
Introduction
The STM32CubeL5 MCU Package is delivered with a rich set of examples running on STMicroelectronics boards. The
examples are organized by boards and provided with pre-configured projects for the main supported toolchains (Refer to
Figure 1).

Figure 1. STM32CubeL5 firmware components

Middleware level Utilities

Application-level demonstrations

HAL and LL APIs

User
application

Evaluation
boards

Discovery
boards

STM32 Nucleo
boards

Dedicated
boards

USB FAT file
system RTOSGraphics

Hardware abstraction layer APIs (HAL)Board Support Package (BSP) Low-layer APIs (LL)

Utilities

CMSISTouch library TF-M

STM32Cube firmware examples for STM32L5 Series

AN5424

Application note

AN5424 - Rev 3 - March 2021
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/stm32cubel5?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

1 Reference documents

The following items make up a reference set for the examples presented in this application note:

• The latest release of the STM32CubeL5 MCU Package for the 32-bit microcontrollers in the STM32L5
Series based on the Arm® Cortex®-M processor with Arm®TrustZone®

• Getting started with STM32CubeL5 for STM32L5 Series (UM2656)
• Description of STM32L5 HAL and Low Layer Drivers (UM2659)
• STM32Cube USB device library (UM1734)
• Developing Applications on STM32Cube with FatFS (UM1721)
• Developing applications on STM32Cube with RTOS (UM1722)
• Getting started with STM32CubeL5 TFM application (UM2671)
• Overview of Secure Boot and Secure Firmware Update solution on Arm® TrustZone® STM32L5 Series

microcontrollers (AN5447)

Note: Arm and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the US and or elsewhere.

AN5424
Reference documents

AN5424 - Rev 3 page 2/28

https://www.st.com/en/product/stm32cubel5?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/resource/en/user_manual/dm00668763.pdf
https://www.st.com/resource/en/user_manual/dm00669466.pdf
https://www.st.com/resource/en/user_manual/dm00108129.pdf
https://www.st.com/resource/en/user_manual/dm00105259.pdf
https://www.st.com/resource/en/user_manual/dm00105262.pdf
https://www.st.com/resource/en/user_manual/dm00678763.pdf
https://www.st.com/resource/en/application_note/dm00684243.pdf

2 STM32CubeL5 examples

The examples are classified depending on the STM32Cube level they apply to. They are named as follows:
• Examples

These examples use only the HAL and BSP drivers (Middleware not used). Their objective is to demonstrate
the product or peripheral features and usage. They are organized per peripheral (One folder per peripheral,
such as TIM). Their complexity level ranges from the basic usage of a given peripheral, such as PWM
generation using a timer, to the integration of several peripherals, such as how to use DAC for a signal
generation with synchronization from TIM6 and DMA. The usage of the board resources is reduced to the
strict minimum.

• Examples_LL
These examples use only the LL drivers (HAL drivers and middleware components not used). They offer an
optimum implementation of typical use cases of the peripheral features and configuration sequences. The
examples are organized per peripheral (One folder for each peripheral, such as TIM) and are principally
deployed on Nucleo boards.

• Examples_MIX
These examples use only HAL, BSP, and LL drivers (Middleware components are not used). They aim at
demonstrating how to use both HAL and LL APIs in the same application to combine the advantages of both
APIs:
– HAL offers high-level function-oriented APIs with high portability level by hiding product/IPs complexity

for end-users.
– LL provides low-level APIs at the register level with better optimization.

The examples are organized per peripheral (One folder for each peripheral, such as TIM) and are
exclusively deployed on Nucleo boards.

• Applications
The applications demonstrate product performance and how to use the available middleware stacks. They
are organized either by middleware (One folder per middleware, such as USB host) or product feature
that requires high-level firmware bricks (Such as Audio). The integration of applications that use several
middleware stacks is also supported.

• Demonstrations
The demonstrations aim at integrating and running the maximum number of peripherals and middleware
stacks to showcase the product features and performance.

• Template project
The template project is provided to allow the user to quickly build a firmware application using HAL and BSP
drivers on a given board.

• Template_LL project
The template LL projects are provided to allow the user to quickly build a firmware application using LL
drivers on a given board.

The examples are located under STM32Cube_FW_L5_VX.Y.Z\Projects\.

The examples in the default product configuration with the Arm® TrustZone® disabled have the same structure:
• *\Inc folder, containing all header files
• *\Src folder, containing the sources code
• *\EWARM, *\MDK-ARM, and *\STM32CubeIDE folders, containing the preconfigured project for each

toolchain
• *\readme.txt file, describing the example behavior and the environment required to run the example

AN5424
STM32CubeL5 examples

AN5424 - Rev 3 page 3/28

The examples with the Arm® TrustZone® enabled are suffixed with "_TrustZone" (except TFM applications) and
have the same structure:
• *\Secure\Inc folder, containing all secure project header files
• *\Secure\Src and *\Secure_nsclib\ folders, containing all secure project sources code
• *\NonSecure\Inc folder, containing all non-secure project header files
• *\Non\Secure\Src folder, containing all non-secure project sources code
• *\EWARM, *\MDK-ARM, and *\STM32CubeIDE folders, containing the preconfigured project for each

toolchain
• *\readme.txt file, describing the example behavior and the environment required to run the example

To run the example, proceed as follows:
1. Open the example using your preferred toolchain.
2. Rebuild all files and load the image into target memory.
3. Run the example by following the readme.txt instructions.

Note: Refer to “Development toolchains and compilers” and “Supported devices and evaluation boards” sections of
the firmware package release notes to know more about the software/hardware environment used for the MCU
Package development and validation. The correct operation of the provided examples is not guaranteed in other
environments, for example, when using different compilers or board versions.
The examples can be tailored to run on any compatible hardware: simply update the BSP drivers for your board,
provided it has the same hardware functions (LED, LCD, pushbuttons, and others). The BSP is based on a
modular architecture that can be easily ported to any hardware by implementing low-level routines.
Table 1 contains the list of examples provided with the STM32CubeL5 MCU Package.

In this table, the label means the projects are created using STM32CubeMX, the STM32Cube initialization
code generator. Those projects can be opened with this tool to modify the projects themselves. The other projects
are manually created to demonstrate the product features. In this table, the label TrustZone means the projects
are created for devices with Arm® TrustZone® enabled. Read the project readme.txt file for user option bytes
configuration.

AN5424
STM32CubeL5 examples

AN5424 - Rev 3 page 4/28

Table 1. STM32CubeL5 firmware examples

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Templates
-

TrustZoneDisabled
This project provides a reference template based on the STM32Cube HAL API
that can be used to build any firmware application when TrustZone security is not
enabled (TZEN=0).

X X X

TrustZoneEnabled
This project provides a reference template based on the STM32Cube HAL API that
can be used to build any firmware application when TrustZone security is activated
(Option bit TZEN=1).

