
Introduction

The STM32H747/757 microcontroller line is based on the high-performance Arm® Cortex®-M7 and Cortex®-M4 32-bit RISC 
cores. The system is partitioned into three power domains that operate independently. This allows user applications to obtain 
the best trade-off between power consumption and core performance:
• Arm® Cortex®-M7 (CPU1) located in the D1 domain and operating at up to 480 MHz
• Arm® Cortex®-M4 (CPU2) located in the D2 domain and operating at up to 240 MHz

The purpose of this application note is to highlight STM32H747/757 performance and explain how to make the most of their 
flexible architecture to reduce power consumption. The document is split into four parts:

1. Introduction to the STM32H747/757 power management concepts and voltage regulators, peripheral allocation by both 
CPUs, as well as low-power mode entry and exit.

2. Illustration of how to use the above features to reduce power consumption through a temperature acquisition use case 
based on the STM32H747I-DISCO Discovery kit and the X-NUCLEO-IKS01A2 expansion board with three scenarios:
– D1 domain in DRun mode, D2 domain in DStop and D3 domain in Run mode.
– D1 domain in DStop mode, D2 domain in DStop and D3 domain in Autonomous mode.
– D1 domain in DStop domain, D2 domain in DStop and D3 domain Run/Stop mode.

3. Graphical display of temperature values using the StemWin library and FreeRTOS™.
4. Cortex®-M7 and Cortex®-M4 core synchronization using a semaphore.

Refer to the following documents for further information on the STM32H747/757 line:

• STM32H745/755 and STM32H747/757 advanced Arm®-based 32-bit MCUs reference manual (RM0399).
• STM32H747xx and STM32H757xx datasheets.
• STM32H747I-DISCO Discovery kit user manual: Discovery kit with STM32H747XI MCU (UM2411).

How to implement advanced power management on STM32H747/757 MCUs

AN5215

Application note

AN5215 - Rev 2 - August 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com/en/product/stm32h747i-disco?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5215
http://www.st.com/en/product/x-nucleo-iks01a2?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5215


1 General information

This document applies to STM32H747/757 Arm®-based devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5215
General information

AN5215 - Rev 2 page 2/30



2 System architecture

2.1 System architecture overview
The STM32H747/757 line embeds a flexible power architecture dedicated to power consumption reduction. The 
devices embed two power regulators: an LDO and a high power-efficiency SMPS step-down converter. Each 
regulator can be selected as power source for the product power domains.
Three power domains can be independently switched ON and OFF, depending on application needs:

• D1 domain: this domain contains the Cortex®-M7 core, the Flash memory and some peripherals. Thanks 
to the AXI bus matrix, this domain encompasses high bandwidth features and smart management.

• D2 domain: this domain contains the Cortex®-M4 core, most of the memories dedicated to I/O processing 
and most of the peripherals that are less bandwidth demanding.

• D3 domain: this domain contains the system control, low-power peripherals and memories designed to 
manage low-power modes. It is designed to be autonomous, and embeds a 64-Kbyte RAM, a basic DMA 
controller (BDMA), plus low-power peripherals to run basic functions while D1 and D2 domains can be 
switched off to save power.

Figure 1 illustrates STM32H747/757 system architecture.

Figure 1. STM32H747/757 system architecture

ITCM-RAM

DTCM-RAM
AHBS

DTCM

AHBP
ITCM

APB3

Flash A

Flash B

AXI 
SRAM

QSPI

FMC

AHB3

APB1

SRAM1

AHB1

SRAM2

SRAM3

AHB2

APB2

D
M

A
1_

M
EM

D
M

A
1_

PE
R

IP
H

GPV

AXI

A
PB

A
PB

A
H

B

D1-to-D2 AHB bus

D
M

A
2_

M
EM

D
M

A
2_

PE
R

IP
H

L1-Cache 
(1)

SD
M

M
C

2

Et
he

rn
et

M
A

C

U
SB H
S1

U
SB H
S2

D
M

A
2

D
M

A
1

SDMMC1 MDMA DMA2D LTDC

L1-Cache

D2-to-D1 AHB bus

D2-to-D3 AHB bus

64-bit AXI bus matrix
D1 Domain

32-bit AHB bus matrix
D2 Domain

D2-to-D1 AHB bus

D1-to-D3 AHB bus

APB4AHB4

SRAM4

Bckp SRAM

BDMA

32-bit AHB bus matrix
D3 Domain

AXI

AHB

AXI

Cortex®-M7

AXIM

AXI

AXI

Cortex®-M4

S-
B

us

D
-B

us
I-B

us

32-bit bus
64-bit bus
Bus multiplexer

Legend

Master interface

Slave interface

AXI
AHB

APB
TCM

ART

AN5215
System architecture

AN5215 - Rev 2 page 3/30



2.2 System supply configuration
D1, D2 and system D3 domains are supplied at once from a single regulator. The selected regulator provides a 
common VCORE level depending on the system operating mode (Run, Stop, and Standby).
The VCORE domain supply can be provided by the SMPS step-down converter, voltage regulator or by an 
external supply (VCAP). VCORE supplies all the digital circuitries except for the Backup domain and the 
Standby circuitry.
The different supply configurations are controlled by the LDOEN, SDEN, SDEXTHP, SDLEVEL and BYPASS bits 
in PWR control register 3 (PWR_CR3).

2.2.1 Voltage regulator (LDO)
The voltage regulator (LDO) can provide three different operating modes, Main (MR), Low-power (LP) or Off 
mode, depending on the application needs. The LDO adjusts the output voltage through six power supply levels. 
The table below summarizes the regulator LDO operating modes.

Table 1. LDO converter operating modes and voltage regulators

Operating 
mode

Regulator 
operating 

mode

Voltage 
scaling

Output 
voltage (V)

Maximum 
output 

frequency
Description

Run MR

VOS0 1.35 480 MHz Boosted performance

VOS1 1.2 400 MHz High performance

VOS2 1.1 300 MHz Medium performance and consumption

VOS3(1) 1.0 200 MHz Optimized performance and low-power 
consumption.

