5054

148/169 AN5054 Rev 16

Note: STM32CubeProgrammer v2.8.0 and later provide one option byte file example for each
product.
It is located in the directory: STM32CubeProgrammer\vx.x.x\bin\SFI_OB_CSV_FILES
The option bytes are described in the product reference manual.
In the case of customization of a provided example file, care must be taken not to change
the number of rows, or their order.

Figure 98 shows the STPC GUI during combined SFI generation.

Figure 98. GUI of STPC during combined SFI-SMI generation

3. Programming input conditions are the same as for the SFI programming scenario
(Section 5.3.5: Performing HSM programming for license generation using STPC (CLI
mode)).

4. Perform the SFI install using the SWD/JTAG or a bootloader interface (here the SWD
interface is used).

AN5054 Rev 16 149/169

AN5054 Example of a combined SFI-SMI programming scenario

168

16.3.1 Using JTAG/SWD
Once all input conditions are respected, go to the
“stm32_programmer_package_v0.4.1/bin” directory and launch the following
command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local_path>/out_comb.sfi" "<local_path>/
<licenseSFI.bin>"

Once all input conditions are respected, go to the
“<STM32CubeProgrammer_package_path>/bin” directory and launch the following
command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local_path>/out_comb.sfi"
"<local_path>/<licenseSFI.bin>"

Figure 99: Combined SFI-SMI programming success using debug connection
shows the combined SFI-SMI install trace success.

Example of a combined SFI-SMI programming scenario AN5054

150/169 AN5054 Rev 16

Figure 99. Combined SFI-SMI programming success using debug connection

AN5054 Rev 16 151/169

AN5054 Example of a combined SFI-SMI programming scenario

168

16.3.2 How to test the combined SFI install success
The option bytes configuration must be modified as shown in Figure 100: Option
bytes after combined SFI-SMI installation success.
• Third-party library module is programed into a PCROP area
• The SFI image is protected using RDP level1.

If a UART connection is available on the board used, open the “Hercule.exe” serial
terminal available under the “Tests” directory, open the connection and on reset the
dedicated “printf” packets appears.

Example of a combined SFI-SMI programming scenario AN5054

152/169 AN5054 Rev 16

Figure 100. Option bytes after combined SFI-SMI installation success

AN5054 Rev 16 153/169

AN5054 Example of SSP programming scenario for STM32MP1

168

17 Example of SSP programming scenario for
STM32MP1

17.1 Scenario overview
On each SSP install step, STM32 ecosystem tools are used to manage the secure
programming and SSP flow.

Three main steps are done using SSP tools:
• Encrypted secret file generation with STM32 Trusted Package Creator
• HSM provisioning with STM32 Trusted Package Creator
• SSP procedure with STM32CubeProgrammer.

17.2 Hardware and software environment
The following prerequisites are needed for successful SSP programming:
• an STM32MP157F-DK2 board
• a Micro-B USB for DFU connection
• a PC running on either Windows®, Linux® Ubuntu® or Fedora®, or macOS®

• STM32 Trusted Package Creator v1.2.0 (or greater) package available from
www.st.com

• STM32CubeProgrammer v2.5.0 (or greater) package available from www.st.com
• an HSMv2 card

Note: Refer to [4] or [5] for the supported operating systems and architectures.

17.3 Step-by-step execution

17.3.1 Building a secret file
A secret file must be created before SSP processing. This secret file must fit into
the OTP area reserved for the customer. OTP memory is organized as 32-bit
words.

On an STM32MP1 microprocessor:
• One OTP word is reserved for RMA password (unlock/relock): OTP 56.
• 37 free words are reserved for customer use. The secret size can be up to 148 bytes:

OTP 59 to 95.

There is no tool or template to create this file. A 148-byte binary file must be used
as the reference to construct the secret file.

Example of SSP programming scenario for STM32MP1 AN5054

154/169 AN5054 Rev 16

17.3.2 Performing the SSP generation (GUI mode)
For encryption with the STM32 Trusted Package Creator tool, the secret file is
provided in BIN format in addition to the RMA password values.

An OEM public key, a 128-bit AES encryption key and a 96-bit nonce are also
provided to the tool.

 An “.ssp” image is then generated (out.ssp).

