
Introduction

The BlueNRG‑LP, BlueNRG‑LPS, and STM32WB0 series devices are very low-power Bluetooth® Low Energy (BLE) single-
mode systems-on-chip, compliant with Bluetooth® specifications. The architecture core is a Cortex-M0+ 32-bits.

The BlueNRG‑LP, BlueNRG‑LPS, and STM32WB0 series devices are referred as the devices in this document.

This document describes the features and functionalities of the software module that manages the devices link controller timers.
A detailed description of the different hardware timers can be found in the radio controller reference manual.

The radio timer driver (also known as radio timer module) allows the application to program an event that can be related to a
wake-up of the device, a user timeout or a preconfigured radio transaction to be triggered.

Therefore, any Bluetooth® LE and radio proprietary application is based on the timer module library.

Getting started with BlueNRG‑LP/BlueNRG‑LPS/STM32WB0 MCUs radio timer
module

AN5469

Application note

AN5469 - Rev 3 - June 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

1 General information

The STM32WB0 series are Arm® Cortex® core-based microcontrollers.
For more information on Bluetooth®, refer to http://www.bluetooth.com.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5469
General information

AN5469 - Rev 3 page 2/16

http://www.bluetooth.com

2 Radio timer description

The radio timer driver of the BlueNRG‑LP and BlueNRG‑LPS SW package (STSW-BNRGLP-DK) consists of the
following files:
• rf_driver_hal_vtimer.c
• rf_driver_hal_vtimer.h
• rf_driver_ll_timer.c
• rf_driver_ll_timer.h
The radio timer driver of the STM32CubeWB0 SW package consists of the following files:
• stm32wb0x_hal_radio_timer.c
• stm32wb0x_hal_radio_timer.h
• stm32wb0x_ll_radio_timer.h
These files represent two layers that separate the application from the hardware.
The first layer abstracts the hardware timers through software structures that allow virtualizing the resources
available on the device. The second layer is directly connected to the hardware and converts time expressed in
hardware independent units to hardware dependent units and vice versa. These conversions take into account
the rate at which the hardware timers are counting.

Figure 1. Timer module components

High Level Module
• Virtual timers’ queue
• Callbacks management
• Calibration scheduling
• Radio event scheduling

Low Level Module
• Timing conversions
• Slow clock measurement
• Timer programming

Application

Hardware
Timer

Timer
Module

AN5469
Radio timer description

AN5469 - Rev 3 page 3/16

3 Virtual timer

The devices link controller provide a radio timer counter which is used to wake up the device during low-power
mode phases. The timer counter can not trigger radio operations.
The radio timer module exploits the hardware resources of this single timer enabling the allocation of many virtual
timers.
The only constraint on the number of virtual timers is the memory available on the device.
A virtual timer acts just like a normal timer. For example, the user can program a virtual timer to execute some
actions at a certain time.
From the point of view of the application, the virtual timer is a software timer structure that contains the pointers to
some user data, callback, and the expiration time.
The software abstraction enables the hardware radio timer to share its capabilities to the virtual timers of the
application.
When a virtual timer is started, its instance is placed in a queue ordered by the expiration time. If it elapses before
the other events in the queue, the virtual timer is placed at the top and the hardware timer is programmed.
Otherwise, it takes place between the other already started timers when its turn comes.
After the virtual timer expiration, the internal state machine is in charge of executing the callback linked to the just
expired virtual timer and reserves the hardware counter for the next timer in the queue.
The timeout of a virtual timer is treated as an absolute time. It means that it occurs like an event on the calendar
at a specific time.

3.1 Virtual time base
Inside the radio timer module, the time is measured according to a special unit called system time unit (STU). It is
independent to the hardware oscillator variations and it is directly exposed to the user. Every timeout event is
expressed in STUs. One STU is equal to 625/256 μs (about 2.4414 μs). This unit makes the timings dictated by
the Bluetooth protocol easier to read. Only before programming the real counter, the time expressed in STUs is
converted in the hardware timer counting unit.
The time in STUs is accumulated on a global variable that is 64-bits long. If a digital watch wraps every 24 hours,
then the radio timer module time base needs more than one million years to wrap.
A never wrapping time base is very useful since it always knows if an event is before or after another one or
whether it is in the past or not.
However, this time base must deal with the finite length of the hardware timer and for this reason it is called virtual
as well. In order to accumulate the time correctly, the virtual time base variable must be updated at least one time
before every hardware timer wrapping.
This important mechanism is internal and is not in charge of the user. The module automatically arms a virtual
timer that is dedicated to this task during the initialization phase.
This special virtual timer is periodically programmed with the maximum possible value admitted by the hardware
capacity of the timer. It means that if the device is in low-power mode, it wakes up periodically to execute the time
base maintenance. The devices wake up about every 138 minutes.