Stop

MR or LP SVOS3 1.0

NA

The regulator can be:
• In Main mode to allow fast exit from Stop 

mode.
• In LP mode to obtain a lower VCORE supply 

level and extend the exit-from-Stop latency.

LP

SVOS4 0.9
More power consumption.

In SVOS4/SVOS5, the contents of the registers 
and memories are retained.

SVOS5 0.7
More power consumption.

In SVOS4/SVOS5, the contents of the registers 
and memories are retained.

Standby OFF NA NA NA

The regulator is off.

The contents of the registers and memories are 
lost except for the Standby circuitry and the 
Backup domain.

 

1. By default, VOS3 is selected after system reset.
 

2.2.2 SMPS step-down converter
The SMPS step-down converter is a high power-efficient SMPS step-down converter and non-linear switching 
regulator that allows to achieve a lower power consumption compared to a conventional voltage regulator. It can 
be used in internal or external supply mode (VDD_extern):
• The internal supply mode is used to directly supply the VCORE domain. The SMPS step-down converter 

behaves in the same way as the LDO regulator.
• The external supply mode can generate an intermediate supply level (VDD_extern at 1.8 or 2.5 V), which 

can supply the voltage regulator (LDO) and optionally an external circuitry. When the SMPS step-down 
converter supplies an external circuitry, it is forced ON and operates in MR mode. The intermediate voltage 
level is selected through SDLEVEL bits in PWR control register 3 (PWR_CR3).

AN5215
System architecture

AN5215 - Rev 2 page 4/30



2.3 Peripheral allocation

2.3.1 Peripheral allocation overview
The peripheral allocation is used by the reset and clock controller (RCC), to automatically control the clock gating 
according to the CPUs and domain modes, and by the power controller (PWR) to control the supply voltages of 
D1, D2 and D3 domains.
Each CPU can allocate peripherals for itself (or optionally for the other CPU). To do this, each CPU features 
dedicated registers and bits in order to perform peripheral allocation: the PERxEN bits of RCC_C1_xxxxENR and 
RCC_C2_xxxxENR. These bits are also used to link peripherals to a CPU and build a CPU peripheral subsystem 
so that each CPU can control its peripheral subsystem kernel and bus interface clock.
The CPU peripheral subsystem clocks follow the CPU state: for example, they are clocked when the CPU is in 
CRun mode or clock-gated when the CPU is in CStop mode.

Figure 2. Peripheral allocation

D
T3

93
89

V2

D3

D1 D2

CPU1

SDMMC1

PER...

PER...

PER...

AXISRAM

...

CPU2

Bus M
atrix 2

SPI5

SAI1

I2C2

PER...

SRAM2

SRAM1

...

CPU1_SS

ART

FLASH

ITCM

DTCM1

Peripherals implicitly allocated to CPU1    

Bu
s 

M
at

rix
 1

SRAM3

Bus Matrix 3

D
M

A1

I2C
4

SAI4

PER
...

...
D

M
AM

U
X

CPU2_SS

R
C

C

DTCM2

FL
IT

F
SR

A
M

4

IW
D

G
1

IW
D

G
2

Peripherals implicitly allocated to CPU2

Peripherals implicitly allocated to both
CPUs    

Some peripherals are allocated by default to the CPUs:
• FLASH, AXISRAM, ITCM, DTCM1, DTCM2 and SRAM4 are allocated to CPU1.
• SRAM1, SRAM2, SRAM3 and SRAM4 are allocated to CPU2.
• SRAM4, IWGD1, IWGD2 and RCC are common resources and are allocated both to CPU1 and CPU2.

2.3.2 Allocating peripherals belonging to D1 and D2 domains
The kernel clock is provided to the peripherals located in D1 and D2 domains when one of the following 
conditions is met:
1. The CPU to which the peripheral is allocated is in CRun mode.

AN5215
System architecture

AN5215 - Rev 2 page 5/30



2. The CPU to which the peripheral is allocated is in CSleep mode and PERxLPEN is set to 1.
3. The CPU to which the peripheral is allocated is in CStop mode with PERxLPEN set to 1, the peripheral 

generates a kernel clock request, and the selected clock is hsi_ker_ck or csi_ker_ck.
4. The CPU to which the peripheral is allocated is in CStop mode with PERxLPEN set to 1, and the peripheral 

kernel source clock is lse_ck or lsi_ck.
The bus interface clock is provided to the peripherals only when conditions 1 and 2 are met.

2.3.3 Allocating peripherals belonging to D3 domain
The D3 Autonomous mode allows the delivery of the peripheral clocks to peripherals located in the D3 domain, 
even if the CPU to which they are allocated is in CStop mode. When a peripheral has its autonomous bit enabled, 
it receives its peripheral clock according to D3 domain state independently from the state of the CPU to which it is 
allocated (for instance CPU in CStop mode):
• If the D3 domain is in DRun mode, the peripherals that are in Autonomous mode receive their peripheral 

clock.
• If the D3 domain is in DStop mode, no peripheral clock is provided.
The kernel clock is provided to the peripherals located in the D3 domain if the following conditions are met:
1. The CPU to which the peripheral is allocated is in CRun mode.
2. The CPU to which the peripheral is allocated is in CSleep mode and PERxLPEN is set to 1.
3. The CPU to which the peripheral is allocated is in CStop mode and the D3 domain is in DRun mode with 

PERxAMEN set to 1.
4. The CPU to which the peripheral is allocated is in CStop mode, the D3 domain is in DStop mode with 

PERxAMEN set to 1, the peripheral generates a kernel clock request, and the kernel clock source is 
hsi_ker_ck or csi_ker_ck.

5. The CPU to which the peripheral is allocated is in CStop mode, D3 domain is in DStop mode with PERxAMEN 
set to 1, and the kernel clock source of the peripheral is lse_ck or lsi_ck.

The bus interface clock is provided to the peripherals only when condition 1, 2 or 3 is met.

2.4 Operating modes

2.4.1 Operating modes
The operating modes allow controlling the clock distribution to the different system blocks and powering them. 
Several operating modes are available when using STM32H747/757 device line. It is up to the user to choose the 
best compromise between low-power consumption, short start-up time and available wake-up sources. The 
system operating mode is driven by CPU1 subsystem, CPU2 subsystem and system D3 autonomous wake-up.