X
TrustZone

X
TrustZone

X
TrustZone

Total number of templates: 6 2 2 2

Templates_LL
- TrustZoneDisabled Reference template based on the STM32Cube LL API that can be used to build

any firmware application. X X X

Total number of templates_II: 3 1 1 1

Examples

- BSP How to use the different BSP drivers of the board. X X -

ADC

ADC_AnalogWatchdog How to use the ADC peripheral to perform conversions with an analog watchdog
and out-of-window interrupts enabled. - -

ADC_MultiChannelSingleConversion Use ADC to convert several channels using sequencer in discontinuous mode,
conversion data are transferred by DMA into an array, indefinitely (Circular mode). -

ADC_Oversampling Use ADC to convert a single channel but using the oversampling feature to
increase resolution. -

ADC_SingleConversion_TriggerSW_IT
Use ADC to convert a single channel at each SW start, conversion performed
using programming model: interrupt Example configuration: ADC is configured to
convert a single channel, in single conversion mode, from the software trigger.

- -

ADC_SingleConversion_TriggerTimer_DMA Use ADC to convert a single channel at each trig from the timer, conversion data
are transferred by DMA into an array, indefinitely (Circular mode). - -

COMP

COMP_CompareGpioVsVrefInt_IT How to configure the COMP peripheral to compare the external voltage applied on
a specific pin with the Internal Voltage Reference.

COMP_CompareGpioVsVrefInt_Window_IT This example shows how to make an analog watchdog using the COMP
peripherals in window mode.

CORTEX CORTEXM_InterruptSwitch_TrustZone How to first use an interrupt in the secure application and later assign it to the
non-secure application when TrustZone security is activated (Option bit TZEN=1). - -

TrustZone

A
N

5424 - R
ev 3

page 5/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

CORTEX

CORTEXM_ModePrivilege How to modify the Thread mode privilege access and stack. Thread mode is
entered on reset or when returning from an exception. -

CORTEXM_ProcessStack How to modify the Thread mode stack. Thread mode is entered on reset and can
be entered as a result of an exception return. -

CORTEXM_SysTick How to use the default SysTick configuration with a 1 ms time base to toggle LEDs. -

CRC

CRC_Bytes_Stream_7bit_CRC

How to configure the CRC using the HAL API. The CRC (Cyclic redundancy
check) calculation unit computes 7-bit CRC codes derived from buffers of 8-bit
data (Bytes). The user-defined generating polynomial is manually set to 0x65, that
is, X^7 + X^6 + X^5 + X^2 + 1, as used in the Train Communication Network, IEC
60870-5[17].

-

CRC_Data_Reversing_16bit_CRC

How to configure the CRC using the HAL API. The CRC (Cyclic redundancy
check) calculation unit computes a 16-bit CRC code derived from a buffer of
32-bit data (Words). Input and output data reversal features are enabled. The
user-defined generating polynomial is manually set to 0x1021, that is, X^16 + X^12
+ X^5 + 1, which is the CRC-CCITT generating polynomial.

-

CRC_Example
How to configure the CRC using the HAL API. The CRC (Cyclic redundancy
check) calculation unit computes the CRC code of a given buffer of 32-bit data
words, using a fixed generator polynomial (0x4C11DB7).

-

CRC_UserDefinedPolynomial
How to configure the CRC using the HAL API. The CRC (Cyclic redundancy
check) calculation unit computes the 8-bit CRC code for a given buffer of 32-bit
data words, based on a user-defined generating polynomial.

-

CRYP

CRYP_AESModes How to use the CRYP peripheral to encrypt and decrypt data using AES in
chaining modes (ECB, CBC, CTR). - -

CRYP_AESModes_Suspension How to use the CRYP peripheral to suspend then resume ciphering processing. - -

CRYP_DMA How to use the CRYP peripheral to encrypt and decrypt data using the AES-128
algorithm with ECB chaining mode in DMA mode. - -

CRYP_GCM_GMAC_CCM_Modes How to use the CRYP peripheral to encrypt data and generate authentication tags
using GCM/GMAC/CCM modes. - -

CRYP_GCM_Suspension How to use the CRYP peripheral to suspend then resume an authentication
ciphering processing. - -

DAC DAC_SimpleConversion How to use the DAC peripheral to do a simple conversion. -

A
N

5424 - R
ev 3

page 6/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

DFSDM

DFSDM_AudioRecord How to use the DFSDM HAL API to perform mono audio recording. This example
uses the SPH0641LM4H-1 digital microphone mounted on the board. -

DFSDM_Thermometer

How to use the DFSDM HAL API to perform temperature measurements. This
example uses the PTS100R (Thermistor) and STPMS2 (Sigma-delta modulator)
mounted on the board. The STPMS2 allows voltage and current values to be
obtained from the PTS100R. The temperature value is thus deduced.

- -

DMA

DMA_FLASHToRAM How to use a DMA to transfer a word data buffer from Flash memory to embedded
SRAM through the HAL API.

DMA_MUXSYNC
How to use the DMA with the DMAMUX to synchronize a transfer with the LPTIM1
output signal. USART3 is used in DMA synchronized mode to send a countdown
from 10 to 00, with a period of 2 seconds.

- -

DMA_MUX_RequestGen How to use the DMA with the DMAMUX request generator to generate DMA
transfer requests upon an External line 13 rising edge signal. - -

DMA_MemToMem_TrustZone
How to use HAL DMA to perform memory to memory data transfers over secure
and non-secure DMA channels when TrustZone security is activated (Option bit
TZEN=1).

- -

TrustZone

FDCAN

FDCAN_Classic_Frame_Networking How to configure the FDCAN peripheral to send and receive Classic CAN frames. - -

FDCAN_Loopback How to configure the FDCAN to operate in loopback mode. - -

FLASH

FLASH_BlockBased_TrustZone
How to configure and use the FLASH HAL API to managed block-based security
of internal Flash memory between secure and non-secure applications when
TrustZone security is activated (Option bit TZEN=1).

-

TrustZone

-

FLASH_DualBoot Guide through the configuration steps to program internal Flash memory bank 1
and bank 2, and to swap between both of them using the FLASH HAL API. -

FLASH_EraseProgram How to configure and use the FLASH HAL API to erase and program the internal
Flash memory.

FLASH_EraseProgram_TrustZone How to configure and use the FLASH HAL API to erase and program the internal
Flash memory when TrustZone security is activated (Option bit TZEN=1). -

TrustZone

-

FLASH_WriteProtection How to configure and use the FLASH HAL API to enable and disable the write
protection of the internal Flash memory.

A
N

5424 - R
ev 3

page 7/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

FMC

FMC_SRAM How to configure the FMC controller to access the IS61WV51216BLL SRAM
memory. - -

FMC_SRAM_DataMemory How to configure the FMC controller to access the IS61WV51216BLL SRAM
memory including heap and stack. - -

FMC_SRAM_TrustZone
How to configure the FMC controller to access the IS61WV51216BLL SRAM
memory split between secure and non-secure applications when TrustZone
security is activated (Option bit TZEN=1). .