Figure 101. STM32 Trusted Package Creator SSP GUI tab

AN5054 Rev 16 155/169

AN5054 Example of SSP programming scenario for STM32MP1

168

17.3.3 Performing HSM programming for license generation using STPC
(GUI mode)
The OEM must provide a license generation tool to the programming house, to be
used for license generation during the SSP install process. In this example, HSMs
are used as license generation tools in the field.

See Section 4.1.2: License mechanism for HSM use and programming details.

This example uses HSM version 2. The HSM version can be identified before
performing the programming operation by clicking the Refresh button to make the
version number appear in the version field.

Note: HSM version 2 must be used for STM32 MPU devices.

Figure 102. Example of HSMv2 programming using STPC GUI

The STM32 Trusted Package Creator tool provides all personalization package
files, ready to be used on SSP flow. To obtain all the supported packages, go to the
“PersoPackages” directory residing in the tool’s install path. Each file name starts

Example of SSP programming scenario for STM32MP1 AN5054

156/169 AN5054 Rev 16

with a number, which is the product ID of the device. The correct one must be
selected.

17.3.4 SSP programming conditions
Before performing an SSP flow make sure that:
• only DFU or UART interfaces are used
• the chip supports security
• the SSP image is encrypted by the same key/nonce as used in the HSM provisioning

step.
• There is an adequate Trusted Firmware-A file, which is previously signed and ready for

SSP use via USB or UART interface.

17.3.5 Perform the SSP installation using STM32CubeProgrammer
In this step, the STM32CubeProgrammer tool is used in CLI mode (the only mode
available so far for secure programming) to program the SSP image already
created with STM32 Trusted Package Creator. STM32CubeProgrammer supports
communication with STMicroelectronics HSMs (hardware secure modules based
on a smartcard) to generate a license for the connected STM32 MPU device during
SSP install.

Example using USB DFU bootloader interface:

STM32_Programmer_CLI.exe -c port=usb1 –ssp “out.ssp” “tf-a-
ssp-stm32mp157f-dk2-trusted.stm32” hsm=1 slot=1

All SSP traces are shown on the output console (Figure 103).

AN5054 Rev 16 157/169

AN5054 Example of SSP programming scenario for STM32MP1

168

Figure 103. STM32MP1 SSP installation success

Example of SSP-SFI programming scenario for STM32MP2 AN5054

158/169 AN5054 Rev 16

18 Example of SSP-SFI programming scenario for
STM32MP2

18.1 Scenario overview
On each SSP-SFI installation step, the STM32 ecosystem tools are used to
manage the secure programming and the SSP flow.

Five main steps are done using SSP tools:
• Secrets generation with STM32 Trusted Package Creator
• Backup memory generation with STM32 Trusted Package Creator (optional)
• SSP-SFI file generation with STM32 Trusted Package Creator
• HSM provisioning with STM32 Trusted Package Creator
• SSP-SFI procedure with STM32CubeProgrammer.

18.2 Hardware and software environment
The following prerequisites are needed for a successful SSP-SFI programming:
• An STM32MP2 board
• A USB-C cable for DFU connection
• A PC running on either Windows®, Linux® or macOS®
• The STM32 Trusted Package Creator v2.17.0 (or greater) package available from

www.st.com
• STM32CubeProgrammer v2.17.0 (or greater) package available from www.st.com
• An HSMv2 card

Note: Refer to [4] or [5] for the supported operating systems and architectures.

18.3 Step-by-step execution

18.3.1 Building a secret file
A secret file must be created before the SSP processing. This secret file must fit
into the OTP area reserved for the customer. OTP memory is organized as 32-bit
words.

The STM32Trusted Package Creator offers a graphical interface to edit and
customize the secrets binary.

From the SSP panel, select the "Secrets Gen" tab and start the editing.

AN5054 Rev 16 159/169

AN5054 Example of SSP-SFI programming scenario for STM32MP2

168

Figure 104. Secrets Gen Window

18.3.2 Building a backup memory file
It is optional to integrate a backup file into an SSP-SFI image by specifying the
backup input file.

The STM32Trusted Package Creator offers a graphical interface to edit and
customize the secrets of the backup memory file.

From the SSP panel, select the "Backup Gen" tab and start the editing.

