

Application note

LoRaWAN[®] firmware update over the air with STM32CubeWL

Introduction

This application note describes the FUOTA (firmware update over the air) application embedded in the STM32CubeWL MCU package, and explains how to use the overall FUOTA process to provide the components needed for a FUOTA campaign. There are three environment projects:

- LoRaWAN[®] FUOTA SingleCore solution based on STM32WLE5xx, STM32WL55xx or STM32WL5MOCHxx microcontrollers series
- LoRaWAN[®] FUOTA DualCore solution based on STM32WL55xx or STM32WL5MOCHxx microcontrollers series
- LoRaWAN[®] FUOTA DualCore with External Flash (for Download slot) solution based on STM32WL5MOCHxx microcontrollers series

This document applies within the framework of a FUOTA project, and targets particularly the FUOTA project integrators, or those integrating FUOTA modules in a wider system implementing end-device functions.

LoRa[®] is a type of wireless telecommunication network designed to allow long-range communication at a very low bitrate, enabling long-life battery-operated sensors. LoRaWAN[®] defines the communication and security protocol to ensure interoperability with LoRa[®] networks.

Note:

1 General information

The STM32CubeWL runs on STM32WLSeries microcontrollers based on Arm[®] Cortex[®]-M processor.

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

The FUOTA application in STM32CubeWL is compliant with the LoRa Alliance[®] specification protocol (LoRaWAN Link Layer v1.0.3 and v1.0.4, see document [1]).

The FUOTA feature implemented in the application layer is based on and compliant with the specific functionalities defined by the LoRa Alliance. These functionalities allow a multicast group (Remote Multicast Setup Spec V1.0.0, see document [4]) to be set up, to fragment and to send data packets (Fragmented Data Block Transport Specification v1.0.0, see document [3]), and finally to synchronize clocks (LoRaWAN Application Layer Clock Synchronization Specification v1.0.0, see document [2]), so that all devices agree on the start of a FUOTA session.

Note:

Throughout this application note, the IAR Embedded Workbench[®] EWARM and Keil[®] MDK-ARM IDEs are used as an example to provide guidelines for project configuration.

The FUOTA application:

- supports a full firmware upgrade image (entire firmware image sent to the end device)
- is only applicable in Class-C mode
- runs on STM32WL55xx or STM32WL5MOCHxx targets for DualCore, or STM32WLE5xx, STM32WL55xx or STM32WL5MOCHxx target for SingleCore
- supports a third-party middleware, mbed-crypto for the cryptographic services

Acronym or term	Definition
ABP	Activation by personalization
APDU	Application protocol data unit
AS	Application server
BFU	Boot and Firmware Update
DAP	Direct access port
DMA	Direct memory access
End device	Device used as sensor or actuator in a networked system
FEC	Forward error correction
Firmware image	Binary image (executable) run by the end device
Firmware header	Meta-data describing the firmware image to be installed
FUOTA	Firmware update over the air
HAL	Hardware abstract layer
IDWG	Independent watchdog
KMS	Key management services
L2	Link layer
LoRa	Long-range radio technology
LoRaWAN	LoRa wide-area network
LDPC	Low-density parity code
MAC	Media access control
Mbed-crypto	Mbed cryptography library implementation of the cryptography interface of the Arm PSA (platform security architecture)

Table 1. Acronyms and terms

Acronym or term	Definition
MCPS	MAC common part sublayer
MCU	Microcontroller
MIB	MAC information base
MLME	MAC layer management entity
MPDU	MAC protocol data unit
MPU	Memory protection unit
MSC	Message sequence chart
NS	Network server
OTA	Over the air
ΟΤΑΑ	Over-the-air activation
PLME	Physical layer management entity
PPDU	Physical protocol data unit
RP	Regional parameters
SAP	Service access point
SE	Secure Engine
SBSFU	Secure Boot and Secure Firmware Update
sfb file	Binary file packing the firmware header and the firmware image
SFU	Secure Firmware Update
SKMS	Secure key management services

Table 2. Document references

Reference	Document
[1]	LoRa Alliance Specification Protocol (LoRaWAN version V1.0.3), March 2018
[2]	LoRa Alliance Application layer clock synchronization over LoRaWAN Specification v1.0.0, September 2018 - [TS-003]
[3]	LoRa Alliance Fragmented Data Block Transport over LoRaWAN Specification v1.0.0, September 2018 - [TS-004]
[4]	LoRa Alliance Remote Multicast Setup over LoRaWAN Specification v1.0.0, September 2018 - [TS-005]
[5]	Integration guide of SBSFU on STM32CubeWL (including KMS) (AN5544)
[6]	Getting Started with the SBSFU of STM32CubeWL (UM2767)
[7]	How to build a LoRa application with STM32CubeWL (AN5406)
[8]	How to secure LoRaWAN and Sigfox with STM32CubeWL (AN5682)

2 LoRaWAN standard and FUOTA application feature

This section provides a general overview of the LoRa and LoRaWAN recommendations. It deals with the LoRaWAN end-device and the FUOTA feature, that are the core subjects of this application note.

