

Migrating from STM32L4 and STM32L4+ to STM32U5 MCUs

Introduction

The designers of STM32 microcontroller applications must have the possibility to easily replace one microcontroller type with another one from the same product family or products from a different family. The reasons for migrating an application to a different microcontroller can be for example:

- To fulfill higher product requirements, extra demands on memory size, or an increased number of I/Os.
- To meet cost reduction constraints that require to switch to smaller components and shrink the PCB area.

This document details the steps to migrate from an existing design based on the STM32L4 and STM32L4+ MCUs to an application based on one of the STM32U5 MCUs.

This document provides the full set of features available for STM32L4 and STM32L4+ MCUs, and the equivalent features of STM32U5 MCUs. This document also provides guidelines on both hardware and peripheral migration.

To better understand the information inside this application note, the user must be familiar with the STM32 microcontroller family.

This application note is a complement to the STM32L4, STM32L4+, and STM32U5 datasheets and reference manuals.

For additional information, refer to the product datasheets and reference manuals available on www.st.com

Table 1. Reference documents

Document number	Title
[1]	STM32L41xxx/42xxx/43xxx/44xxx/45xxx/46xxx Arm [®] -based 32-bit MCUs reference manual (RM0394).
[2]	STM32L47xxx, STM32L48xxx, STM32L49xxx, and STM32L4Axxx Arm [®] -based 32-bit MCUs reference manual (RM0351).
[3]	STM32L4+ series Arm®-based 32-bit MCUs reference manual (RM0432).
[4]	STM32U5 series Arm®-based 32-bit MCU's reference manual (RM0456).
[5]	STM32 microcontroller system memory boot mode application note (AN2606).

1 General information

This document applies to Arm®-based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

AN5372 - Rev 2 page 2/80

2 STM32U5 series overview

Compared to the STM32L4 and STM32L4+ series, the STM32U5 series use a newer technology to achieve excellence in ultralow power, increased security, with enhanced efficiency, performance, and memory size such as:

- Up to 4 Mbytes of flash memory.
- Up to 3 Mbytes of RAM.
- Ultra-low-power Arm®Cortex®-M33 32-bit core, with TrustZone® for Armv8-M.
- ST instruction cache (ICACHE), supporting both internal and external memories.
- A dedicated data cache (DCACHE1) for external memories.
- In terms of graphic features, STM32U5x7/5x9 lines benefit of advanced peripherals offering best-in-class processing, like the NeoChrom graphic processor with its dedicated DCACHE2, the Chrom-GRC, or a JPEG codex on STM32U5Fx/STM32U5Gx.

2.1 Main features

The STM32U5 MCUs include a larger set of peripherals and advanced features, compared to the STM32L4 and STM32L4+ MCUs, such as the ones listed below:

Security

- Arm®TrustZone® and securable I/Os, memories, and peripherals
- RDP and password protected debug, active tamper, secure firmware upgrade support, secure firmware installation, secure hide protection
- Up to eight configurable SAU regions
- Additional encryption accelerator engine (available only on STM3U585xx devices)
 - HASH hardware accelerator
 - Two advanced encryption hardware accelerators (AES) including one with DPA resistance
 - Public key accelerator (PKA), DPA resistant
 - On-the-fly decryption engine of OCTOSPI (OTFDEC)

Power consumption

- Embedded regulator (LDO)
- SMPS step-down converter
 - Regulators are placed in parallel. Thus, it is possible to switch from one to another on the fly.
 - Both regulators can provide four different voltages (voltage scaling) and can operate in Stop modes.
- Optimized RTC consumption

Performance

- Frequency up to 160 MHz
- Direct access to Flash interface through ICACHE (without passing by AHB bus)
- ICACHE for internal and external memories
- DCACHE for external memories

Graphic

- NeoChrom graphic processor (GPU2D) supporting HW Vector Graphic
- Chrom-GRC (GFXMMU)
- Chrom-ART (DMA2D)
- Dedicated Data CACHE (DCACHE2)
- JPEG compressor/decompressor
- MIPI DSI Host Controller

AN5372 - Rev 2 page 3/80

New peripherals

- Advanced 14-bit ADC and ultralow power 12-bit ADC
- Mathematics accelerators: FMAC and CORDIC
- Digital filters: MDF and ADF
- Hexadeca-SPI interface (HSPI)

Note:

This document only compares the differences between the common features in the STM32L4 and STM32L4+ MCUs against the STM32U5 MCUs. The new features of series, mainly linked to the TrustZone[®] support, are not covered. The detailed list of available features and packages for each product is available in the respective product datasheet.

2.2 System architecture

The STM32U5 series embed high-speed memories (up to 4-Mbyte flash memory and up to 3-Mbyte SRAM), a flexible external memory controller (FSMC) for static memories (available on high-pin-count packages: 100 pins and more), up to two octo-SPI interface (available on all packages), and an extensive range of enhanced I/Os and peripherals connected to a 32-bit multi-AHB bus matrix, three AHB buses and three APB buses.

The following table illustrates the bus matrix differences between STM32L4, STM32L4+, and STM32U5 series.

Table 2. Bus matrix on STM3	2L4, STM32L4+ and STM32U5 series
-----------------------------	----------------------------------

Bus type	STM32L4	STM32L4+	STM32U5
AHB bus matrix masters	5 masters: CPU, AHB system, D- Code, I-Code, DMA1 and DMA2 ⁽¹⁾	Up to 9 masters: CPU, AHB system, D-Code, I-Code, DMA1 and DMA2, DMA2D, LCD-TFT controller DMA, SDMMC1, SDMMC2, GFXMMU ⁽²⁾	Up to 11 masters: Fast C-bus, Slow C-bus, CPU S-bus for internal memories, CPU S-bus for external memories, GPDMA1, DMA2D, SDMMC1, SDMMC2, OTG_HS, LTDC, GPU2D M0 and M1 ports, and GFXMMU.
AHB bus matrix slaves	Up to 8 slaves: internal flash memory (on I-Code and D-Code bus), SRAM1, SRAM2, AHB1 (including APB1 and APB2), AHB2, FMC, and QUADSPI.	Up to 11 slaves: internal flash memory (on I-Code and D-Code bus), SRAM1, SRAM2, SRAM3, GFXMMU, AHB1 (including APB1 and APB2), AHB2, OCTOSPI1, OCTOSPI2, and FSMC.	Up to 10 slaves: internal flash memory, SRAM1, SRAM2, SRAM3, AHB1, AHB2, and AHB3 peripherals (including APB1, APB2, and APB3) and backup RAM, AHB2 peripherals, FSMC, OCTOSPI1, OCTOSPI2, SmartRun domain (SRD) peripherals and SRAM4, SRAM5, SRAM6, HSPI1, and GFXMMU.

- 1. Up to six masters with DMA2D only for STM32L496/4A6xx.
- 2. SDMMC2 and GFXMMU only available for STM32L4P5/L4Q5xx.

The bus matrix provides access from a master to a slave, enabling concurrent access and efficient operation even when several high-speed peripherals work simultaneously.

AN5372 - Rev 2 page 4/80

The system architectures of STM32L4, STM32L4+, and STM32U575/585 are shown in the figures below.

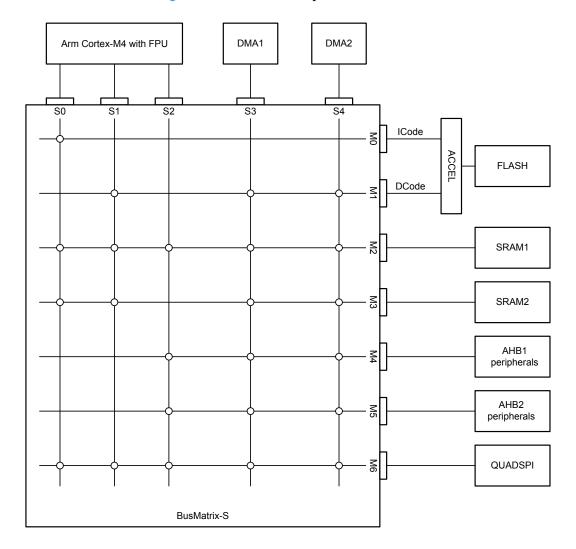


Figure 1. STM32L4 series system architecture

page 5/80

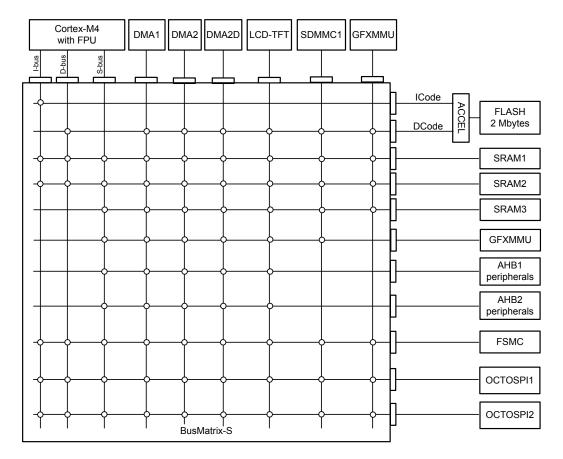


Figure 2. STM32L4+ series system architecture

AN5372 - Rev 2 page 6/80

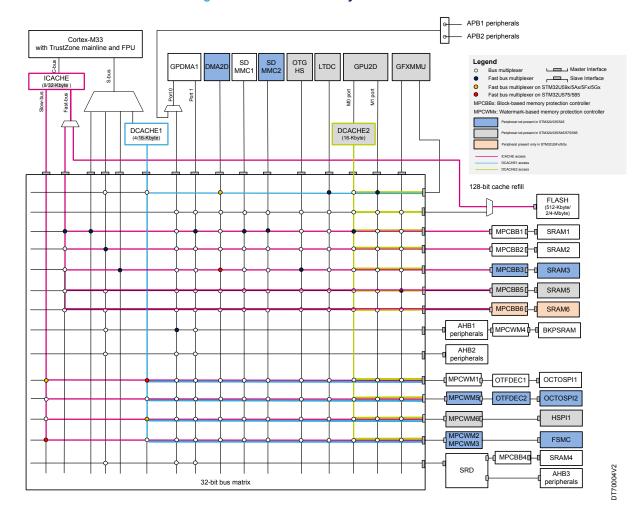


Figure 3. STM32U5 series system architecture

2.3 Memory availability

The table below summarizes the memory availability for STM32L4, STM32L4+, and STM32U5 MCUs.

Table 3. Memory availability for STM32L4, STM32L4+, and STM32U5 MCUs

	Flash m	emory	RAM size (Kbytes)														
Product	Size	Bank	SRAM1	SRAM2	SRAM3	SRAM4 (SRD)	SRAM5	SRAM6	BKPSRAM	Comment							
STM32U535	512 Kbytes 1 to 2 Mbytes 2 Mbytes											Without hardware crypto					
STM32U545			Kbytes	Kbytes	Kbytes	Kbytes	Kbytes	Kbytes	Kbytes		192		-				
STM32U575		Dual	192	64	512	16	-	-	2	Without hardware crypto							
STM32U585					312					With hardware crypto							

AN5372 - Rev 2 page 7/80

	Flash m	emory	RAM size (Kbytes)							
Product	Size	Bank	SRAM1	SRAM2	SRAM3	SRAM4 (SRD)	SRAM5	SRAM6	BKPSRAM	Comment
STM32U59x								_		Without hardware crypto
STM32U5Ax	4 Mbytes	Dual	768		832	16	832		2	With hardware crypto
STM32U5Fx	4 Mbytes	Buui	700	64	632	10	032	512	. 2	Without hardware crypto
STM32U5Gx				04				312		With hardware crypto
STM32L552xx	Up to 256 Kbytes	Single/	192	400						Without hardware crypto
STM32L562xx	512 Kbytes	dual	192				-			With hardware crypto
STM32L41x/42 x	128 Kbytes	-	32 Kbytes	8 Kbytes			-			-
STM32L43x/44 x	256 Kbytes	-	48 Kbytes	16 Kbytes			-			-
STM32L45x/46 x	512 Kbytes	-	128 Kbytes	32 Kbytes			-			-
STM32L47x/48 x	1 MB	-	96 Kbytes	32 Kbytes			-			-
STM32L49x/ L4Ax	1 MB	-	256 Kbytes	64 Kbytes			-			-
STM32L4P5x/ L4Q5	1 MB	-	128 Kbytes	64 Kbytes	128 Kbytes			-		-
STM32L4Rx/ L4Sx	2 MB	-	192 Kbytes	64 Kbytes	384 Kbytes			-		-

^{1.} SmartRun domain

AN5372 - Rev 2 page 8/80

3 Hardware migration

The STM32U5 MCUs offer eight packages from 48 to 216 pins, and two pinout versions:

- without internal SMPS: most packages are compatible with STM32L4 and STM32L4+ MCUs.
- with internal SMPS: fully new packages that are not compatible with STM32L4 and STM32L4+ MCUs.
 For this pinout version, the SMPS step-down converter and the LDO are embedded in parallel to provide the V_{CORE} supply.

For more details on the pinout, refer to the product datasheets.

The table below lists the available packages on the STM32U5 MCUs compared to STM32L4 and STM32L4+ MCUs, as well as their compatibility. Only packages common in both series are present. WLCSPxxx and packages not present in the STM32L4 and STM32L4+ MCUs, like TFBGA216, are not listed.

Table 4. Packages on STM32U5 MCUs compared to STM32L4 and STM32L4+ MCUs

	STM	32L4	STM32U5			
Package ⁽¹⁾ (Size in mm x mm)	STM32L4	STM32L4+	STM32U575/585	STM32U575/585 without SMPS compared to STM32L4/L4+	STM32U575/585 with SMPS compared to STM32L4/L4+	
LQFP 144 (20 x 20)	X ⁽²⁾⁽³⁾	X	X			
LQFP 100 (14 x 14)	X ⁽⁶⁾	X	X	Compatible ⁽⁴⁾	New pinout/ballout ⁽⁵⁾	
LQFP 64 (10 x 10)	Х	N/A	X			
UFBGA169 (7 x 7)	X ⁽⁷⁾	X	X	Incompatible		
UFBGA132 (7 x 7)	X ⁽³⁾	Х	X	Incompatible		
LQFP 48 (7 x 7)	X ⁽⁸⁾	N/A	X			
UFQFPN48 (7 x 7)	X ⁽⁹⁾	N/A	X	Compatible ⁽⁴⁾		

- 1. For more details about the available packages for STM32L4 and STM32L4+, refer to product datasheet.
- 2. X = available, N/A = not available
- 3. Available only for STM32L47/48/49/4Axxx.
- 4. Compatible except PB11 pin in STM32L4/L4+ that becomes VCAP on STM32U575/585.
- 5. Eight new packages introduced for STM3U575/585 with SMPS step-down converter option.
- 6. Not available for STM32L41/42xxx.
- 7. Available only for STM32L49/4Axxx.
- 8. Not available for STM32L45/46/47/48/49/4Axxx devices.
- 9. Not available for STM32L47/48/49/4Axxx devices.

When SMPS is supported, new dedicated pinout supporting the SMPS step-down converter are available for STM32U5 series.

AN5372 - Rev 2 page 9/80

When SMPS is not supported, the STM32U5 series are pin to pin compatible with the STM32L4 and STM32L4+ except:

- UFBGA132 and UFBGA169 packages: incompatible pinouts (refer to the product datasheet for the full pinout tables)
- for other packages, the only incompatibility is in PB11 pin in STM32L4 and STM32L4+, that is replaced by VCAP pin on STM32U5.

Table 5. PB11/VCAP pin position

Package	Only different pin	STM32L4 and STM32L4+	STM32U5
LQFP 144 (20 x 20)	70		
LQFP 100 (14 x 14)	48		
LQFP 64 (10 x 10)	30	PB11	VCAP
LQFP 48 (7 x 7)	22		
UFQFPN48 (7 x 7)	22		

In addition, dedicated pinout featuring the MIPI DSI HOST controller is available on both series. Those are not pin to pin compatible between these series.

AN5372 - Rev 2 page 10/80

4 Boot mode compatibility

4.1 Boot mode selection

For the STM32U5, the BOOT0 input pin may come from the PH3-BOOT0 pin or from an option bit, depending on the value of a user option bit to free the GPIO pad if needed.

The tables below present the STM32U5 boot modes, when TrustZone[®] is disabled or enabled.

Table 6. Boot modes for STM32U5xx when TrustZone® is disabled (TZEN = 0)

nBOOT0 FLASH_ OPTR[27]	BOOT0 pin PH3	nSWBOOT0 FLASH_ OPTR[26]	Boot address option bytes selection	Boot area	ST programmed default value
-	0	1	NSBOOTADD0[24:0]	Boot address defined by user option bytes NSBOOTADD0[24:0]	Flash: 0x0800 0000
-	1	1	NSBOOTADD1[24:0]	Boot address defined by user option bytes NSBOOTADD1[24:0]	System bootloader: 0x0BF9 0000
1	-	0	NSBOOTADD0[24:0]	Boot address defined by user option bytes NSBOOTADD0[24:0]	Flash: 0x0800 0000
0	-	0	NSBOOTADD1[24:0]	Boot address defined by user option bytes NSBOOTADD1[24:0]	System bootloader: 0x0BF9 0000

Table 7. Boot modes for STM32U5xx when TrustZone® is enabled (TZEN = 1)

BOOT _LOCK	nBOOT0 FLASH_ OPTR[27]	BOOT0 pin PH3	nSWBOOT0 FLASH_ OPTR[26]	RSS command	Boot address option- bytes selection	Boot area	ST programmed default value
	-	0	1	0	SECBOOTADD0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000
	-	1	1	0	N/A	RSS: 0x0FF8 0000	
0	1	-	0	0	SECBOOTADD0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000
	0	-	0	0	N/A	RSS: 0x0FF8 0000	
	-	-	-	≠0	IN/A	K33. UXUFF0 UUUU	
1	-	-	-	-	SECBOOTADD0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000

AN5372 - Rev 2 page 11/80

In STM32L4+ and STM32L41/42/43/44/45/46/49/4Axxx, the boot mode is selected with the nBOOT1 option bit and the BOOT0 pin, or nBOOT0 option bit, depending on the value of the nSWBOOT0 option bit in the FLASH OPTR register (see the table below).

Table 8. Boot modes for STM32L4+ and STM32L41/42/43/44/45/46/49/4Axxx

nBOOT1 FLASH_ OPTR[23]	nBOOT0 FLASH_ OPTR [27]	BOOT0 pin PH3	nSWBOOT0 FLASH_ OPTR [26]	Main Flash empty	Boot memory space alias
Х	X	0	1	0	Main Flash memory selected as boot area
X	Х	0	1	1	System memory selected as boot area
X	1	Х	0	Х	Main Flash memory selected as boot area
0	Х	1	1	Х	Embedded SRAM1 selected as boot area
0	0	Х	0	Х	Embedded SRAM1 selected as boot area
1	Х	1	1	Х	System memory selected as boot area
1	0	X	0	Х	System memory selected as boot area

^{1.} X = equivalent to 0 or 1.

In the other STM32L4 devices (STM32L47/48xxx), the boot mode is selected with one BOOT0 pin and the nBOOT1 option bit located in the user option bytes, at memory address 0x1FFF 7800 (see the table below).

Table 9. Boot modes for STM32L47/48xxx

Selected boot area	BOOT1 ⁽¹⁾	ВООТ0
Main Flash memory	X ⁽²⁾	0
System Flash memory	0	1
Embedded SRAM1	1	1

^{1.} The BOOT1 value is the opposite of the nBOOT1 option bit.

4.2 Embedded bootloader

The embedded bootloader is located in the system memory and programmed by STMicroelectronics during production. It allows the flash memory to be reprogrammed, using the serial interfaces listed in the table below.

Table 10. Bootloader interface on STM32L4, STM32L4+, and STM32U5 MCUs

Peripheral	Pin	STM32L4 and STM32L4+	STM32U5
DFU	USB_DM (PA11)	X	X
DFO	USB_DP (PA12)	X	X
USART1	USART1_TX (PA9)	X	X
OSARTI	USART1_RX (PA10)	X	X
USART2	USART2_TX (PA2)	X	X
USANIZ	USART2_RX (PA3)	X	X
USART3	USART3_TX (PC10)	X	X
OGANTS	USART3_RX (PC11)	X	X
I2C1	I2C1_SCL (PB6)	X	X

AN5372 - Rev 2 page 12/80

^{2.} For STM32L41/42/43/44/45/46xxx, a Flash memory empty check mechanism is implemented to force the boot from system Flash memory, if the first Flash memory location is not programmed (0xFFFF FFFF), and if the boot selection was configured to boot from the main Flash memory.

^{2.} X = equivalent to 0 or 1.