AN5469
Virtual timer

AN5469 - Rev 3 page 4/16

Figure 2. Virtual and hardware time bases

Virtual Time Base
Hardware Time Base

Ticks

Time

AN5469
Virtual timer

AN5469 - Rev 3 page 5/16

4 Low speed oscillator and calibration procedure

In addition to the timer shared by the virtual timers, another timer is able to trigger a radio activity. The timing of
the radio transactions is a critical aspect in most cases and a certain accuracy must be guaranteed.
The low speed oscillator feeds the devices link controller timers. According to the configuration, the low speed
oscillator source can be the external XO or the internal RO. Unlike the external one, the speed of the internal
oscillator can change depending on the temperature. This behavior implies that, if clocked by the internal
oscillator, the timers could count according to a period that is not fixed.
Then, for example, the same timeout can actually correspond to different time intervals depending on the
frequency of the clock. If the internal oscillator is adopted, in order to guarantee the accuracy of the programmed
timeouts, the variations in frequency are periodically taken into account. In this case, the same virtual timer used
to maintain the virtual time base is also in charge of starting, at every calibration interval, the calibration procedure
that consists of measuring a certain number of periods of the internal oscillator exploiting a stable clock source.
Once the frequency is measured, the next timeouts that are always expressed in STUs are converted with a
better accuracy in the hardware counter unit called machine time unit (MTU).
Essentially, the measurement of the frequency of the low speed oscillator is used as a conversion factor that
allows time expressed in STUs to be translated in a time expressed in an MTU and vice versa.
After the initialization phase and that the user has defined the calibration interval, the firmware as the time base
maintenance mechanism manage the low-speed oscillator frequency measurement.
The nominal frequency of the low speed oscillator is 32.768 kHz. If the devices are equipped with an external
crystal oscillator running to the nominal frequency, no calibration procedure is necessary. The devices can also
adopt an external oscillator running to different speeds. In this last case, a first calibration only is necessary in
order to assess the frequency of the oscillator.
In any case, as much as possible, the user does not need to deal with the counting unit of the hardware timer and
with the frequency of the oscillator but only with time expressed in STUs.

4.1 Calibration interval
The calibration interval is a parameter that can be set during the initialization phase to decide how often the
device has to perform the measurement of the frequency of the internal oscillator.
As previously mentioned, if an external crystal oscillator is adopted, the user can neglect this parameter and set it
to zero.
The main reason to measure periodically the frequency of the internal oscillator is to compensate the variation of
the frequency due to temperature changes and to guarantee a certain accuracy on the timeouts, in particular
during radio operations.
After the initialization phase and that the user has defined the calibration interval, the firmware as the time base
maintenance mechanism manage the low speed oscillator frequency measurement. The frequency temperature
sensitivity follows the trend below in the operating range [-40 °C: 105 °C].

AN5469
Low speed oscillator and calibration procedure

AN5469 - Rev 3 page 6/16

Figure 3. Frequency temperature sensitivity (ppm/°C)

40

60

80

100

120

140

160

180

[-40: -20] [-20: 0] [0: 30] [30: 50] [50: 85] [85: 105]

The frequency temperature sensitivity is the error in frequency due to a variation of one degree. Therefore, the
determination of the temperature evolution and the maximum error admitted is necessary to compute how often
the internal oscillator must be measured.
Suppose that the temperature changes at a rate of 0.1 °C/s and the frequency temperature sensitivity is
160 ppm/°C. In order to guarantee an error below 500 ppm, the frequency of the internal oscillator must be
measured at least every 31 seconds.
Once the calibration interval has been set, the firmware autonomously schedules a calibration procedure at each
calibration interval. The calibration procedure lasts about 800 µs.
If the device is already in the active state, the calibration procedure is started in advance and the next calibration
event is programmed consequently.

