
Introduction

To offload some data transfer duties from the CPU, STM32 microcontrollers (MCUs) and microprocessors (MPUs) embed direct
memory access (DMA) controllers. The DMA can perform block-oriented data transfer upon a peripheral request or a software
trigger.

Each DMA channel has a software-configurable selection of the peripheral requesting its services. On legacy products, the
channel request selection is implemented within the DMA controller with a restricted list of peripheral requests for a given
channel. The application cannot freely map any peripheral request to any channel.

The DMA request routing capabilities are enhanced by a DMA request multiplexer (DMAMUX peripheral). The DMAMUX adds
more flexibility, resulting in full dynamic DMA peripheral request mapping instead of pseudo-dynamic mapping. It offers fully
configurable routing of any DMA request from a given peripheral to any DMA controller and/or controller DMA channel.

This document explains the various DMAMUX features of the products listed in the table below, how to configure the DMAMUX,
and provides guidance on the use of the new synchronization and request generation capabilities.

For further information on DMAMUX in STM32 devices, refer to the product reference manuals available on www.st.com.

Table 1. Applicable products

Type Product series

Microcontrollers

STM32C0 series

STM32G0 series

STM32G4 series

STM32H7 series

STM32L4+ series

STM32L5 series

STM32U0 series

STM32WB series

Microprocessors STM32MP1 series

 Introduction to DMAMUX for STM32 MCUs

AN5224

Application note

AN5224 - Rev 6 - February 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com

1 DMAMUX description

A peripheral indicates a request for DMA transfer by setting its DMA request signal. The DMA request is pending
until it is served by the DMA controller that generates a DMA acknowledge signal, and the corresponding DMA
request signal is de-asserted.
In this document, the set of control signals required for the DMA request/acknowledge protocol is not explicitly
described and it is referred to as peripheral DMA request line.
The DMA request router can be considered as an extension of the DMA controller. It routes the DMA peripheral
requests to the DMA controller itself.
The DMAMUX request multiplexer enables routing a DMA request line from the peripherals to the DMA
controllers of the product. The routing function is ensured by a programmable multi-channel DMA request line
multiplexer. Each channel (DMAMUX channel 0 in the example shown in Figure 1) selects a unique DMA request
line to forward (unconditionally or synchronously) to the associated DMA controller channel (DMA channel 0).
This allows the DMA requests to be managed with a high flexibility, maximizing the number of DMA requests that
run concurrently.

Figure 1. DMAMUX request multiplexer

P1

...

D
M

AM
U

X
ch

an
ne

l 0

DMA channel 0

P2

P3

Pn

Px Peripheral x request (example LPUART1_TX or LPUART1_RX)

D
M

AM
U

X
ch

an
ne

l 1
5

DMA channel 15

...

AN5224
DMAMUX description

AN5224 - Rev 6 page 2/14

2 DMAMUX features

A simplified DMAMUX block diagram is shown in Figure 2. The “Request multiplexer” structure is duplicated N
times, depending upon the number of DMA channels managed by the DMAMUX.

Figure 2. DMAMUX simplified block diagram

DMAMUX_C0CR

Channel 0

0 Channel
select Ctrl

DMAMUX Request multiplexer
p

n+3
n+2

n+p+2

1

0

n

2
1

n+1

1

DMAMUX_RGC0CR

DMAMUX_RGC1CR

DMAMUX_RGCnCR
Channel n

Channel 1

Channel 0

Sync

Request generator

Synchronization inputs:
dmamux_syncx

Trigger inputs:
dmamux_trgx

DMA request to DMA Channel 0:
dmamux_req_out0

DMA channel event:
dmamux_evt0

DMA requests
from peripherals:
dmamux_req_inx

01s

01s

01t

dm
am

ux
_r

eq
_g

en
x

dm
am

ux
_r

eq
x

Note: Simplified block diagram with only one request multiplexer.