Peripheral	Pin	STM32L4 and STM32L4+	STM32U5
I2C1	I2C1_SDA (PB7)	X	X
I2C2	I2C2_SCL (PB10)	X	X
1202	I2C2_SDA (PB11)	X	X
I2C3	I2C3_SCL (PC0)	X	X
1203	I2C3_SDA (PC1)	X	X
1004	I2C4_SCL (PD12)	X ⁽¹⁾	NA
I2C4	I2C4_SDA (PD13)	X ⁽¹⁾	NA
	SPI1_NSS (PA4)	X	Х
ODIA	SPI1_SCK (PA5)	X	Х
SPI1	SPI1_MISO (PA6)	X	Х
	SPI1_MOSI (PA7)	X	Х
	SPI2_NSS (PB12)	X	Х
ODIO	SPI2_SCK (PB13)	X	Х
SPI2	SPI2_MISO (PB14)	X	Х
	SPI2_MOSI (PB15)	X	Х
	SPI3_NSS (PG12)	NA	Х
ODIO	SPI3_SCK (PG9)	NA	X
SPI3	SPI3_MISO (PG10)	NA	Х
	SPI3_MOSI (PB5)	NA	X
0.0014	CAN1_RX (PB8)	X ⁽²⁾	X ⁽³⁾
CAN1	CAN1_TX (PB9)	X ⁽²⁾	X ⁽³⁾
	CAN2_RX (PB5)	X ⁽⁴⁾	NA
CAN2	CAN2_TX (PB6)	X ⁽⁴⁾	NA
		I .	

- 1. Only for STM32L45/46/49/4Axxx.
- 2. Not available on STM32L41/42xxx.
- 3. FDCAN1 is available for STM32U5 series.
- 4. Only for STM32L49/4Axxx.

For more details on the bootloader, refer to the application note *STM32 microcontroller system memory boot mode* (AN2606).

AN5372 - Rev 2 page 13/80

5 Peripheral migration

5.1 STM32 products cross-compatibility

The STM32 microcontrollers embed a set of peripherals that can be classified in the following groups:

- **Group1**: peripherals by definition common to all products
 Those peripherals are identical, so they have the same structure, registers, and control bits. There is no need to perform any firmware change to keep the same functionality at the application level after migration.
 All the features and behavior remain the same.
- Group2: peripherals shared by all products but with only minor differences. In general, they support new features.
 - The migration from one product to another is very easy and does not need any significant new development effort.
- **Group3**: peripherals that have considerable changes from one product to another (new architecture or new features, for example).

For this group of peripherals, the migration requires a new development at application level.

Each GPIO or peripheral, DMA channel, clock configuration register, ICACHE, DCACHE, or small part of flash memory or SRAM can be configured as trusted or untrusted on the STM32U5 MCUs.

The following table summarizes the available peripherals in the STM32L4, STM32L4+, and STM32U5 MCUs, as well as their compatibility.

Table 11. STM32 peripheral compatibility between STM32L4, STM32L4+ and STM32U5 MCUs

		STM32L4		STM32U5				
Periph	neral	STM32L4	STM32L4+	STM32U535/	STM32U575/	STM32U59/	STM32U5F/	
			J111102211	545xx	585xx	5Axxx	5Gxxx	
Cor	Core		ex-M4		Cortex-N	133		
Maximum CP	U frequency	Up to 80 MHz	120 MHz		160 MF	·lz		
	ICACHE		/A	1x ICACHE				
Cache	DCACHE1	N	/A	1				
	DCACHE2	N/A			-	1		
	Power supply			1.71	1V to 3.6V			
	LDO			Available	on all products			
	LDO +				STM32U5xxxx0	Q products		
PWR/regulators	PWR/regulators internal		N/A		+ DC-DC/LDO on-the-fly selection			
DC-DC			Advanced features					
	LDO + external DC-DC	Possible through VDD12 supply			N/A (no regulator b	ypass option)		
Flash memory	Size	1 Mbyte	2 Mbytes	512 Kbytes 2 Mbytes + advanced + advanced features 4 Mbytes + advanced feat		nced features		
	Bank	Dual bank		Dual bank w	vith TrustZone [®] Specif	ic direct bus to Fa	st C-Bus	
	SRAM1	Up to 256 Kbytes	192 Kbytes	192 Kbytes 768 Kbytes		ytes		
	SRAM2	Up to 64 Kbytes	64 Kbytes	64 Kbytes with optional ECC				
SRAMs	SRAM3	N/A	N/A 384 Kbytes		512 Kbytes with optional ECC	832 Kbytes with	optional ECC	
	SRAM4	N	/A		16 Kbytes i	n SRD		
	SRAM5	N	/A	N	I/A	832 Kb	ytes	

AN5372 - Rev 2 page 14/80

			32L4		STM32	J5		
Periph	neral	STM32L4	STM32L4+	STM32U535/	STM32U575/	STM32U59/	STM32U5F/	
		31W32L4	STWI32L4+	545xx	585xx	5Axxx	5Gxxx	
	SRAM6	N/A			N/A 512 Kbytes			
SRAMs	SRAMs Backup SRAM		/A		BKPSRAM (2	?Kbytes)		
	1	DMA request		GPDMA (16 channels)				
	DMA (not compatible)		line is connected to		+ advanced f	eatures		
DMA (not co			peripherals through DMAMUX.	LPDMA (4 channels) in SRD				
			DMA2D	N/A DMA2D: Chrom-ART Accelerator				
		PI	LL		PLL1			
PL	L	PLL			PLL2			
	_	PLL			PLL3			
				dedic	ated PLLs for DSI PH	IY and USB_HS PH	ΗY	
				3 independent	32-bit AHB interface	for TZSC, TZIC, ar	nd MPCBB.	
		N/A		TZIC accessible only with secure transactions.				
GTZC (global contro				Secure and non-secure access supported for the privileged and unprivileged part of TZSC.				
					registers to define pro	•		
					Privilege mode extended to internal/external memories and internal backup SRAM			
			Eight tamper input/output pins					
Anti-tamper	detection	Up	to 3	128-byte backup registers				
		+ new advanced features						
CR	С	1x CRC						
FSMC (extern controller for st LCI	atic memory/	1x FSMC ⁽¹⁾						
High-Speed Low (HSI		N/A Some I/Os have the capability to increase the configuring them in HSL\				ow voltage by		
LPGF	PlOs	N	/A	 16 I/Os controlled by LPDMA down-to Stop 2 mode LPGPIO designed to be used with GPIO 				
	Advanced control			2	(16-bit)			
	General	5 (16	6-bit)					
	purpose	2 (32	2-bit)	4 (32-bit) + 3 (16-bit)				
	Basic			2 (16-bit)				
Timers	Low-power	2 (16	6-bit)		4 (16-bit) Autonomous mode			
	Watchdogs	1x WWDG a	nd 1x IWDG	1x WWDG and 1x IWDG + early interrupt feature				
				1	x RTC			
	RTC			+ binary m	ode selectionn			
	SysTick	1	1	2				
	GFXTIMER	N	/A		Yes			
Communication	SPI	2	(2)		3x SP	I		
interfaces	371	3	·		Advanced fe	eatures		

AN5372 - Rev 2 page 15/80

		STM	32L4	STM32U5			
Periph	neral	STM22L4 STM20L4:		STM32U535/	STM32U575/	STM32U59/	STM32U5F/
		STM32L4	STM32L4+	545xx	585xx	5Axxx	5Gxxx
					Registers not o	ompatible	
	I ² C	3(3)	4	4x I ² C + autor	nomous mode	6x I ² C +autono	mous mode
			I	USART1/3	USART1/2/3	USART	1/2/3/6
	USART	USAR	T1/2/3	+ autonomous mode	+ autonomous mode	+ autonome	
					UART4	·/5	
	UART	UART4/5			+ autonomous mode		
	LPUART	1x LP	UART		1x LPUART + autor	nomous mode	
	SAI (audio interface)	2x	SAI	1x SAI		2x SAI1/2	
	FDCAN	1 bx	CAN		1x FDC	AN	
Communication interfaces	USB	OTG_FS without clock recovery (4).	OTG_FS with clock recovery	1x USB full-speed host and device	1x USB OTG full- speed	1x USB OTG hiç embedde	
	UCPD	N/A	N/A	N/A	1x UCPD (USB Typ	e-C [®] and Power De	elivery interface
	SDMMC	1x SDI	MMC ⁽⁵⁾	1x SDMMC		2x SDMMC	
	Camera interfaces		1x DCMI and 1x PSSI		I		
	OCTOSPI	N/A	2x OCTOSPI + I/O manager multiplexer	1x OCTOSPI 2x OCTOSPI + I/O manager multiplexer		er	
	OCTOSPIM	N/A	1	N/A		1	
	HSPI	N	/A	N	/A	1	
				1x 14-bit AD0	C1 (2.5 Msps)	2x 14-bits ADC	1/2 (2.5 Msps)
	ADC	12-hi	t ADC	1x 12-bit AD0	C4 (2.5 Msps)	1x 12-bits ADC	4 (2.5 Msps)
	ADC	12-01	IADO	+ new f	eatures	+ new fe	atures
				+ autonon	nous mode	+ autonome	ous mode
	DAC	2x 12-l	oit DAC		2x 12-bit		
				4.,	+autonomou	is mode	
Analog peripherals	COMP	2x com	parators	1x comparator Registers not compatible		2x comparators sters not compatible	e
				1x operational amplifier	2x o	perational amplifier	S
	OPAMP	2x operationa	al amplifiers (6)	New slew rate configuration	New slew rate configuration		
	Voltage reference buffer	ye	es		VREFBUF0/1/2/3		
	AES			1x AES (not availab	le for STM32L476/48	6xx)	
Cryptographic	SAES (secure AES)	N	/A		1x SAE Advanced fo		
peripherals (7)	OTFDEC (on-the-fly decryption)	N	/A	1x OTFDEC		2x OTFDEC	

AN5372 - Rev 2 page 16/80

		STM	32L4		STM32	U5	
Peripheral		STM32L4	STM32L4+	STM32U535/ 545xx	STM32U575/ 585xx	STM32U59/ 5Axxx	STM32U5F/ 5Gxxx
	PKA (private key accelerator)	N/A	Only available on STM32L4P5/ Q5xx	1x PKA Advanced features		JOAA	
Cryptographic peripherals (7)	HASH (SHA-256)	Only available on STM32L496/ 4A6xx	1x HASH	1x HASH 1x HASH			
	RNG (true random number generator)	1x RNG Transparent usage by SAES and PKA, for DPA resistance					
	Digital filters	Yes		1x MDF ⁽⁸⁾ , multifunction digital filter (six filters) 1x ADF, audio digital filter (one filter) Advanced features			5)
	GPU2D Neochrom graphic processor	N/A			1 ⁽⁹⁾		
	JPEG codec	N	/A		1 ⁽⁹⁾		
Signal- processing coprocessors	CORDIC coprocessor	N/A			1x CORDIC ⁽⁹⁾		
accelerators	FMAC (filter mathematical accelerator)	N/A		1x FMAC			
	TSC (touch sensing control)			24 ch	nannels (10)		
	LTDC (LCD- TFT display controller)	N/A	1 N/A 1				
	DSI	N/A	1 N/A		/A	1	

- 1. FSMC is not available on STM32U535/545.
- 2. Only 2 on STM32L41/42xx
- 3. 4 on STM32L452/462/496/4A6xx
- 4. Only on STM32L41/42/43/44/45/46xxx
- 5. Not available on STM32L41x/42x/432/442xx.
- 6. Only available on STM32L41/42/43/44/45/46xxx
- 7. These features are available on STM32U545/585/5Ax/5Gx devices, except for RNG and HASH, which are available on all STM32U5 MCUs.
- 8. Only two filters in STM32U535/545 devices
- 9. Not available on STM32U535/545 and STM32U575/585.
- 10. Up to 24 channels for all series except ST32U535/545 devices.

5.2 Memory mapping

As shown in the table below, the peripheral address mapping has been changed in the STM32U5 MCUs, compared to the STM32L4 and STM32L4+ MCUs. The secure boundary address is not disclosed in this table, as they cannot be compared to the STM32L4/L4+ products. For further information, refer to the product reference manual.

AN5372 - Rev 2 page 17/80

Table 12. Peripheral address mapping of STM32L4, STM32L4+, and STM32U5 MCUs

	STM32L4/L4+	STM32U5
Peripheral	Boundary address ⁽¹⁾	Nonsecure boundary address
HASH	0x5006 0400- 0x5006 07FF	0x420C 0400 - 0x420C 07FF
AES	0x5006 0000- 0x5006 03FF	0x420C 0000 - 0x420C 03FF
DCMI	0x5005 0000- 0x5005 03FF	0x4202 C000 - 0x4202 C3FF
GPIOI	0x4800 2000- 0x4800 23FF	0x4202 8000 - 0x4202 83FF
OCTOSPIM	0x5006 1C00- 0x5006 1FFF	0x420C 4000 - 0x420C 43FF
DMA2D	0x4002 B000- 0x4002 BBFF	0x4002 B000 - 0x4002 BBFF (2)
GFXMMU	0x4002 C000- 0x4002 EFFF (3)	0x4002 C000 - 0x4002 EFFF (4)
DMAMUX1	0x4002 0800- 0x4002 0BFF	N/A
I2C4	0x4000 8400- 0x4000 87FF	0x4000 8400 - 0x4000 87FF
OCTOSPI2	0xA000 1400- 0xA000 17FF	0x420D 2400 - 0x420D 27FF ⁽⁵⁾
OCTOSPI1	0xA000 1000- 0xA000 13FF	0x420D 1400 - 0x420D 17FF
FSMC	0xA000 0000- 0xA000 03FF	0x420D 0400 - 0x420D 07FF ⁽⁵⁾
DSI	0x4001 6C00- 0x4001 73FF	0x4001 6C00 - 0x4001 7BFF ⁽⁴⁾
LTDC	0x4001 6800- 0x4001 6BFF	0x4001 6800 - 0x4001 6BFF ⁽⁴⁾
UCPD1	N/A	0x4000 DC00 - 0x4000 DFFF ⁽²⁾
USB_FS SRAM	0x4000 6C00- 0x4000 6FFF	0x4001 6400 - 0x4001 6BFF ⁽⁶⁾
USB_FS	0x4000 6800- 0x4000 6BFF	0x4001 6000 - 0x4001 63FF ⁽⁶⁾
OTG_FS	0x5000 0000- 0x5003 FFFF	0x4204 0000 - 0x420B FFFF (7)
SDMMC1	 0x4001 2800- 0x4001 2BFF (APB2) on STM32L4 0x5006 2400- 0x5006 27FF (AHB2) on STM32L4+ 	0x420C 8000 - 0x420C 83FF
SDMMC2	0x5006 2800- 0x5006 2BFF ⁽³⁾	0x420C 8C00 - 0x520C 8FFF ⁽²⁾
OTFDEC1	N/A	0x420C 5000 - 0x420C 53FF
OTFDEC2	N/A	0x420C 5400 - 0x420C 57FF ⁽²⁾
PKA	0x5005 E000- 0x5005 FFFF ⁽³⁾	0x420C 2000 - 0x420C 3FFF
PSSI	0x5005 0400- 0x5005 07FF ⁽³⁾	0x4202 C400 - 0x4202 C7FF
RNG	0x5006 0800- 0x5006 0BFF	0x420C 0800 - 0x420C 0BFF
ADC1 ⁽⁸⁾	0x5004 0000- 0x5004 03FF	0×4202 9000 0×4202 9255
ADC2 (9)	0x5004 0000- 0x5004 03FF	0x4202 8000 - 0x4202 83FF
GPIOJ		0x4202 2400 - 0x4202 27FF ⁽⁴⁾
GPIOI	N/A	0x4202 2000 - 0x4202 23FF ⁽⁴⁾
GPIOH		0x4202 1C00- 0x4202 1FFF
GPIOG	0x4800 1800- 0x4800 1BFF	0x4202 1800 - 0x4202 1BFF
GPIOF	0x4800 1400- 0x4800 17FF	0x4202 1400 - 0x4202 17FF ⁽²⁾
GPIOE	0x4800 1000- 0x4800 13FF	0x4202 1000 - 0x4202 13FF
GPIOD	0x4800 0C00- 0x4800 0FFF	0x4202 0C00 - 0x4202 0FFF
GPIOC	0x4800 0800- 0x4800 0BFF	0x4202 0800 - 0x4202 0BFF
GPIOB	0x4800 0400- 0x4800 07FF	0x4202 0400 - 0x4202 07FF
GPIOA	0x4800 0000- 0x4800 03FF	0x4202 0000 - 0x4202 03FF

AN5372 - Rev 2 page 18/80

	STM32L4/L4+	STM32U5
Peripheral	Boundary address ⁽¹⁾	Nonsecure boundary address
GTZC1_ TZSC		0x4003 2400 - 0x4003 27FF
GTZC1_ TZIC		0x4003 2800 - 0x4003 2BFF
GTZC1_ MPCBB1	N/A	0x4003 2C00 - 0x4003 2FFF
GTZC1_ MPCBB2		0x4003 3000 - 0x4003 33FF
GTZC1_ MPCBB3		0x4003 3400 - 0x4003 37FF ⁽²⁾
TSC	0x4002 4000- 0x4002 43FF	0x4002 4000 - 0x4002 43FF
CRC	0x4002 3000- 0x4002 33FF	0x4002 3000 - 0x4002 33FF
Flash registers	0x4002 2000- 0x4002 23FF	0x4002 2000 - 0x4002 23FF
RCC	0x4002 1000- 0x4002 13FF	0x4602 0C00 - 0x4602 0FFF
DMA1	0x4002 0000- 0x4002 03FF	N/A
DMA2	0x4002 0400- 0x4002 07FF	N/A
GPDMA1	AI/A	0X4002 0000 - 0x4002 0FFF
LPDMA1	N/A	0x4602 5000 - 0x4602 5FFF
FIREWALL	0x4001 1C00- 0x4001 1FFF	N/A
EXTI	0x4001 0400- 0x4001 07FF	0x4602 2000 - 0x4602 23FF
DFSDM1	0x4001 6000- 0x4001 67FF	N/A
SAI2	0x4001 5800- 0x4001 5BFF	0x4001 5800 - 0x4001 5BFF ⁽²⁾
SAI1	0x4001 5400- 0x4001 57FF	0x4001 5400 - 0x4001 57FF
TIM17	0x4001 4800- 0x4001 4BFF	0x4001 4800 - 0x4001 4BFF
TIM16	0x4001 4400- 0x4001 47FF	0x4001 4400 - 0x4001 47FF
TIM15	0x4001 4000- 0x4001 43FF	0x4001 4000 - 0x4001 43FF
USART1	0x4001 3800- 0x4001 3BFF	0x4001 3800 - 0x4001 3BFF
TIM8	0x4001 3400- 0x4001 37FF	0x4001 3400 - 0x4001 37FF
SPI1	0x4001 3000 - 0x4001 33FF	0x4001 3000 - 0x4001 33FF
TIM1	0x4001 2C00- 0x4001 2FFF	0x4001 2C00 - 0x4001 2FFF
COMP	0x4001 0200- 0x4001 03FF	0x4600 5400 - 0x4600 57FF
VREFBUF	0x4001 0030- 0x4001 01FF	0x4600 7400 - 0x4600 77FF
SYSCFG	0x4001 0000 - 0x4001 002F	0x4600 0400 - 0x4600 07FF
FDCAN1 RAM	NI/A	0x4000 AC00 - 0x4000 AFFF
LPTIM3	N/A	0x4600 4800 - 0x4600 4BFF
CAN1/FDCAN1(11)	0x4000 6400- 0x4000 67FF	0x4000 A400 - 0x4000 A7FF
LPTIM2	0x4000 9400- 0x4000 97FF	0x4000 9400 - 0x4000 97FF
LPUART1	0x4000 8000- 0x4000 83FF	0x4600 2400 - 0x4600 27FF
LPTIM1	0x4000 7C00- 0x4000 7FFF	0x4600 4400 - 0x4600 47FF
OPAMP	0x4000 7800- 0x4000 7BFF	0x4600 5000 - 0x4600 53FF
DAC ⁽¹²⁾	0x4000 7400- 0x4000 77FF	0x4602 1800 - 0x4602 1BFF
PWR	0x4000 7000- 0x4000 73FF	0x4602 0800 - 0x4602 0BFF
CRS	0x4000 6000- 0x4000 63FF	0x4000 6000 - 0x4000 63FF
I2C3	0x4000 5C00- 0x4000 5FFF	0x4600 2800 - 0x4600 2BFF