If all necessary elements are present,pressing the "Generate Backup" button
initiates the preparation of the image. The resulting image is saved into a binary file,
which is specified in the "Output Backup binary file" field.

Example of SSP-SFI programming scenario for STM32MP2 AN5054

160/169 AN5054 Rev 16

Figure 105. SSP Backup memory window

18.3.3 Performing the SSP-SFI generation (GUI mode)
The STM32Trusted Package Creator tool GUI presents an SSP-SFI tab located in
the SSP panel to generate an SSP image in SFI format. The user must fill in the
input fields with valid values.

Figure 106. SSP-SFI image generation window

AN5054 Rev 16 161/169

AN5054 Example of SSP-SFI programming scenario for STM32MP2

168

18.3.4 Performing HSM programming (GUI mode)
Refer to Section 17.3.3: Performing HSM programming for license generation using
STPC (GUI mode).

18.3.5 SSP-SFI programming conditions
Before performing an SSP flow make sure that:
• Only DFU or UART interfaces are used.
• The chip supports security to deploy the SSP flow.
• The SSP image is encrypted by the same key/nonce that is used in the HSM

provisioning step.
• A trusted RSSe SSP binary provided by STMicroelectronics is used.

18.3.6 Perform the SSP installation using STM32CubeProgrammer
In this step, the STM32CubeProgrammer tool is used in CLI mode (in a similar way
the GUI mode with the Security window can be used) to program the SSP-SFI
image already created with STM32 Trusted Package Creator.

The STM32CubeProgrammer supports the communication with STMicroelectronics
HSMs (hardware secure modules based on a smartcard) to generate a license for
the connected STM32MP2 device during the SSP installation.

Example using USB DFU bootloader interface:
STM32_Programmer_CLI.exe -c port=usb1 -ssp "image.ssp"
"EncBootExt_STM32_RSSE_SSP.bin" hsm=1 slot=1

The file EncBootExt_STM32_RSSE_SSP.bin is located in the
STM32CubeProgrammer install path under the /bin/RSSe/MP25 folder.

All the SSP traces are shown on the output console.

Example of SSP-SFI programming scenario for STM32MP2 AN5054

162/169 AN5054 Rev 16

Figure 107. SSSP-SFI installation

AN5054 Rev 16 163/169

AN5054 Reference documents

168

19 Reference documents

Table 3. Document references
Reference Document title

[1] Application note STM32 MCUs secure firmware install (SFI) overview (AN4992),
STMicroelectronics.

[2] User manual Hardware secure module (HSM) for STM32CubeProgrammer secure
firmware install (SFI) (UM2428), STMicroelectronics.

[3] Application note Overview of the secure secret provisioning (SSP) on STM32MP1
series (AN5510), STMicroelectronics.

[4] Release note STM32CubeProgrammer release vx.y.z (RN0109),
STMicroelectronics.

[5] User manual STM32 Trusted Package Creator tool software description (UM2238),
STMicroelectronics.

Revision history AN5054

164/169 AN5054 Rev 16

20 Revision history

Table 4. Document revision history
Date Revision Changes

03-Aug-2018 1 Initial release.

18-Apr-2019 2 Updated publication scope from ‘ST restricted’ to
‘Public’.

16-Oct-2019 3

Updated:
Section 4.1.2: License mechanism
Section 5.3.4: Performing HSM programming for license
generation using STPC (GUI mode)
Figure 44: HSM programming GUI in the STPC tool (title
caption)
– Figure 54: Example of HSM programming using STPC

GUI.

03-Feb-2020 4

Replaced occurrences of STM32L451CE with
STM32L462CE in Section 4.2.1: Secure firmware
installation using a bootloader interface flow.
Updated document to cover secure programming with
SFIx.

26-Feb-2020 5

Updated:
Section 4.3.1: SFI/SFIx programming using JTAG/SWD
flow
Section 5.3.4: Performing HSM programming for license
generation using STPC (GUI mode)
Section 5.3.5: Performing HSM programming for license
generation using STPC (CLI mode)
Figure 72: SFIx installation success using SWD
connection (1)
Figure 75: SFIx installation success using SWD
connection (4).