The DMAMUX is mainly composed of two components, the request multiplexer (or router block), and the
request generator.
The request multiplexer includes a synchronization unit per channel, with inputs/outputs as follows:
• Inputs:

– dmamux_reqx: DMA request from a peripheral (dmamux_req_inx) or from the request generator
(dmamux_req_genx)
dmamux_req_gen[0..n] are affected, respectively, to dmamux_req[1..n+1], and dmamux_req_inx are
affected starting from dmamux_req[n+2].

– dmamux_syncx: optional synchronization event
• Outputs:

– dmamux_req_outx: DMA request dmamux_reqx forwarded from the input to the output
– dmamux_evtx: optional generated event, can be used to trigger/synchronize other DMAMUX

channels
The request generator allows DMA request generation on interrupt signals or events, with input/output as follows:
• Input: dmamux_trgx, trigger event inputs to the request generator sub-block
• Output: dmamux_req_genx, DMA request from the request generator sub-block to the DMAMUX request

multiplexer channels
The number of request multiplexer blocks depends on the number of DMA channels managed by the DMAMUX.
For examples:
• For an 8-channel DMA, 8 request multiplexer channels must be available.
• For a product with two DMA controllers with 8 channels each, 16 request multiplexer channels must be

available.
The request generator is instantiated once by DMAMUX. It contains N channels (depending on the product)
capable of generating DMA requests. Refer to the 'DMAMUX implementation' section in the product reference
manual for more details.

AN5224
DMAMUX features

AN5224 - Rev 6 page 3/14

Thanks to the request generator block, the user software can trigger DMA transfers based on signals from
peripherals that do not implement the DMA requests.

2.1 Request routing and synchronization

2.1.1 Unconditional request forwarding
To perform peripheral-to-memory or memory-to-peripheral transfers, the DMA controller channel requires each
time a peripheral DMA request line. When a request occurs, the DMA channel transfers data from/to the
peripheral. The DMAMUX request multiplexer channel x allows the selection/routing of the peripheral DMA
request line to the DMA channel x.
When the multiplex is set (DMAREQ_ID not equal to zero), it ensures the actual routing of DMA request line. The
connection of peripheral DMA request to the multiplexer channel output is selected through the programmed ID in
DMAREQ_ID bits of the channel control register (DMAMUX_CxCR).
For each peripheral DMA request line in the product, a unique ID is affected. The value zero
(DMAREQ_ID = 0x00) corresponds to no DMA request line selected.
After the configuration of a DMAMUX channel, the corresponding DMA controller channel can be configured. Two
different DMAMUX channels cannot be configured to select the same peripheral DMA request line as source.

2.1.2 Conditional request forwarding
The synchronization unit allows the software to implement conditional request forwarding. The routing is
effectively done only when a defined condition is detected. The DMA transfers can be synchronized with internal
or external signals.
For example, the user software can use the synchronization unit to initiate or adjust data transmission throughput.
DMA request can be forwarded in one of the following ways:
• each time an edge is detected on a GPIO pin (EXTI)
• in response to a periodic event from a timer
• in response to an asynchronous event from a peripheral
• in response to an event from another request router (request chaining)
On top of DMA request conditioning, the synchronization unit allows the generation of events that may be used by
other DMAMUX sub-blocks (such as the request generator or another DMAMUX request multiplexer channel).

Figure 3. DMA request line multiplexer channel - Event generation

DMA request counter

dmamux_req

dmamux_evt

dmamux_req_out
Request counter auto-reload

Event generation (can be used as sync event)

Request counter decrements after each transfer.

23 1 0 23 1 0 23 1 0

AN5224
DMAMUX features

AN5224 - Rev 6 page 4/14

When a DMAMUX channel is configured in synchronous mode its behavior is as follows:
1. The request multiplexer input (DMA request from the peripheral) can become active, but it is not forwarded on

the DMAMUX request multiplexer output until the synchronization signal is received.
2. When the synchronization event is received the request multiplexer connects its input and output, and the

pending peripheral request, if any, is forwarded.
3. Each forwarded DMA request decrements the request multiplexer counter (user programmed value). When

the counter reaches zero and the last forwarded request is acknowledged by the DMA controller, the
connection between the DMA controller and the peripheral is disabled (not forwarded), waiting for a new
synchronization event.