-

TrustZone

-

GPIO

GPIO_EXTI How to configure external interrupt lines. -

GPIO_IOToggle How to configure and use GPIOs through the HAL API.

GPIO_IOToggle_TrustZone How to use HAL GPIO to toggle secure and unsecured IOs when TrustZone
security is activated (Option bit TZEN=1).

TrustZone

-

TrustZone

GTZC

GTZC_MPCWM_IllegalAccess_TrustZone How to use GTZC MPCWM-TZIC to build any example when TrustZone security is
activated (Option bit TZEN=1). -

TrustZone

-

GTZC_TZSC_MPCBB_TrustZone How to use HAL GTZC MPCBB to build any example with SecureFault detection
when TrustZone security is activated (Option bit TZEN=1).

TrustZone

-

TrustZone

HAL

HAL_RegisterCallbacks_TIM
Register a callback function called every second based on TIM peripheral
configuration to generate a time base of one second with the corresponding
interrupt request.

- - X

HAL_TimeBase_RTC_WKUP How to customize HAL using RTC wake‑up as the main source of the time base,
instead of Systick. - -

HAL_TimeBase_TIM How to customize HAL using a general-purpose timer as the main source of the
time base instead of Systick.

HASH

HASH_HMAC_SHA1MD5 How to use the HASH peripheral to hash data with HMAC SHA-1 and HMAC MD5
algorithms. - -

HASH_HMAC_SHA224SHA1_DMA_Suspension How to suspend the HMAC digest computation when data are fed to the HASH unit
with DMA. - -

A
N

5424 - R
ev 3

page 8/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

HASH

HASH_HMAC_SHA224SHA256_MultiBuffer_DMA
How to handle text messages larger than the maximum DMA transfer length. The
input data are split into several buffers with sizes within the DMA limit, then fed
successively to the HASH peripheral.

- -

HASH_HMAC_SHA256MD5_IT_Suspension How to suspend the HMAC digest computation when data are fed in interrupt
mode. - -

HASH_SHA1MD5 This example shows how to use the HASH peripheral to hash data with SHA-1 and
MD5 algorithms. - -

HASH_SHA1MD5_DMA How to use the HASH peripheral to hash data using SHA-1 and MD5 algorithms
when data are fed to the HASH unit with DMA. - -

HASH_SHA1SHA224_IT_Suspension How to suspend the HASH peripheral when data are fed in interrupt mode. - -

HASH_SHA1_DMA_TrustZone How to use a secure HASH SHA-1 computation service based on a secure DMA
channel when TrustZone security is activated (Option bit TZEN=1). - -

TrustZone

HASH_SHA224SHA256_DMA How to use the HASH peripheral to hash data with SHA224 and SHA256
algorithms. - -

HASH_SHA256MD5_DMA_Suspension How to suspend the HASH peripheral when data are fed to the HASH unit with
DMA. - -

I2C

I2C_TwoBoards_AdvComIT How to handle I2C data buffer transmission/reception between two boards, using
an interrupt.

- -

I2C_TwoBoards_ComDMA How to handle I2C data buffer transmission/reception between two boards, via
DMA.

- -

I2C_TwoBoards_ComIT How to handle I2C data buffer transmission/reception between two boards, using
an interrupt.

- -

I2C_TwoBoards_ComPolling How to handle I2C data buffer transmission/reception between two boards, in
polling mode.

- -

I2C_TwoBoards_RestartAdvComIT How to perform multiple I2C data buffer transmission/reception between two
boards, in interrupt mode and with restart condition.

- -

I2C_TwoBoards_RestartComIT How to handle single I2C data buffer transmission/reception between two boards,
in interrupt mode and with restart condition.

- -

A
N

5424 - R
ev 3

page 9/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

I2C I2C_WakeUpFromStop2 How to handle I2C data buffer transmission/reception between two boards, using
an interrupt when the device is in Stop 2 mode.

- -

ICACHE ICACHE_SRAM_Memory_Remap How to execute code from an external SRAM remapped region configured through
the ICACHE HAL driver. - -

IWDG

IWDG_Reset How to handle the IWDG reload counter and simulate a software fault that
generates an MCU IWDG reset after a preset lap of time. -

IWDG_WindowMode How to periodically update the IWDG reload counter and simulate a software fault
that generates an MCU IWDG reset after a preset lap of time. - -

LPTIM

LPTIM_PWMExternalClock
How to configure and use, through the HAL LPTIM API, the LPTIM peripheral
using an external counter clock, to generate a PWM signal at the lowest power
consumption.

- -

LPTIM_PWM_LSE How to configure and use, through the HAL LPTIM API, the LPTIM peripheral
using LSE as a counter clock, to generate a PWM signal, in a low-power mode. - -

LPTIM_PulseCounter How to configure and use, through the LPTIM HAL API, the LPTIM peripheral to
count pulses.

LPTIM_Timeout How to implement, through the HAL LPTIM API, a timeout with the LPTIMER
peripheral, to wake up the system from a low-power mode. -

OCTOSPI

OSPI_NOR_ExecuteInPlace How to execute code from an OSPI memory after code loading. -

OSPI_NOR_ExecuteInPlace_DTR How to execute code from an OSPI memory after code loading. -

OSPI_NOR_MemoryMapped How to use an OSPI NOR memory in memory-mapped mode. -

OSPI_NOR_MemoryMapped_DTR How to use an OSPI NOR memory in memory-mapped mode. -

OSPI_NOR_ReadWrite_DMA How to use an OSPI NOR memory in DMA mode. -

OSPI_NOR_ReadWrite_DMA_DTR How to use an OSPI NOR memory in DMA mode. -

OSPI_RAM_ExecuteInPlace How to execute code from an OSPI memory after code loading. - -

A
N

5424 - R
ev 3

page 10/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

OCTOSPI

OSPI_RAM_MemoryMapped How to use an OSPI HyperRAM memory in memory-mapped mode. - -

OSPI_RAM_ReadWrite_DMA How to use an OSPI HyperRAM memory in DMA mode. - -

OPAMP

OPAMP_PGA How to configure the OPAMP peripheral in PGA mode (OPAMP programmable
gain). - -

OPAMP_STANDALONE How to configure the OPAMP peripheral in standalone mode. The gain in this
mode can be set externally (External gain setting mode). - -

OTFDEC

OTFDEC_Ciphering_TrustZone
How to use a secure OTFDEC (On-The-Fly Decoder EnCoder) when TrustZone
security is activated (Option bit TZEN=1) to cipher data from the secure side and to
allow to decipher from non-secure without any key exchange. TrustZone

- -

OTFDEC_DataDecrypt How to decrypt data located on the OCTOSPI external flash using the OTFDEC
peripheral. - -

OTFDEC_ExecutingCryptedInstruction How to execute ciphered instructions stored in external NOR flash using the
OTFDEC peripheral. - -

PKA

PKA_ECCscalarMultiplication How to use the PKA peripheral to execute ECC scalar multiplication. This allows
generating a public key from a private key. - -