AN5469
Low speed oscillator and calibration procedure

AN5469 - Rev 3 page 7/16

5 Radio timer module examples

In the following sections, some typical use cases are described.
Three APIs are always called inside all those applications that exploit the BlueNRG‑LP, BlueNRG‑LPS radio timer
module in the context of the STSW-BNRGLP-DK SW package.
HAL_VTIMER_Init(). It initializes the radio timer module according to the kind of low speed oscillator and the
high speed clock startup time. Furthermore, it starts the virtual timer that is in charge of triggering the calibration
procedure and the virtual time base maintenance operations.
This information is contained inside a dedicated structure defined as follows:

typedef struct HAL_VTIMER_InitS {
 /* XTAL startup in 2.44 us unit */
 uint16_t XTAL_StartupTime;
 /* Enable initial estimation of the frequency
 of the Low Speed Oscillator */
 BOOL EnableInitialCalibration;
 /* Periodic calibration interval in ms,
 to disable set to 0 */
 uint32_t PeriodicCalibrationInterval;
 } HAL_VTIMER_InitType;

The XTAL_StartupTime is the time that the high speed clock needs to be stable. This value is expressed in
system time units and it is especially useful for the timing of radio operations.
The flag EnableInitialCalibration allow estimating the frequency of the low speed oscillator during the
initialization. Generally, if the external crystal oscillator is adopted, the initial estimation can be disabled by putting
this flag to zero.
The PeriodicCalibrationInterval is expressed in milliseconds and it represents how often the low speed
oscillator must be measured according to the temperature variations. Also in this case, if the external crystal
oscillator is adopted, choosing a calibration interval equal to zero disables the periodic calibration.
HAL_VTIMER_Tick(). It is called inside the application main loop. It manages the virtual timer queue, checks if a
virtual timer is expired, manages the sharing mechanism of the hardware timer resources and the execution of the
user callbacks of the expired timers.
If PeriodicCalibrationInterval is different than zero, it periodically starts the calibration procedure when
the calibration timer expires. If the calibration timer is not yet expired but the device is in the active state, the
calibration procedure can be started in advance.
HAL_VTIMER_TimeoutCallback(). It is called inside the dedicated timer IRQ handler. It is executed when the
hardware timer expires, and signals it to the application. Note that it is not a user defined callback.

void CPU_WKUP_IRQHandler(void)
{
 HAL_VTIMER_TimeoutCallback();
}

Note: In the context of the STM32CubeWB0 SW package, the equivalent APIs are the following:

void HAL_RADIO_TIMER_Init(RADIO_TIMER_InitTypeDef *RADIO_TIMER_InitStruct);
void HAL_RADIO_TIMER_Tick(void);
void HAL_RADIO_TIMER_TimeoutCallback(void);

5.1 Starting and stopping a virtual timer
In the context of the BlueNRG‑LP, and BlueNRG‑LPS STSW-BNRGLP-DK SW package, a virtual timer is a
structure defined as follows:
 typedef struct VTIMER_HandleTypeS {
 uint64_t expiryTime; /* Absolute timeout expressed in STU */
 VTIMER_CallbackType callback; /* User callback */
 BOOL active; /* Managed by the internal tick */
 struct VTIMER_HandleTypeS *next; /* Managed by the internal tick */
 void *userData; /* Pointer to user data */
 }

AN5469
Radio timer module examples

AN5469 - Rev 3 page 8/16

Once a VTIMER_HandleType is declared inside the application, the user can define a callback and pass the
desired timeout when the timer is started. If needed, the user can also define some data that are carried on by the
timer handle.
In the context of the BlueNRG‑LP, and BlueNRG‑LPS STSW-BNRGLP-DK SW package, follow down below an
applicative example that shows how to start a virtual timer. The expiration time is expressed as a relative time
interval in milliseconds using the dedicated API HAL_VTIMER_StartTimerMs()..

void callback(void *handle)
{
 printf(“Timer Callback after one second! \r\n”);
}

int main(void)
{
 uint32_t delay = 1000; /* One second delay */
 HAL_VTIMER_InitType VTIMER_InitStruct = {HS_STARTUP_TIME, INITIAL_CALIBRATION,CALIBRATION_INTERVAL};
 /* System initialization function */
 if (SystemInit(SYSCLK_64M, BLE_SYSCLK_32M) != SUCCESS) {
 /* Error during system clock configuration take appropriate action */
 while(1);
 }
 HAL_VTIMER_Init(&VTIMER_InitStruct);
 timerHandle.callback = callback;
 HAL_VTIMER_StartTimerMs(&timerHandle, delay);
 while(1) {
 HAL_VTIMER_Tick();
 }
}