For each underrun of the counter, the request multiplexer line can generate an optional event to synchronize with
a second DMAMUX line. The same event can be used in some low-power scenarios, to switch the system back to
Stop mode, without any CPU intervention.
Synchronization mode can be used to automatically synchronize data transfers (for example with a timer), or to
trigger the transfers on a peripheral event.
The synchronization signal (SYNC_ID), the synchronization signal polarity (SPOL) and the number of requests to
forward (NBREQ + 1) are configured in the request line multiplexer channel configuration register
(DMAMUX_CxCR).

AN5224
DMAMUX features

AN5224 - Rev 6 page 5/14

2.2 Request generation
The request generator can be considered as an intermediary between a peripheral and the DMA controllers. It
allows peripherals without DMA capability (such as RTC alarm or comparators) to generate a programmable
number of DMA requests on an event. The trigger signal (SIG_ID), the trigger polarity (GPOL) and the number of
requests minus 1 to generate (GNBREQ) are configured in the request generator configuration register
(DMAMUX_RGxCR).
Upon the trigger event reception, the corresponding generator channel starts generating DMA requests on its
output. Each time the DMAMUX generated request is served by the connected DMA controller, a built-in DMA
request counter (one counter per request generator channel) is decremented.
At its underrun, the request generator channel stops generating DMA requests and the DMA request counter is
automatically reloaded to its programmed value upon the next trigger event.

Figure 4. DMA request generation

Request generator counter

dmamux_req_gen

dmamux_trg

dmamux_req_out
Request counter auto-reload (wait for new trigger)

Generator request counter decremets after each transfer.

Active trigger event edge

23 1 0 23 1 0 3

If a new trigger event is received while the generator is managing the previous triggered DMA request sequence,
then the request trigger event overrun flag bit OFx is asserted by the hardware in the status DMAMUX_RGSR
register.

2.3 Request generation and synchronization
In order to implement autonomous transfer and control scenarios, the DMAMUX offers the possibility to combine
request generation and request synchronization feature within the same configuration.

AN5224
DMAMUX features

AN5224 - Rev 6 page 6/14

3 DMAMUX examples

These examples use the STM32CubeMX tool version 4.26.1, running on STM32 microcontrollers and
microprocessors (based on Arm® cores).

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

3.1 Example using the synchronization
After the configuration of the DMA channel to serve the peripheral DMA request line (example SPI6_TX), the
synchronization block can be enabled as shown in Figure 5. In this case, the LPTIM3_out signal rising edge is
used to control the transfer periods.

Figure 5. Example using the synchronization (based on STM32CubeH7)

· Set Enable synchronization checkbox
· Set Synchronization signal from the list
 (configured in the application)
· Set Synchronization signal polarity
· Set Enable event checkbox
 (enable event generation)
· Set number of requests to be forwarded

AN5224
DMAMUX examples

AN5224 - Rev 6 page 7/14

3.2 Example using the DMAMUX request generator sub-block
In order to have some automation, new DMA transfers can be generated following the DMA transfer to SPI6.
Thanks to the DMAMUX Channel 0 event generation, the request generator can be triggered. The scenario can
be configured as shown in the figure below.

Figure 6. Example using the request generator (based on STM32CubeH7)

· Set request generation signal from the list
 (using the event from DMAMUX2 request
 generator 0)
· Set signal polarity (using the rising edge)
· Set the number of requests to be generated
 (from the DMAMUX2 channel 1 to the BDMA
 channel 1)
· The synchronization for this channel is not
 enabled.

AN5224
DMAMUX examples

AN5224 - Rev 6 page 8/14

3.3 STM32CubeH7 examples
The following examples are available on the STM32CubeH7 under root "Projects\STM32H743I-
EVAL\Examples\DMA\":
• DMAMUX_RequestGen

This example uses the EXTI0 line to trigger the DMAMUX request generator and to perform DMA data
transfers from the SRAM buffer to the GPIO output data register, changing output pin state on every EXTI0
rising edge occurrence.