PKA_ECCscalarMultiplication_IT How to use the PKA peripheral to execute ECC scalar multiplication. This allows
generating a public key from a private key in interrupt mode. - -

PKA_ECDSA_Sign How to compute a signed message regarding the Elliptic curve digital signature
algorithm (ECDSA). - -

PKA_ECDSA_Sign_IT How to compute a signed message regarding the Elliptic curve digital signature
algorithm (ECDSA) in interrupt mode. - -

PKA_ECDSA_Verify How to determine if a given signature is valid regarding the Elliptic curve digital
signature algorithm (ECDSA). - -

PKA_ECDSA_Verify_IT How to determine if a given signature is valid regarding the Elliptic curve digital
signature algorithm (ECDSA) in interrupt mode. - -

PKA_ModularExponentiation How to use the PKA peripheral to execute modular exponentiation. This allows
ciphering/deciphering a text. - -

A
N

5424 - R
ev 3

page 11/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

PKA

PKA_ModularExponentiationCRT How to compute the Chinese Remainder Theorem (CRT) optimization. - -

PKA_ModularExponentiationCRT_IT How to compute the Chinese Remainder Theorem (CRT) optimization in interrupt
mode. - -

PKA_ModularExponentiation_IT How to use the PKA peripheral to execute modular exponentiation. This allows
ciphering/deciphering a text in interrupt mode. - -

PKA_PointCheck How to use the PKA peripheral to determine if a point is on a curve. This allows
validating an external public key. - -

PKA_PointCheck_IT How to use the PKA peripheral to determine if a point is on a curve. This allows
validating an external public key. - -

PWR

PWR_LPRUN How to enter and exit the Low-power run mode. -

PWR_LPRUN_SRAM1 How to enter and exit the Low-power run mode. - -

PWR_LPSLEEP How to enter the Low-power sleep mode and wake up from this mode by using an
interrupt. -

PWR_PVD How to configure the programmable voltage detector by using an external interrupt
line. External DC supply must be used to supply Vdd. - -

PWR_RUN_SMPS How to use the SMPS step‑down converter in RUN mode. - -

PWR_SLEEP How to enter the Sleep mode and wake up from this mode by using an interrupt. -

PWR_STANDBY How to enter the Standby mode and wake up from this mode by using an external
reset or the WKUP pin. -

PWR_STOP1 How to enter the Stop 1 mode and wake up from this mode by using an interrupt. - -

PWR_STOP1_RTC How to enter the Stop 1 mode and wake up from this mode by using an interrupt
from the RTC wake‑up timer. - -

PWR_STOP2 How to enter the Stop 2 mode and wake up from this mode by using an external
reset or wake‑up interrupt. - -

A
N

5424 - R
ev 3

page 12/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

PWR PWR_STOP2_RTC How to enter the Stop 2 mode and wake up from this mode by using an interrupt
from the RTC wake‑up timer. - -

RCC

RCC_CRS_Synchronization_IT Configuration of the clock recovery service (CRS) in Interrupt mode, using the
RCC HAL API. - -

RCC_CRS_Synchronization_Polling Configuration of the clock recovery service (CRS) in Polling mode, using the RCC
HAL API. - -

RCC_ClockConfig Configuration of the system clock (SYSCLK) and modification of the clock settings
in Run mode, using the RCC HAL API.

RCC_ClockConfig_TrustZone
Configuration of the system clock (SYSCLK) in Run mode from the secure
application upon request from the non-secure application, using the RCC HAL API
when TrustZone security is activated (Option bit TZEN=1). TrustZone

-

TrustZone

RCC_LSEConfig Enabling/disabling of the low-speed external (LSE) RC oscillator (About 32 KHz) at
run time, using the RCC HAL API. - -

RCC_LSIConfig Enabling/disabling of the low-speed internal (LSI) RC oscillator (About 32 KHz) at
run time, using the RCC HAL API. - -

RNG

RNG_MultiRNG Configuration of the RNG using the HAL API. This example uses the RNG to
generate 32-bit long random numbers.

RNG_MultiRNG_IT Configuration of the RNG using the HAL API. This example uses RNG interrupts to
generate 32-bit long random numbers. - -

RTC

RTC_ActiveTamper Configuration of the active tamper detection with backup registers erase. -

RTC_Alarm Configuration and generation of an RTC alarm using the RTC HAL API.

RTC_Calendar Configuration of the calendar using the RTC HAL API. - -

RTC_LSI Use of the LSI clock source autocalibration to get a precise RTC clock. - -

RTC_LowPower_STANDBY_WUT How to periodically enter and wake up from STANDBY mode thanks to the RTC
Wake-Up Timer (WUT).

A
N

5424 - R
ev 3

page 13/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

RTC

RTC_Tamper Configuration of the tamper detection with backup registers erase. - -

RTC_TimeStamp Configuration of the RTC HAL API to demonstrate the timestamp feature. -

RTC_TrustZone
How to configure the TrustZone-aware RTC peripheral when TrustZone security is
activated (Option bit TZEN=1): some features of the RTC can be secure while the
others are non-secure.

- -

TrustZone

SAI SAI_AudioPlay Use of the SAI HAL API to play an audio file in DMA circular mode and handle the
buffer update. -

SPI

SPI_FullDuplex_ComDMA_Master Data buffer transmission/reception between two boards via SPI using DMA. - -

SPI_FullDuplex_ComDMA_Slave Data buffer transmission/reception between two boards via SPI using DMA. - -

SPI_FullDuplex_ComIT_Master Data buffer transmission/reception between two boards via SPI using Interrupt
mode. - -

SPI_FullDuplex_ComIT_Slave Data buffer transmission/reception between two boards via SPI using Interrupt
mode. - -

SPI_FullDuplex_ComPolling_Master Data buffer transmission/reception between two boards via SPI using Polling
mode. - -

SPI_FullDuplex_ComPolling_Slave Data buffer transmission/reception between two boards via SPI using Polling
mode. - -

TIM

TIM_ExtTriggerSynchro This example shows how to synchronize TIM peripherals in cascade mode with an
external trigger. - -

TIM_InputCapture How to use the TIM peripheral to measure an external signal frequency. - -

TIM_OCActive
Configuration of the TIM peripheral in Output or Compare or Active mode (When
the counter matches the capture/compare register, the corresponding output pin is
set to its active state).

- -

TIM_OCInactive Configuration of the TIM peripheral in Output Compare Inactive mode with the
corresponding Interrupt requests for each channel. - -

A
N

5424 - R
ev 3

page 14/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples

TIM

TIM_OCToggle Configuration of the TIM peripheral to generate four different signals at four
different frequencies. - -

TIM_PWMInput How to use the TIM peripheral to measure the frequency and duty cycle of an
external signal. - -

TIM_PWMOutput This example shows how to configure the TIM peripheral in PWM (Pulse Width
Modulation) mode.

UART

LPUART_WakeUpFromStop Configuration of an LPUART to wake up the MCU from the Stop mode when a
given stimulus is received.