AN5372 - Rev 2 page 19/80

	STM32L4/L4+	STM32U5
Peripheral	Boundary address ⁽¹⁾	Nonsecure boundary address
I2C2	0x4000 5800- 0x4000 5BFF	0x4000 5800 - 0x4000 5BFF
I2C1	0x4000 5400- 0x4000 57FF	0x4000 5400 - 0x4000 57FF
UART5	0x4000 5000- 0x4000 53FF	0x4000 5000 - 0x4000 53FF
UART4	0x4000 4C00- 0x4000 4FFF	0x4000 4C00 - 0x4000 4FFF
USART3	0x4000 4800- 0x4000 4BFF	0x4000 4800 - 0x4000 4BFF
USART2	0x4000 4400- 0x4000 47FF	0x4000 4400 - 0x4000 47FF ⁽⁴⁾
SPI3	0x4000 3C00- 0x4000 3FFF	0x4600 2000 - 0x4600 23FF
SPI2	0x4000 3800- 0x4000 3BFF	0x4000 3800 - 0x4000 3BFF
TAMPER and BKP registers ⁽¹³⁾	0x4000 3400- 0x4000 37FF ⁽¹⁴⁾	0x4600 7C00 - 0x4600 7FFF
IWDG	0x4000 3000- 0x4000 33FF	0x4000 3000 - 0x4000 33FF
WWDG	0x4000 2C00- 0x4000 2FFF	0x4000 2C00 - 0x4000 2FFF
RTC	0x4000 2800- 0x4000 2BFF	0x4600 7800 - 0x4600 7BFF
TIM7	0x4000 1400- 0x4000 17FF	0x4000 1400 - 0x4000 17FF
TIM6	0x4000 1000- 0x4000 13FF	0x4000 1000 - 0x4000 13FF
TIM5	0x4000 0C00- 0x4000 0FFF	0x4000 0C00 - 0x4000 0FFF
TIM4	0x4000 0800- 0x4000 0BFF	0x4000 0800 - 0x4000 0BFF
TIM3	0x4000 0400- 0x4000 07FF	0x4000 0400 - 0x4000 07FF
TIM2	0x4000 0000- 0x4000 03FF	0x4000 0000 - 0x4000 03FF
ADF1		0x4602 4000 - 0x4602 4FFF
LPGPIO1		0x4602 0000 - 0x4602 03FF
LPTIM4		0x4600 4C00 - 0x4600 4FFF
DLYBOS1		0x420C F400 - 0x420C F3FF
DLYBOS2		0x420C F400 - 0x420C F7FF
DLYBSD1		0x420C 8400 - 0x420C 87FF
DLYBSD2		0x420C 8800 - 0x420C 8BFF
SAES		0x420C 0C00 - 0x420C 0FFF
BKPSRAM		0x4003 6400 - 0x4003 6BFF
DCACHE1		0x4003 1400 - 0x4003 17FF
DCACHE2	N/A	0x4003 1800 - 0x4003 1BFF ⁽⁴⁾
ICACHE	14/1	0x4003 0400 - 0x4003 07FF
RAMCFG		0x4002 6000 -0x4002 6FFF
MDF1		0x4002 5000 - 0x4002 5FFF
FMAC		0X4002 1400 - 0x4002 17FF
CORDIC		0X4002 1400 - 0x4002 13FF
GTZC2_ MPCBB4		0x4602 3800 - 0x4602 3BFF
GTZC2_ TZIC		0x4602 3400 - 0x4602 37FF
GTZC2_ TZSC		0x4602 3000 - 0x4602 33FF
LPGPIO1		0x4602 0000 - 0x4602 03FF

AN5372 - Rev 2 page 20/80

	STM32L4/L4+	STM32U5
Peripheral	Boundary address ⁽¹⁾	Nonsecure boundary address
HSPI1		0x420D 3400 - 0x420D 37FF
PKA		0x420C 2000 - 0x420C 3FFF
OTG_HS		0x4204 0000 - 0x4205 FFFF ⁽⁴⁾
GTZC1_ MPCBB6		0x4003 3C00 - 0x4003 3FFF
GTZC1_ MPCBB5		0x4003 3800 - 0x4003 3BFF
GTZC1_ MPCBB3	N/A	0x4003 3400 - 0x4003 37FF
GTZC1_ MPCBB2		0x4003 3000 - 0x4003 33FF
GTZC1_ MPCBB1		0x4003 2C00 - 0x4003 2FFF
GTZC1_ TZIC		0x4003 2800 - 0x4003 2BFF
GTZC1_ TZSC		0x4003 2400 - 0x4003 27FF
GPU2D		0x4002 F000 - 0x4002 FFFF ⁽⁴⁾
JPEG		0x4002 A000 - 0x4002 AFFF ⁽⁴⁾
GFXTIM		0x4001 6400 - 0x4001 67FF ⁽⁴⁾
UCPD1		0x4000 DC00 - 0x4000 DFFF ⁽²⁾

- 1. If no boundary address, it means the peripheral is not available on all STM32L4/L4+.
- 2. Not available on STM32U535/545
- 3. Only available on STM32L4P5/4Q5xx.
- 4. Not available on STM32U535/545 and STM32U575/585
- 5. Not available on STM32U535/545
- 6. Not available for STM32U575/585, STM32U59x/5Ax, and STM32U5Fx/5Gx
- 7. Only available on STM32U575/585
- 8. ADC1 for STM32U575/585. ADC1 and ADC2 for STM32L4P/4Q5xx.
- 9. Named ADC4 for STM32U575/585.
- 10. Only one COMP on STM32U535/545
- 11. FDCAN1 for STM32U575/585.
- 12. DAC1 for STM32L4+ and STM32U575/585.
- 13. TAMP for STM32U575/585.
- 14. Only on STM32L4+.
- 15. GPU2D supports HW vector graphic only in STM32U5Fx/5Gx

AN5372 - Rev 2 page 21/80

6 Migration of system peripherals

6.1 System configuration controller (SYSCFG)

Table 13. SYSCFG features in STM32L4, STM32L4+ and STM32U5 MCUs

STM32L4/L4+	STM32U5
 Remapping memory areas Managing the external interrupt line connection to the GPIOs Managing robustness feature Setting SRAM2 write protection and software erase Configuring FPU interrupts Enabling the firewall Enabling/disabling the I2C Fast-mode plus driving capability on some I/Os 	 Managing robustness feature Setting SRAM write protection and software erase: this feature is not ensured by SYSCFG peripheral but using RAMCFG peripheral. Configuring FPU interrupts Enabling/disabling the I2C fast-mode plus driving capability on some I/Os and voltage booster for I/Os analog switches Configuring TrustZone security register access Tracking the PVT conditions to control the current slew-rate and output impedance in I/O buffer through compensations cells on VDD, VDDIO2 and HSPI GPIOs. Configuring the OTG_HS PHY Adjust the HSPI supply capacitance Disable internal SRAMs cacheability by DCACHE2

6.2 Embedded flash memory (FLASH)

Table 14. Flash memory features in STM32L4, STM32L4+ and STM32U5 MCUs

0x0800 0000 to up to 0x080F FFFF 0x0810 0000 to up to 0x081F FFFF (only for STM32L4+) For STM32L4+: up to 2 Mbytes split in two banks when dual bank is enabled: - each bank = 256 pages of 4 Kbytes - each page = 8 rows of 512 bytes when dual bank is disabled:	 Bank1: 0x0800 0000 to 0x081F FFFF Bank2: 0x0810 0000 to 0x083F FFFF For STM32U535/545: up to 512 Mbytes: dual-bank architecture 256 Kbyte per bank for main memory 8 Kbytes page size
up to 2 Mbytes split in two banks when dual bank is enabled: - each bank = 256 pages of 4 Kbytes - each page = 8 rows of 512 bytes	 up to 512 Mbytes: dual-bank architecture 256 Kbyte per bank for main memory
 memory block contains 256 pages of 8 Kbytes each page = 8 rows of 1024 bytes For STM32L47/48/49/4Axxx: up to 1 Mbyte split in two banks: each bank = 256 pages of 2 Kbytes each page = 8 rows of 256 bytes For STM32L45/46xxx: up to 512 Kbytes one bank each bank = 256 pages of 2 Kbytes each page = 8 rows of 256 bytes For STM32L43/44xxx: up to 256 Kbytes one bank 	 system memory: 32 Kbytes 32 Kbytes immutable secure area containing the root security services For STM32U575/585: up to 2 Mbytes: dual-bank architecture 1 Mbyte per bank for main memory 8 Kbytes page size system memory: 32 Kbytes 32 Kbytes immutable secure area containing the root security services For STM32U59x/5Ax/5Fx/5Gx: up to 4 Mbytes: dual-bank architecture 2 Mbyte per bank for main memory 8 Kbytes page size system memory: 32 Kbytes system memory: 32 Kbytes 32 Kbytes immutable secure area containing the root security services
= 0	 each page = 8 rows of 1024 bytes or STM32L47/48/49/4Axxx: up to 1 Mbyte split in two banks: each bank = 256 pages of 2 Kbytes each page = 8 rows of 256 bytes or STM32L45/46xxx: up to 512 Kbytes one bank each bank = 256 pages of 2 Kbytes each page = 8 rows of 256 bytes TSTM32L43/44xxx: up to 256 Kbytes Or STM32L43/44xxx: up to 256 Kbytes

AN5372 - Rev 2 page 22/80

Feature		STM32L4/L4+	STM32U5
		For STM32L41/42xxx:	
		up to 128 Kbytesone bank = 64 pages of 2 Kbytes	
Specific features		RWW (read-while-write)dual-bank boot (only for STM32L4+ and STM32L47/48/49/4Axxx)	RWW (read-while-write)dual-bank boot
ECC (single-edouble-error e	error correction and detection)	Programming and read granularity: 72 bits (including 8 ECC bits)	128 effective bits plus 9 ECC bits
Read access		Read access of 64 bits	128-bit wide data read
Wait states (\	WS)	Up to 4 WS (depending on the supply voltage and the frequency)	 The number of WS depends on LPM value: Up to 4 WS when LPM = 0 (depending on the supply voltage and the frequency) Up to 16 WS when LPM = 1 (depending on the supply voltage and the frequency)
One time pro	grammable (OTP)	1-Kbyte OTP bytes (bank1)	512-byte OTP for user data
	Level 0 (RDP = 0xAA)	No protection: No debug restriction	No debug restriction (secure and nonsecure) Boot @ must target a secure area. Boot on secure SRAM, flash memory and system flash memory (RSS) possible
Read protection	Level 0.5 (RDP = 0x55)	N/A	Device partially closed (only when TrustZone® is enabled) Nonsecure debug only NS-Flash access allowed (with debug connection) Boot @ must target secure user flash memory. Boot on SRAM not permitted Regression from Level 1 to level 0.5 can be blocked by OEM2 key.
(RDP)	Level 1 (RDP ≠ {0xAA, 0xCC})	Memory readout protection	Device memories protected: Flash, backup registers, SRAM2, and backup RAM totally inaccessible: Nonsecure debug only Flash access not allowed (with debug connection) Boot @ must target secure user flash memory. Regression from Level 1 to level 0 can be blocked by OEM1 key.
	Level 2 (RDP = 0xCC)	Full protection: No debug ⁽¹⁾	 Closed device (no JTAG) No option byte change: No debug (JTAG fuse) Boot @ in secure user flash memory RDP level 2 cannot be changed, unless OEM2 unlocking key is activated.
Write protection (WRP)		Two write protection area per bank: 2-Kbyte granularity For STM32L4+ MCUs: dual bank with 2 areas per bank or single bank with 4 areas	Two write protection area per bank: 8-Kbyte granularity
User option bytes	RDP option bytes	0xAA: Level 0 0xCC: Level 2 Others: Level 1	 0xAA: Level 0 0x55: Level 0.5 0xCC: Level 2 Others: Level 1

AN5372 - Rev 2 page 23/80

	Feature	STM32L4/L4+	STM32U5		
	Reset option bytes	 BOR_LEV[2:0] nRST_STOP nRST_STDBY nRST_SHDW SRAM_RST (only on STM32U5 series) SRAM2_RST 			
	Watchdog option bytes	IDWG_SWIWDG_STOPIWDG_STDBYWWDG_SW			
		BFB2 (except for STM32L41/42/43/44/45/46xxx)	SWAP_BANK		
	FLASH banking option bytes	 Dual bank (except for STM32L4+ and STM32L41/42/43/44/45/46xxx MCUs) DB1M (for STM32L4+ MCUs) DBANK (for STM32L4+ MCUs) 	DUALBANK		
	RAM and ECC enable option bits	N/A (parity check option bit only)	BKPRAM_ECC SRAM3_ECC SRAM2_ECC		
		SRAM2_PE	Removed, replaced by ECC options bits		
		nSWBOOT0 (only for STM32L4+ and STM32L41/42/43/44/45/46/49/4Axxx)	nSWBOOT0		
	Secure and nonsecure boot option bytes	nBOOT0 (only for STM32L4+ and STM32L41/42/43/44/45/46/49/4Axxx)	nBOOT0		
User option bytes	2501 5911011 291100		NSBOOTADD0[24:0]NSBOOTADD1[24:0]SECBOOTADD0[24:0]		
	IO speed and pull-up selection option bits	N/A	PA15_PUPENIO_VDD_HSLVIO_VDDIO2_HSLV		
	Global TrustZone® activation option bit		TZEN		
	FLASH secure watermark option bytes	For STM32L4 MCUs: PCROPx_STRT[15:0] PCROPx_END[15:0] For STM32L4+ MCUs: PCROPx_STRT[16:0] PCROPx_END[16:0]	 SECWM1_PSTRT[6:0] ECWM1_PEND[6:0] HDP1_PEND[6:0] HDP1EN SECWM2_PSTRT[6:0] SECWM2_PEND[6:0] HDP2_PEND[6:0] HDP2EN 		
	FLASH write protection (WRP) area option bytes	N/A	 WRP1A_PSTRT[6:0] WRP1A_PEND[6:0] WRP1B_PSTRT[6:0] WRP1B_PEND[6:0] WRP2A_PSTRT[6:0] WRP2A_PEND[6:0] WRP2B_PSTRT[6:0] URP2B_PEND[6:0] UNLOCK 		
	FLASH locking keys for level regression option bytes		OEM1KEY[31:0]OEM1KEY[63:32]OEM2KEY[31:0]OEM2KEY[63:32]		
Protections		Write protection: 2 areas per bank	 4 write protection areas: 2 per bank Configurable protection against unprivileged accesses with Flash page granularity 		

AN5372 - Rev 2 page 24/80

Feature	STM32L4/L4+	STM32U5
	PCROP protection: one PCROP area per bank	
Security	N/A	 TrustZone[®] 2 secure areas (1 per bank) 2 secure HDP (hide protection) areas part of the secure areas (1 per bank)

^{1.} Memory read protection Level 2 is an irreversible operation. When Level 2 is activated, the level of protection cannot be decreased to Level 0 or Level 1.

6.3 SRAMs

In STM32L4 and STM32L4+ MCUs, the control of SRAM1 and SRAM2 is integrated within the SYSCFG. In STM32U5 MCUs, the new peripheral RAMCFG controller is dedicated to control SRAM1, SRAM2, SRAM3, SRAM4, and BKPSRAM.

Refer to section 'RAMs configuration controller' in the product reference manual for more details.

Table 15. SRAM features in STM32L4, STM32L4+ and STM32U575/585 MCUs

Factoria	STM	32L4	STM32U5				
Feature	STM32L4	STM32L4+	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx	
Size	196 Kbytes for STM32L41/ 42/43/44/45/ 46xxx devices: SRAM 1 = up to 128 Kb ytes SRAM 2 = up to 32 Kby tes 128 Kbytes for STM32L4x1/ 47x/48xxx devices: SRAM 1 = up to 32 Kby ytes SRAM 2 = up to 32 Kby ytes SRAM 2 = up to 32 Kby ytes	640 Kbytes for STM32L4R/ 4Sxxx devices: SRAM 1 = 192 Kb ytes SRAM 2 = 64 Kby tes SRAM 3 = 384 Kb ytes STM32L4P5 /Q5xx devices: SRAM 1 = 128 Kb ytes SRAM 2 = 64 Kby tes SRAM 3 = 128 Kb ytes	274: SRAM1 = 192 SRAM2 = 64 SRAM4 = 16 BKPSRAM = 2	786: SRAM1 = 192 SRAM2 = 64 SRAM3 = 512 SRAM4 = 16 BKPSRAM = 2	2514: SRAM1 = 768 SRAM2 = 64 SRAM3 = 832 SRAM4 = 16 SRAM5 = 832 BKPSRAM = 2	3026: SRAM1 = 768 SRAM2 = 64 SRAM3 = 832 SRAM4 = 16 SRAM5 = 832 SRAM6 = 512 BKPSRAM = 2	

AN5372 - Rev 2 page 25/80

		STM	32L4	STM32U5					
Fea	ture	STM32L4	STM32L4+	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx		
		• 320 Kbytes for STM32L49/ 4Axxx devices: - SRAM 1 = 256 Kb ytes - SRAM 2 = 64 Kby tes							
Access DMA ar		Bytes, half-words (1	6 bits) or full words (32 bits) possible acce	ess				
CPU acces	Syste m bus	SRAM1	SRAM1, SRAM2, SRAM3	SRAM1, SRAM2, SRAM4, and BKPSRAM	SRAM1, SRAM2, SRAM3, SRAM4 and BKPSRAM	SRAM1, SRAM2, SRAM3, SRAM4, SRAM5 and BKPSRAM	SRAM1, SRAM2, SRAM3, SRAM4, SRAM5, SRAM6 and BKPSRAM		
s bus	Other bus acces s	SRAM1, SRAM2 (I-t	ous/D-bus)	SRAM1 and SRAM2	SRAM1, SRAM2 and SRAM3	SRAM1, SRAM2, SRAM3 and SRAM5	SRAM1, SRAM2, SRAM3, SRAM5 and SRAM6		
		SRAM1, SRAM2, ar content are retained and Stop 2 modes.		Either 8, 56, or 64 Kbytes of SRAM2 can be retained in Standby mode.					
Retenti	on	N	/A	Retention in Standby mode Optional retention in V _{BAT} mode					
Security	/	N	/A		programmed as non	all SRAMs are secur secure using the MP0			
Hardwa erase condition		N	/A	regression to L0.5 c SRAM2 and optional tamper detection cit of tamper detection	ally BKPSRAM are pr rcuit and are erased b RAM are erased by h	otected by the by hardware in case			
Softwar	e erase	The SRAM2 erase of requested by softwar SRAM2ER in SYSC	re by setting		All SRAMs erase can be requested by executing a specific software sequence, detailed in section 'RAMCFG' of the product reference manuals.				
System	rosot	The SRAM2 can be	erased with a syster	n reset using the option	on bit SRAM2_RST in	n the flash memory us	ser option bytes.		
System erase	reset	N	/A			re erased when a systemory user option by			
		SRAM2 can be write	e-protected with a pa	ge granularity of 1 Kb	oyte.				
WRP		The write protection in SYSCFG SRAM2 register (SYSCFG_S	write protection	Each 1-Kbyte page can be write-protected by setting its corresponding PxWP (x = to 63) bit in RAMCFG registers.					
		Single-error correction	on and double-error	detection					
Error de		Parity check: 4 bits a bit per byte)	added per 32 bits (1	ECC: 7 bits added p	per 32 bits				
		Parity checks suppo	rted by the SRAM2	ECC supported by SRAM2, SRAM3 and BKPSRAM					

AN5372 - Rev 2 page 26/80

Feature	STM	32L4	STM32U5					
reature	STM32L4	STM32L4+	STM32U535/545	TM32U535/545 STM32U575/585 STM32U59x/5Ax STM32U				
Error detection and correction	If one parity bit fails, generated. Event can be linked break input of TIM1, TIM16, or TIM17.	to the BRK_IN	Interrupts are generated when single and/or double ECC errors are detected: 2 ECC RAMCFG interrupts 1 ECC NMI interrupt Interrupts allow the device to exit Sleep, Stop 0 or Stop 1 mode, but not Standby mode.					
Read access latency	N	'A	3-bit programmable wait-states depending on AHB clock frequency (HCLK) and voltage scaling range (for all SRAMs).					

6.4 Instruction and data caches (ICACHE/DCACHE)

The STM32U5 MCUs embed an ICACHE and DCACHEs (DCACHE1 and DCACHE2) that allows more efficient use of the external memory through the OCTOSPI and FSMC ports.

The STM32L4 and STM32L4+ MCUs do not embed these caches.

STM32U5 STM32L4 and STM32L4+ **Feature** STM32U575/585 STM32U59x/5Ax/5Fx/5Gx STM32U535/545 **ICACHE** 8 32 CACHEs (Kbytes) DCACHE1 N/A 4 16 DCACHE2 N/A

Table 16. Embedded caches on STM32U5 devices

6.5 Direct memory access controller (DMA)

The STM32L4, STM32L4+ and STM32U5 MCUs have different DMA architecture and features.

All devices embed two DMA controllers:

- DMA1 (7 channels) and DMA2 (7 channels) for STM32L4 and STM32L4+ MCUs
- GPDMA1 (16 channels) and LPDMA1 (4 channels) for STM32U5 MCUs

STM32U5 and STM32L4+ embed also a Chrom-ART Accelerator (DMA2D) that is a specialized DMA dedicated to image manipulation. DMA2D peripheral is not present in STM32L4.

The following table illustrates the main differences between DMA requests in STM32L4, STM32L4+ and STM32U5 MCUs.

Table 17. DMA features of STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32	L4/L4+	STM32U5			
reature	DMA1	DMA2	GPDMA1	LPDMA1		
Architecture		Each instance of DN	MA controllers can access memory and pe	eripherals.		
Number of instances	1	1	1	1		
Number of masters	1 single bidirectional AHB master per instance		Dual bidirectional AHB master	Single bidirectional AHB master		
Number of channels	7	7	16	4		
Linked-List	N/A		 Separately programmed source a Programmable data handling betw Block-level (programmable number Linear source and destination address offsets between services 	veen source and destination er of data bytes) Iressing: programmable		
Linked-List 2D addressing	st 2D addressing N/A		2D source and destination addressing N/A			

AN5372 - Rev 2 page 27/80

Feature	STM32	PL4/L4+	STM32U5			
reature	DMA1 DMA2		GPDMA1	LPDMA1		
			Scatter-gather (multi-buffer transfers), data interleaving and de-interleaving via 2D addressing			
Autonomous data transfer in	N/A		Autonomous data transfers and wakeup during Sleep and Stop low power modes			
Sleep and Stop modes	N/A		Sleep, Stop 0 and Stop 1 modes Sleep, Stop 0, Stop 1 a Stop 2 modes			
TrustZone security	N/A		Yes			
Privileged/unprivileged DMA	N/A		Yes			

6.6 Reset and clock control (RCC)

The STM32U5 MCUs implement the same RCC features as the STM32L4 and STM32L4+ MCUs, with some specification updates.