When the timer finally expires, the callback is triggered inside the HAL_VTIMER_Tick().
If a timer is already started, it cannot be started again. In this case, the API returns an error code and the virtual
timer is not inserted in the queue.
If the delay is too small, the timer is considered as already expired and the related callback is executed.
The timeout can be also expressed as an absolute time in STUs. In this case,
HAL_VTIMER_StartTimerSysTime() is used.
static VTIMER_HandleType timerHandle;
void callback(void *handle)
{
 printf(“Timer Callback after one second! \r\n”);
}

int main(void)
{
 uint32_t delay = 409600; /* number of system units in one second */
 HAL_VTIMER_InitType VTIMER_InitStruct = {HS_STARTUP_TIME, INITIAL_CALIBRATION, CALIBRATION_INTERVAL};
 /* System initialization function */
 if (SystemInit(SYSCLK_64M, BLE_SYSCLK_32M) != SUCCESS) {
 /* Error during system clock configuration take appropriate action */
 while(1);
 }
 HAL_VTIMER_Init(&VTIMER_InitStruct);
 timerHandle.callback = callback;
 HAL_VITMER_StartTimerSysTime(&timerHandle, TIMER_GetCurrentSysTime() + delay);
 while(1) {
 HAL_VTIMER_Tick();
 }
}

The current time expressed in STUs is gotten and the number of system time units corresponding to one second
is added. Therefore, the expiration time becomes an absolute time expressed in STUs.
Once a virtual timer has started, it is possible to call HAL_VTIMER_StopTimer() to stop a virtual time that has
started before its expiration.
HAL_VTIMER_StopTimer(&timerHandle);

AN5469
Radio timer module examples

AN5469 - Rev 3 page 9/16

Note: In the context of the STM32CubeWB0 SW package, an equivalent code is also applicable by referring to the
related HAL radio driver stm32wb0x_hal_radio_timer.[ch] APIs:

uint32_t HAL_RADIO_TIMER_StartVirtualTimer(VTIMER_HandleType *timerHandle, uint32_t msRelTim
eout);

uint32_t HAL_RADIO_TIMER_StartVirtualTimerSysTime(VTIMER_HandleType *timerHandle, uint64_t t
ime);

void HAL_RADIO_TIMER_StopVirtualTimer(VTIMER_HandleType *timerHandle);

void HAL_RADIO_TIMER_Tick(void);

AN5469
Radio timer module examples

AN5469 - Rev 3 page 10/16

6 Radio timer

The devices provide another timer that is dedicated to trigger a radio transaction that can be a transmission or a
reception. In particular, the timer module library offers the possibility to program two different events related to a
radio operation:
• The first transmitted bit over-the-air.
• The beginning of the receive window.

Note: The timer module programs the radio timer only and it does not configure the radio for transmissions or
receptions. Moreover, the timer module does not program the timeout of back-to-back communications. A
dedicated software library accomplishes both tasks. Refer to the radio driver user manual for more details. The
radio timer is not virtualized in queue of timers (it is not needed) as with the virtual timers, but even in this case
the user has to express the expiration time of one of the two events described before in an STU as an absolute
time in the future. In addition, the radio timer is abstracted in a software structure but it does not need any action
from the user. If the timeout is too close, the request to program the timer is rejected and an error code is
returned.

6.1 Calibration and radio timer
As previously mentioned, the calibration procedure is necessary only if the low speed internal oscillator is the
clock of the devices link layer timers. If this is the case, the firmware ensures that the radio timer for the next radio
transaction is programmed to exploit the latest low speed frequency measurement improving the accuracy of the
timeout.
In other words, if the next radio transaction occurs after the next calibration event, the timer is not immediately
programmed but remains pending until the new frequency measurement is available. On the contrary, if the next
calibration event occurs after the next radio transaction, the timer is programmed when requested.
Since the calibration values are available in thread mode inside the HAL_VTIMER_Tick(), after the low speed
oscillator measurement is over, a margin is set in order to give to the module enough time to finalize the pending
timer with the new values. If this margin is not respected, a radio event that was previously set in the future could
be shifted in the past and therefore not programmed.

Note: In the context of the STM32CubeWB0 SW package, the equivalent APIs are the following:

void HAL_RADIO_TIMER_Tick(void)

6.2 Radio timer programming example
A radio timer can only be programmed after a radio transaction has been previously configured. Then, the radio
timer programming APIs can be considered as the last step of the configuration of a radio transaction. Therefore,
some specific information is needed to program the radio timer properly:
• The timeout expressed in STU
• The type of the transaction (transmission or reception)
• The PLL calibration for the channel frequency
According to the previous parameters, in order to respect the desired timeout, the timer module compensates the
time that the radio needs for its configuration. The different RF set-up times are initialized in some specific
structures in RAM during the radio initialization. More details about radio RAM structures are present in the radio
controller reference manual.
Therefore, supposing that the radio has been initialized and the transaction has been configured, the radio timer
can be programmed through HAL_VTIMER_SetRadioTimerValue() in the context of the BlueNRG‑LP, and
BlueNRG‑LPS SW package.