Table 2. Operating mode overview

CPU subsystems 
and domains Modes Description

CPU subsystems

CRun The CPU and CPU subsystem peripheral allocated via RCC PERxEN bits are clocked.

CSleep The CPU clocks are stalled and the CPU subsystem allocated peripheral clock(s) operate 
according to RCC PERxLPEN.

CStop The CPU and CPU subsystem peripheral clocks are stalled.

D1 and D2 
subsystems

DRun

The domain bus matrix is clocked:
• The domain CPU subsystem is in CRun or CSleep mode,

or
• the other domain CPU subsystem having an allocated peripheral in the domain is in 

CRun or CSleep mode.

DStop

The domain bus matrix clock is stalled:
• The domain CPU subsystem is in CStop mode,

and

AN5215
System architecture

AN5215 - Rev 2 page 6/30



CPU subsystems 
and domains Modes Description

D1 and D2 
subsystems

• the other domain CPU subsystem has no peripheral allocated in the domain or the 
other domain CPU subsystem having an allocated peripheral in the domain is also in 
CStop mode,

and
• at least one PDDS_Dn bit for the domain selects DStop mode.

DStandby

The domain is powered down:
• The domain CPU subsystem is in CStop mode,

and
• the other domain CPU subsystem has no peripheral allocated in the domain or the 

other domain CPU subsystem having an allocated peripheral in the domain is also in 
CStop mode,

and
• all PDDS_Dn bits for the domain select DStandby mode.

System / D3 
subsystems

Run
The system clock and D3 domain bus matrix clock are running:
• A CPU subsystem is in CRun or CSleep mode
• or a wake-up signal is active. (i.e. System D3 autonomous mode)

Stop

The system clock and D3 domain bus matrix clock are stalled:
• Both CPU subsystems are in CStop mode,

and
• all wake-up signals are inactive.

and
• at least one PDDS_Dn bit for any domain selects Stop mode.

Standby

The system is powered down:
• Both CPU subsystems are in CStop mode,

and
• all wake-up signals are inactive,

and
• all PDDS_Dn bits for all domains select Standby mode.

AN5215
System architecture

AN5215 - Rev 2 page 7/30



2.4.2 Entering/exiting low-power modes
Depending on the application requirements, several low-power modes can be selected to reduce power 
consumption. The table below summarizes the low-power entry and exit conditions:

Table 3. Summary of low-power mode entry/exit conditions

Low-power 
mode Mode entry CPU and CPU subsystem peripheral 

allocated via

CSleep

WFI or return from ISR Any Interrupt enabled in NVIC

WFE was used for entry and SEVONPEND = 0 Any event.

WFE was used for entry and SEVONPEND = 1 Any interrupt even when disabled in 
NVIC or any event.

CStop

WFI or return from ISR EXTI Interrupt enabled in NVIC.

WFE was used for entry and SEVONPEND = 0 EXTI event.

WFE was used for entry and SEVONPEND = 1
• EXTI Interrupt even when 

disabled in NVIC,
• or EXTI event.

DStop

• The domain CPU subsystem enters CStop and the other 
domain CPU subsystem has no peripheral allocated in the 
domain, or it is also in CStop mode.

• The other domain CPU subsystem has an allocated peripheral 
and enters CStop and the domain CPU subsystem is in CStop 
mode.

• The other domain CPU subsystem deallocated its last 
peripheral in the domain and the domain CPU subsystem is in 
CStop mode.

• At least one PDDS_Dn bit for the domain selects Stop mode.

• The domain CPU subsystem 
exits CStop mode.

• The other domain CPU 
subsystem has an allocated 
peripheral in the domain and 
exits CStop mode.

• The other domain CPU 
subsystem allocates a first 
peripheral in the domain.

Stop
• CPU1 and CPU2 are in CStop mode.
• There is no active EXTI wake-up source and Run_D3 = 0.
• At least one PDDS_Dn bit for any domain selects Stop mode.

An EXTI wake-up.

DStandby

• The domain CPU subsystem enters CStop mode and the other 
domain CPU subsystem has no peripheral allocated in the 
domain or is also in CStop mode.

and
• The other domain CPU subsystem has an allocated peripheral 

and enters CStop mode, and the domain CPU subsystem is in 
CStop mode.

• The other domain CPU subsystem deallocated its last 
peripheral in the domain and the domain CPU subsystem is in 
CStop mode.

• All PDDS_Dn bits for the domain select Standby mode.
• All WKUPF bits in Power Control/Status register 

(PWR_WKUPFR) are cleared.

• The domain CPU subsystem 
exits CStop mode.

• The other domain CPU 
subsystem has an allocated 
peripheral in the domain and 
exits CStop mode.

• The other domain CPU 
subsystem allocates a first 
peripheral in the domain.

Standby

• The CPU1 and CPU2 subsystems are in CStop mode, there is 
no active EXTI wake-up source, and RUN_D3 = 0.

• All PDDS_Dn bits for all domains select Standby mode.
• All WKUPF bits in Power Control/Status register 

(PWR_WKUPFR) are cleared.

WKUP pins rising or falling edge.

RTC alarm (Alarm A and Alarm B) or 
RTC wake-up.

TAMPER event, TIMESTAMP event.

External reset in NRST pin, IWDG 
reset.

AN5215
System architecture

AN5215 - Rev 2 page 8/30



3 Application use case

The application use case described in this section illustrates the low-power temperature acquisition using the 
STM32H747I-DISCO Discovery kit and the X-NUCLEO-IKS01A2 expansion board. It provides guidelines on how 
to implement a low-power application taking benefits from STM32H747/757 power domains.
In this basic use case, the temperature acquisition is handled by the Arm® Cortex®-M4 core, while the display of 
temperature values is controlled by the Cortex®-M7 core. The two cores are synchronized using hardware 
semaphores.