Table 18. RCC features in STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4/L4+	STM32U5			
MSI	 MSI is a low-power oscillator with programmable frequency up to 48 MHz. It can replace PPLs as system clock (faster wake-up, lower consumption). It can be used as USB device clock (no need for an external high speed crystal oscillator). 12 frequency ranges are available: 100 kHz, 200 kHz, 400 kHz, 800 kHz, 1 MHz, 2 MHz, 4 MHz (default value), 8 MHz, 16 MHz, 24 MHz, 32 MHz, and 48 MHz. Auto-calibration from LSE 	 MSI is made of four internal RC oscillators. Two output clocks are generated from these divided oscillators: MSIS and MSIK. MSIS can replace PPLs as system clock (faster wake-up, lower consumption). MSIK can be selected by some peripherals as kernel clock. MSI can be used as USB device clock (no need for external high-speed crystal oscillator). 16 frequency ranges are available (from 100 kHz to 48 MHz). Refer to "MSIS and MSIK ranges per internal MSIRCs" table on the reference manual for more information. Default value for MSIS and MSIK frequencies is 4 MHz. Auto-calibration from LSE 			
HSI16	16 MHz RC factory and user trimmed				
LSI	 32 kHz RC Lower consumption, higher accuracy (refer to the On STM32U5 MCUs, the LSI is available under B 	e electrical characteristics section of the datasheet) Backup Domain (VBAT).			
HSE	4 to 48 MHz	4 to 50 MHz			
LSE	32.768 kHzConfigurable drive/consumptionAvailable in Backup domain (VBAT)				
HSI48	 48 MHz RC (only for STM32L4+ and STM32L41/42/43/44/45/46/49/4Axxx) Can drive USB FS, SDMMC, and RNG 	48 MHz RCCan drive USB FS, SDMMC, and RNG			
SHSI	N/A	Internal securable RC oscillator dedicated to clock the SAES			
PLL	 Main PLL for system: x2 PLLs for SAI1/2, ADC, RNG, SDMMC and OTG_FS clock (for STM32L4+ and STM32L47/48/49/4Axxx) x1 PLL for SAI1, ADC, RNG, SDMMC, USB FS clock (for STM32L43/44/45/46xxx) 	Three PLLs: Main PLL(PLL1) provides clock for CPU and some peripherals. PLL2 and PLL3 generate the kernel clocks for peripherals. Each PLL offers three independent outputs with post-dividers.			

AN5372 - Rev 2 page 28/80

Feature	STM32L4/L4+	STM32U5
	 Each PLL provides up to three independent outputs. The PLL sources are MSI, HSI16, HSE. 	 The internal PLLs can be used to multiply the HSI16, HSE, or MSIS output clock frequency. Capability to work in integer or fractional mode
System clock frequency	Up to 80 MHz (or 120 for STM32L4+)4 MHz after reset using MSI	Maximum frequency is 160 MHz.4 MHz after reset using MSI
AHB, APB1, APB2 frequency	Up to 80 MHz (or 120 for STM32L4+)	Up to 160 MHz
RTC clock source	LSI, LSE or HSE/32	
MCO clock source	 MCO pin (PA8): SYSCLK, HSI16, HSE, PLLCLK, MSI, LSE, LSI or HSI48 (for STM32L4+ and STM32L41/42/43/44/45/46/49/4Axxx) With configurable prescaler 1, 2, 4, 8 or 16 for each output 	One of nine clock signals can be selected as MCO clock: LSI, LSE, SYSCLK, HSI16, HSI48, HSE, PLLCLK, MSIS, or MSIK.
Clock security system (CSS)	CSS on HSE or CSS on LSE	
Internal oscillator measurement/calibration	 LSE connected to TIM15 or TIM16 CH1: can measure HSI16 or MSI with respect to LSE clock high precision. LSI connected to TIM16 CH1: can measure LSI with respect to HSI16 or HSE clock precision. HSE/32 connected to TIM17 CH1: can measure HSE with respect to LSE/HSI16 clock. MSI connected to TIM17 CH1: can measure MSI with respect to HSI16/HSE clock. On STM32L41/42/43/44/45/46xxx, the HSE/32 and MSI are connected to TIM16 CH1. 	The frequency of all on-board clock sources can be indirectly measured by means of the TIM15, TIM16, or TIM17 channel 1 input capture and LPTIM1 or LPTIM2 channel 2 input capture. Calibration using LSE: HSI16 and MSI calibration using LSE and TIM15/TIM16/TIM17 and LPTIM2. Calibration using HSE: HSI16 and MSI calibration using HSE, TIM16/TIM17 and LPTIM2 LSI calibration using HSE, TIM16/TIM17 and LPTIM1
Interrupt	CSS (linked to NMI IRQ) LSECSS, LSIRDY, LSERDY, HSIRDY, MSIRDY, HSERDY, PLLRDY, PLLSAI1RDY, PLLSAI2RDY (only on STM32L4+ and STM32L47/48/49/4Axxx) (linked to RCC global IRQ)	CSS (linked to NMI IRQ for HSE and Tamper for LSE) HSECSS, HSERDY, LSERDY, HSIRDY, SHSIRDY, HSI48RDY, LSIRDY, MSISRDY, MSIKRDY, PLL1RDY, PLL2RDY, PLL3RDY, ITAMP3
Autonomous mode	N/A	 Peripherals supporting autonomous mode are able to generate a kernel clock and AHB/APB bus clock requests when needed even in Stop mode. Either MSI or HSI16 are woken up for this purpose.

AN5372 - Rev 2 page 29/80

6.6.1 Performance versus VCORE ranges

In the STM32U5 series, the maximum CPU clock frequency and the number of flash memory wait states depend on the selected voltage range V_{CORE} . The tables below present the different clock source frequencies depending on different product voltage range for STM32L4, STM32L4+ and STM32U5 series.

Table 19. RCC registers of STM32L4 and STM32L4+ series

CPU Power		V _{CORE}	Typical	Max frequency (MHz) ⁽²⁾						
performance	performance (1)	range	value (V)	5 WS	4 WS	3 WS	2 WS	1 WS	0 WS	
				STM32L4	series					
High	Medium	1	1.2	-	80	64	48	32	16	
Medium	High	2	1.0	-	26	26	18	12	6	
				STM32L4	⊦ series					
High	Medium	1 (boost mode)	1.28	120	100	80	60	40	20	
riigii	Wediam	1 (normal mode)	1.2	-	-	80	60	40	20	
Medium	High	2	1.0	-	-	-	26	16	8	

^{1.} When power performance increases, power consumption per MHz decreases.

Table 20. RCC registers of STM32U5 series

CPU	Power		Typical		Max frequency (I							ency (MHz)					
perform	perform	V _{CORE} range	value			LPN	1 = 0			LPM = 1							
ance	ance		(V)	5 WS	4 WS	3 WS	2 WS	1 WS	1 WS 0 WS		4 WS	3 WS	2 WS	1 WS	0 WS		
High	Low	1	1.2	-	160	128	96	64	32	Up to 16 WS may be needed to obtain max clock							
Medium -high	Medium -low	2	1.1	-	-	110	75	50	25	source when LPM = 1 for ranges 1,2 and 3. For more information, refer to FLASH section,			on,				
Medium -low	Medium -high	3	1.0	-	-	55	37.5	25	12.5	table "Number of wait states according to CPU clock (HCLK) frequency (LPM = 1)" in the reference manual.							
Low	High	4	0.9	-	-	-	24	16	8	-	-	-	24	16	8		

AN5372 - Rev 2 page 30/80

^{2.} WS = wait states.

6.6.2 Peripheral access configuration

Since the address mapping of some peripherals has been changed in the STM32U5 MCUs, compared to STM32L4 and STM32L4+ MCUs, different registers must be used to [enable/disable] or [enter/exit] the peripheral [clock] or [from Reset mode]. In addition, the STM32U5 MCUs need to [enable/disable] the autonomous mode for SmartRun domain (SRD). The table below shows the RCC registers used for peripheral access configuration in STM32L4, STM32L4+ and STM32U5 MCUs.

Table 21. RCC registers for peripheral access configuration of STM32L4, STM32L4+ and STM32U5 MCUs

Bus	STM32L4/L4+	STM32U5	Comments
АНВ	RCC_AHB1RSTR (AHB1) RCC_AHB2RSTR (AHB2)	RCC_AHB1RSTR (AHB1)RCC_AHB2RSTR (AHB2)RCC_AHB3RSTR (AHB3)RCC_AHB4RSTR (AHB4)	Used to [enter/exit] the AHB peripheral from reset
APB1	RCC_AHB1ENR (AHB1) RCC_AHB2ENR (AHB2)	 RCC_AHB1ENR (AHB1) RCC_AHB2ENR (AHB2) RCC_AHB3ENR (AHB3) RCC_AHB4ENR (AHB4) 	Used to [enable/disable] the AHB peripheral clock
APB2	RCC_AHB1SMENR (AHB1)RCC_AHB2SMENR (AHB2)RCC_AHB3SMENR (AHB3)	 RCC_AHB1SMENR (AHB1) RCC_AHB2SMENR (AHB2) RCC_AHB3SMENR (AHB3) RCC_AHB4SMENR (AHB4) 	Used to [enable/disable] the AHB peripheral clock in Sleep mode
		RCC_APB3RSTR	Used to [enter/exit] the APB3 peripheral from reset
APB3	N/A	RCC_APB3ENR	Used to [enable/disable] the APB1 peripheral clock
	IN/A	RCC_APB3SMENR	Used to [enable/disable] the APB1 peripheral clock in Sleep mode
SRD (SmartRun domain)		RCC_SRDAMR	Used to [enable/disable] the peripheral in autonomous mode in Stop 0,1,2 modes

AN5372 - Rev 2 page 31/80

6.6.3 Peripheral clock configuration

The peripherals presented below have a dedicated clock source (independent from the system clock), that is used to generate the clock required for their operation. This section presents the difference between STM32L4, STM32L4+ and STM32U575/585, for the peripherals with different clock sources.

SAI

- In STM32L4+ and STM32L47/48/49/4Axxx devices, the SAI clocks are derived from one of the following sources:
 - An external clock mapped on SAI1_EXTCLK or SAI2_EXTCLK
 - PLLSAI1 VCO (PLLSAI1CLK)
 - PLLSAI2 VCO (PLLSAI2CLK)
 - Main PLL VCO (PLLSAI3CLK)
 - HSI16 clock
- In STM32L43/44/45/46xxx devices, the SAI clocks are derived from one of the following sources:
 - An external clock mapped on SAI1 EXTCLK for SAI1
 - PLLSAI1 (P) divider output (PLLSAI1CLK)
 - Main PLL (P) divider output (PLLSAI2CLK)
 - HSI16 clock
- In STM32U5 devices, the SAI1 and SAI2 clocks are derived from one of the following sources (selected by software):
 - An external clock mapped on AUDIOCLK for SAI1 and SAI2
 - PLL1 p clock
 - PLL2 p clock
 - PLL3_p clock
 - HSI16 clock

DFSDM/ADF/MDF

- In STM32L4 and STM32L4+ devices, the DFSDM clock is derived from one of the following sources (selected by software):
 - System clock (SYSCLK)
 - APB2 clock (PCLK2)
- In STM32U5 devices, the MDF and ADF audio clocks are derived from one of the following sources (selected by software):
 - PLL1 _p clock
 - PLL3 q clock
 - MSIK clock

OCTOSPI

- STM32L4 devices do not support the OCTOSPI peripheral.
- In STM32L4+ devices, the OCTOSPI clock is derived from one of the following sources (selected by software):
 - System clock
 - PLL48M1CLK
 - MSI clock
- In STM32U5 devices, the OCTOSPI clock is derived from one of the following sources (selected by software):
 - System clock
 - PLL1_q clock
 - MSIK clock
 - PLL2_q clock

AN5372 - Rev 2 page 32/80

FDCAN

In STM32U5 devices, the FDCAN clock is derived from one of the following sources (selected by software):

- PLL1 q clock
- PLL2_p clock
- HSE clock

Note: FDCAN is not available on STM32L4 and STM32L4+ devices.

USB

- In STM32L4 and STM32L4+ devices, the OTG_FS clock is derived from one of the following sources (selected by software):
 - Main PLL VCO (PLL48M1CLK)
 - PLLSAI1 VCO (PLL48M2CLK)
 - MSI clock (only when autotrimmed with the LSE)
 - HSI48 internal oscillator (not available on STM32L4x1/475/476/486xx)
- In STM32U5 devices, the OTG_FS or USB_FS clock is derived from one of the following sources (selected by software):
 - PLL1_q clock
 - PLL2 q clock
 - HSI48 clock
 - MSIK clock
- The OTG_HS clock is derived from one of the following sources (selected by software):
 - HSE clock
 - PLL1_q clock
 - HSE/2 selected
 - PLL1_p clock divided by 2

SDMMC

- In STM32L4 and STM32L4+ devices, the SDMMC clock is derived from one of the following sources (selected by software):
 - PLL1_p clock
 - PLLSAI1 VCO (PLL48M2CLK)
 - MSI clock (only when autotrimmed with the LSE)
 - HSI48 internal oscillator (not available on STM32L4x1/475/476/486xx)
- In STM32U5 devices, the SDMMC clock is derived from one of the following sources (selected by software):
 - PLL1_p clock
 - CLK48 (48 MHz)

RNG

- In STM32L4 and STM32L4+ devices, the RNG clock is derived from one of the following sources (selected by software):
 - PLL1_p clock
 - PLLSAI1 VCO (PLL48M2CLK)
 - MSI clock (only when autotrimmed with the LSE)
 - HSI48 internal oscillator (not available on STM32L4x1/475/476/486xx)
- In STM32U5 devices, the RNG clock is derived from one of the following sources (selected by software):
 - PLL1_p clock
 - HSI48 internal oscillator

AN5372 - Rev 2 page 33/80

ADC/DAC

- In STM32L4 and STM32L4+ devices, the ADC clock is derived from one of the following sources (selected by software):
 - System clock (SYSCLK)
 - PLLSAI1 VCO (PLLADC1CLK): not available on STM3L41/42xxx
 - PLLSAI2 VCO (PLLADC2CLK): not available on STM32L4+ and STM32L41/42/43/44/45/46xxx
- STM32L4 and STM32L4+ devices do not have a dedicated clock for DAC, independent from the system clock
- In STM32U5 devices, the ADC and DAC clock is derived from one of the following sources (selected by software):
 - System clock (SYSCLK)
 - HCLK
 - pll2 r ck
 - HSE
 - HSI16
 - MSIK
 - LSI and LSE: only as DAC1 clock source

U(S)ART

- In STM32L4 and STM32L4+ devices, the U(S)ARTs clock is derived from one of the following sources (selected by software):
 - System clock (SYSCLK)
 - HSI16 clock
 - LSE clock
 - APB1 or APB2 clock (PCLK1 or PCLK2 depending on which APB is mapped to the U(S)ART)
- In STM32U5 devices, the U(S)ARTs clock is derived from one of the following sources (selected by software):
 - System clock (SYSCLK)
 - PCLK2
 - LSE
 - HSI16

LPTIM

- In STM32L4 and STM32L4+ devices, the LPTIMx clock is derived from one of the following sources (selected by software):
 - LSI clock
 - LSE clock
 - HSI16 clock
 - APB1 clock (PCLK1)
 - External clock mapped on LPTIMx_IN1
- In STM32U5 devices, the LPTIMx clock is derived from one of the following sources (selected by software):
 - APB1 clock (PCLK1)
 - LSI
 - LSE
 - HSI16

AN5372 - Rev 2 page 34/80

LPUART

- In STM32L4 and STM32L4+ devices, the LPUART1 clock is derived from one of the following sources (selected by software):
 - System clock (SYSCLK)
 - APB1 clock (PCLK1)
 - LSE
 - HSI16 clock (only for STM32L4+ and STM32L41/42/43/44/45/46xxx)
 - HSI clock (only for STM32L4x1/4x5/4x6xx).
- In STM32U5 devices, the LPUART1 clock is derived from one of the following sources (selected by software):
 - System clock (SYSCLK)
 - MSIK
 - LSE
 - HSI16

SPI

- STM32L4 and STM32L4+ devices do not have a dedicated clock for SPI.
- In STM32U5 devices, the SPI clock is derived from one of the following sources (selected by software):
 - System clock (SYSCLK)
 - APBx clock (PCLKx)
 - MSIK
 - HSI16

HSPI

- STM32L4 and STM32L4+ devices do not support the OCTOSPI peripheral.
- In STM32U5 devices, the HSPI clock is derived from one of the following sources (selected by software):
 - System clock
 - PLL1_q clock (
 - PLL2_q clock
 - PLL3 r clock

DSI

- STM32L4 devices do not support the DSI peripheral.
- In STM32L4+ devices, the DSI clock is derived from one of the following sources (selected by software):
 - DSI-PHY is selected as DSI byte lane clock source (usual case)
 - PLLDSICLK is selected as DSI byte lane clock source, used in case DSI PLL and DSIPHY are off (low-power mode).
- In STM32U5 devices, the DSI clock is derived from one of the following sources (selected by software):
 - PLL3 p clock
 - DSI PHY PLL output selected

LTDC

- STM32L4 devices do not support the LTDC peripheral.
- In STM32L4+ devices, the LTDC clock is derived from one of the following sources (selected by software):
 - PLL3 r clock
 - PLL2 r clock
- In STM32U5 devices, the LTDC clock is derived from one of the following sources (selected by software):
 - PLL3 r clock
 - PLL2 r clock

AN5372 - Rev 2 page 35/80

(S)AES

In STM32U5 devices, the (S)AES clock is derived from the SHSI RC oscillator.

Note: (S)AES is not available on STM32L4 and STM32L4+.

AN5372 - Rev 2 page 36/80

6.7 Power controller (PWR)

The STM32U5 MCUs implement the same PWR features as the STM32L4 and STM32L4+ MCUs, with some specification updates and enhancements.

In STM32L4, STM32L4+ and STM32U5 MCUs, several peripherals are supplied through independent power domains: VDDA, VDDIO2, and VDDUSB. These supplies must not be provided without a valid operating supply on the VDD pin.

STM32L412/433/452/4x6xx and STM32L4Rx allow an external SMPS (DC-DC) power converter to be connected. Moreover, the STM32U5 MCUs integrate an SMPS(DC-DC) power-converter function in parallel to the LDO, with on-the-fly selection, for optimum power consumption and noise filtering.

In STM32U5 MCUs, the SMPS power supply pins are available only on specific packages embedding an SMPS step-down converter. If the selected package features the SMPS step-down converter option but this converter is never used by the application, it is recommended to set the SMPS power supply pins as follows:

- VDDSMPS and VLXSMPS connected to VSS.
- VDD11 pins connected to VSS through two 2.2 μF capacitors as in normal mode.