27-Jul-2020 6

Updated:
Introduction
Section 3.1: System requirements
Added:
Section 3.5: SSP generation process
Section 3.6.3: Steps for SSP generation (CLI)
Section 3.7.4: SSP generation using STPC in GUI mode
Section 4.2.5: STM32CubeProgrammer for SSP via a
bootloader interface
– Section 12: Example of SSP programming scenario

for STM32MP1.

AN5054 Rev 16 165/169

AN5054 Revision history

168

19-Nov-2020 7

Updated:
Introduction on cover page
License mechanism general scheme
HSM programming by OEM for license distribution
Section 5.3.5: Performing HSM programming for license
generation using STPC (CLI mode).
Added:
Section 4.4: Secure programming using bootloader
interface (UART/I2C/SPI/USB)
– Section 6: Example of SFI programming scenario for

STM32WL.

29-Jun-2021 8

Updated:
In the whole document, replaced STM32H7A/B by
STM32H7A3/7B3 and STM32H7B0, STM32H72/3 by
STM32H723/333 and STM32H725/335, STM32H7B
board by STM32H7B3I-EVAL
Replaced BL by bootloader.
Section 3.2: SFI generation process: removed refer-
ences to RSS.
Section 4.1.2: License mechanism: removed Figure
HSM programming toolchain.
Section 4.2: Secure programming using a bootloader
interface,
Section 4.2.2: Secure module installation using a boot-
loader interface flow,
Section 4.2.3: STM32CubeProgrammer for SFI using a
bootloader interface
Section 4.3.1: SFI/SFIx programming using JTAG/SWD
flow and Section 4.3.2: SMI programming through
JTAG/SWD flow.
Section 4.4: Secure programming using bootloader
interface (UART/I2C/SPI/USB)
Example of SFI programming scenario/
Section 5.2: Hardware and software environment and
Example of SFI programming scenario for STM32WL/
Section 6.2: Hardware and software environment:
removed bootloader and RSS versions
Section 5.3.5: Performing HSM programming for license
generation using STPC (CLI mode): removed STM32L4
from the list of devices that support SFI via debug inter-
face.
Added:
Support for STM32U5 Series.
– Section 7: Example of SFI programming scenario for

STM32U5.

Table 4. Document revision history (continued)
Date Revision Changes

Revision history AN5054

166/169 AN5054 Rev 16

02-Aug-2021 9

Added note about CSV file in Section 3.6.1: Steps for
SFI generation (CLI) and Figure 27: Option bytes file
example.
Corrected binary file names in Section 4.4: Secure pro-
gramming using bootloader interface
(UART/I2C/SPI/USB).
Section 3.6.1: Steps for SFI generation (CLI)
Added note about option byte file example in:
Section 3.7.1: SFI generation using STPC in GUI mode
Section 5.3.3: Perform the SFI generation (GUI mode)
Section 6.3.2: Perform the SFI generation (GUI mode)
Section 7.3.2: Perform the SFI generation (GUI mode)
Section 9.3.2: Perform the SFIx generation (GUI mode)
Section 10.3.2: Perform the SFIx generation (GUI mode)
Section 11.3: Step-by-step execution.
Updated Corrected board name in Section 4.2: Secure
programming using a bootloader interface.
Corrected board name in Section 7.2: Hardware and
software environment.

04-Mar-2022 10

Updated Section 3.3: SFIx generation process.
Added:
Section 5.3.2: Performing the option bytes file genera-
tion (GUI mode)
– Section 5.3.8: SFI with Integrity check (for

STM32H73).

29-Jun-2022 11

Updated:
– Section 3.3: SFIx generation process
– Section 4.2.3: STM32CubeProgrammer for SFI using

a bootloader interface
– Section 10.1: Scenario overview
– Section 10.2: Hardware and software environment
– Section 10.3.2: Perform the SFIx generation (GUI

mode) STM32CubeProgrammer version, use cases 1
and 2 scope STM32L5, and added subsections for
use cases 3 and 4 for STM32U5, listed below.

– Figure 67: STPC GUI during SMI generation
– Figure 88: STM32 Trusted Package Creator SSP GUI

tab
– Section 12.3.4: SSP programming conditions
Added:
– Use case 3: generation of SFIx without key area for

STM32U5
– Figure : Use case 4: generation of SFIx with key area

for STM32U5

25-Nov-2022 12
Updated Section 3.2: SFI generation process.
Removed “multi install” from document.