Note: Note that the timer module initialization occurs as shown in the Section 3: Virtual timer and after the radio
initialization.
The timeout is expressed as an absolute time. For example, a transmission can be programmed to trigger after
one second as follows:
uint8_t event_type = HAL_VTIMER_TX_EVENT;
uint8_t cal_req = HAL_VTIMER_PLL_CALIB_REQ;
uint32_t timeout = TIMER_GetCurrentSysTime() + 409600;
retVal = HAL_VTIMER_SetRadioTimerValue(timeout,event_type,cal_req);

AN5469
Radio timer

AN5469 - Rev 3 page 11/16

The API returns an error code if the timeout passed is too close. The radio timer can be stopped before its
triggering. However, if the timeout is too close when the timer is stopped, it may not be properly cleared. In other
terms, the firmware always clears the timer but it could be already triggered and then can no longer be stopped. A
dedicated API can be used to stop the radio timer. The same API returns a different value if the timer has been
cleared successfully or not.
/**
* @brief Clear the last radio activity scheduled disabling the radio timer too.
Furthermore, it returns different values if the timeout is too close
and possibly the radio activity cannot be cleared in time.
@return 0 if the radio activity has been cleared successfully.
@return 1 if it is too late to clear the last radio activity.
@return 2 if it could be not possible to clear the last radio activity.
*/
uint8_t HAL_VTIMER_ClearRadioTimerValue(void);

Note: In the context of the STM32CubeWB0 SW package, an equivalent code is also applicable by referring to the
related HAL radio driver stm32wb0x_hal_radio_timer.[ch] APIs:

uint64_t HAL_RADIO_TIMER_GetCurrentSysTime(void);

uint32_t HAL_RADIO_TIMER_SetRadioTimerValue(uint32_t time, uint8_t event_type, uint8_t cal_r
eq);

uint32_t HAL_RADIO_TIMER_ClearRadioTimerValue(void);

AN5469
Radio timer

AN5469 - Rev 3 page 12/16

7 Sleep management

The timer module prevents the device from going to sleep in different conditions:
• A virtual timer triggered but its related callback has not yet been executed.
• A low speed clock measurement is ongoing.
• The next radio transaction is very close.
• The device is in a back-to-back communication.

Note: The timer module autonomously starts the internal virtual timer to perform the calibration procedure end/or the
time base maintenance. If the low-power mode with no timer is requested at application level, if there is not a
radio timer scheduled and a virtual timer programmed, the timer module also disables the internal virtual timer.
In this case, if configured properly, the device is able to wake up only through external sources.

AN5469
Sleep management

AN5469 - Rev 3 page 13/16

Revision history

Table 1. Document revision history

Date Version Changes

13-Jul-2020 1 Initial release.

06-Apr-2022 2
Updated Section Introduction and Section 2: Radio timer description.

Added the BlueNRG-LPS references throughout the document.

20-Jun-2024 3 Added the STM32WB0 series reference throughout the document.

AN5469

AN5469 - Rev 3 page 14/16

Contents

1 General information .2
2 Radio timer description .3
3 Virtual timer .4

3.1 Virtual time base . 4

4 Low speed oscillator and calibration procedure .6
4.1 Calibration interval . 6

5 Radio timer module examples. .8
5.1 Starting and stopping a virtual timer . 8

6 Radio timer .11
6.1 Calibration and radio timer . 11

6.2 Radio timer programming example . 11

7 Sleep management .13
Revision history .14

AN5469
Contents

AN5469 - Rev 3 page 15/16

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5469

AN5469 - Rev 3 page 16/16

http://www.st.com/trademarks

	AN5469
	Introduction
	1 General information
	2 Radio timer description
	3 Virtual timer
	3.1 Virtual time base

	4 Low speed oscillator and calibration procedure
	4.1 Calibration interval

	5 Radio timer module examples
	5.1 Starting and stopping a virtual timer

	6 Radio timer
	6.1 Calibration and radio timer
	6.2 Radio timer programming example

	7 Sleep management
	Revision history