UART_HyperTerminal_DMA UART transmission (Transmit/receive) in DMA mode between a board and a
HyperTerminal PC application. - -

UART_HyperTerminal_IT UART transmission (Transmit/receive) in Interrupt mode between a board and a
HyperTerminal PC application. - -

UART_Printf Re-routing of the C library printf function to the UART. - -

UART_ReceptionToIdle_CircularDMA How to use the HAL UART API for the reception to the IDLE event in circular DMA
mode. - -

UART_Trace_TrustZone How to use UART to define a secure trace communication path when TrustZone
security is activated (Option bit TZEN=1).

TrustZone

- -

UART_TwoBoards_ComDMA UART transmission (Transmit/receive) in DMA mode between two boards. - -

UART_TwoBoards_ComIT UART transmission (Transmit/receive) in Interrupt mode between two boards. - -

UART_TwoBoards_ComPolling UART transmission (Transmit/receive) in Polling mode between two boards. - -

UART_WakeUpFromStopUsingFIFO Configuration of a UART to wake up the MCU from the Stop mode with a FIFO
level when a given stimulus is received. -

USART USART_SlaveMode This example describes USART-SPI communication (Transmit/receive) between
two boards where the USART is configured as a slave. -

A
N

5424 - R
ev 3

page 15/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples
WWDG WWDG_Example

Configuration of the HAL API to periodically update the WWDG counter and
simulate a software fault that generates an MCU WWDG reset when a predefined
time period has elapsed.

Total number of examples: 213 65 51 97

Examples_LL

ADC

ADC_AnalogWatchdog_Init
How to use an ADC peripheral with an ADC analog watchdog to monitor a
channel and detect when the corresponding conversion data is outside the window
thresholds.

- -

ADC_ContinuousConversion_TriggerSW How to use an ADC peripheral to perform continuous ADC conversions on a
channel, from a software start. - - X

ADC_ContinuousConversion_TriggerSW_Init How to use an ADC peripheral to perform continuous ADC conversions on a
channel, from a software start. - -

ADC_ContinuousConversion_TriggerSW_LowPow
er_Init How to use an ADC peripheral with ADC low-power features. - -

ADC_SingleConversion_TriggerSW_DMA_Init
How to use an ADC peripheral to perform a single ADC conversion on a channel,
at each software start. This example uses the DMA programming model (For
polling or interrupt programming models, refer to other examples).

- -

ADC_SingleConversion_TriggerSW_IT_Init
How to use an ADC peripheral to perform a single ADC conversion on a channel,
at each software start. This example uses the interrupt programming model (For
polling or DMA programming models, refer to other examples).

- -

ADC_SingleConversion_TriggerSW_Init
How to use an ADC peripheral to perform a single ADC conversion on a channel
at each software start. This example uses the polling programming model (For
interrupt or DMA programming models, refer to other examples).

- -

ADC_SingleConversion_TriggerTimer_DMA_Init
How to use an ADC peripheral to perform a single ADC conversion on a channel at
each trigger event from a timer. Converted data is indefinitely transferred by DMA
into a table (Circular mode).

- -

COMP

COMP_CompareGpioVsVrefInt_IT

How to use a comparator peripheral to compare a voltage level applied on a GPIO
pin to the internal voltage reference (VREFINT), in interrupt mode. This example
is based on the STM32L5xx COMP LL API. The peripheral initialization uses LL
unitary service functions for optimization purposes (Performance and size).

- -

COMP_CompareGpioVsVrefInt_IT_Init

How to use a comparator peripheral to compare a voltage level applied on a GPIO
pin to the internal voltage reference (VREFINT), in interrupt mode. This example is
based on the STM32L5xx COMP LL API. The peripheral initialization uses the LL
initialization function to demonstrate LL init usage.

- -

COMP_CompareGpioVsVrefInt_OutputGpio_Init
How to use a comparator peripheral to compare a voltage level applied on a
GPIO pin to the internal voltage reference (VREFINT). The comparator output is
connected to a GPIO. This example is based on the STM32L5xx COMP LL API.

- -

COMP_CompareGpioVsVrefInt_Window_IT_Init

How to use a pair of comparator peripherals to compare a voltage level applied
on a GPIO pin to two thresholds: the internal voltage reference (VREFINT) and
a fraction of the internal voltage reference (VREFINT/2), in interrupt mode. This
example is based on the STM32L5xx COMP LL API. The peripheral initialization
uses LL unitary service functions for optimization purposes (Performance and
size).

- -

A
N

5424 - R
ev 3

page 16/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples_LL

CRC

CRC_CalculateAndCheck

How to configure the CRC calculation unit to compute a CRC code for a given data
buffer, based on a fixed generator polynomial (Default value 0x4C11DB7). The
peripheral initialization is done using LL unitary service functions for optimization
purposes (Performance and size).

- -

CRC_UserDefinedPolynomial

How to configure and use the CRC calculation unit to compute an 8-bit CRC
code for a given data buffer, based on a user-defined generating polynomial. The
peripheral initialization is done using LL unitary service functions for optimization
purposes (Performance and size).

- -

DAC

DAC_GenerateConstantSignal_TriggerSW_Init

How to use the DAC peripheral to generate a constant voltage signal. This
example is based on the STM32L5xx DAC LL API. The peripheral initialization
uses LL unitary service functions for optimization purposes (Performance and
size).

- -

DAC_GenerateConstantSignal_TriggerSW_LP_Init

How to use the DAC peripheral to generate a constant voltage signal with the
DAC low-power feature sample-and-hold. To be effective, a capacitor must be
connected to the DAC channel output and the sample-and-hold timings must be
tuned depending on the capacitor value. This example is based on the STM32L5xx
DAC LL API. The peripheral initialization uses LL unitary service functions for
optimization purposes (Performance and size).

- -

DMA

DMA_CopyFromFlashToMemory
How to use a DMA channel to transfer a word data buffer from Flash memory to
embedded SRAM. The peripheral initialization uses LL unitary service functions for
optimization purposes (Performance and size).

- - X

DMA_CopyFromFlashToMemory_Init
How to use a DMA channel to transfer a word data buffer from Flash memory
to embedded SRAM. The peripheral initialization uses LL initialization functions to
demonstrate LL init usage.

- -

EXTI EXTI_ToggleLedOnIT_Init

How to configure the EXTI and use GPIOs to toggle the user LEDs available
on the board when a user button is pressed. This example is based on the
STM32L5xx LL API. The peripheral initialization uses LL initialization functions to
demonstrate LL init usage.

- -

GPIO

GPIO_InfiniteLedToggling
How to configure and use GPIOs to toggle the on-board user LEDs every 250 ms.
This example is based on the STM32L5xx LL API. The peripheral is initialized with
LL unitary service functions to optimize for performance and size.

- - X

GPIO_InfiniteLedToggling_Init
How to configure and use GPIOs to toggle the on-board user LEDs every 250 ms.
This example is based on the STM32L5xx LL API. The peripheral is initialized with
the LL initialization function to demonstrate LL init usage.