Table 22, PWR features of STM32L4, STM32L4+ and STM32U5 MCUs

Features	STM32L4 and STM32L4+	STM32U5	
	 V_{DD} = 1.71 to 3.6V: external power supply for I/Os, flash memory and internal regulator It is provided externally through VDD pins. 	V _{DD} = 1.71 to 3.6 V: external power supply for I/Os, the internal regulator and the system analog such as reset, power management and internal clocks It is provided externally through VDD pins.	
	 V_{CORE} = 1.0 to 1.28 V: power supply for digital peripherals, SRAM, and flash memory It is generated by an internal voltage regulator. Two V_{CORE} ranges can be selected by software depending on target frequency. 	 V_{CORE} = 0.9 to 1.2 V: power supply for digital peripherals, SRAM, and flas memory It is generated by an internal voltage regulator. Four V_{CORE} power ranges (1, 2, 3, 4) can be programmed by software depending on target frequency. 	
	V _{BAT} = 1.55 to 3.6 V:	V _{BAT} = 1.55 to 3.6 V:	
Power supplies	power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when $\rm V_{\rm DD}$ is not present	when V_{DD} is not present, V_{BAT} is the power supply for RTC, external clock 32 kHz oscillator, backup registers and optionally backup SRAM.	
	Independent power supplies (V _{DDA} , V _{DDIO2} , V _{DDUSB}) allow a reduction of the power consumption by running MCU at lower supply voltage than analog and USB.		
	 V_{SSA}, V_{DDA} = 1.62 to 3.6 V (ADCs/COMPs) / 1.8 to 3.6 V (DAC/OPAMPs) / 2.4 V to 3.6 V (VREFBUF) V_{DDA} is the external analog power supply for ADCs and DACs, voltage reference buffer, operational amplifiers, and comparators. The VDDA voltage level is independent from the VDD voltage. 	V _{SSA} , V _{DDA} = 1.62 to 3.6 V (ADCs, COMPs, DACs, OPAMPs) / 1.8 to 3.6 V (VREFBUF) V _{DDA} is the external analog power supply for ADCs and DACs, voltage reference buffer, operational amplifiers, and comparators. The V _{DDA} voltage level is independent from the V _{DD} voltage.	
	 V_{DDUSB} = 3.0 to 3.6 V: external independent power supply for USB transceivers The V_{DDUSB} voltage level is independent from the V_{DD} voltage. An additional digital supply is required. V_{DD11USB} for HS interface (only available on STM32U59x/5Ax/5Fx/5Gx). 		
	 V_{DDIO2} = 1.08 V to 3.6 V: external power supply for 14 V_{DDIO2} voltage level is independent from the V_{DD} voltage 		

AN5372 - Rev 2 page 37/80

Features	STM32L4 and STM32L4+	STM32U5	
	N/A	 V_{DDSMPS} = 1.71 V to 3.6 V: external power supply for the SMPS step-down converter. It is provided externally through VDDSMPS supply pin, and must be connected to the same supply as VDD pin. V_{LXSMPS} is the switched SMPS step-down converter output. An external coil with typical value of 2.2 μH to be connected between the dedicated VLXSMPS pin to VSSSMPS, via a capacitor of 4.7 μF. 	
	V _{LCD} = 2.5 to 3.6 VN/A		
Power supplies	Available only on SM32L4R9/4S9xx: V _{DDDSI} is an independent DSI power supply dedicated for the DSI regulator and the MIPI D-PHY. It must be connected to VDD.	VDDDSI is an independent DSI power supply dedicated for the DSI regulator and the MIPI D-PHY. It must be connected to VDD.	
	Available only on SM32L4R9/4S9xx: V _{CAPDSI} is the output of the DSI regulator (1.2 V), that must be connected externally to VDD12DSI.	V _{CAPDSI} is the output of the DSI regulator (1.2 V), that must be connected externally to VDD12DSI.	
	 Available only on SM32L4R9/4S9xx: V_{DD12DSI} is used to supply the MIPI D-PHY, and to supply the clock and data lanes pins. An external capacitor of 2.2 μF must be connected on the VDD12DSI pin. 	 V_{DD12DSI} is used to supply the MIPI D-PHY, and to supply the clock and data lanes pins. An external capacitor of 2.2 µF must be connected on the VDD12DSI pin. 	
Battery backup domain	 RTC with backup registers (128 bytes) LSE PC13 to PC15 I/Os 		
	 Integrated POR/PDR circuitry Programmable voltage detector (PVD) 		
Power supply	 Brownout reset (BOR) BOR is always enabled, except in Shutdown mode. 		
supervisor	Four peripheral voltage monitorings (PVM): PVM1 for V _{DDUSB} (~1.2 V) PVM2 for V _{DDIO2} (~0.9 V) PVM3/PVM4 for V _{DDA} (~1.65 V/ ~2.2 V)	Four peripheral voltage monitorings (PVM): UVM for V _{DDUSB} (~1.2V) IO2VM for VDDIO2 (~0.9V) AVM1/AVM2 for V _{DDA} (~1.6 V/~1.8V)	
	Sleep mode	'	
	Low-power run mode (up to 2 MHz) Low-power sleep mode (up to 2 MHz) System clock is limited to 2 MHz. I2C and U(S)ART/LPUART can be clocked with HSI16 at 16 MHz. Consumption is reduced at lower frequency thanks to the low-power regulator.	Range 4 in voltage scaling (24 MHz)	
	Stop 0 and Stop 1 modes ⁽¹⁾	1	
Low-power modes	 Stop 2 mode for STM32L4 Stop 2 mode for STM32L4+: SRAM3 enabled (RRSTP = 1) and disabled (RRSTP = 0) within PWR_CR1 register 	Stop 2 mode ⁽¹⁾	
	N/A	Stop 3 mode ⁽¹⁾ : Functional peripherals and sources of wake-up reduced to the same ones as in Standby mode.	
	 Standby mode (VCORE domain powered off) Optional SRAM2 retention Optional I/O pull-up or pull-down configuration 	 Standby mode (VCORE domain powered off) Full SRAM2 content or 8 Kbytes or 56 Kbytes can be retained 	

AN5372 - Rev 2 page 38/80

Features	STM32L4 and STM32L4+	STM32U5	
Low-power modes		Optional I/O pull-up or pull-down configuration	
Low-power modes	Shutdown mode (VCORE domain powered off and power mo	onitoring off)	
 Support for external SMPS for high-power efficiency Refer to the application note Design recommendations for STM32L4xxxx with external SMPS, for ultra-low-power applications with high performance (AN4978) for STM32L4 series. 		N/A	
	Sleep mode: any peripheral interrupt/wakeup event		
Wake-up sources	Stop 0, Stop 1 and Stop 2 modes: any EXTI line event/interrupt BOR, PVD, PVM, COMP, RTC, USB, IWDG, U(S)ART, LPUART, I2C, SWP, LPTIM, LCD	Stop 0, Stop 1 and Stop 2 modes: any EXTI line event/interrupt	
	Standby mode: 5 WKUP pins configurable rising or falling edge RTC event external reset in NRST pin IWDG reset	Standby mode:	
	Wake-up from Sleep (Sleep-now or Sleep-on-exit): same as before entering Sleep mode.		
System clock after wake-up	Wake-up from Stop: HSI16 (16 MHz) or MSI (all ranges up to 48 MHz) allowing 5 µs wake-up at high speed, without waiting for PLL startup time.	Wake-up from Stop: MSIS up to 24 MHz or HSI16, depending on software configuration.	
	Wake-up from Standby: MSI (from 1 to 8 MHz)	Wake-up from Standby: MSIS (from 1 to 4 MHz)	
	Wake-up from Shutdown: MSI (4 MHz)	Wake-up from Shutdown: MSIS (4 MHz)	

For STM32U5 MCUs, some peripherals are autonomous and can operate in Stop mode by requesting their kernel clock and their bus (APB or AHB) when needed.

AN5372 - Rev 2 page 39/80

The following figures present the power supply for STM32L4, STM32L4+ and STM32U5 MCUs.

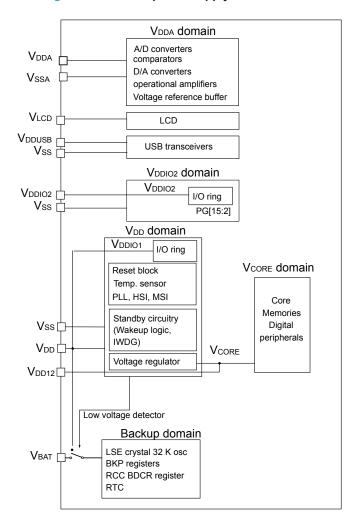


Figure 4. STM32L4 power supply overview

AN5372 - Rev 2 page 40/80

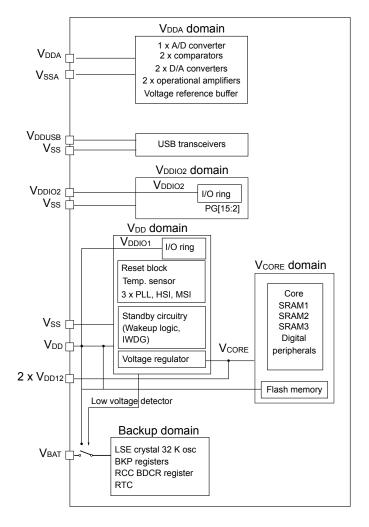


Figure 5. STM32L4P5/4Q5/4S5/4R5/4S7/4R7xx power supply overview

AN5372 - Rev 2 page 41/80

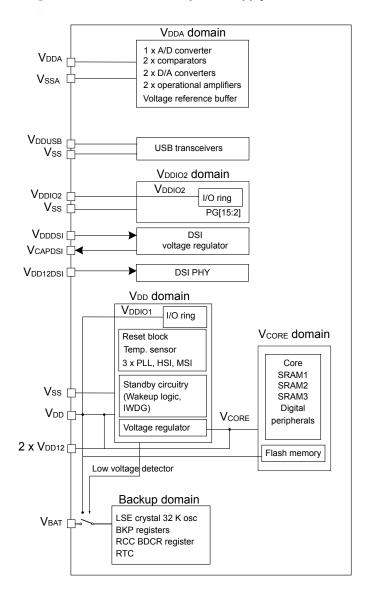


Figure 6. STM32L4R9/4S9xx power supply overview

AN5372 - Rev 2 page 42/80

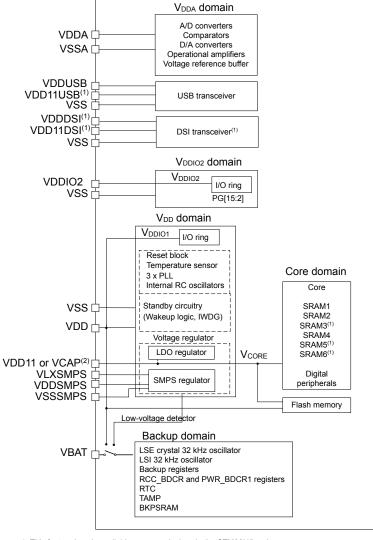


Figure 7. STM32U5 series power supply overview

- This feature is only available on some devices in the STM32U5 series.
 Refer to the device datasheet for availability of its associated peripheral.
- 2. VDD11 supplies only on SMPS packages, otherwise VCAP pin(s).

MSv65698V3

6.8 Autonomous peripherals and low-power background autonomous mode (LPBAM)

This mode is a key feature of STM32U5 series in order to reduce power consumption. Several peripherals support the autonomous mode which allows it to be functional and perform DMA transfers in Stop 0, Stop 1, and Stop 2 modes. The low-power background autonomous mode (LPBAM) is supported for Stop 2 mode, allowing to build more complex use cases with autonomous peripherals, without any CPU wake-up as a result of DMA transfers.

AN5372 - Rev 2 page 43/80

The autonomous peripherals request their kernel clock and their bus (APB or AHB) when needed in order to transfer data with DMA. The assigned DMA can be LPDMA1 or GPDMA1 as specified in the table below. For more details about this mode, refer to product reference manual.

Table 23. STM32U5 autonomous peripherals to DMA assignment in autonomous mode

Mode	DMA and memory transfers	Autonomous peripherals
Stop 0 and Stop 1 modes	GPDMA1 and SRAM1 to SRAM6	 LPTIM2 USARTx (x = 1 to 6) SPI1, SPI2 I2C1, I2C2, I2C4, I2C5, I2C6 MDF1
Stop 0, Stop 1 and Stop 2 modes	LPDMA1 and SRAM4	 ADC4 DAC1 LPTIM1, LPTIM3 LPUART1 SPI3 I2C3 ADF1

The autonomous peripherals are the peripherals supporting DMA requests in Stop mode. All other peripherals that are functional in Stop mode can be accessed by DMA in Stop mode, using memory to memory mode. Refer to RM0456 for more details.

6.9 General-purpose I/Os (GPIO)

The STM32U5 devices implement the same GPIO features than STM32L4 and STM32L4+, but with additionalTrustZone[®] security support.

For STM32U5 devices, each GPIO port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR) and a 32-bit set/reset register (GPIOx_BSRR).

In addition, all GPIOs in STM32U5 series have a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function selection registers (GPIOx_AFRH and GPIOx_AFRL), a secure configuration register (GPIOx_SECCFGR) and a high-speed low-voltage register (GPIOx_HSLVR).

Each general-purpose I/O pin of GPIO port in STM32U5 series can be individually configured as secure/non-secure in the GPIOx SECCFGR register. After reset, all general-purpose I/O of GPIO ports are secure.

All GPIO registers can be read and written by privileged and unprivileged accesses, whatever the security state secure or non-secure.

In addition to the GPIO peripheral, the STM32U5 series embed a low-power general-purpose input/output (LPGPIO) that is designed to be used in conjunction with the GPIO interface and allows the I/O control in Stop mode (down to Stop 2 mode), using DMA in memory-to-memory transfer mode.

For more information about TrustZone security and GPIO and LPGPIO programming and usage for the STM32U5 devices, refer to the "General-purpose I/Os (GPIO)" and "Low-power general-purpose I/Os (LPGPIO)" sections of the reference manual and to the product datasheet for detailed description of the pinout and alternate function mapping.

AN5372 - Rev 2 page 44/80

6.10 Extended interrupt and event controller (EXTI)

The STM32U5 MCUs implement almost the same EXTI features than STM32L4 and STM32L4+ MCUs, with two exceptions: STM32U5 devices feature TrustZone[®] security support and privileged/unprivileged mode selection and do not feature direct event inputs.

Table 24. EXTI features of STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4/L4+	STM32U5
Number of event/interrupt lines	Up to 41 lines: 12 direct, 26 configurable on STM324R/4Sxxx 15 direct, 26 configurable on STM32L49/4Axxx 14 direct, 26 configurable on STM32L47/48xxx 12 direct, 25 configurable on STM32L41/42/43/44xxx	23 lines: all lines are configurable.

EXTI security protection

When security is enabled for an input event, the associated input event configuration and control bits can only be modified and read by a secure access. A non-secure write access is discarded and a read returns 0.

EXTI privilege protection

When privilege is enabled for an input event, the associated input event configuration and control bits can only be modified and read by a privileged access. An unprivileged write access is discarded and a read returns 0.

The table below presents the EXTI line differences between STM32L4, STM32L4+ and STM32U5 series.

Line STM32L4 STM32L4+ STM32U5 OTG_FS wake-up event (OTG_FS_WKUP)(1)(2) 17 COMP1 output 18 RTC alarms COMP2 output 19 RTC tamper or timestamp or CSS_LSE VDDUSB voltage monitor 20 RTC wake-up timer VDDIO2 voltage monitor 21 COMP1 output VDDA voltage monitor 1 22 COMP2 output VDDA voltage monitor 2 30 N/A UART5 wake-up(2) 34 Reserved SWPMI1 wake-up(2)(3) PVM2 wake-up 36 N/A N/A

LCD wake-up(4)

I2C4 wake-up(5)

Table 25. EXTI lines of STM32L4, STM32L4+ and STM32U5 MCUs

1. Not available for STM32L431xx.

39

40

2. This line source cannot wake up from Stop 2 mode.

Reserved

I2C4 wake-up

- 3. Not available on STM32L41/42/45/46xxx.
- 4. Only available on STM32L4x3/4x5/4x6xx.
- 5. Not available on STM32L41/42/43/44xxx.

6.11 Cyclic redundancy check calculation unit (CRC)

The CRC architecture is the same in STM32U5, STM32L4, and STM32L4+ series, supporting the same features, with a minor difference in CRC_IDR, that is extended from an 8-bit register in STM32L4 series to a 32-bit register in STM32L4+ and STM32U5 series.

AN5372 - Rev 2 page 45/80

7 Migration of security peripherals

7.1 Tamper and backup registers (TAMP)

The STM32U5 devices anti-tamper detection circuit is used to protect sensitive data from external attacks. 32 backup registers, each of 32-bit size, are retained in all low-power modes and also in V_{BAT} mode.

The table below compares the tamper pins and internal events and lists the main differences between STM32U5, STM32L4+ and STM32L4 MCUs.

Table 26. Tamper pins and events of STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4/L4+	STM32U5
Tamper pins (not compatible)	3 tamper pins: PC13(RTC_TAMP1) PA0(RTC_TAMP2) PE6(RTC_TAMP3)	8 inputs/outputs TAMP pins for 8 external tamper detection events: PC13(TAMP_IN1/TAMP_OUT2) PA0 (TAMP_IN2/TAMP_OUT1) PE6(TAMP_IN3/TAMP_OUT6) PC5 (TAMP_IN4/TAMP_OUT5) PA1 (TAMP_IN5/TAMP_OUT4) PE3 (TAMP_IN6/TAMP_OUT3) PE4 (TAMP_IN7/TAMP_OUT8) PE5 (TAMP_IN8/TAMP_OUT7)
TAMP internal events to protect against transient or environmental perturbation attacks	N/A	 11 internal tamper events: tamp_itamp1: supply voltage monitoring tamp_itamp2: temperature monitoring tamp_itamp3: LSE monitoring tamp_itamp5: RTC calendar overflow tamp_itamp6: JTAG/SWD access when RDP > 0 tamp_itamp7: voltage monitoring through ADC analog watchdog 1 tamp_itamp8: monotonic counter overflow tamp_itamp9: cryptographic peripheral fault (SAES, AES, PKA, or RNG) tamp_itamp11: IDWG reset when tamper flag is set tamp_itamp12: voltage monitoring through ADC analog watchdog 2 tamp_itamp13: voltage monitoring through ADC analog watchdog 3
TAMP pins functionality over V_{DD} mode All tamper pins are functional in all low-power modes when the external present.		er modes when the external V _{DD} power supply is
TAMP pins functionality over V _{BAT} mode	All tampers are functional in V _{BAT} mode.	
Active tamper detection mode		Х
Potential tamper detection mode	N/A	X
Boot hardware key		Stored in the first backup registersProgrammed during boot for secure AES
Tamper protected assets	Backup registers	 Backup registers SRAM2 ICACHE/DCACHE content OTFDEC keys and CRC registers SAES, AES, HASH peripherals PKA SRAM RHUK in system flash memory

AN5372 - Rev 2 page 46/80

7.2 Hash processor (HASH)

The STM32L5, STM32L4+ and STM32L49/4Axxx devices embed a HASH hardware accelerator with same features.

Both hash processors provide an interface to connect to the DMA controller. The STM32U5 HASH peripheral supports both single- and fixed-DMA burst transfers of four words. However, the HASH in STM32L4+ and STM32L49/4Axxx devices only support single-DMA transfers.

HASH registers are compatible, except a minor difference on HASH CR:

- ALGO[0] in bit 7 for STM32L4+ and STM32L49/4Axxx devices
- ALGO[0] in bit 17 for STM32U5 devices.

7.3 On-the-fly decryption engine (OTFDEC)

The OTFDEC decrypts in real-time the encrypted content stored in the external OCTOSPI memories used in Memory-mapped mode. The OTFDEC uses the AES-128 algorithm in counter mode (CTR).

The STM32U5 embed two OTFDEC peripherals. While in STM32L4 and STM32L4+, this peripheral is not supported.

7.4 True random number generator (RNG)

The STM32U5, STM32L4, and STM32L4R/4Sxxx devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit, with the same features except the minor differences detailed in the table below.

Feature	STM32L4	STM32L4R/4Sxxx (in STM32L4+ series)	STM32U5
True random number generator			
Can be used as entropy source to construct a non- deterministic random bit generator (NDRBG)	X		
Tested using German BSI statistical tests of AIS-31 (T0 to T8)			
Embeds start-up and NIST SP800-90B approved continuous health tests	N/A X		
Can be disabled to reduce power consumption	X		
Can be enabled with an automatic low-power mode (default configuration).	N/A	X	
AHB slave peripheral, accessible through 32-bit word single accesses only	X		
RNG internal tamper event signal to TAMP	N/A	NIA	
Fransparent use by SAES and PKA for DPA resistance		`	

Table 27. RNG features of STM32L4, STM32L4+ and STM32U5 MCUs

In STM32U5 MCUs, the RNG is transparently used by SAES and PKA for DPA resistance. When an unexpected error is found by the RNG, an internal tamper event is triggered in TAMP peripheral, and the RNG stops delivering random data.

When this event occurs, a secure application needs to reset the RNG, either using the central reset management, or the global SoC reset. Then a proper initialization of the RNG is required, again.

7.5 Public key accelerator (PKA)

The STM32U5 and STM32L4P5/Q5xx devices embed one PKA peripheral intended for the computation of cryptographic public key primitives within the Montgomery domain. All needed computations are performed within the accelerator, so no further hardware/software elaboration is needed to process the inputs or the outputs.

AN5372 - Rev 2 page 47/80

The STM32U5 and STM32L4P5/Q5xx devices share almost the same PKA features. The STM32U5 devices embed two new features and three new computation operators. Registers are compatible, except new bits added in STM32U5 to map the new features.

The STM32L4 devices do not support a PKA peripheral.

Table 28, PKA features of STM32L4+ and STM32U5 MCUs

Feature	STM32L4P5/Q5xx (in STM32L4+ series)	STM32U5
RSA modular exponentiation, RSA Chinese remainder theorem (CRT) exponentiation	X	
ECC scalar multiplication, point on curve check		
ECC complete addition		
ECC double-base ladder	N/A	X
ECC projective to affine		
ECDSA signature generation and verification	X	
Size of RSA/DH operands (in bits)	3136 4160	
Size of ECC operands (in bits)	640	
Arithmetic and modular operations (such as addition, subtraction, multiplication, modular reduction, modular inversion, comparison, and Montgomery multiplication)	nd X	
Built-in Montgomery domain inward and outward transformations		
Protection against differential power analysis (DPA) and related side- channel attacks	N/A	Х

7.6 AES and SAES hardware accelerators

The STM32U5 embed two AES accelerators: one secure AES (SAES) and a faster AES. This is a new feature in STM32U5, that is not available in STM32L4 and STM32L4+ devices.

In STM32U5 series, the SAES with hardware unique key embeds protection against differential power analysis (DPA) and related side channel attacks. When an unexpected hardware fault occurs, an output tamper event is triggered, and the AES automatically clears key registers. A reset is required for the AES to be usable again.

The AES can use the SAES as security coprocessor. In this case, the secure application prepares the key in robust SAES then, when ready, the AES can load this key through a dedicated hardware key bus. Recommended sequences are described in sections 'AES shared key usage' and 'SAES operations with shared keys' of the product reference manual.

7.7 Global TrustZone controller (GTZC)

The security architecture of the STM32U5 MCUs is based on Arm®TrustZone®with the Armv8-M mainline extension. Each GPIO or peripheral, DMA channel, clock configuration register, DCACHE/ICACHE, or small part of flash memory or SRAM can be configured as trusted or untrusted.