Figure 7. DMAMUX_RequestGen

DMAMUX2

SRAM4 buffer

Req Gen ch 0

M
ux

 C
h

0

GPIOF ODR

EXTI
EXTI

0
PA0

PF10

BDMA Ch 0

• DMAMUX_SYNC
This example uses the USART1 in DMA synchronized mode to send a countdown from 10 to 00 with 2
seconds period. The DMAMUX synchronization block is configured to synchronize the DMA transfer with
the LPTIM1 output signal. Each rising edge of the synchronization signal (LPTIM1 output signal) authorizes
four USART1 requests to be transmitted to the USART1 peripheral using the DMA. These four requests
represent the two characters '\n\r' plus the two characters count down itself from 10 to 00. LPTIM1 is
configured to generate a PWM with 2 seconds period.

Figure 8. DMAMUX_SYNC

DMAMUX1

Synch

SRAM buffer =
{10 to 00 }

M
ux

 C
h

0

USART1

LPTIM1

TX

DMA Ch 0

out

us
ar

t1
_t

x_
dm

a

lp
tim

1_
ou

t

NBREQ=4-1

2 s

10
09
08

AN5224
DMAMUX examples

AN5224 - Rev 6 page 9/14

4 Conclusion

The DMAMUX controller is designed to simplify the allocation of embedded application resources. It offers the
flexibility to dynamically allocate a peripheral to a DMA channel, and increases the DMA capabilities thanks to a
synchronization mechanism that allows to free the CPU from some tasks. The combination of synchronization and
request generation can be used to implement power optimized data transfer (in autonomous mode without CPU
involvement).

AN5224
Conclusion

AN5224 - Rev 6 page 10/14

Revision history

Table 2. Document revision history

Date Version Changes

16-Oct-2018 1 Initial release.

20-Nov-2018 2 Updated Table 1. Applicable products.

16-Jan-2019 3 Updated Section 3: DMAMUX examples.

8-Jun-2020 4 Updated Introduction with new products STM32G4, STM32L5, and STM32MP1 series.

09-Jan-2023 5
Updated Table 1. Applicable products.

Minor text edits across the whole document.

15-Feb-2024 6

Updated document title.

Document scope extended to STM32U0 series, hence updated Table 1. Applicable products.

Updated Section 3.3: STM32CubeH7 examples.

AN5224

AN5224 - Rev 6 page 11/14

Contents

1 DMAMUX description .2
2 DMAMUX features .3

2.1 Request routing and synchronization . 4
2.1.1 Unconditional request forwarding . 4

2.1.2 Conditional request forwarding . 4

2.2 Request generation. 6

2.3 Request generation and synchronization . 6

3 DMAMUX examples. .7
3.1 Example using the synchronization. 7

3.2 Example using the DMAMUX request generator sub-block. 8

3.3 STM32CubeH7 examples . 9

4 Conclusion .10
Revision history .11

AN5224
Contents

AN5224 - Rev 6 page 12/14

List of figures
Figure 1. DMAMUX request multiplexer. 2
Figure 2. DMAMUX simplified block diagram . 3
Figure 3. DMA request line multiplexer channel - Event generation . 4
Figure 4. DMA request generation . 6
Figure 5. Example using the synchronization (based on STM32CubeH7). 7
Figure 6. Example using the request generator (based on STM32CubeH7) . 8
Figure 7. DMAMUX_RequestGen. 9
Figure 8. DMAMUX_SYNC . 9

AN5224
List of figures

AN5224 - Rev 6 page 13/14

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN5224

AN5224 - Rev 6 page 14/14

http://www.st.com/trademarks

	AN5224
	1 DMAMUX description
	2 DMAMUX features
	2.1 Request routing and synchronization
	2.1.1 Unconditional request forwarding
	2.1.2 Conditional request forwarding

	2.2 Request generation
	2.3 Request generation and synchronization

	3 DMAMUX examples
	3.1 Example using the synchronization
	3.2 Example using the DMAMUX request generator sub-block
	3.3 STM32CubeH7 examples

	4 Conclusion
	Revision history