- -

I2C

I2C_OneBoard_Communication_PollingAndIT_Init
How to transmit data bytes from an I2C master device using polling mode to an
I2C slave device using interrupt mode. The peripheral is initialized with LL unitary
service functions to optimize for performance and size.

- -

I2C_TwoBoards_WakeUpFromStop_IT_Init
How to handle the reception of a data byte from an I2C slave device in Stop
1 mode by an I2C master device, both using interrupt mode. The peripheral is
initialized with LL unitary service functions to optimize for performance and size.

- -

IWDG IWDG_RefreshUntilUserEvent
How to configure the IWDG peripheral to ensure periodical counter update and
generate an MCU IWDG reset when a User push-button is pressed. The peripheral
is initialized with LL unitary service functions to optimize for performance and size.

- - X

A
N

5424 - R
ev 3

page 17/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples_LL

IWDG IWDG_RefreshUntilUserEvent_Init
How to configure the IWDG peripheral to ensure periodical counter update and
generate an MCU IWDG reset when a User push-button is pressed. The peripheral
is initialized with LL unitary service functions to optimize for performance and size.

- -

LPTIM

LPTIM_PulseCounter

How to use the LPTIM peripheral in counter mode to generate a PWM output
signal and update its duty cycle. This example is based on the STM32L5xx LPTIM
LL API. The peripheral is initialized with LL unitary service functions to optimize for
performance and size.

- - X

LPTIM_PulseCounter_Init

How to use the LPTIM peripheral in counter mode to generate a PWM output
signal and update its duty cycle. This example is based on the STM32L5xx LPTIM
LL API. The peripheral is initialized with the LL initialization function to demonstrate
LL init usage.

- -

LPUART LPUART_WakeUpFromStop2_Init

Configuration of GPIO and LPUART peripherals to allow characters received on
LPUART_RX pin to wake up the MCU from low-power mode. This example is
based on the LPUART LL API. The peripheral initialization uses the LL initialization
function to demonstrate LL init usage.

- -

PKA

PKA_ECDSA_Sign How to use the low-layer PKA API to generate an ECDSA signature. - -

PKA_ModularExponentiation How to use the low-layer PKA API to execute RSA modular exponentiation. - -

PWR

PWR_EnterStandbyMode How to enter the Standby mode and wake up from this mode by using an external
reset or a wake‑up interrupt. - -

PWR_EnterStopMode How to enter the Stop 1 mode. - -

RCC

RCC_OutputSystemClockOnMCO Configuration of MCO pin (PA8) to output the system clock. - -

RCC_UseHSI_PLLasSystemClock Modification of the PLL parameters in run time. - -

RTC

RTC_Alarm
Configuration of the RTC LL API to configure and generate an alarm using the
RTC peripheral. The peripheral initialization uses LL unitary service functions for
optimization purposes (Performance and size).

- - X

RTC_ExitStandbyWithWakeUpTimer_Init How to periodically enter and wake up from STANDBY mode thanks to the RTC
Wake-Up Timer (WUT). - -

RTC_TimeStamp_Init
Configuration of the Timestamp using the RTC LL API. The peripheral initialization
uses LL unitary service functions for optimization purposes (Performance and
size).

- -

SPI SPI_TwoBoards_FullDuplex_IT_Master_Init
Data buffer transmission and reception via SPI using Interrupt mode. This example
is based on the STM32L5xx SPI LL API. The peripheral initialization uses LL
unitary service functions for optimization purposes (Performance and size).

- -

A
N

5424 - R
ev 3

page 18/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples_LL

SPI SPI_TwoBoards_FullDuplex_IT_Slave_Init
Data buffer transmission and reception via SPI using Interrupt mode. This example
is based on the STM32L5xx SPI LL API. The peripheral initialization uses LL
unitary service functions for optimization purposes (Performance and size).

- -

TIM

TIM_BreakAndDeadtime
Configuration of the TIM peripheral to generate three center-aligned PWM and
complementary PWM signals, insert a defined deadtime value, use the break
feature, and lock the break and dead-time configuration.

- - X

TIM_BreakAndDeadtime_Init
Configuration of the TIM peripheral to generate three center-aligned PWM and
complementary PWM signals, insert a defined deadtime value, use the break
feature, and lock the break and dead-time configuration.

- -

TIM_DMA

Use of the DMA with a timer update request to transfer data from memory to
Timer Capture Compare Register 3 (TIMx_CCR3). This example is based on
the STM32L5xx TIM LL API. The peripheral initialization uses LL unitary service
functions for optimization purposes (Performance and size).

- - X

TIM_DMA_Init

Use of the DMA with a timer update request to transfer data from memory to
Timer Capture Compare Register 3 (TIMx_CCR3). This example is based on
the STM32L5xx TIM LL API. The peripheral initialization uses LL unitary service
functions for optimization purposes (Performance and size).

- -

TIM_InputCapture

Use of the TIM peripheral to measure a periodic signal frequency provided either
by an external signal generator or by another timer instance. This example is
based on the STM32L5xx TIM LL API. The peripheral initialization uses LL unitary
service functions for optimization purposes (Performance and size).

- - X

TIM_InputCapture_Init

Use of the TIM peripheral to measure a periodic signal frequency provided either
by an external signal generator or by another timer instance. This example is
based on the STM32L5xx TIM LL API. The peripheral initialization uses LL unitary
service functions for optimization purposes (Performance and size).

- -

TIM_OnePulse_Init

Configuration of a timer to generate a positive pulse in Output Compare mode
with a length of tPULSE and after a delay of tDELAY. This example is based on
the STM32L5xx TIM LL API. The peripheral initialization uses the LL initialization
function to demonstrate LL Init.

- -

TIM_OutputCompare

Configuration of the TIM peripheral to generate an output waveform in different
output compare modes. This example is based on the STM32L5xx TIM LL API.
The peripheral initialization uses LL unitary service functions for optimization
purposes (Performance and size).

- - X

TIM_OutputCompare_Init

Configuration of the TIM peripheral to generate an output waveform in different
output compare modes. This example is based on the STM32L5xx TIM LL API.
The peripheral initialization uses LL unitary service functions for optimization
purposes (Performance and size).

- -

TIM_PWMOutput

Use of a timer peripheral to generate a PWM output signal and update the
PWM duty cycle. This example is based on the STM32L5xx TIM LL API. The
peripheral initialization uses LL unitary service functions for optimization purposes
(Performance and size).

- - X

TIM_PWMOutput_Init
Use of a timer peripheral to generate a PWM output signal and update the PWM
duty cycle. This example is based on the STM32L5xx TIM LL API. The peripheral
initialization uses the LL initialization function to demonstrate LL Init.

- -

A
N

5424 - R
ev 3

page 19/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples_LL

TIM

TIM_TimeBase
Configuration of the TIM peripheral to generate a time base. This example is based
on the STM32L5xx TIM LL API. The peripheral initialization uses LL unitary service
functions for optimization purposes (Performance and size).