Table 4. Document revision history (continued)
Date Revision Changes

AN5054 Rev 16 167/169

AN5054 Revision history

168

24-Feb-2023 13

Updated:
– Section 3.6: STM32 Trusted Package Creator tool in

the command line interface
– Section 3.6.1: Steps for SFI generation (CLI)

04-Aug-2023 14

Global document update, and compatibility with the
STM32H5 series and extended STM32U5 series.
Updated:
– Figure 28: SFI generation example using an ELF file

and the related command line example
– Figure 60: STPC GUI showing the STPC GUI during

the SFI generation
– Figure 63: SFI installation via SWD execution

command-line output
– Figure 86: Successful SFIx generation use case 1
– Figure 87: Successful SFIx generation use case 2
– Figure 92: SFIx installation success using SWD

connection (1)
– Figure 93: SFIx installation success using SWD

connection (2)
– Figure 94: SFIx installation success using SWD

connection (3)
Removed:
– Figure 83. SFIx installation success using SWD

connection (4)
– Figure 84. SFIx installation success using SWD

connection (5)
Added:
– Chapter 9: Example of SFI programming scenario for

STM32H5
– Chapter 14: Example of SFIx programming scenario

for STM32H5
– Figure 89: Successful SFIx generation use case 3 for

STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and
STM32U5Gxxx

– Figure 91: Successful SFIx generation use case 4 for
STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and
STM32U5Gxxx

Minor text edits across the document.

Table 4. Document revision history (continued)
Date Revision Changes

Revision history AN5054

168/169 AN5054 Rev 16

22-Mar-2024 15

Added:
– Example of SFI programming scenario for

STM32WBA5
– Example of SFI programming scenario for

STM32H7RS
Updated:
– Updated the document title
– License mechanism
– Perform the SFI generation (GUI mode)
– Performing the SFI install using

STM32CubeProgrammer

24-Jun-2024 16

Added:
– Section 9: Example of SFIA programming scenario for

STM32WBA5
– Section 18: Example of SSP-SFI programming

scenario for STM32MP2

Table 4. Document revision history (continued)
Date Revision Changes

AN5054 Rev 16 169/169

AN5054

169

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product
or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

	1 General information
	1.1 Licensing information
	1.2 Acronyms and abbreviations
	Table 1. List of abbreviations

	2 How to generate an execute-only and position independent library for SMI preparation
	2.1 Requirements
	2.2 Toolchains allowing SMI generation
	2.3 Execute-only/position independent library scenario example under EWARM
	2.3.1 Relocatable library preparation steps
	Figure 1. IAR example project overview
	Figure 2. Update compiler extra options
	Figure 3. Linker extra options
	Figure 4. Setting post-build option
	Figure 5. Postbuild batch file

	2.3.2 Relocatable SMI module preparation steps
	2.3.3 Application execution scenario
	Figure 6. How to exclude the “lib.o” file from build
	Figure 7. app.icf file

	3 Encrypted firmware (SFI) and module (SMI) preparation using the STPC tool
	3.1 System requirements
	3.2 SFI generation process
	Figure 8. SFI preparation mechanism
	Figure 9. SFI image process generation
	Figure 10. RAM size and CT address inputs used for SFI
	Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area
	Figure 12. Error message when firmware files with address overlaps are used
	Figure 13. Error message when SMI address overlaps with a firmware area address
	Figure 14. Error message when a SFI area address is not located in flash memory
	Figure 15. SFI format layout
	Figure 16. SFI image layout in case of split

	3.3 SFIx generation process
	Area E
	Area K
	Figure 17. RAM size and CT address inputs used for SFIx
	Figure 18. SFIx format layout
	Figure 19. SFIx image layout in case of split

	3.4 SMI generation process
	Figure 20. SMI preparation mechanism
	Figure 21. SMI image generation process
	Figure 22. SMI format layout

	3.5 SSP generation process
	Figure 23. SSP preparation mechanism
	Table 2. SSP preparation inputs
	Figure 24. Encryption file scheme

	3.6 STM32 Trusted Package Creator tool in the command-line interface
	Figure 25. STM32 Trusted Package Creator tool - SFI preparation options
	Figure 26. STM32 Trusted Package Creator tool - SMI preparation options
	3.6.1 Steps for SFI generation (CLI)
	Figure 27. Option bytes file example
	Figure 28. SFI generation example using an ELF file