3.1 Arm® Cortex®-M4 tasks

3.1.1 Low-power temperature acquisition

3.1.1.1 Acquisition principles
This application note provides a temperature acquisition use case based on the Cortex®-M4 and D3 domain 
peripherals, with different domain power states. In this use case, the X-NUCLEO-IKS01A2 expansion board is 
used to acquire temperature values from a HTS221 sensor via the I2C bus. Three different modes are proposed 
in order to optimize power consumption and highlight STM32H747/757 advanced power management:
• Mode 1

The Cortex®-M4 core first allocates Flash memory to boot the execution code from it. This prevents the D1 
domain to enter DStop mode if the Arm® Cortex®-M7 enters CStop. Dedicated peripherals located in the 
D3 domain are used during the acquisition process. As a result, only the D2 domain enters DStop when the 
Arm® Cortex®-M4 enters CStop.

• Mode 2
To achieve additional power consumption reduction, the Flash memory is deallocated for the Arm® 

Cortex®-M4 core to enable D1 domain entry to DStop mode independently from CPU2 state. The Arm® 

Cortex®-M4 core first boots from Flash. The acquisition code is then executed from an SRAM area located 
in the D2 domain. This mode illustrates the D3 Autonomous mode which allows D3 domain peripherals to 
run independently in Autonomous mode even when both CPUs are in CStop mode.

• Mode 3
Further power consumption saving can be achieved by switching D3 domain between DRun and DStop 
modes during data transfer.

3.1.1.2 Description of the transmission process
Below a detailed description of the transmission process:
1. The rising edge of lptim3_out signal triggers BDMA channel 0 (bdma_ch0) once per second to begin data 

transfer in order to configure the I2C4 interface to request write transfer to the HTS221 sensor.
2. As soon as I2C4 TX-FIFO is empty, BDMA channel 1 (bdma_ch1) begins data transfer from SRAM4 to 

I2C4_TXDR register to send a specified address to the HTS221 sensor.
3. The end of this transfer triggers BDMA channel 2 data (bdma_ch2) transfer from SRAM4 to I2C4_CR2 

register to request read transfers from the sensor.
4. BDMA channel 7 (bdma_ch7) is then used to transfer the received data from I2C4_RXDR register (data sent 

by the HTS221 sensor) to SRAM4. bdma_ch7 data transmission is enabled by setting RXDMAEN bit in 
I2C_CR1 register. bdma_ch7 is configured to generate interrupts to wake up the CPU from CStop mode each 
time a half-transfer is complete (10 bytes of data) or when a full transfer is complete (20 bytes of data).

Refer to Figure 3 for an overview of the transmission process:

AN5215
Application use case

AN5215 - Rev 2 page 9/30

http://www.st.com/en/product/stm32h747i-disco?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5215
http://www.st.com/en/product/x-nucleo-iks01a2?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5215
http://www.st.com/en/product/x-nucleo-iks01a2?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5215


Figure 3. Transmission process

D3 Domain
LPTIM3

bdma_ch
0

bdma_ch
1

bdma_ch
2

SRAM4

bdma_ch
7

BKPSRAM
Each 1s

I2C4TX_FIFO 
is empty

Dmamux_
ch1_evt

I2C4RX_FIFO
 is full

Half transfer or
transfer complete

Request write 
transfer

Send specific 
address

Request read 
transfer

Transfer the 
received data

Cortex-M4

Process and store data

3.1.1.3 Acquisition mode implementation
Three different acquisition modes are possible: mode 1, mode 2 and mode 3.

Mode 1

In mode 1, the Flash memory (located in D1 domain) is allocated to CPU2 (Arm® Cortex®-M4). The D1 domain 
consequently takes into account CPU2 operating modes, for example by keeping D1 domain in DRun mode when 
CPU2 is in CRun. As a result, the Flash memory can be deallocated after making sure that code booting by CPU2 
is complete.
Below the main temperature acquisition steps in mode 1:
1. Arm® Cortex®-M4 booting from Flash memory.
2. Temperature acquisition from shield to SRAM4 through I2C4 located in the D3 domain.
3. Data transfer from SRAM4 to Backup SRAM after waking up CPU2.

Table 4. Domain operating modes in mode 1

Power domain Mode

D1 domain DRun

D2 domain DStop

D3 domain Run

AN5215
Application use case

AN5215 - Rev 2 page 10/30



Figure 4. Acquisition process in mode 1

D1 Domain D2 Domain

D3 Domain

Cortex-M7

Flash 
memory

Cortex-M4

SRAM3

SRAM2

SRAM1
Code allocation

LPTIM3 BKPSRAM

I2C4 BDMA SRAM4

1

23

4 5

6 7

1 lptim3_out signal triggers BDMA_ch0 each 1seclptim3_out signal triggers BDMA_ch0 each 1sec

2 ++ 3 bdma_ch1 begins data transfer from SRAM4 to I2C4_TXDR register to send a specified address to HTS221 sensorbdma_ch1 begins data transfer from SRAM4 to I2C4_TXDR register to send a specified address to HTS221 sensor

4 ++ 5 BDMA channel7 (bdma_ch7) is used to transfer the received data from I2C4_RXDR register to SRAM4BDMA channel7 (bdma_ch7) is used to transfer the received data from I2C4_RXDR register to SRAM4

6 CPU2 processes the data  to be transferred and located in SRAM4CPU2 processes the data  to be transferred and located in SRAM4

7 CPU2 copies the processed data to BackupSRAM  CPU2 copies the processed data to BackupSRAM  

X-NUCLEO-
IKS01A2

X-NUCLEO-
IKS01A2

Mode 2

In mode 2, the CPU2 executes code from SRAM1 located in the D2 domain, so that D1 domain can enter DStop 
mode independently from CPU2 operating mode.
Below the main temperature acquisition steps in mode 2:
1. CPU2 executing from SRAM1 located in the D2 domain.
2. Temperature acquisition from shield to SRAM4 through I2C4 located in the D3 domain.
3. Data transfer from SRAM4 to Backup SRAM after waking up CPU2.