- - X

TIM_TimeBase_Init
Configuration of the TIM peripheral to generate a time base. This example is based
on the STM32L5xx TIM LL API. The peripheral initialization uses LL unitary service
functions for optimization purposes (Performance and size).

- -

USART

USART_Communication_Rx_IT

Configuration of GPIO and USART peripherals to receive characters from a
HyperTerminal (PC) in Asynchronous mode using an interrupt. The peripheral
initialization uses LL unitary service functions for optimization purposes
(Performance and size).

- - X

USART_Communication_Rx_IT_Continuous_Init

This example shows how to configure GPIO and USART peripheral for
continuously receiving characters from HyperTerminal (PC) in Asynchronous mode
using Interrupt mode. Peripheral initialization is done using LL unitary services
functions for optimization purposes (Performance and size).

- -

USART_Communication_Rx_IT_Continuous_VCP
_Init

This example shows how to configure GPIO and LPUART peripheral for
continuously receiving characters from HyperTerminal (PC) in Asynchronous mode
using Interrupt mode. Peripheral initialization is done using LL unitary services
functions for optimization purposes (Performance and size).

- -

USART_Communication_Rx_IT_Init
Configuration of GPIO and USART peripherals to receive characters from a
HyperTerminal (PC) in Asynchronous mode using an interrupt. The peripheral
initialization uses the LL initialization function to demonstrate LL init.

- - X

USART_Communication_TxRx_DMA Configuration of GPIO and USART peripherals to send characters asynchronously
to/from a HyperTerminal (PC) in DMA mode. - - X

USART_Communication_TxRx_DMA_Init

This example shows how to configure GPIO and USART peripheral to send
characters asynchronously to/from a HyperTerminal (PC) in DMA mode. This
example is based on STM32L5xx USART LL API. Peripheral initialization is done
using LL unitary services functions for optimization purposes (Performance and
size).

- -

USART_Communication_Tx_IT_Init

This example shows how to configure GPIO and USART peripheral to send
characters asynchronously to HyperTerminal (PC) in Interrupt mode. This example
is based on STM32L5xx USART LL API. Peripheral initialization is done using LL
unitary services functions for optimization purposes (Performance and size).

- -

USART_Communication_Tx_IT_VCP_Init

This example shows how to configure GPIO and LPUART peripheral to send
characters asynchronously to HyperTerminal (PC) in Interrupt mode. This example
is based on STM32L5xx LPUART LL API. Peripheral initialization is done using LL
unitary services functions for optimization purposes (Performance and size).

- -

USART_Communication_Tx_Init

This example shows how to configure GPIO and USART peripherals to send
characters asynchronously to a HyperTerminal (PC) in Polling mode. If the transfer
could not be completed within the allocated time, a timeout allows exiting from
the sequence with a Timeout error code. This example is based on STM32L5xx
USART LL API. Peripheral initialization is done using LL unitary services functions
for optimization purposes (Performance and size).

- -

A
N

5424 - R
ev 3

page 20/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples_LL

USART

USART_Communication_Tx_VCP_Init

This example shows how to configure GPIO and LPUART peripherals to send
characters asynchronously to a HyperTerminal (PC) in Polling mode. If the transfer
could not be completed within the allocated time, a timeout allows exiting from
the sequence with a Timeout error code. This example is based on STM32L5xx
LPUART LL API. Peripheral initialization is done using LL unitary services
functions for optimization purposes (Performance and size).

- -

USART_HardwareFlowControl_Init

Configuration of GPIO and peripheral to receive characters asynchronously
from a HyperTerminal (PC) in Interrupt mode with the Hardware Flow Control
feature enabled. This example is based on STM32L5xx USART LL API. The
peripheral initialization uses LL unitary service functions for optimization purposes
(Performance and size).

- -

USART_SyncCommunication_FullDuplex_DMA_In
it

Configuration of GPIO, USART, DMA, and SPI peripherals to transmit bytes
between a USART and an SPI (In slave mode) in DMA mode. This example is
based on the STM32L5xx USART LL API. The peripheral initialization uses LL
unitary service functions for optimization purposes (Performance and size).

- -

USART_SyncCommunication_FullDuplex_IT_Init

Configuration of GPIO, USART, DMA, and SPI peripherals to transmit bytes
between a USART and an SPI (In slave mode) in Interrupt mode. This example
is based on the STM32L5xx USART LL API (The SPI uses the DMA to receive/
transmit characters sent from/received by the USART). The peripheral initialization
uses LL unitary service functions for optimization purposes (Performance and
size).

- -

USART_WakeUpFromStop1_Init Configuration of GPIO and USART3 peripherals to allow the characters received
on USART_RX pin to wake up the MCU from low-power mode. - -

UTILS

UTILS_ConfigureSystemClock Use of UTILS LL API to configure the system clock using PLL with HSI as source
clock. - -

UTILS_ReadDeviceInfo This example reads the UID, the Device ID, and the Revision ID, and saves them
into a global information buffer. - -

WWDG WWDG_RefreshUntilUserEvent_Init

Configuration of the WWDG to periodically update the counter and generate an
MCU WWDG reset when a user button is pressed. The peripheral initialization
uses LL unitary service functions for optimization purposes (Performance and
size).

- -

Total number of examples_II: 69 2 0 67

Examples_MIX

ADC ADC_SingleConversion_TriggerSW_IT

How to use the ADC to perform a single ADC channel conversion at each software
start. This example uses the interrupt programming model (For polling and DMA
programming models, refer to other examples). It is based on the STM32L5xx ADC
HAL and LL API. The LL API is used for performance improvement.

- -

CRC CRC_PolynomialUpdate How to use the CRC peripheral through the STM32L5xx CRC HAL and LL API. - -

DMA DMA_FLASHToRAM
How to use a DMA to transfer a word data buffer from Flash memory to embedded
SRAM through the STM32L5xx DMA HAL and LL API. The LL API is used for
performance improvement.

- -

A
N

5424 - R
ev 3

page 21/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Examples_MIX

PWR PWR_STOP1
How to enter the STOP 1 mode and wake up from this mode by using an external
reset or a wake‑up interrupt (All the RCC function calls use RCC LL API for
minimizing footprint and maximizing performance).

- -

SPI

SPI_FullDuplex_ComPolling_Master Data buffer transmission/reception between two boards via SPI using Polling
mode. - -

SPI_FullDuplex_ComPolling_Slave Data buffer transmission/reception between two boards via SPI using Polling
mode. - -

SPI_HalfDuplex_ComPollingIT_Master Data buffer transmission/reception between two boards via SPI using Polling (LL
driver) and Interrupt modes (HAL driver). - -

SPI_HalfDuplex_ComPollingIT_Slave Data buffer transmission/reception between two boards via SPI using Polling (LL
driver) and Interrupt modes (HAL driver). - -

TIM TIM_PWMInput Use of the TIM peripheral to measure an external signal frequency and duty cycle. - -

UART

UART_HyperTerminal_IT

Use of a UART to transmit data (Transmit/receive) between a board and a
HyperTerminal PC application in Interrupt mode. This example describes how to
use the USART peripheral through the STM32L5xx UART HAL and LL API, which
is used for performance improvement.