The GTZC embedded in the STM32U5 is used to configure secure-TrustZone and privileged attributes within the full system. All details about GTZC are described in the product reference manual.

This controller is a new feature of the STM32U5 MCUs and is not embedded in STM32L4 or STM32L4+ MCUs.

AN5372 - Rev 2 page 48/80

8 Migration of timer peripherals

The STM32L4+ and STM32L4 devices include two advanced-control timers, up to seven general-purpose timers, two basic timers, up to four low-power timers (two for STM32L4 and STM32L4+), two watchdog timers and two SysTick timers.

This section compares the features of the above listed timers and RTC in STM32L4, STM32L4+ and STM32U575/585 devices.

8.1 Advanced-control timers (TIM1/8)

The STM32U5, STM32L4+ and STM32L4 include two advanced-control timers, TIM1 and TIM8, with identical features detailed in the table below (only TIM1 for STM32L41/42/43/44/45/46xxx devices).

Table 29. Advanced-control timer (TIM1/8) features in STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4, STM32L4+ and STM32U5	
Counter resolution and type	16-bit up, down, up/down auto-reload counter	
Prescaler factor	16-bit programmable prescaler used to divide (also on-the-fly) the counter clock frequency by any factor between 1 and 65536	
Channels	Up to six independent channels for: Input capture (but channels 5 and 6) Output compare PWM generation (edge and center-aligned mode) One-pulse mode output	
Complementary outputs	Complementary outputs with programmable dead-time	
Synchronization with external signals and general-purpose	Synchronization circuit to control the timer with external signals and to interconnect several timers together.	
timers	The advanced-control (TIM1/TIM8) and general-purpose (TIMx) timers are completely independent, and do not share any resources.	
Repetition counter	Repetition counter to update the timer registers only after a given number of counter cycles	
Break inputs	Two break inputs to put the timer output signals in a safe user selectable configuration	
Interrupt/DMA generation	Interrupt/DMA generation on the following events: Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare	
Encoders and sensors	Support incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes	
Trigger input	Trigger input for external clock or cycle-by-cycle current management	
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion) 	

AN5372 - Rev 2 page 49/80

8.2 GP timers with up, down, up-down auto-reload counter (TIM2/3/4/5)

The GP (general-purpose) timers consist of a 16-bit or 32-bit auto-reload counter driven by a programmable prescaler. The STM32U5, STM32L4+ and STM32L4 devices include GP timers with up, down or updown auto-reload counter (TIM2, TIM3, TIM4 and TIM5), with identical features (TIM4/5 only available on STM32L4x1/47x/48x/49x/4Axxx, TIM3 only available on STM32L4x1/451/452/462/47x/48x/49x/4Axxx).

Table 30. GP timer (TIM2/3/4/5) features in STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4/L4+	STM32U5
32-bit resolution	TIM2/TIM5	TIM2/TIM3/TIM4/TIM5
16-bit resolution	TIM3/TIM4	-
Counter resolution and type	16- or 32-bit up, down, up/down auto-reloa	ad counter
Prescaler factor	16-bit programmable prescaler used to div frequency by any factor between 1 and 65	
Channels	Up to four independent channels for: Input capture Output compare PWM generation (edge and center-aligned mode) One-pulse mode output	
Synchronization with external circuits and other timers	Synchronization circuit to control the timer with external signals and to interconnect several timers	
Interrupt/DMA generation	Interrupt/DMA generation on the following events: Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare	
Encoders and sensors	Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes	
Trigger input	Trigger input for external clock or cycle-by-cycle current management	
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion) 	

8.3 GP timers with auto-reload up-counter (TIM15/16/17)

The STM32L4+ and STM32L4 MCUs include three 16-bit resolution GP timers with a 16-bit auto-reload up-counter (TIM15, TIM16, and TIM17) with identical features (no TIM17 on STM32L41/42/43/44/45/46xxx).

Table 31. GP timer (TIM15/16/17) features in STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4, STM32L4+ and STM32U5	
Counter resolution and type	16-bit auto-reload up-counter	
Prescaler factor	16-bit programmable prescaler used to divide (also on-the-fly) the counter clock frequency by any factor between 1 and 65536	
Channels	Up to two independent channels for: Input capture Output compare PWM generation (edge mode) One-pulse mode output	
Complementary outputs	Complementary outputs with programmable dead-time (for channel 1 only)	

AN5372 - Rev 2 page 50/80

Feature	STM32L4, STM32L4+ and STM32U5
Synchronization with external circuits and other timers	Synchronization circuit to control the timer with external signals and to interconnect several timers
Repetition counter	Repetition counter to update the timer registers only after a given number of counter cycles
Break inputs	One break input to put the timer output signals in the reset state or a known state
Interrupt/DMA generation	Interrupt/DMA generation on the following events: Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization, or count by internal/external trigger) Input capture Output compare Break input (interrupt request)
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion)

8.4 Basic timers (TIM6/7)

The basic timers TIM6 and TIM7 consist in a 16-bit auto-reload counter driven by a programmable prescaler. These timers are completely independent, and do not share any resources.

The STM32U5, STM32L4 and STM32L4+ devices have the same basic timers features.

Table 32. Basic timer (TIM6/7) features in STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4, STM32L4+ and STM32U5		
Counter resolution and type	16-bit auto-reload up-counter		
Prescaler factor	16-bit programmable prescaler used to divide (also on-the-fly) the counter clock frequency by any factor between 1 and 65536		
Synchronization signals	Synchronization circuit to trigger the DAC		
Interrupt/DMA generation	Interrupt/DMA generation on the update event, counter overflow		
Application examples	Time-base generationDriving the DAC		

8.5 Low-power timers (LPTIM1/2/3/4)

The LPTIMx is a 16-bit timer that benefits from the ultimate developments in power-consumption reduction. The STM32U5 devices include four LPTIMs versus two in the STM32L4 and STM32L4+ devices. LPTIMs share the same features in these series, but new features are added in STM32U5 series, such as:

- Two independent channels per LPTIM
- Input capture channel
- DMA requests
- Autonomous function in Stop modes

Table 33. LP timer (LPTIMx) features of STM32L4, STM32L4+ and STM32U5 series

Feature	STM32L4 series	STM32L4+ series	STM32U5 series	
LPTIMx	LPTIM1 ar	nd LPTIM2	LPTIM1, LPTIM2, LPTIM3, and LPTIM4	
Counter resolution and type	16-bit up-counter			
Prescaler factor	3-bit prescaler with eight possible dividing factors (1, 2, 4, 8, 16, 32, 64 or 128)			
Selectable clock	 Internal clock sources: LSE, LSI, HSI or APB clock External clock source over LPTIMx input (working with no low-power oscillator running, used by pulse counter application) 			

AN5372 - Rev 2 page 51/80

Feature	STM32L4 series	STM32L4+ series	STM32U5 series	
Auto-reload	16-bit ARR auto-reload register			
Capture/compare	16 bit compare register		16-bit capture/compare register	
Continuous mode	Continuous/one-shot mode		'	
Trigger mode	Selectable software/hardwa	re input trigger		
Glitch filter	Programmable digital glitch	filter		
Configurable output	Configurable output: pulse,	PWM		
Polarity	Configurable I/O polarity			
Encoder mode		Х		
Repetition counter	X ⁽¹⁾ X ⁽²⁾		Х	
Input capture, PWM, and one-pulse channels	N/A		Up to two independent channels for: Input capture PWM generation (edge aligned mode) One-pulse mode output	
DMA requests			DMA request generation on the following events: Update event Input capture	

- 1. Only available on STM32L41/42xxx devices.
- 2. Only available on STM32L4P5/4Q5xx devices.

Some of the above features are not similarly implemented on LPTIMx instances, as described in the table below.

Table 34. Implementation of LPTIMx features on various instances

Feature	STM32L4/L4+ series		STM32U5 series			
	LPTIM1	LPTIM2	LPTIM1	LPTIM2	LPTIM3	LPTIM4
Encoder mode	Х	-	Х	X	-	-
PWM mode	-	-	Х	Х	Х	Х
Input capture	-	-	Х	Х	Х	-
Number of DMA requests	-	-	3	3	3	-
Autonomous mode	-	-	Х	Х	Х	-

8.6 Watchdogs (WWDG/IWDG)

The STM32U5, STM32L4+ and STM32L4 MCUs embed two watchdogs:

- a system window watchdog (WWDG) with same features
- an independent watchdog (IWDG) with same features, except the STM32U5 IWDG capability to generate an early wakeup interrupt

Table 35. IDWG features of STM32L4, STM32L4+ and STM32U5 series

Feature	STM32L4/L4+	STM32U5	
LSI used as IWDG kernel clock	· ·		
Window function	X		
Early wakeup interrupt generation	- X		

AN5372 - Rev 2 page 52/80

Feature	STM32L4/L4+	STM32U5
Reset generation (refer to the RCC section of the product reference manual for more details)	×	
Capability to work in system Stop		
Capability to work in system Standby		
Capability to generate an interrupt in system Stop	-	^

8.7 Real-time clock (RTC)

The STM32U5 MCUs implement similar RTC features as STM32L4 and STM32L4+, adding some specification updates and enhancements. The main differences are stated in the table below.

Table 36. RTC features of STM32L4, STM32L4+ and STM32U5 MCUs

Features	STM32L4/L4+	STM32U5
Binary mode with 32-bit free- running counter	N/A	X
RTC TrustZone support		

8.8 SysTick timer

The SysTick timer is dedicated to real-time operating systems but can also be used as a standard down-counter. The STM32U5 Cortex[®]-M33 with TrustZone[®] embeds two SysTick timers. When TrustZone[®] is activated, the two SysTick timers are available. But, when TrustZone[®] is disabled, only one SysTick timer is available. STM32L4 and STML32L4+ embed a Cortex[®]-M4 with just one SysTick timer.

AN5372 - Rev 2 page 53/80

9 Migration of communication peripherals

9.1 Serial peripheral interface (SPI)

This section highlights the SPI features implemented on STM32L4, STM32L4+ and STM32U5 MCUs.

Table 37. SPI features in STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4/L4+	STM32U5	
SPI peripherals	SPI1, SPI2, and SPI3 (same features in the three instances)	 SPI1, SPI2 (full feature set instances) SPI3 (limited feature set instance) 	
Full-duplex synchronous transfer on three lines	X	X	
Half-duplex synchronous transfer on two lines (with bidirectional data line)	X	X	
Simplex synchronous transfer on two lines (with unidirectional data line)	×	X	
Data size	4- to 16-bit data size selection	4- to 32-bit data size selection on SPI1, SPI2	
	N/A	Fixed to 8- and 16-bit only on SPI3	
Multimaster or multislave mode capability	X	X	
Clock inputs	One input: PCLK is the unique SPI clock source.	Two independent clock inputs: peripheral kernel clock (spi_ker_ck) is independent of PCLK.	
Baudrate prescalers	Master/slave mode baudrate prescalers up to f _{PCLK} / 2	Baudrate prescaler up to kernel frequency / 2	
,	N/A	spi_ker_ck prescaler can be bypassed from RCC in master mode.	
Protection of configuration and settings	N/A	X	
Slave select (SS) management	NSS management by hardware or software for both master and slave: dynamic change of master/slave operations	Hardware or software management of SS for both master and slave	
Adjustable minimum delays between data and between SS and data flow	N/A (fixed)	X	
Configurable SS signal polarity and timing	N/A	Configurable SS signal polarity and timing, MISO x MOSI swap capability	
Programmable clock polarity and phase	X	X	
Programmable data order with MSB-first or LSB-first shifting	X	Х	
Programmable transaction data	N/A	Programmable number of data within a transaction to control SS and CRC	
Dedicated transmission and reception flags with interrupt capability	Х	Х	
SPI Motorola and Texas Instrument formats support	Х	X	
Hardware CRC feature can secure communication at the end of transaction by: adding CRC value in Tx mode automatic CRC error checking for Rx mode	CRC fixed to 8- or 16-bit for all SPIs	 SPI1 and SPI2: CRC polynomial length configurable from 9 to 17 bits SPI3: CRC polynomial length configurable from 9 to 17 bits 	

AN5372 - Rev 2 page 54/80

Feature	STM32L4/L4+	STM32U5
Interrupt events and error detection with interrupt capability	Interrupts: Transmit TXFIFO ready to be loaded Data received in receive RXFIFO Master mode fault Overrun error TI frame format error CRC protocol error	Interrupts: TxFIFO ready to be loaded Data received in RxFIFO Both TXP and RXP active Transmission Transfer Filled Overrun error Underrun error TI frame format Error CRC error Mode fault End of transfer Master mode suspended TxFIFO transmission complete
	N/A	All the interrupt events can wake up the system from Sleep mode at each instance
FIFO size	Two 32-bit embedded Rx and Tx FIFOs with DMA capability	Two 16x or 8x 8-bit embedded Rx and TxFIFOs with DMA capability
Number of transferred data	Number defined by the counter for the SPI transmission DMA channel	Programmable number of data in transaction: SPI1 and SPI2: unlimited, expandable SPI3: up to 1024 (no data counter)
FIFO thresholds	Fixed threshold to 1/2 FIFO or 1/4 FIFO level	Configurable FIFO thresholds (data packing)
Configurable behavior at slave underrun condition	N/A	X (support of cascaded circular buffers)
Autonomous functionality in Stop modes (handling of the transaction flow and required clock distribution) with wake-up from Stop capability	N/A	 SPI 1/2: Stop 0 and Stop 1 modes with wake-up SPI3: Stop 0, Stop 1 and Stop 2 modes
RDY status pin	N/A	Optional status pin RDY signalizing the slave device ready to handle the data flow

SPI autonomous mode

The three SPI peripherals in the STM32U5 series support autonomous operation (SPI1 and SPI2 support autonomous operation down to Stop 1 mode and SPI3 down to Stop 2 mode), with the following main feature: The SPI can handle and initialize transactions autonomously, requiring no specific system execution interaction until the ongoing transaction ends.

AN5372 - Rev 2 page 55/80

9.2 Inter-integrated circuit (I2C)

The I2C peripherals share the same features in the STM32U5, STM32L4+ and STM32L4 MCUs. Differences are shown in the table below.

In addition, the STM32U5 MCUs embed the autonomous mode of I2C peripherals, allowing the I2C to be functional in Stop mode. The autonomous mode can also be used in Run, Sleep or Stop mode.

Table 38. I2C features in STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4/L4+	STM32U5	
Instances	I2C1, I2C2, I2C3, and I2C4		
7- and 10-bit addressing mode			
Standard-mode (up to 100 Kbit/s)			
Fast-mode (up to 400 Kbit/s)			
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Same feature on all the instances	I2C1, I2C2, I2C3, I2C4, I2C5 ⁽¹⁾ , I2C6 ⁽¹⁾	
Independent clock			
SMBus/PMBus			
Wake-up from Stop 0 and Stop 1 modes			
Wakeup from Stop 2 mode	Same feat	ure on I2C3	
Autonomous mode	N/A	 I2C1, I2C2, I2C4, I2C5⁽¹⁾ and I2C6⁽¹⁾ in CD (CPU domain) I2C3 in SRD (SmartRun domain) 	

^{1.} I2C5 and I2C6 are only available for STM32U59x/5Fx/5Gx devices.

AN5372 - Rev 2 page 56/80

9.3 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32U5 MCUs implement the same U(S)ART features as the STM32L4 and STM32L4+ MCUs, with some specification updates and enhancements. The main differences are stated in the table below.

Table 39. U(S)ART features of STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4 and STM32L4+	STM32U5
Instances	 3 USARTs 2 UARTs for STM32L4+ and STM32L47/48/49/4Axxx 1 UART for STM32L45/46xxx 1 LPUART 	up to 4 USARTs2 UARTs1 LPUART
Baud rate	Up to 10 Mbit/s (when the clock frequency is 80 MHz and oversampling is by 8)	Depends on the frequency (oversampling by 16 or by 8) ⁽¹⁾
Clock	Dual-clock domain allowing: UART functionality and wake-up from Stop mode Convenient baud rate programming independent from the PCLK reprogramming	Dual-clock domain and wake-up from low-power mode
Data	Word length: programmable (7, 8 or 9 bits)Programmable data order with MSB-first or LSB-first s	hifting
Interrupt	14 interrupt sources with flags for STM32L423 interrupt sources with flags for STM32L4+	23 interrupt sources with flags
Autonomous mode	N/A	Autonomous functionality in Stop mode with wake-up from Stop capability.
	 RS232 hardware flow control (CTS/RTS) Continuous communication using DMA Multiprocessor communication Single-wire half-duplex communication IrDA SIR ENDEC block LIN mode SPI master 	 RS232 hardware flow control and RS485 Continuous communication using USART and DMA Multiprocessor communication Single-wire half-duplex communication IrDA SIR ENDEC block LIN mode
Other features	 Wakeup from Stop mode (start bit, received byte, address match) Support for ModBus communication: timeout feature CR/LF character recognition Two internal FIFOs to transmit and receive data (for STM32L4+) SPI slave (for STM32L4+) Receiver timeout interrupt (except LPUART) Auto baud rate detection (except LPUART) Driver enable Swappable TX/RX pin configuration Note: LPUART does not support Synchronous mode (SPI master), Smartcard mode, IrDA, LIN, ModBus, receiver timeout interrupt and auto baud rate detection. Smartcard mode (T = 0, T = 1) are supported. Features are added to support T = 1 (such as receiver inversion) Number of stop bits: 1, 1.5, 2 	 Wake-up from Stop mode (start bit, received byte, address match) ModBus communication: timeout feature CR/LF character recognition Two internal FIFOs to transmit and receive data SPI slave Receiver timeout interrupt (except LPUART) Auto baud rate detection (except LPUART) Driver enable Swappable TX/RX pin configuration Note: LPUART does not support Synchronous mode (SPI master), Smartcard mode, IrDA, LIN, ModBus, receiver timeout interrupt and auto baud rate detection. timeout, block length, end of block detection and binary data

^{1.} Refer to the USART section in the reference manual.

AN5372 - Rev 2 page 57/80

9.4 Serial audio interface (SAI)

The SAI offers a wide set of audio protocols due to its flexibility and wide range of configurations. Many stereo or mono audio applications may be targeted (such as I²S standards, LSB- or MSB-justified, PCM/DSP, TDM, and AC'97 protocols). The SPDIF output is offered when the audio block is configured as a transmitter.

Table 40. SAI features in STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4	STM32L4+	STM32U5	
Instances		SAI1 and SAI2 ⁽¹⁾		
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97		Same feature on all available instances		
Mute mode				
Stereo/Mono audio frame capability	Como fo			
16 slots with configurable size	Same le			
Configurable data size: 8-, 10-, 16-, 20-, 24-, 32-bit				
SPDIF				
FIFO size	8 words			
PDM	N/A Available on SAI1 only		n SAI1 only	

^{1.} No SAI in STM32L41/42xxx and STM32U35/545 devices. Only SAI1 on STM32L43/44/45/46xxx devices.

9.5 Controller area network (CAN)

The main differences related to CAN between STM32L4, STM32L4+ and STM32U5 MCUs are presented in the table below.

Table 41. CAN features in STM32L4, STM32L4+ and STM32U5 MCUs

CAN	STM32L4 and STM32L4+	STM32U5
Instances	 x1 on STM32L4+ and STM32L43/44/45/46/47/48xxx x2 on STM32L49/4Axxx Not available on STM32L41/42xxx 	x1 FDCAN
Features	 Supports CAN protocol version 2.0 A, B active Bit rates up to 1 Mbit/s Supports the time triggered communication option Tx: 3 transmit mailboxes, configurable priority, time stamp on SOF transmission Rx: 2 receive FIFOs with 3 stages, scalable filter banks, identifier list, configurable FIFO overrun, time stamp on SOF reception Time-triggered communication option: Disable automatic retransmission mode 16-bit free running timer Time Stamp sent in last two data bytes Management Maskable interrupts Software-efficient mailbox mapping at a unique address space 	 Conform with CAN protocol version 2.0 part A, B, and ISO 11898-1: 2015, -4 CAN FD with maximum 64 data bytes supported CAN error logging AUTOSAR and J1939 support Improved acceptance filtering Rx: 2 receive FIFOs of 3 payloads each (up to 64 bytes per payload) Separate signaling on reception of high-priority messages Configurable transmit FIFO/queue of 3 payloads (up to 64 bytes per payload) Transmit event FIFO Programmable loop-back test mode Maskable module interrupts 2 clock domains: APB bus interface and CAN core kernel clock Power down support Dual-interrupt lines

AN5372 - Rev 2 page 58/80

9.6 Secure digital input/output MultiMediaCard interface (SDMMC)

The STM32U5 MCUs embed up to two SDMMC instances, and implement the same SDMMC features as the STM32L4 and STM32L4+ MCUs, but with some specification updates.

Note: SDMMC is not available on STM32L41/42xxx and STM32L432/442xx.