Table 5. Domain operating modes in mode 2

Power domain Mode

D1 domain DStop

D2 domain DStop

D3 domain Run

AN5215
Application use case

AN5215 - Rev 2 page 11/30



Figure 5. Acquisition process in mode 2

D1 Domain D2 Domain

D3 Domain

Cortex-M7

Flash 
memory

Cortex-M4

SRAM3

SRAM2

SRAM1

LPTIM3 BKPSRAM

I2C4 BDMA SRAM4

1

23

4 5

6 7

1 lptim3_out signal triggers BDMA_ch0 each 1seclptim3_out signal triggers BDMA_ch0 each 1sec

2 ++ 3 bdma_ch1 begins data transfer from SRAM4 to I2C4_TXDR register to send a specified address to HTS221 sensorbdma_ch1 begins data transfer from SRAM4 to I2C4_TXDR register to send a specified address to HTS221 sensor

4 ++ 5 BDMA channel7 (bdma_ch7) is used to transfer the received data from I2C4_RXDR register to SRAM4BDMA channel7 (bdma_ch7) is used to transfer the received data from I2C4_RXDR register to SRAM4

6 CPU2 processes the data to be transferred and located in SRAM4CPU2 processes the data to be transferred and located in SRAM4

7 CPU2 copies the processed data to BackupSRAM  CPU2 copies the processed data to BackupSRAM  

Code 
allocation

X-NUCLEO-
IKS01A2

X-NUCLEO-
IKS01A2

Mode 3

The DMAMUX2 event 7 signal (dmamux2_evt7) is used by the EXTI to clear the pending request and switch back 
the D3 domain to Stop mode every time a half transfer or a transfer complete of data is complete.
For complementary information on the acquisition process, please refer to application note STM32H7x3 smart 
power management software expansion for STM32Cube (AN5014) available from www.st.com:
Below the main temperature acquisition steps in mode 3:
1. CPU2 executing from SRAM1 located in the D2 domain.
2. Temperature acquisition from shield to SRAM4 through I2C4 located in the D3 domain.
3. Data transfer from SRAM4 to Backup SRAM after waking up CPU2.

Table 6. Domain operating modes in mode 3

Power domain Mode

D1 domain DStop

D2 domain DStop

D3 domain Run/Stop

AN5215
Application use case

AN5215 - Rev 2 page 12/30

http://www.st.com


Figure 6. Acquisition process in mode 3

D1 Domain D2 Domain

D3 Domain

Cortex-M7

Flash 
memory

Cortex-M4

SRAM3

SRAM2

SRAM1

LPTIM3 BKPSRAM

I2C4 BDMA SRAM4

1

23

4 5

6 7

1 lptim3_out signal triggers BDMA_ch0 each 1seclptim3_out signal triggers BDMA_ch0 each 1sec

2 ++ 3 bdma_ch1 begins data transfer from SRAM4 to I2C4_TXDR register to send a specified address to HTS221 sensorbdma_ch1 begins data transfer from SRAM4 to I2C4_TXDR register to send a specified address to HTS221 sensor

4 ++ 5 BDMA channel7 (bdma_ch7) is used to transfer the received data from I2C4_RXDR register to SRAM4BDMA channel7 (bdma_ch7) is used to transfer the received data from I2C4_RXDR register to SRAM4

6 CPU2 processes the data to be transferred and located in SRAM4CPU2 processes the data to be transferred and located in SRAM4

7 CPU2 copies the processed data to BackupSRAM  CPU2 copies the processed data to BackupSRAM  

Code 
allocation

dmamux2_evt7dmamux2_evt7

X-NUCLEO-
IKS01A2

X-NUCLEO-
IKS01A2

3.1.2 Detailed description of temperature acquisition in different modes

AN5215
Application use case

AN5215 - Rev 2 page 13/30



3.1.2.1 Temperature acquisition in different modes
The sequence below must be executed by the Arm® Cortex®-M4 to perform temperature acquisition (see Figure 7 
for an overview of the temperature acquisition sequence depending on the mode):
1. To boot the application code from Flash memory, allocate the Flash memory (located in D1 domain) in the 

system_stm32h7xx.c file. The D1 domain consequently takes into account the CPU2 or CPU2 subsystem 
operating modes. Since the D1 domain enters DStop mode in mode 2 and 3, the Flash memory must be 
deallocated for these two modes, and CPU2 proceeds with code execution from SRAM1 (located in D2 
domain).

2. Initialize the hardware abstraction layer (HAL) library.
3. Enable hardware semaphore (HSEM).
4. Configure USART2 to display message on Hercules terminal.
5. Execute the initialization and acquisition tasks described in detailed in Figure 8 and Figure 9.

Figure 7. Global flowchart of temperature acquisition depending on modes

D
T6

06
28

V1

Allocating 
Flash memory  

to CPU2

Initializing 
HAL Library

HSEM Clock 
Enable

Configure 
USART2

Initialize SPI

Mode 
initialization 
sequence

MODE 1

YES

YES

NO

End

NO

Acquisition 
sequence

De-allocating 
Flash memory  

from CPU2

MODE 2
MODE 3

Start

AN5215
Application use case

AN5215 - Rev 2 page 14/30



Mode initialization sequence

To initialize the acquisition process, accesses to BKPSRAM must be enabled as well as the temperature sensor. 
The used peripherals must then be configured and the corresponding autonomous bits set in RCC_D3AMPR 
register. The BDMA channel 7 interrupt (bdma_ch7_it) is used to wake up the D2 domain from DStop mode.
In mode 3, since D3 domain toggles between Run and Stop modes, bdma_ch7_it event is selected as D3 domain 
pendclear source contrary to mode 1 and mode 2 where the application has to keep the D3 domain in Run mode.
Refer to Figure 8 for a detailed description of the initialization sequence.

AN5215
Application use case

AN5215 - Rev 2 page 15/30



Figure 8. Mode initialization sequence

Enable access to 
BKPSRAM

Enable access to 
BKPSRAM

Set up temperature sensorSet up temperature sensor

Configure LPTIM3Configure LPTIM3

Configure BDMA channelsConfigure BDMA channels

Activate Autonomous bit for 
D3 peripherals

Activate Autonomous bit for 
D3 peripherals

Configure EXTI to wake up 
the D2 domain (CPU2)

Configure EXTI to wake up 
the D2 domain (CPU2)

Configure D3 to switch between 
Run and Stop modes (select 

BDMA_ch7 as D3
pendclear source)

Configure D3 to switch between 
Run and Stop modes (select 

BDMA_ch7 as D3
pendclear source)

Configure D3 to force it in Run 
mode

Configure D3 to force it in Run 
mode

MODE 1
or MODE2

MODE 3

Start

End

YES

YES

NO

NO

Acquisition sequence

Figure 9 provides a detailed description of the acquisition sequence and highlights the fact that the D3 domain 
must also enter Stop mode in mode 3.