	3.6.2 Steps for SMI generation (CLI)
	Figure 29. SMI generation example

	3.6.3 Steps for SSP generation (CLI)
	Figure 30. SSP generation success

	3.7 Using the STM32 Trusted Package Creator tool graphical user interface
	3.7.1 SFI generation using STPC in GUI mode
	Figure 31. SFI generation Tab
	SFI GUI tab fields
	Figure 32. Firmware parsing example
	Figure 33. SFI successful generation in GUI mode example

	3.7.2 SFIx generation using STPC in GUI mode
	Figure 34. SFIx generation Tab
	SFIx GUI tab fields
	Figure 35. Firmware parsing example
	Figure 36. SFIx successful generation in GUI mode example

	3.7.3 SMI generation using STPC in GUI mode
	Figure 37. SMI generation Tab
	SMI GUI tab fields
	Figure 38. SMI successful generation in GUI mode example

	3.7.4 SSP generation using STPC in GUI mode
	Figure 39. SSP generation tab
	SSP GUI tab fields
	Figure 40. SSP output information

	3.7.5 Settings
	Figure 41. Settings icon and settings dialog box

	3.7.6 Log generation
	Figure 42. Log example

	3.7.7 SFI and SMI file checking function
	Figure 43. Check SFI file example

	4 Encrypted firmware (SFI/SFIx)/ module (SMI) programming with STM32CubeProgrammer
	4.1 Chip certificate authenticity check and license mechanism
	4.1.1 Device authentication
	4.1.2 License mechanism
	License mechanism general scheme
	License distribution
	HSM programming by OEM for license distribution
	Figure 44. HSM programming GUI in the STPC tool

	4.2 Secure programming using a bootloader interface
	4.2.1 Secure firmware installation using a bootloader interface flow
	Figure 45. Secure programming via STM32CubeProgrammer overview on STM32H7 devices
	Figure 46. Secure programming via STM32CubeProgrammer overview on STM32L4 devices

	4.2.2 Secure module installation using a bootloader interface flow
	4.2.3 STM32CubeProgrammer for SFI using a bootloader interface
	4.2.4 STM32CubeProgrammer for SMI via a bootloader interface
	4.2.5 STM32CubeProgrammer for SSP via a bootloader interface
	Figure 47. SSP installation success

	4.2.6 STM32CubeProgrammer get certificate via a bootloader interface
	Figure 48. Example of getcertificate command execution using UART interface

	4.3 Secure programming using the JTAG/SWD interface
	4.3.1 SFI/SFIx programming using JTAG/SWD flow
	Figure 49. SFI programming by JTAG/SWD flow overview (monolithic SFI image example)

	4.3.2 SMI programming through JTAG/SWD flow
	Figure 50. SMI programming by JTAG flow overview

	4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD
	Example “getcertificate” command using JTAG
	Figure 51. Example of getcertificate command using JTAG
	Example “smi” command using SWD

	4.4 Secure programming using bootloader interface (UART/I2C/SPI/USB)
	SFI example
	SFIx example

	5 Example of SFI programming scenario
	5.1 Scenario overview
	5.2 Hardware and software environment
	5.3 Step-by-step execution
	5.3.1 Build OEM application
	5.3.2 Performing the option byte file generation (GUI mode)
	Figure 52. STM32Trusted Package Creator SFI OB GUI

	5.3.3 Perform the SFI generation (GUI mode)
	Figure 53. STPC GUI during SFI generation

	5.3.4 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 54. Example of HSM programming using STPC GUI

	5.3.5 Performing HSM programming for license generation using STPC (CLI mode)
	Example of HSM version 1 provisioning
	Figure 55. Example product ID
	Example of HSM version 2 provisioning
	Example of HSM get information
	Figure 56. HSM information in STM32 Trusted Package Creator CLI mode

	5.3.6 Programming input conditions
	5.3.7 Performing the SFI install using STM32CubeProgrammer
	Using JTAG/SWD

	5.3.8 SFI with Integrity check (for STM32H73)
	Figure 57. STM32Trusted Package Creator SFI ‘hash Generator ‘check box
	Usage example:
	Figure 58. SFI installation success using SWD connection (1)
	Figure 59. SFI installation success using SWD connection (2)