- -

UART_HyperTerminal_TxPolling_RxIT

Use of a UART to transmit data (Transmit/receive) between a board and a
HyperTerminal PC application both in Polling and Interrupt modes. This example
describes how to use the USART peripheral through the STM32L5xx UART HAL
and LL API, the LL API used for performance improvement.

- -

Total number of examples_mix: 11 0 0 11

Applications

-

SBSFU

The SBSFU provides a Root of Trust solution including Secure Boot and Secure
Firmware Update functionalities that are used before executing the application and
provides an example of a secure service (GPIO toggle) that is isolated from the
non-secure application but can be used by the non-secure application at run-time.

- - X
TrustZone

TFM

The TFM provides a Root of Trust solution including Secure Boot and Secure
Firmware Update functionalities that are used before executing the application and
provides TFM secure services that are isolated from the non-secure application but
can be used by the non-secure application at run-time.

X
TrustZone

- -

BLE HeartRate This application shows how to use the BLE component for the HeartRate profile
application. X - -

FatFs

FatFs_MultiDrives
How to use STM32Cube firmware with FatFs middleware component as a generic
FAT file system module. This example develops an application that exploits FatFs
features, with multidrive (SRAM, microSD™) configurations.

- X -

FatFs_RAMDisk

This application describes how to use STM32Cube firmware with FatFs
middleware component as a generic FAT file system module, to develop an
application exploiting FatFs offered features with a RAM disk (SRAM) drive
configuration.

- X X

A
N

5424 - R
ev 3

page 22/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Applications

FatFs

FatFs_RAMDisk_RTOS

This application describes how to use STM32Cube firmware with FatFs
middleware component as a generic FAT file system module. This example
develops an application exploiting FatFs features with a RAM disk (SRAM) drive‑in
RTOS mode configuration.

- X -

FatFs_uSD_DMA
How to use STM32Cube firmware with FatFs middleware component as a generic
FAT file system module. This example develops an application that exploits FatFs
features to configure a microSD drive.

- X -

FatFs_uSD_RTOS

This application describes how to use STM32Cube firmware with FatFs
middleware component as a generic FAT file system module, to develop an
application exploiting FatFs offered features with the microSD™ disk drive
configuration.

- X -

FatFs_uSD_Standalone
How to use STM32Cube firmware with FatFs middleware component as a generic
FAT file system module. This example develops an application that exploits FatFs
features to configure a microSD drive.

X X -

FatFs_uSD_TrustZone How to use FatFs stack with enabled TrustZone feature (TZEN=1). X
TrustZone

X
TrustZone

-

FreeRTOS

FreeRTOS_MPU How to use the MPU feature of FreeRTOS. - X X

FreeRTOS_Mutexes How to use mutexes with CMSIS RTOS API.

FreeRTOS_Queues How to use message queues with CMSIS RTOS API. - -

FreeRTOS_SecureIOToggle_TrustZone How to use FreeRTOS when the TrustZone feature is enabled (TZEN=1).

TrustZone TrustZone TrustZone

FreeRTOS_Semaphore How to use semaphores with CMSIS RTOS API. - -

FreeRTOS_SemaphoreFromISR How to use semaphore from ISR with CMSIS RTOS API. - -

FreeRTOS_ThreadCreation How to implement thread creation using CMSIS RTOS API.

FreeRTOS_Timers How to use timers of CMSIS RTOS API.
-

A
N

5424 - R
ev 3

page 23/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Level Module Name Project Name Description

ST
M

32
L5

62
E-

D
K

(1
)

ST
M

32
L5

52
E-

EV
(1

)

N
U

C
LE

O
-L

55
2Z

E-
Q

(1
)

Applications

TouchSensing TouchSensing_1touchkey Use of the STMTouch driver with 1 touch key sensor. - X -

USB-PD USB-PD_Consumer_1port How to create a simple type C Consumer.

USB_Device

AUDIO_Standalone This application shows how to use the implementation of the audio streaming (Out:
Speaker/Headset) capability on the STM32L5xx devices. - -

CDC_Standalone
This application describes how to use USB device application based on the Device
Communication Class (CDC) following the PSTN sub-protocol on the STM32L5xx
devices.

CustomHID_Standalone This application shows how to use the USB device application based on the
Custom HID Class on the STM32L5xx devices. - -

DFU_Standalone Compliant implementation of the Device Firmware Upgrade (DFU) capability to
program the embedded Flash memory through the USB peripheral.

HID_Standalone Use of the USB device application based on the Human Interface (HID).

MSC_Standalone This application shows how to use the USB device application based on the Mass
Storage Class (MSC) on the STM32L5xx devices. -

mbedTLS Crypto_Selftest
This application implements on STM32L562E-DK board a set of cryptographic
features through mbed TLS self‑test functions of individual mbed TLS components
selectively chosen in a single configuration file "mbedtls_config.h".

- -

Total number of applications: 48 14 20 14

Demonstrations
- Demo

The STM32Cube demonstration platform comes on top of the STM32Cube as a
firmware package that offers a full set of software components based on a modular
architecture. The STM32Cube demonstration platform is built around basic UI or
TouchGFX graphical interface. It is based on the STM32Cube HAL, BSP, and
several middleware components.

X X -

Total number of demonstrations: 2 1 1 0

Total number of projects: 352 85 75 192

1. STM32CubeMX-generated examples are highlighted with the STM32CubeMX icon. Other examples are marked with “x”. They are specific
TrustZone examples if marked as such.

A
N

5424 - R
ev 3

page 24/28

A
N

5424

https://www.st.com/en/product/stm32l562e-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/stm32l552e-ev?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424
https://www.st.com/en/product/nucleo-l552ze-q?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5424

Revision history

Table 2. Document revision history

Date Version Changes

14-Jan-2020 1 Initial release

11-Feb-2020 2 Updated Table 1. STM32CubeL5 firmware examples in line with
STM32CubeL5 firmware V1.2.0

10-Mar-2021 3 Updated Table 1. STM32CubeL5 firmware examples in line with
STM32CubeL5 firmware V1.4.0

AN5424

AN5424 - Rev 3 page 25/28

Contents

1 Reference documents .2

2 STM32CubeL5 examples. .3

Revision history .25

Contents .26

List of tables .27

AN5424
Contents

AN5424 - Rev 3 page 26/28

List of tables
Table 1. STM32CubeL5 firmware examples. 5
Table 2. Document revision history . 25

AN5424
List of tables

AN5424 - Rev 3 page 27/28

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

AN5424

AN5424 - Rev 3 page 28/28

http://www.st.com/trademarks

	Introduction
	1 Reference documents
	2 STM32CubeL5 examples
	Revision history
	Contents
	List of tables