AN5215
Application use case

AN5215 - Rev 2 page 16/30



Figure 9. Acquisition sequence

Mode initMode init

BDMA Half 
transfer complete

BDMA Half 
transfer complete

Store data in 
BKPSRAM

Store data in 
BKPSRAM

|Diffrence | > 1 °C|Diffrence | > 1 °C

Store data in 
specefic address in 

SRAM4

Store data in 
specefic address in 

SRAM4

Release HSEMRelease HSEM

Enter D2 in Dstop 
mode

Enter D2 in Dstop 
mode

Enter D3 in Dstop 
mode

Enter D3 in Dstop 
mode

MODE 3 is 
selected

MODE 3 is 
selected

Start

YES

YES

YES

NO

NO

NO

AN5215
Application use case

AN5215 - Rev 2 page 17/30



3.2 Arm® Cortex®-M7 tasks

3.2.1 DSI Host interface
STM32H7x7 microcontrollers embed a DSI Host interface, a high-speed communication channel that allows the 
microcontroller to communicate with a graphical display with a reduced pincount and a very high communication 
speed up to 1 Gbits/s (up to 500Mbits/s per lane). The DSI Host interface can be configured in Video mode or in 
Adapted command mode.
To allow CPU1 to enter low-power mode while going on refreshing the display normally, the Adapted command 
mode has been selected in the application use case.
Refer to Table 7 for a summary of the difference between the two modes.

Table 7. Embedded graphic system

Display mode Description

Video mode The MCU sends a real-time pixel stream of data plus video timing information in order to refresh the 
display.

Adapted command 
mode

The display controller handles the refresh operation. The display relies on its internal controller and 
framebuffer to perform the refresh operation without MCU intervention.

Figure 10. High-level block diagram of STM32H7x7 and DSI interface 

STM32H7x7STM32H7x7

D1 domain

D2 domain

D3 domain

Display moduleDisplay module

Display controllerDisplay controller

FramebufferFramebuffer

LCDLCD

Cortex-
M7

Cortex-
M4

3.2.2 Detailed description of the displaying process
In the application use case described in this document, the LCD-TFT display controller (LTDC) fetches data from 
SDRAM bank 2 via the FMC controller and sends them to the DSI controller in Video mode. As soon as the DSI 
Host has captured one full frame coming from the LTDC, it transforms it into a series of write commands to update 
the display GRAM, and then disables the LTDC. The DSI Host controller automatically refreshes the GRAM with 
the LTDC without CPU intervention. Figure 11 shows the displaying sequence.

AN5215
Application use case

AN5215 - Rev 2 page 18/30



Figure 11. Displaying sequence in Adapted command mode

Display moduleDisplay module

FramebufferFramebuffer

LCDLCD

Cortex-
M7

AXIAXI

LTDC 
Controller

LTDC 
Controller DSI HostDSI Host

FMCFMC

SDRAMSDRAM

Adapted 
command mode

Video 
Mode

Display 
controller
Display 

controller

3.2.3 STemWin Library
The STemWin library is a professional graphical stack library enabling the building up of graphical user interfaces 
(GUIs) with any STM32 microcontroller, LCD-TFT display and LCD-TFT controller, taking advantage of STM32 
hardware accelerations whenever possible.

3.2.3.1 STemWin configuration
STemWin configuration is divided into two parts:
• GUI configuration: configuration of default colors and fonts of the available memory
• LTDC configuration: definition of hardware-dependent graphical parameters, display driver and color 

conversion routines to be used
When a new LTDC controller needs to be supported, two essential files must be created/modified: GUIConf.c and 
LCDConf.c:
• GUIConf.c

In this file, the user must implement the GUI_X_Config() function which is the very first routine called 
during the initialization process. Its main task is to set up the available memory for the GUI, and then 
assign it to the dynamic memory management system. This operation is performed via the 
GUI_ALLOC_AssignMemory() function. It passes a pointer to a memory block and its size (in bytes) to 
the memory manager:

• LCDConf.c
In this file, the main function is LCD_X_Config(), called immediately after GUI_X_Config() has been 
executed. LCD_X_Config() creates and configures a display driver for each layer by calling:
– GUI_DEVICE_CreateAndLink(): to create the driver device and links it to the device chain
– LCD_SetSizeEx() and LCD_SetVSizeEx(): to configure the display size
– LCD_SetVRAMAddrEx(), required for linear addressable memory.

3.2.3.2 StemWin APIs
StemWin library includes APIs that can be used to display strings and values, or program parameters.

Displaying strings and values

To display values, the application can use standard C library strings and functions, such as sprintf, or call a 
routine that displays the strings and values mentioned in table below:

AN5215
Application use case

AN5215 - Rev 2 page 19/30



Table 8. Displaying Strings and values APIs

Routine Description

GUI_DispFloat() Displays a floating point value with a specified number of characters at the current text position in 
the current window using the current font.

GUI_DispStringAt() Displays the string passed as parameter at a specified position in the current window using the 
current font.

Writing parameters

To get a better visibility for the application, the application can control the way of writing by choosing the text font, 
the color and the background color. The following table shows the routine that can be used by the application

Table 9. Routines used to set parameters

Routine Description

GUI_SetColor Sets the current foreground color.

GUI_SetFont Sets the font to be used to output text.

GUI_SetBkColor Sets the default background color.

GUI_SetLayerVisEx Sets the visibility of the given layer.

3.2.4 JPEG image decoding
To display an overview image on the screen, a JPEG image stored in the internal Flash memory is decoded using 
the JPEG hardware decoder in DMA mode. The application can create the JPEG image using any drawing 
software, convert it into a source file using the Arm file converter with μVision®, and add it to the project. To 
properly decode a JPEG stream the application must configure the following functions:
• JPEG_Decode_DMA

This function starts JPEG decoding in DMA mode. It is split into two subfunctions:
– Initialization of the decoding process:

This function configures the JPEG Codec in decoding mode, stops JPEG processing, disables all 
interrupts, flushes input and output FIFOs, and finally enables end-of-conversation and end-of-
header parsing interrupts.