Table 42. SDMMC features of STM32L4, STM32L4+ and STM32U5 MCUs

Feature	STM32L4	STM32L4+	STM32U5
Bus		APB2	
Clock source	MSI clock PLL/Q PLLSAI1/Q	MSI clock PLL/Q PLLSAI1/Q HSI48 ⁽¹⁾	 Main PLL VCO (PLL48M1CLK) PLLSAI1 VCO (PLL48M2CLK) MSI clock HSI48
	Full compliance with MultiMediaCard system specification version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit	Full compliance with MultiMediaCard system specification version 4.51. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit	Full Compliance with embedded MultiMediaCard system specification version 5.1. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit. HS200 SDMMC_CK speed limited to maximum allowed I/O speed. HS400 not supported
	Full compliance with SD memory card specification version 2.0	Full compliance with SD memory card specification version 4.1	Full compliance with SD memory card specification version 6.0
Other features	Full compliance with SD I/O card specification version 2.0	Full compliance with SDIO card specification version 4.0.	Full compliance with SDIO card specification version 4.0.
	Card support for two different databus modes: 1-bit (default) and 4-bit	Card support for two different databus modes: 1-bit (default) and 4-bit	Card support for two different databus modes: 1-bit (default) and 4-bit
	Data transfer up to 50 MHz for the 8-bit mode	Data transfer up to 104 Mbyte/s for the 8-bit mode	Data transfer up to 208 Mbyte/s for the 8-bit mode
	N/A	DMA is used to provide high-speed transfer between the SDMMC FIFO and the memory. The SDMMC internal DMA (IDMA) provides one channel to be used either for	
	INA	transmit or receive.	
		N/A	IDMA linked list support

^{1.} Only on STM32L4+ and STM32L43/44/45/46/49/4Axxx.

9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI)

The DCMI is available on STM32L49/4Axx, STM32L4+ and STM32U5 MCUs. The PSSI is only available on STM32L4P5/Q5xx and STM32U5 MCUs.

DCMI and PSSI use the same circuitry and then, when they are both implemented on a device, they cannot be used at the same time: when using the PSSI, DCMI registers cannot be accessed, and vice-versa. In addition, PSSI, and DCMI share the same alternate functions and interrupt vector.

The DCMI main features are the following:

- 8-, 10-, 12-, or 14-bit parallel interface
- Embedded/external line and frame synchronization
- Continuous or snapshot mode
- Crop feature

AN5372 - Rev 2 page 59/80

- Data formats supported:
 - 8-, 10-, 12-, and 14-bit progressive video (either monochrome or raw Bayer)
 - YCbCr 4:2:2 progressive video
 - RGB 565 progressive video
 - Compressed data JPEG

The PSSI peripheral main features are listed below:

- Slave mode operation
- 8- or 16-bit parallel data input or output
- 8-word (32-byte)
- Data enable (PSSI_DE) alternate function input and ready (PSSI_RDY) alternate function output

9.8 Universal serial-bus interface (USB)

The STM32L4, STM32L4+ and STM32U5 MCUs have different USB peripherals:

- USB OTG FS implemented in STM32U575/585, STM32L4+ and STM32L47/48/49/4Axx MCUs.
- USB FS implemented in STM32U535/545 and STM32L41/42/43/44/45/46xxx.
- USB OTG HS implemented in STM32U59x/5Ax/5Fx/5Gx.

On STM32U5, STM32L4+ and STM32L41/42/43/44/45/46/49/4Axx MCUs, an included CRS (clock recovery system) provides a precise clock to the USB peripheral:

- When using USB device mode, the CRS allows crystal-less USB operation.
- When using USB host mode, the CRS allows low frequency crystal (32.768 kHz) USB operation.

Most OTG_FS features supported by the STM32L4 and STM32L4+ MCUs are also supported by the STM32U5 MCUs.

Table 43. USB features in STM32L4, STM32L4+ and STM32U5 MCUs

Features	STM32L4/L4+	STM32U5	
	 Full support for the USB OTG_FS without clock recovery (for STM32L476/486xx) Full support for the USB OTG_FS) with clock recovery (only on STM32L4+ and STM32L47/48/49/4Axxx) USB FS device (only on STM32L41/42/43/44/45/46xxx) 	For STM32U59x/5Ax/5Fx/5Gx series: Full support for the USB OTG_HS without clock recovery For STM32U575/585 series: Full support for the USB OTG_FS with clock recovery. For STM32U535/545 series: USB FS device.	
General	FS mode: • For STM32L4+ and STM32L47/48/49/4Axxx: - 1 bidirectional control endpoint - 5 IN endpoints (bulk, interrupt, isochronous) - 5 OUT endpoints (bulk, interrupt, isochronous) • For STM32L43/44/45/46xxx: - 1 bidirectional control endpoint - 7 IN endpoints (bulk, interrupt, isochronous) - 7 OUT endpoints (bulk, interrupt, isochronous)	 12 configurable endpoints: 1 bidirectional control endpoint 5 IN endpoints (bulk, interrupt or isochronous) 5 OUT endpoints (bulk, interrupt or isochronous) 	
	 Attach detection protocol (ADP) (only on STM32L4+ and STM32L47/48/49/4Axxx) Battery charging detection (BCD) 	Attach detection protocol (ADP) Battery charging detection (BCD)	
	Independent V _{DDUSB} power supply allowing lower V _{DDCORE} while using USB		
	USB internal connect/disconnect feature with an internal pull-up resistor on the USB D+ (USB_DP) line	N/A	
Mapping	 APB1 for STM32L4+ and STM32L47/48/49/4Axxx AHB2 for STM32L14/42/43/44/45/46xxx 	AHB2	

AN5372 - Rev 2 page 60/80

Features	STM32L4/L4+	STM32U5
Buffer memory	 1.25-Kbyte data FIFOs management of up to 6 Tx FIFOs (1 for each IN end point) + 1 Rx FIFO (for STM32L4+ and STM32L47/48/49/4Axxx) 1024 bytes of dedicated packet buffer memory SRAM (for STM32L41/42/43/44/45/46xxx) 	1.25-Kbyte data FIFOs management of up to 6 Tx FIFOs (1 for each IN end point) + 1 Rx FIFO
Low-power modes	 USB suspend and resume USB revision 2.0 including link power management (LPM) support 	 System stop during USB suspend Switch-off of clock domains internal to the digital core PHY and DFIFO power management USB revision 2.0 including link power management (LPM) support

AN5372 - Rev 2 page 61/80

Migration of analog peripherals

10.1 Analog-to-digital converter (ADC)

The STM32U5, STM32L4 and STM32L4+ MCUs embed successive approximation ADC, which can be tightly coupled on some devices, and can operate in dual mode (ADC1 is master). Further information is available on the below table.

Table 44. ADC features of STM32L4, STM32L4+ and STM32U5 MCUs

Feature		STM32L4x1/47x/48	x/49x/4Axxx	STM32L41/42/43/44/45/46xx x and STM32L4+	STM	32U5
		ADC1, ADC2	ADC3	ADC1, ADC2	ADC1, ADC2 ⁽¹⁾	ADC4
Resolu	ıtion		12 bits		14 bits	12 bits
Config resolut			12, 10, 8 or 6 bits		14, 12, 10, or 8 bits	12, 10, 8 or 6 bits
Single-	ended inputs			Χ		
Differe	ntial inputs					
Injecte conver	d channel sion		X			N/A
Dual mode		Up to two ADCs can operate in dual mode: ADC1 connected to 16 external channels and 3 internal channels ADC2 connected to 16 external channels + 2 internal channels.	ADC3 connected to 12 external channels and 4 internal channels	^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
_	Ratio		Up to 256x		Up to 1024	Up to 256x
Overs ampli	Data register		16 bits		32 bits	16 bits
ng	Programmabl e data shift	Up to 8 bits shift Right and left shift Up to 8 shift			Up to 8 bits shift	
DMA support				X		
Autonomous mode			N/A		X	
Number of analog watchdogs				3		

^{1.} Only present in STM32U59x/5Ax/5Fx/5Gx lines

10.2 Digital-to-analog converter (DAC)

DAC peripherals in STM32L4, STM32L4+ and STM32U5 MCUs have identical electrical parameters and configuration options, with two differences in the new autonomous mode and double-data DMA capability for STM32U5 series:

- Autonomous mode to reduce the power consumption for the system
 The autonomous mode can be used to update the DAC output voltage in Stop mode. This allows DMA transfers to be performed when the device operates in Run, Sleep or Stop mode. The autonomous mode is supported only when the DAC is in sample-and-hold mode.
- Double-data DMA capability to reduce the bus activity
 When the DMA controller is used in normal mode, only 12-bit (or 8-bit) data are transferred by a DMA request. As the AHB width is 32 bits, two 12-bit data may be transferred simultaneously.

AN5372 - Rev 2 page 62/80

^{2.} Only available on STM32L4P5/Q5xx for STM32L4+ series and STM32U59x/5Ax/5Fx/5Gx for STM32U5 series.

Feature	STM32L4 ⁽¹⁾	STM32L4+	STM32U5
Number of instances	1 ⁽²⁾	1	1
Resolution	12 bits		
Dual channel	X ⁽³⁾		
Output buffer	X		
I/O connection	DAC1_OUT1 on PA4 and DAC1_OUT2 on PA5 ⁽³⁾		
Maximum sampling time	1 Msps		
Autonomous mode	NUA V		V
Double-data DMA	N/A X		Χ

Table 45. DAC features in STM32L4, STM32L4+ and STM32U5 MCUs

- 1. No DAC in the STM32L41/42xxx devices.
- 2. Two instances in STM32L4x1xx devices (one output channel each).
- 3. Only single channel on STM32L451/452/462xx devices (DAC1_OUT1 on PA4 as I/O connection).

10.3 Comparator (COMP)

Each STM32L4, STM32L4+ and STM32U5 MCU embeds two ultra-low-power comparators, COMP1 and COMP2, with identical electrical parameters.

Comparators for STM32L4 and STM32L4+ MCUs have the same configuration options that are different from the STM32U5 MCUs: COMP1_CSR and COMP2_CSR registers are not compatible. Differences are listed in the table below.

Table 46. COMPx_CSR registers in STM32L4, STM32L4+ and STM32U5 MCUs

COMPx_CSR bit	STM32L4/L4+	STM32U5	
Bit 0	EN: COMPx ⁽¹⁾ enable		
Bits 3:2	PWRMODE[1:0]: Power mode of the comparator x		
Bits 6:4	INMSEL: Comparator x input minus selection bits	INMSEL[3:0]: COMPx signal selector for inverting input	
Bit 7	INPSEL: Comparator x input plus selection bit	INM	
	Reserved: for COMP1_CSR	INPSEL[1:0]: COMPx signal selector for non-inverting	
Bits 9:8	Bit 9: WINMODE: Windows mode selection bit for COMP2_CSR (Bit 8: reserved)	input	
Bit 11	Reserved	WINMODE: COMPx non-inverting input selector for Window mode	
Bit 14	Reserved WINOUT: COMPx output selector		
Bit 15	POLARITY: COMPx polarity selector		
Bits 17:16	HYST[1:0]: COMPx hysteresis selector		
Bits 19:18	BLANKING[2:0]: Comparator x blanking source	PWRMODE[1:0]: COMPx power mode selector	
Bit 20	selection bits		
Bit 21	Reserved		
Bit 22	BRGEN: Scaler bridge enable	Bits 24:20 BLANKSEL[4:0]: COMPx blanking source selector	
Bit 23	SCALEN: voltage scaler enable bit		
Bit 24	Reserved		
Bit 30	VALUE: COMPx output status		
Bit 31	LOCK: COMPx_CSR register lock		

^{1.} x corresponds to the number of COMP instance used (1 or 2).

AN5372 - Rev 2 page 63/80

There is also one difference in the new blanking sources for STM32U5 series:

- TIM3 OC3 is added as blanking source in COMP1.
- TIM3 OC4, TIM8 OC5 and TIM15 OC1 are added as blanking sources in COMP2.

10.4 Voltage reference buffer (VREFBUF)

The internal VREFBUF is an operational amplifier, with programmable gain. The amplifier input is connected to the internal voltage reference VREFINT.

The STM32U5, STM32L4, and STM32L4+ MCUs embed one VREFBUF that can be used as voltage reference for ADCs and DACs. VREFBUF can also be used as voltage reference for external components through the VREF+ pin.

The STM32U5 VREFBUF supports four voltages, when the STM32L4 and STM32L4+ MCUs support only two voltages.

STM32L4/L4+ ⁽¹⁾		STM32U5	
Symbol	Voltage (V)	Symbol	Voltage (V)
N	/Λ	VREFUBUF0	1.5
N/A		VREFUBUF1	1.8
VREF_OUT1	2.048	VREFUBUF2	2.048
VREE OUT2 2.5		VREFUBUE3	2.5

Table 47. VREFBUF features in STM32L4, STM32L4+ and STM32U5 MCUs

10.5 Operational amplifier (OPAMP)

The two OPAMP1 and OPAM2 (two inputs and one output each) in STM32U5, STM32L4 and STM32L4+ devices have identical features. The three I/Os can be connected to the external pins to enable any type of external interconnections.

Each OPAMP can be configured internally as a follower or as an amplifier with a non-inverting gain ranging from 2 to 16. The positive input can be connected to the internal DAC. The output can be connected to the internal ADC.

The only difference is that the STM32U5 OPAMPs support the high-speed mode and achieves a better slew rate.

AN5372 - Rev 2 page 64/80

^{1.} No VREFBUF in STM32L41/42xxx devices.

N/A

X⁽⁶⁾

X⁽⁵⁾

11 Migration of signal/image processing accelerators

11.1 Digital filters

The STM32U5 devices embed two hardware digital filters, MDF and ADF, while STM32L4 and STM32L4+ devices include one DFSDM filter. Differences between the embedded filters are listed in the table below.

STM32L4/L4+ STM32U5 **Features** DFSDM Digital filter type ADF MDF Number of filters Up to 8 1 6⁽¹⁾ Input from internal ADC $\chi^{(2)}$ N/A Χ Supported trigger sources 11/12(3) 2 14(4)

Table 48. Digital filters in STM32L4, STM32L4+ and STM32U5 MCUs

- 1. Only 2 filters available for STM32U535/545
- 2. Not available for STM32L476/486xx.

Pulses skipper

Autonomous in Stop mode

- 3. LPTIM1 is the new trigger source for STM32L4+.
- 4. For available trigger sources, refer to the 'MDF/ADF trigger connections' tables in the reference manual.

 $X^{(2)}$

N/A

- 5. Only Stop 0, Stop 1 and Stop 2 modes.
- 6. Only Stop 0 and Stop 1 modes.

11.2 CORDIC co-processor (CORDIC)

The CORDIC co-processor is a new peripheral embedded only in STM32U5 MCUs. It provides hardware acceleration of certain mathematical functions (mainly trigonometric ones) commonly used in motor control, metering, signal processing and many other applications.

The CORDIC speeds up the calculation of these functions compared to a software implementation, making possible the use of a lower operating frequency, or freeing up processor cycles in order to perform other tasks.

The cording main features are the following:

- 24-bit CORDIC rotation engine.
- · Circular and Hyperbolic modes.
- Rotation and Vectoring modes.
- Functions: sine, cosine, sinh, cosh, atan, atan2, atanh, modulus, square root, natural logarithm.
- Programmable precision.
- Low-latency AHB slave interface.
- Results readable as soon as ready, without polling or interrupt.
- DMA read and write channels.
- Multiple register read/write by DMA.

AN5372 - Rev 2 page 65/80

11.3 Filter math accelerator (FMAC)

The FMAC is only implemented on STM32U5 MCUs. This peripheral performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic that allows FMAC to index vector elements held in local memory.

The FMAC main features are the following:

- 16 x 16-bit multiplier.
- 24 + 2-bit accumulator with addition and subtraction.
- 16-bit input and output data.
- 256 x 16-bit local memory.
- Up to 3 areas in memory for data buffers (two inputs, one output) can be defined by programmable base address pointers and associated size registers.
- Circular input and output buffer.
- Filter functions: FIR, IIR (direct form 1).
- Vector functions: dot product, convolution, correlation.
- AHB slave interface.
- DMA read and write data channels.

11.4 Tough sensing controller (TSC)

The STM32U5, STM32L4, and STM32L4+ MCUs embed a touch sensing controller (TSC) with the same features. The TSC provides a simple solution to add capacitive-sensing functionality to any application. A capacitive-sensing technology can detect a finger presence near an electrode that is protected from direct touch by a dielectric (such as glass or plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. Refer to the product reference manual for more details on TSC features.

The number of capacitive-sensing channels is dependent on the size of the package and subject to I/O availability. The TSC input/output signals and their pins mapping are partially compatible between STM32L4, STM32L4+ and STM32U5 MCUs.

AN5372 - Rev 2 page 66/80

12 Migration of external memory interface peripherals

12.1 Octo-SPI interface (OCTOSPI)

The OCTOSPI peripheral provides a serial interface that enables communication with external serial memories such as flash memory, PSRAM, HyperRAM $^{\text{TM}}$, HyperFlash $^{\text{TM}}$ and some specific ICs like FPGA or ASICs.

The OCTOSPI specialized communication interface targets single-, dual-, quad- or octal-SPI memories, and can be configured in three modes: Indirect, Status-polling, and Memory-mapped.

The OCTOSPI I/O manager (OCTOSPIM) is a hardware peripheral that implements a low-level interface that enables:

- an efficient OCTOSPI pin assignment with a full I/O matrix (before alternate function map), and
- a multiplex of single-, dual-, quad- and octal-SPI interfaces over the same bus.

The OCTOSPI peripheral is available on STM32L4+ and STM32U5 MCUs, with several additional features.

Note:

The STM32L4 MCUs feature a QUADSPI peripheral, not an OCTOSPI. The OCTOSPI supports the same features as the QUADSPI, and additionally supports Octo-SPI memories.

Features STM32L4+ STM32U5 Number of OCTOSPI instances **2**⁽¹⁾ Octo-SPI I/O manager (OCTOSPIM) Yes(2) Single-ended clock for 3.0 V HyperBus[™] mode Inverted clock for 1.8 V HyperBus mode Zero wait states like performance execution N/A Support of AP Memory quad-SPI and Octal-SPI PSRAMs CS boundary and refresh Yes Full support for HyperRAM memories Yes OTFDEC protecting Flash code N/A TrustZone security

Table 49. OCTOSPI features in STM32L4+ and STM32U5 MCUs

- 1. Single instance in STM32U535/545.
- 2. Manager is not available in STM32U535/U545.

In addition, STM32U59x/5Ax/5Fx/5Gx features an Hexadeca-SPI interface with HW transceiver to access 16 bit memories at maximum system frequency.

AN5372 - Rev 2 page 67/80

12.2 Flexible static memory controller (FSMC)

The following table presents the FSMC interface differences between of STM32L4, STM32L4+, and STM32U5 MCUs.

Note: STM32L41/42/43/44/45/46xxx and STM32U535/U545xx does not support FSMC.

Table 50. FSMC features in STM32L4, STM32L4+, and STM32U5 MCUs

Features	STM32L4	STM32L4+	STM32U5
External memory interfaces	 SRAM NOR/NAND memories PSRAM NAND flash memory with ECC hardware 	 SRAM NOR/NAND memories PSRAM NAND flash memory with ECC hardware FRAM (ferroelectric RAM) 	SRAM NOR flash memory/one NAND flash memory PSRAM NAND flash memory with ECC hardware FRAM (ferroelectric RAM)
Data bus width		8 or 16 bits	
New timing	N/A	NBL setup timingData hold timingClock divider ratio 1	New PSRAM counter timing

For STM32U5 MCUs, FSMC registers can be configured as secure through the TZSC controller. Refer to the reference manual for more details.

AN5372 - Rev 2 page 68/80

13 Software migration

13.1 Reference documents

- Definitive guide to Cortex-M33 and Cortex-M4 processors
- STM32 Cortex-M4 MCUs and MPUs programming manual (PM0214)
- Cortex-M4 processor Technical Reference Manual
- Cortex-M33 processor Technical Reference Manual

13.2 Cortex-M4 and Cortex-M33 overview

13.2.1 STM32 Cortex-M4 processor and core peripherals

The Cortex-M4 processor is a high-performance 32-bit processor designed for the microcontroller market. It offers significant benefits to the developers, including:

- Outstanding processing performance combined with fast interrupt handling
- Enhanced system debug with extensive breakpoint and trace capabilities
- Efficient processor core, system and memories
- Ultra-low power consumption with integrated sleep modes
- Platform security robustness, with integrated memory protection unit (MPU)

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture, making it ideal for demanding embedded applications. The processor delivers an exceptional power efficiency through an efficient instruction set and extensively optimized design, providing high-end processing hardware including IEEE754- compliant single-precision floating-point computation, a range of single-cycle and SIMD multiplication and multiply-with-accumulate capabilities, a saturating arithmetic and dedicated hardware division.

The STM32 Cortex-M4 implementation is illustrated in the figure below.

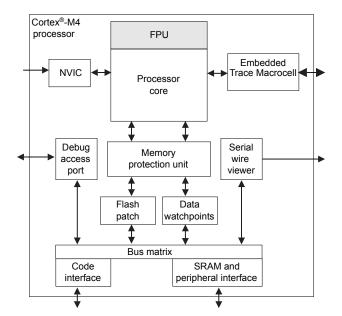


Figure 8. STM32 Cortex-M4 implementation

AN5372 - Rev 2 page 69/80

Cortex-M4 key features

- Architecture 32 bits RISC Armv7E-M
- 3-stage pipeline with branch speculation
- Instruction set:
 - Thumb, Thumb-2
 - Hardware multiply, hardware divide, saturated arithmetic
 - DSP extensions:
 - Single-cycle 16/32-bit MAC
 - Single-cycle dual 16-bit MAC
 - 8/16-bit SIMD arithmetic
- FPU (VFPv4-SP)

13.2.2 STM32 Cortex-M33 processor and core peripherals

The Cortex-M33 processor is excellence in ultra-low-power, performance and security.