	6 Example of SFI programming scenario for STM32WL
	6.1 Scenario overview
	6.2 Hardware and software environment
	6.3 Step-by-step execution
	6.3.1 Build OEM application
	6.3.2 Perform the SFI generation (GUI mode)
	Figure 60. STPC GUI showing the STPC GUI during the SFI generation

	6.3.3 Programming input conditions
	Figure 61. Example -dsecurity command-line output
	Figure 62. Example -setdefaultob command-line output

	6.3.4 Perform the SFI install using STM32CubeProgrammer
	Figure 63. SFI installation via SWD execution command-line output

	7 Example of SFI programming scenario for STM32U5
	7.1 Scenario overview
	7.2 Hardware and software environment
	7.3 Step-by-step execution
	7.3.1 Build OEM application
	7.3.2 Perform the SFI generation (GUI mode)
	Figure 64. STPC GUI during the SFI generation

	7.3.3 Programming input conditions
	7.3.4 Perform the SFI install using STM32CubeProgrammer
	Using JTAG/SWD
	Figure 65. SFI installation via SWD execution (1)
	Figure 66. SFI installation via SWD execution - (2)

	8 Example of SFI programming scenario for STM32WBA5
	8.1 Scenario overview
	8.2 Hardware and software environment
	8.3 Step-by-step execution
	8.3.1 Build OEM application
	8.3.2 Perform the SFI generation (GUI mode)
	Figure 67. STPC GUI during the SFI generation

	8.3.3 Programming input conditions
	8.3.4 Perform the SFI install using STM32CubeProgrammer
	Using the UART interface
	Figure 68. SFI installation via UART execution using CLI
	Figure 69. STM32WBA5 SFI successful programming via UART interface using GUI

	9 Example of SFIA programming scenario for STM32WBA5
	9.1 Scenario overview
	9.2 Hardware and software environment
	9.3 Step-by-step execution
	9.3.1 Build an OEM application
	9.3.2 Perform the HSM programming for the SFIA license generation (GUI mode)
	Figure 70. Example of HSM programming (SFIA License) using STPC GU

	9.3.3 Perform the SFI generation (GUI mode)
	9.3.4 Programming input conditions
	9.3.5 Perform the SFI installation using STM32CubeProgrammer

	10 Example of SFI programming scenario for STM32H5
	10.1 Scenario overview
	10.2 Hardware and software environment
	10.3 Step-by-step execution
	10.3.1 Build OEM application
	10.3.2 Perform the SFI generation (GUI mode)
	Figure 71. SFI generation for STM32H5

	10.3.3 Programming input requirements
	Figure 72. STMicroelectronics global license generation for STM32H5

	10.3.4 Perform the SFI install using STM32CubeProgrammer
	Command-line mode
	Figure 73. STM32H5 SFI successful programming via CLI
	Graphical user interface mode
	Figure 74. STM32H5 SFI successful programming via GUI

	11 Example of SFI programming scenario for STM32H7RS
	11.1 Scenario overview
	11.2 Hardware and software environment
	11.3 Step-by-step execution
	11.3.1 Build an OEM application
	11.3.2 Perform the SFI generation (GUI mode)
	Figure 75. Figure4 SFI generation for STM32H7RS

	11.3.3 Programming input requirements
	11.3.4 Perform the SFI install using STM32CubeProgrammer
	Command-line mode
	Figure 76. STM32H7RS SFI successful programming via CLI
	Graphical user interface mode
	Figure 77. STM32H7RS SFI successful programming via GUI

	12 Example of SMI programming scenario
	12.1 Scenario overview
	12.2 Hardware and software environment
	12.3 Step-by-step execution
	12.3.1 Build a third-party library
	12.3.2 Perform the SMI generation
	Figure 78. STPC GUI during SMI generation

	12.3.3 Programming input conditions
	12.3.4 Perform the SMI install
	Using JTAG/SWD
	Figure 79. SMI install success via debug interface

	12.3.5 How to test for SMI install success
	Figure 80. OB display command showing that a PCROP zone was activated after SMI