– JPEG decoding using DMA:
This function configures the JPEG MDMA input/output transfer callbacks, MDMA transfer size (it 
must be a multiple of MDMA buffer size) and finally starts MDMA FIFO input/output transfers to the 
YCbCr destination frame buffer address in Interrupt mode.

– HAL_JPEG_GetInfo
This function extracts the image configuration from the JPEG header at the end of JPEG decoding. It 
reads the configuration parameters (color space, image height, image width and image quality).

• DMA2D_CopyBuffer 
This function is used to copy decoded RGB data to the display framebuffer.
It first configures DMA2D transfer mode as memory-to-memory with pixel format conversion, sets RGB565 
as DMA2D color mode, sets DMA2D_INPUT_YCBCR as foreground input color mode, and then selects 
chroma sub-sampling 4:2:2 for half resolution horizontally on the chroma components.
Finally, this function copies the new decoded frame to the LTDC framebuffer and start the DMA2D transfer.

3.2.5 Arm® Cortex®-M7 programming
The main purposes of the graphical application executed by the Arm® Cortex®-M7 are:
• to display an image decoded with JPEG decoder in DMA mode.
• to configure the push-button to be able to interrupt CPU1 core.
• to start displaying temperature values once the push-button is pressed, .
Figure 12 describes all the APIs that are used in the application program and Table 10 shows the global graphical 
application flowchart.

AN5215
Application use case

AN5215 - Rev 2 page 20/30



Figure 12. Arm® Cortex®-M7 programming flowchart

HAL_InitHAL_Init

SDRAM_InitSDRAM_Init

HSEM_CLK_ENABLEHSEM_CLK_ENABLE

HSEM_ActivateNotificationHSEM_ActivateNotification

EXTI_15_10_IRQHandler 
Config

EXTI_15_10_IRQHandler 
Config

GUI_InitGUI_Init

Display_Start_ImageDisplay_Start_Image

Wait for pushbuttonWait for pushbutton

Pushbutton 
pressed

Pushbutton 
pressed

Execute main taskExecute main task

Start

End

YES

NO

Table 10. Description of the APIs used by Arm® Cortex®-M7 core

API Description

HAL_Init Initialize the STM32H7xx HAL Library

BSP_SDRAM_Init Initializes the SDRAM device

__HAL_RCC_HSEM_CLK_ENABLE Enables hardware semaphores

HAL_HSEM_ActivateNotification Activates HSEM notification to the Arm® Cortex®-M4 core

HAL_JPEG_Init Initializes JPEG decoding in DMA mode

EXTI15_10_IRQHandler_Config Configures the push-button to interrupt CPU1 (Arm® Cortex®-M7).

GUI_Init () Initializes the STemWin GUI library

AN5215
Application use case

AN5215 - Rev 2 page 21/30



API Description

JPEG_Decode_DMA Starts JPEG decoding with DMA processing

HAL_JPEG_GetInfo Extracts the image configuration from the JPEG header during the decoding 
process

DMA2D_CopyBuffer Copies RGB decoded Data to the display Frame buffer

3.2.6 Main Arm® Cortex®-M7 tasks using FreeRTOS™

The Arm® Cortex®-M7 core first configures the display settings by selecting the current layer and its visibility, and 
by choosing fonts as well as the background and foreground colors.
The D1 domain then enters DStop mode if the selected mode is mode 2 or mode 3, and the system enters Stop 
mode to reduce power consumption.
Since PLLs are cleared by hardware when entering low-power mode, the program must reactivate them and wait 
until their clock state become ready. When the Arm® Cortex®-M4 core releases the semaphore, its wakes up the 
Arm® Cortex®-M7 who takes the semaphore and displays the temperature value which is stored in shared 
memory (SRAM4 at address 0x3800 8004).
Figure 13 shows Arm® Cortex®-M7 main tasks.

AN5215
Application use case

AN5215 - Rev 2 page 22/30



Figure 13. Arm® Cortex®-M7 main task flowchart

Set display parametersSet display parameters

Suspend taskSuspend task

Enter D1 to Dstop modeEnter D1 to Dstop mode

MODE 2 or 
MODE3 is 
selected

MODE 2 or 
MODE3 is 
selected

Activate PLL1 and PLL3Activate PLL1 and PLL3

PLL1 and PLL3 
clocks are ready ?

PLL1 and PLL3 
clocks are ready ?

Clear power flagsClear power flags

HSEM is 
Taken?

HSEM is 
Taken?

Display temperature 
values

Display temperature 
values

Start

YES

NO

NO

YES

YES

NO

3.3 Core synchronization using hardware semaphore
In a parallel programming environment, a semaphore is a synchronization object that controls the access to a 
common resource by multiple processes. A hardware semaphore is usually used to synchronize task execution 
while using shared resources which can be accessed by multiple cores.
Table 11 shows the functions that are used to synchronize tasks between the two cores when STM32CubeH7 is 
used. These functions are defined in stm32h7xx_hal_hsem.h.

Table 11. HSEM functions 

Hardware semaphore (HSEM) Description 

__HAL_RCC_HSEM_CLK_ENABLE() Enables the hardware semaphore.

AN5215
Application use case

AN5215 - Rev 2 page 23/30

http://www.st.com/en/product/stm32cubeh7?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5215


Hardware semaphore (HSEM) Description 

HAL_HSEM_ActivateNotification 
(SemMask ) Activates HSEM notification to the Arm® Cortex®-M7 core.

HAL_HSEM_FastTake( SemID ) Uses by a CPU to take the hardware semaphore in order to inform 
the other CPU that it has completed its job.

HAL_HSEM_Release( SemID , ProcessID ) Releases the hardware semaphore when needed.

Only one semaphore is used to synchronize the processing of both cores. The core synchronization mechanism 
is the following:
1. The two cores must first activate the semaphore separately by using __HAL_RCC_HSEM_CLK_ENABLE( ).

2. The Arm® Cortex®-M4 core then takes the HSEM using HAL_HSEM_FastTake(SemID) and starts 
processing its tasks in bare metal mode.