This processor is based on the Armv8-M architecture for use in environments requiring more security implementation. The Cortex-M33 core implements a full set of DSP (digital signal processing) instructions, TrustZone-aware support and a memory protection unit (MPU) that enhances the application security.

The Cortex-M33 core also features a single-precision floating-point unit (FPU), that supports all the Arm single precision data-processing instructions and all the data types.

STM32 Cortex-M33 implementation is illustrated in the figure below.

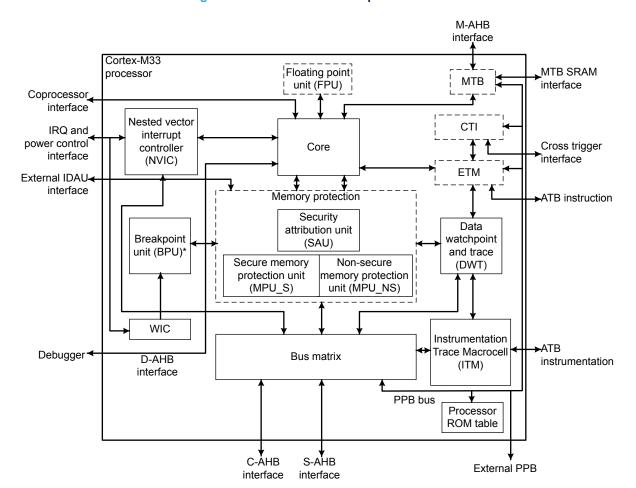


Figure 9. STM32 Cortex-M33 implementation

AN5372 - Rev 2 page 70/80

^{*} Flash patching is not supported in the Cortex-M33 processor.

Cortex-M33 key features are listed below:

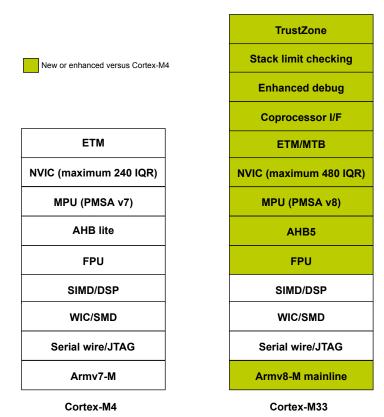
- Arm-v8M architecture with 2/3 stage pipeline, Harvard, 1,4 DMIPS/MHz
- Single-cycle branch, no branch prediction
- Hardware divide instruction
- Debug (CoreSight compliant)
- Memory exclusive instructions
- NVIC without interrupts increased up to 480 max (256 priority levels)
- Enhanced MPU, more flexible (32 bytes) up to 16 regions (for each one of the secure and non-secure states)
- New AMBA[®] 5 AHB interface, support of security state extension to the system
- Support of external implementation defined attribution unit
- Fully compatible with TrustZone system

The differences between Cortex-M4 and Cortex-M33 are presented in the table below.

Table 51. Cortex-M4 versus Cortex-M33

Feature	Cortex-M4	Cortex-M33	
Instruction set architecture	Armv7-M	Armv8-M mainline	
instruction set architecture	Thumb,	Thumb-2	
Pipeline	Three	e-stages	
Performance efficiency (CoreMark/MHz)	3.40	3.86	
DMIPS/MHz	1.25	1.50	
Memory protection	,	⁄es	
Maximum MPU regions	8	8 secure and 8 non-secure	
Trace (ETM or MTB)	ETMv3	MTB and/or ETMv4	
DSP		Yes	
Floating point hardware		res	
Bus protocol	AHB Lite, APB	AHB5	
Max. number of external interrupts	240	480	
CMSIS support	,	⁄es	
TrustZone for Armv8-M	No	Voc	
Coprocessor interface	INO	Yes	

AN5372 - Rev 2 page 71/80


13.2.3 Software point of view

The Cortex-M33 has the same features than the Cortex-M4, but includes also the following ones:

- Implementing Armv8-M architecture
- Implementing the latest floating point unit FPU specification (based on Arm FPv5 architecture) that adds more instructions than the Cortex-M4 has
- AHB5 specification used for the system and memory interface, to extend security across the whole system
- Latest version of the memory protection unit (MPU) specification used to simply the setup of regions
- Extended number of maximum interrupts to 480
- Optional execution trace using MTB or ETM
- Enhanced debug components to make simplify usage
- Coprocessor interface supporting up to 8 coprocessors units
- Hardware stack limit checking
- TrustZone security features adding efficient security features

The Cortex-M33 enhancements compared to Cortex-M4 are illustrated in the figure below.

Figure 10. Cortex-M33 enhancements versus Cortex-M4

AN5372 - Rev 2 page 72/80

13.3 Cortex mapping overview

The mapping is different on the Cortex®-M4 and the Cortex®-M33, as shown in the table below.

Table 52. Cortex mapping for STM32L4, STM32L4+ and STM32U5 MCUs

Feature		STM32L4 and STM32L4+	STM32U5
Core	Architecture	Cortex®-M4	Cortex®-M33
	NVIC	Maskable interrupt channel: 95 (STM32L4+) 91 (STM32L49/4Axxx) 82 (STM32L47/48xxx) 67 (STM32L41/42/43/44/45/46xxx)	125 maskable interrupt channels (not including the 16 Cortex-M33 with FPU interrupt lines)
	EXTI	 Up to 41 events/interrupts (STM32L4+ and STM32L49/4Axxx) Up to 40 events/interrupts (STM32L47/48xxx) Up to 37 events/interrupts (STM32L41/42/43/44/45/46xxx) 	23 events/interrupts
	System timer	0xE000 E010 to 0xE000 E01F	0xE000 E010 to 0xE000 E0FF
Mapping	NVIC	0xE000 E100 to 0xE000 E4EF	0xE000 E100 to 0xE000 ECFF
	Floating point unit	0xE000 EF30 to 0xE000 EF44	0xE000 EF30 to 0xE000 EF44
	MPU (memory protection unit)	0xE000 ED90 to 0xE000 EDB8	0xE000 ED90 to 0xE000 EDB8

AN5372 - Rev 2 page 73/80

Revision history

Table 53. Document revision history

Date	Version	Changes
20-Apr-2021	1	Initial release.
11-May-2023	2	Updated: the document title. Section Introduction Section 2 STM32U5 series overview Section 2.1 Main features Section 3.2 System architecture Section 3.4 System architecture Section 5.1 STM32 products cross-compatibility Section 5.1 STM32 products cross-compatibility Section 6.1 System configuration controller (SYSCFG) Section 6.2 Embedded flash memory (FLASH) Section 6.3 SRAMS Section 6.6 Reset and clock control (RCC) Section 6.6.1 Performance versus VCORE ranges Section 6.7 Power controller (PWR) Section 9.3 Universal synchronous/asynchronous receiver transmitter (USART) Section 9.8 Universal serial-bus interface (USB) Section 10.1 Analog-to-digital converter (ADC) Section 12.1 Octo-SPI interface (OCTOSPI) Section 12.2 Flexible static memory controller (FSMC) Section 13.3 Cortex mapping overview Section 6.4 Instruction and data caches (ICACHE/DCACHE) Section 6.6.3 Peripheral clock configuration Section 11.1 Digital filters Section 9.6 Secure digital input/output MultiMediaCard interface (SDMMC) Added the following sections to this document: Section 1 General information Section 2.3 Memory availability Added the STM32U5 series. Applied minor changes to the whole document.

AN5372 - Rev 2 page 74/80

Contents

1	Gene	eral information	2
2	STM	32U5 series overview	3
	2.1	Main features	3
	2.2	System architecture	4
	2.3	Memory availability	7
3	Hard	lware migration	9
4	Boot	t mode compatibility	11
	4.1	Boot mode selection	11
	4.2	Embedded bootloader	12
5	Perip	pheral migration	14
	5.1	STM32 products cross-compatibility	14
	5.2	Memory mapping	17
6	Migra	ration of system peripherals	22
	6.1	System configuration controller (SYSCFG)	22
	6.2	Embedded flash memory (FLASH)	22
	6.3	SRAMs	25
	6.4	Instruction and data caches (ICACHE/DCACHE)	27
	6.5	Direct memory access controller (DMA)	27
	6.6	Reset and clock control (RCC)	28
		6.6.1 Performance versus VCORE ranges	30
		6.6.2 Peripheral access configuration	31
		6.6.3 Peripheral clock configuration	
	6.7	Power controller (PWR)	
	6.8	Autonomous peripherals and low-power background autonomous mode (LPBAM)	43
	6.9	General-purpose I/Os (GPIO)	44
	6.10	Extended interrupt and event controller (EXTI)	45
	6.11	Cyclic redundancy check calculation unit (CRC)	
7	Migra	ation of security peripherals	46
	7.1	Tamper and backup registers (TAMP)	46
	7.2	Hash processor (HASH)	47
	7.3	On-the-fly decryption engine (OTFDEC)	47
	7.4	True random number generator (RNG)	47
	7.5	Public key accelerator (PKA)	47
	7.6	AES and SAES hardware accelerators	48

8 Migration of timer peripherals 8.1 Advanced-control timers (TIM1/8). 8.2 GP timers with up, down, up-down auto-reload counter (TIM2/3/4/5) 8.3 GP timers with auto-reload up-counter (TIM15/16/17) 8.4 Basic timers (TIM6/7) 8.5 Low-power timers (LPTIM1/2/3/4). 8.6 Watchdogs (WWDG/IWDG) 8.7 Real-time clock (RTC) 8.8 SysTick timer. 9 Migration of communication peripherals 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C) 9.3 Universal synchronous/asynchronous receiver transmitter (USART) 9.4 Serial audio interface (SAI) 9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC). 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI). 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC). 10.2 Digital-to-analog converter (DAC). 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF). 10.5 Operational amplifier (OPAMP). Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC). 11.3 Filter math accelerator (FMAC).	50
8.2 GP timers with up, down, up-down auto-reload counter (TIM2/3/4/5) 8.3 GP timers with auto-reload up-counter (TIM15/16/17) 8.4 Basic timers (TIM6/7) 8.5 Low-power timers (LPTIM1/2/3/4) 8.6 Watchdogs (WWDG/IWDG) 8.7 Real-time clock (RTC) 8.8 SysTick timer 9 Migration of communication peripherals 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C) 9.3 Universal synchronous/asynchronous receiver transmitter (USART) 9.4 Serial audio interface (SAI) 9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC) 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP) 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	50
8.3 GP timers with auto-reload up-counter (TIM15/16/17) 8.4 Basic timers (TIM6/7) 8.5 Low-power timers (LPTIM1/2/3/4) 8.6 Watchdogs (WWDG/IWDG) 8.7 Real-time clock (RTC) 8.8 SysTick timer 9 Migration of communication peripherals 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C) 9.3 Universal synchronous/asynchronous receiver transmitter (USART) 9.4 Serial audio interface (SAI) 9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC) 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC).	50
8.4 Basic timers (TIM6/7) 8.5 Low-power timers (LPTIM1/2/3/4). 8.6 Watchdogs (WWDG/IWDG). 8.7 Real-time clock (RTC) 8.8 SysTick timer. 9 Migration of communication peripherals. 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C). 9.3 Universal synchronous/asynchronous receiver transmitter (USART). 9.4 Serial audio interface (SAI). 9.5 Controller area network (CAN). 9.6 Secure digital input/output MultiMediaCard interface (SDMMC). 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI). 9.8 Universal serial-bus interface (USB). 10 Migration of analog peripherals. 10.1 Analog-to-digital converter (ADC). 10.2 Digital-to-analog converter (DAC). 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF). 10.5 Operational amplifier (OPAMP). Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC).	
8.5 Low-power timers (LPTIM1/2/3/4). 8.6 Watchdogs (WWDG/IWDG). 8.7 Real-time clock (RTC) 8.8 SysTick timer. 9 Migration of communication peripherals. 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C). 9.3 Universal synchronous/asynchronous receiver transmitter (USART). 9.4 Serial audio interface (SAI). 9.5 Controller area network (CAN). 9.6 Secure digital input/output MultiMediaCard interface (SDMMC). 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI). 9.8 Universal serial-bus interface (USB). 10 Migration of analog peripherals. 10.1 Analog-to-digital converter (ADC). 10.2 Digital-to-analog converter (DAC). 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF). 10.5 Operational amplifier (OPAMP). Migration of signal/image processing accelerators. 11.1 Digital filters. 11.2 CORDIC co-processor (CORDIC).	51
8.6 Watchdogs (WWDG/IWDG). 8.7 Real-time clock (RTC) 8.8 SysTick timer. 9 Migration of communication peripherals. 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C). 9.3 Universal synchronous/asynchronous receiver transmitter (USART). 9.4 Serial audio interface (SAI). 9.5 Controller area network (CAN). 9.6 Secure digital input/output MultiMediaCard interface (SDMMC). 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI). 9.8 Universal serial-bus interface (USB). 10 Migration of analog peripherals. 10.1 Analog-to-digital converter (ADC). 10.2 Digital-to-analog converter (DAC). 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF). 10.5 Operational amplifier (OPAMP). Migration of signal/image processing accelerators. 11.1 Digital filters. 11.2 CORDIC co-processor (CORDIC).	
8.7 Real-time clock (RTC) 8.8 SysTick timer 9 Migration of communication peripherals 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C) 9.3 Universal synchronous/asynchronous receiver transmitter (USART). 9.4 Serial audio interface (SAI) 9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC) 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC).	51
Migration of communication peripherals 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C) 9.3 Universal synchronous/asynchronous receiver transmitter (USART) 9.4 Serial audio interface (SAI) 9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC) 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP) 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	52
9 Migration of communication peripherals 9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C) 9.3 Universal synchronous/asynchronous receiver transmitter (USART) 9.4 Serial audio interface (SAI) 9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC) 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC).	53
9.1 Serial peripheral interface (SPI) 9.2 Inter-integrated circuit (I2C). 9.3 Universal synchronous/asynchronous receiver transmitter (USART). 9.4 Serial audio interface (SAI). 9.5 Controller area network (CAN). 9.6 Secure digital input/output MultiMediaCard interface (SDMMC). 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI). 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals. 10.1 Analog-to-digital converter (ADC). 10.2 Digital-to-analog converter (DAC). 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF). 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators. 11.1 Digital filters. 11.2 CORDIC co-processor (CORDIC).	53
9.2 Inter-integrated circuit (I2C) 9.3 Universal synchronous/asynchronous receiver transmitter (USART). 9.4 Serial audio interface (SAI) 9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC). 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI). 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC). 10.2 Digital-to-analog converter (DAC). 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF). 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC).	54
9.3 Universal synchronous/asynchronous receiver transmitter (USART). 9.4 Serial audio interface (SAI). 9.5 Controller area network (CAN). 9.6 Secure digital input/output MultiMediaCard interface (SDMMC). 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI). 9.8 Universal serial-bus interface (USB). 10 Migration of analog peripherals. 10.1 Analog-to-digital converter (ADC). 10.2 Digital-to-analog converter (DAC). 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF). 10.5 Operational amplifier (OPAMP). 11 Migration of signal/image processing accelerators. 11.1 Digital filters. 11.2 CORDIC co-processor (CORDIC).	54
9.4 Serial audio interface (SAI) 9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC) 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP) 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	56
9.5 Controller area network (CAN) 9.6 Secure digital input/output MultiMediaCard interface (SDMMC) 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP) 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	57
9.6 Secure digital input/output MultiMediaCard interface (SDMMC) 9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC).	58
9.7 Digital camera interface (DCMI) and parallel synchronous slave interface (PSSI) 9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP) 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	58
9.8 Universal serial-bus interface (USB) 10 Migration of analog peripherals 10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	59
10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP) 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	59
10.1 Analog-to-digital converter (ADC) 10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP). 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC).	60
10.2 Digital-to-analog converter (DAC) 10.3 Comparator (COMP) 10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	62
 10.3 Comparator (COMP). 10.4 Voltage reference buffer (VREFBUF). 10.5 Operational amplifier (OPAMP). 11 Migration of signal/image processing accelerators 11.1 Digital filters. 11.2 CORDIC co-processor (CORDIC). 	62
10.4 Voltage reference buffer (VREFBUF) 10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	62
10.5 Operational amplifier (OPAMP) 11 Migration of signal/image processing accelerators 11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	63
11 Migration of signal/image processing accelerators	64
11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	64
11.1 Digital filters 11.2 CORDIC co-processor (CORDIC)	65
	65
11.3 Filter math accelerator (FMAC)	65
	66
11.4 Tough sensing controller (TSC)	66
12 Migration of external memory interface peripherals	
12.1 Octo-SPI interface (OCTOSPI)	
12.2 Flexible static memory controller (FSMC)	
13 Software migration	
13.1 Reference documents	

13.2 Cortex-M4 and Cortex-M33 overview	
	69
13.2.1 STM32 Cortex-M4 processor and core peripherals	00
13.2.2 STM32 Cortex-M33 processor and core peripherals	70
13.2.3 Software point of view	72
13.3 Cortex mapping overview	73
Revision history	74
List of tables	78
List of figures	

List of tables

Table 1.	Reference documents	. 1
Table 2.	Bus matrix on STM32L4, STM32L4+ and STM32U5 series	
Table 3.	Memory availability for STM32L4, STM32L4+, and STM32U5 MCUs	. 7
Table 4.	Packages on STM32U5 MCUs compared to STM32L4 and STM32L4+ MCUs	. 9
Table 5.	PB11/VCAP pin position	
Table 6.	Boot modes for STM32U5xx when TrustZone [®] is disabled (TZEN = 0)	11
Table 7.	Boot modes for STM32U5xx when TrustZone® is enabled (TZEN = 1)	11
Table 8.	Boot modes for STM32L4+ and STM32L41/42/43/44/45/46/49/4Axxx	
Table 9.	Boot modes for STM32L47/48xxx	12
Table 10.	Bootloader interface on STM32L4, STM32L4+, and STM32U5 MCUs	12
Table 11.	STM32 peripheral compatibility between STM32L4, STM32L4+ and STM32U5 MCUs	14
Table 12.	Peripheral address mapping of STM32L4, STM32L4+, and STM32U5 MCUs	18
Table 13.	SYSCFG features in STM32L4, STM32L4+ and STM32U5 MCUs	22
Table 14.	Flash memory features in STM32L4, STM32L4+ and STM32U5 MCUs	22
Table 15.	SRAM features in STM32L4, STM32L4+ and STM32U575/585 MCUs	
Table 16.	Embedded caches on STM32U5 devices	27
Table 17.	DMA features of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 18.	RCC features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 19.	RCC registers of STM32L4 and STM32L4+ series	
Table 20.	RCC registers of STM32U5 series	
Table 21.	RCC registers for peripheral access configuration of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 22.	PWR features of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 23.	STM32U5 autonomous peripherals to DMA assignment in autonomous mode	
Table 24.	EXTI features of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 25.	EXTI lines of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 26.	Tamper pins and events of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 27.	RNG features of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 28.	PKA features of STM32L4+ and STM32U5 MCUs	
Table 29.	Advanced-control timer (TIM1/8) features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 30.	GP timer (TIM2/3/4/5) features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 31.	GP timer (TIM15/16/17) features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 32.	Basic timer (TIM6/7) features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 33.	LP timer (LPTIMx) features of STM32L4, STM32L4+ and STM32U5 series	
Table 34.	Implementation of LPTIMx features on various instances	
Table 35.	IDWG features of STM32L4, STM32L4+ and STM32U5 series	
Table 36.	RTC features of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 37.	SPI features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 38.	I2C features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 39.	U(S)ART features of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 40.	SAI features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 41.	CAN features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 42.	SDMMC features of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 43.	USB features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 44.	ADC features of STM32L4, STM32L4+ and STM32U5 MCUs	
Table 45.	DAC features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 46.	COMPx CSR registers in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 47.	VREFBUF features in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 48.	Digital filters in STM32L4, STM32L4+ and STM32U5 MCUs	
Table 49.	OCTOSPI features in STM32L4+ and STM32U5 MCUs	
Table 50.	FSMC features in STM32L4, STM32L4+, and STM32U5 MCUs	
Table 51.	Cortex-M4 versus Cortex-M33	
Table 52.	Cortex mapping for STM32L4, STM32L4+ and STM32U5 MCUs	
Table 53.	Document revision history	
	•	

AN5372 - Rev 2 page 78/80

List of figures

Figure 1.	STM32L4 series system architecture	. 5
Figure 2.	STM32L4+ series system architecture	. 6
Figure 3.	STM32U5 series system architecture	. 7
Figure 4.	STM32L4 power supply overview	40
Figure 5.	STM32L4P5/4Q5/4S5/4R5/4S7/4R7xx power supply overview	41
Figure 6.	STM32L4R9/4S9xx power supply overview	42
Figure 7.	STM32U5 series power supply overview	43
Figure 8.	STM32 Cortex-M4 implementation	69
Figure 9.	STM32 Cortex-M33 implementation	70
Figure 10.	Cortex-M33 enhancements versus Cortex-M4	72

AN5372 - Rev 2 page 79/80

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5372 - Rev 2 page 80/80