	13 Example of SFIx programming scenario for STM32H7
	13.1 Scenario overview
	13.2 Hardware and software environment
	13.3 Step-by-step execution
	13.3.1 Build OEM application
	13.3.2 Perform the SFIx generation (GUI mode)
	Figure 81. Successful SFIx generation

	13.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 82. Example of HSM programming using STPC GUI

	13.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	13.3.5 Programming input conditions
	13.3.6 Perform the SFIx installation using STM32CubeProgrammer
	Using JTAG/SWD
	Figure 83. SFIx installation success using SWD connection (1)
	Figure 84. SFIx installation success using SWD connection (2)
	Figure 85. SFIx installation success using SWD connection (3)
	Figure 86. SFIx installation success using SWD connection (4)

	14 Example of SFIx programming scenario for STM32L5/STM32U5
	14.1 Scenario overview
	14.2 Hardware and software environment
	14.3 Step-by-step execution
	14.3.1 Build an OEM application
	14.3.2 Perform the SFIx generation (GUI mode)
	Use case 1: generation of SFIx without key area for STM32L5
	Figure 87. Successful SFIx generation use case 1
	Use case 2: generation of SFIx with key area for STM32L5
	Figure 88. Successful SFIx generation use case 2
	Use case 3: generation of SFIx without key area for STM32U5
	Figure 89. Successful SFIx generation use case 3
	Figure 90. Successful SFIx generation use case 3 for STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and STM32U5Gxxx
	Use case 4: generation of SFIx with key area for STM32U5
	Figure 91. Successful SFIx generation use case 4
	Figure 92. Successful SFIx generation use case 4 for STM32U59xxx, STM32U5Axxx, STM32U5Fxxx, and STM32U5Gxxx

	14.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	14.3.4 Performing HSM programming for license generation using STPC (CLI mode)
	14.3.5 Programming input conditions
	14.3.6 Perform the SFIx installation using STM32CubeProgrammer
	Figure 93. SFIx installation success using SWD connection (1)
	Figure 94. SFIx installation success using SWD connection (2)
	Figure 95. SFIx installation success using SWD connection (3)

	15 Example of SFIx programming scenario for STM32H5
	15.1 Scenario overview
	15.2 Hardware and software environment
	15.3 Step-by-step execution
	15.3.1 Build an OEM application
	15.3.2 Perform the SFIx generation (GUI mode)
	Figure 96. SFIx image generation for STM32H5

	15.3.3 Programming input conditions
	15.3.4 Perform the SFIx installation using STM32CubeProgrammer CLI
	Figure 97. SFIx installation success for STM32H5

	16 Example of a combined SFI-SMI programming scenario
	16.1 Scenario overview
	16.2 Hardware and software environment
	16.3 Step-by-step execution
	Figure 98. GUI of STPC during combined SFI-SMI generation
	16.3.1 Using JTAG/SWD
	Figure 99. Combined SFI-SMI programming success using debug connection

	16.3.2 How to test the combined SFI install success
	Figure 100. Option bytes after combined SFI-SMI installation success

	17 Example of SSP programming scenario for STM32MP1
	17.1 Scenario overview
	17.2 Hardware and software environment
	17.3 Step-by-step execution
	17.3.1 Building a secret file
	17.3.2 Performing the SSP generation (GUI mode)
	Figure 101. STM32 Trusted Package Creator SSP GUI tab

	17.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 102. Example of HSMv2 programming using STPC GUI

	17.3.4 SSP programming conditions
	17.3.5 Perform the SSP installation using STM32CubeProgrammer
	Figure 103. STM32MP1 SSP installation success

	18 Example of SSP-SFI programming scenario for STM32MP2
	18.1 Scenario overview
	18.2 Hardware and software environment
	18.3 Step-by-step execution
	18.3.1 Building a secret file
	Figure 104. Secrets Gen Window

	18.3.2 Building a backup memory file
	Figure 105. SSP Backup memory window

	18.3.3 Performing the SSP-SFI generation (GUI mode)
	Figure 106. SSP-SFI image generation window

	18.3.4 Performing HSM programming (GUI mode)
	18.3.5 SSP-SFI programming conditions
	18.3.6 Perform the SSP installation using STM32CubeProgrammer
	Figure 107. SSSP-SFI installation

	19 Reference documents
	Table 3. Document references

	20 Revision history
	Table 4. Document revision history