3. Once the task is compete, the core releases the semaphore to wake up the Arm® Cortex®-M7 by executing 
HAL_HSEM_Release(SemID, ProcessID).

4. When the Arm® Cortex®-M7 has taken the semaphore, it executes its task using FreeRTOS™. When the task 
is compete, it informs the other core by releasing the semaphore. The following figure illustrates this sequence 
of operations.

Figure 14. Core synchronization using a hardware semaphore

StartStart

Enable HW 
semaphore
Enable HW 
semaphore

Activate 
notification

Activate 
notification

Enter D1 in 
DStop mode
Enter D1 in 

DStop mode

Wake up from 
DStop mode

Wake up from 
DStop mode

Display 
process
Display 
process

Enable HW 
semaphore
Enable HW 
semaphore

StartStart

Acquisition and 
communcation 

process

Acquisition and 
communcation 

process

HW semaphore 
released ?

HW semaphore 
released ?

Cortex-M7 Cortex-M4

NO

YES

AN5215
Application use case

AN5215 - Rev 2 page 24/30



4 Power consumption measurements

The measurements below have been obtained with the following settings and toolchain:
• Supply voltage = 3.3 V
• System clock (sys_ck) = 400 MHz
• EWARM 8.40 IAR workbench used with high size optimization level under typical temperature condition
Table 12 provides a summary of the power consumption measurements depending on the modes.

Table 12. Power consumption measurement vs mode

Mode Power consumption with 
LDO enabled

Power consumption with 
SMPS enabled Unit

Mode 1 150 62.7

mAMode 2 60 25.1

Mode 3 23 9.6

AN5215
Power consumption measurements

AN5215 - Rev 2 page 25/30



Revision history

Table 13. Document revision history

Date Version Changes

29-May-2019 1 Initial release.

29-Aug-2024 2

Updated document title.

In the whole document, changed application example into application use case.

Updated Figure 7. Global flowchart of temperature acquisition depending on modes, Figure 8. Mode 
initialization sequence, Figure 9. Acquisition sequence, Figure 10. High-level block diagram of 
STM32H7x7 and DSI interface , Figure 12. Arm® Cortex®-M7 programming flowchart, 
Figure 13. Arm® Cortex®-M7 main task flowchart, and Figure 14. Core synchronization using a 
hardware semaphore.

Removed section How to use the application example.

Added EWARM toolchain in Section 4: Power consumption measurements.

AN5215

AN5215 - Rev 2 page 26/30



Contents

1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

2.1  System architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 System supply configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1  Voltage regulator (LDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 SMPS step-down converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Peripheral allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 Peripheral allocation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 Allocating peripherals belonging to D1 and D2 domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.3 Allocating peripherals belonging to D3 domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.1 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.2  Entering/exiting low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Application use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3.1 Arm® Cortex®-M4 tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1  Low-power temperature acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Detailed description of temperature acquisition in different modes . . . . . . . . . . . . . . . . . . 13

3.2 Arm® Cortex®-M7 tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1  DSI Host interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2  Detailed description of the displaying process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.3  STemWin Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.4 JPEG image decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.5  Arm® Cortex®-M7 programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.6 Main Arm® Cortex®-M7 tasks using FreeRTOS™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Core synchronization using hardware semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Power consumption measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

AN5215
Contents

AN5215 - Rev 2 page 27/30



List of tables
Table 1.  LDO converter operating modes and voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 2.  Operating mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3.  Summary of low-power mode entry/exit conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4.  Domain operating modes in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5.  Domain operating modes in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6.  Domain operating modes in mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7.  Embedded graphic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8.  Displaying Strings and values APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 9.  Routines used to set parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 10.  Description of the APIs used by Arm® Cortex®-M7 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 11.  HSEM functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 12.  Power consumption measurement vs mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 13.  Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

AN5215
List of tables

AN5215 - Rev 2 page 28/30



List of figures
Figure 1.  STM32H747/757 system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2.  Peripheral allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3.  Transmission process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4.  Acquisition process in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5.  Acquisition process in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6.  Acquisition process in mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7.  Global flowchart of temperature acquisition depending on modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8.  Mode initialization sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9.  Acquisition sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 10.  High-level block diagram of STM32H7x7 and DSI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 11.  Displaying sequence in Adapted command mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 12.  Arm® Cortex®-M7 programming flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 13.  Arm® Cortex®-M7 main task flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 14.  Core synchronization using a hardware semaphore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

AN5215
List of figures

AN5215 - Rev 2 page 29/30



IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST 
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST 
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of 
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names 
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN5215

AN5215 - Rev 2 page 30/30

http://www.st.com/trademarks

	AN5215
	 Introduction 
	1 General information
	2 System architecture
	2.1 System architecture overview 
	2.2 System supply configuration
	2.2.1 Voltage regulator (LDO)
	2.2.2 SMPS step-down converter

	2.3 Peripheral allocation
	2.3.1 Peripheral allocation overview 
	2.3.2 Allocating peripherals belonging to D1 and D2 domains
	2.3.3 Allocating peripherals belonging to D3 domain

	2.4 Operating modes
	2.4.1 Operating modes 
	2.4.2 Entering/exiting low-power modes 


	3 Application use case
	3.1 Arm® Cortex®-M4 tasks
	3.1.1 Low-power temperature acquisition
	3.1.1.1 Acquisition principles 
	3.1.1.2 Description of the transmission process
	3.1.1.3 Acquisition mode implementation

	3.1.2 Detailed description of temperature acquisition in different modes
	3.1.2.1 Temperature acquisition in different modes


	3.2 Arm® Cortex®-M7 tasks
	3.2.1 DSI Host interface 
	3.2.2 Detailed description of the displaying process 
	3.2.3 STemWin Library 
	3.2.3.1 STemWin configuration
	3.2.3.2 StemWin APIs 

	3.2.4 JPEG image decoding
	3.2.5 Arm® Cortex®-M7 programming 
	3.2.6 Main Arm® Cortex®-M7 tasks using FreeRTOS™

	3.3 Core synchronization using hardware semaphore

	4 Power consumption measurements
	Revision history