2.1 Network architecture

The figure below shows the components and their protocol relationships, allowing the implementation of the FUOTA feature.

Figure 1. Network diagram

Note: The LoRa Alliance technical FUOTA working group works on the LoRaWAN Firmware Management Protocol Specification, that documents and defines this block. The proposed implementation in the FUOTA application, is a proof of concept.

2.1.1 Client/server architecture

In the figure below, the end device where the software or firmware must be updated, is referred to as the end node or client. The other part of the system is referred to as the cloud or server, and provides the new software or firmware.

2.1.2 End-device architecture

The end device consists of a host MCU (microcontroller) that reads sensor data to transmit the sensor reading over the LoRaWAN network by means of the LoRa radio module.

Data is encrypted by the host MCU and the radio packet is received by the gateway, that forwards it to the network server. The network server then sends data to the application server, that has the right key to decrypt the application data.

2.2 End-device classes

The LoRaWAN protocol specification (see document [1]) has several end-device classes to address the various needs of a wide range of applications.

The FUOTA application described in this document is only 'Class-C enable'. In other words, the FUOTA application is validated for network infrastructure supporting at least Class-C mode.

Note:

The end device supports Class-B mode. Nevertheless, it is only 'Class B capable'. To be 'Class B enable', a new integration and validation phase must be proceeded on a network infrastructure supporting Class-B mode for the FUOTA campaign.

Class definition

The definition of the various classes is (see document [1]):

- Class A: bi-directional end devices (all devices)
- Class B: bi-directional end devices with scheduled receive slots (Beacon)
- Class C: bi-directional end devices with maximal receive slots (Continuous)

The Class-C mode is implemented to support FUOTA. Class-C end devices have almost continuously open receive windows (RxC where the data blocks are received), and are only closed when transmitting (Tx) and receiving (Rx1, Rx2) in Class-A mode (see the figure below).

Figure 3. Tx/Rx timing diagram (Class C)

2.3 FUOTA overview

The FUOTA update process transfers a new software image (data file) from the server to the client, and updates the current software image (version N) running on the client with the new received software image (version N+1). Obstacles to successful completion of the FUOTA update process are listed below:

Communication

The new firmware image must be sent from the server to the client. This challenge is performed through the application-layer protocols running over LoRaWAN, that provide remote-multicast setup, fragmented data-block transport, and application-layer clock-synchronization services. The LoRaWAN MAC layer provides Class-C mode to transmit the data file in unicast or multicast mode.

Firmware update

The client must migrate from the current to the new firmware image. This task is performed by the Update Agent module. To succeed, the Update Agent module relies on the services provided by the SBSFU (Secure Boot and Secure Firmware Update) application, using the SE (Secure Engine), KMS (key management services) and mbed-crypto middleware.

Memory

The software architecture must be organized so that it can be executed when the update process completes. The solution must ensure the recovery of the new software version, if there are installation issues. This task is handled by the SBSFU application.

Security

When a new firmware image is sent wireless from server to client, several security services must be assured (such as authentication, confidentiality, and integrity). This must be done either through the LoRaWAN protocol or by means of the SBSFU application security services.

2.4 Network protocol architecture

The figure below describes the end-to-end network protocol architecture. The following protocol exchanges are used:

- MAC protocol data unit exchanges (MPDU)
- application protocol of an application data unit exchanges (APDU)
- LoRaWAN protocol physical protocol data unit layer (PPDU)

2.4.1 Network layer

The LoRaWAN architecture is defined in terms of blocks called layers. As shown in the figure below, each layer is responsible for one part of the standard and offers services to higher layers. An end device includes the following elements:

- PHY: embeds the radio frequency transceiver
- MAC sublayer: provides access to the physical channel
- application layers: provide access to the LoRaWAN services protocol

Figure 5. LoRaWAN layers

Physical medium (air interface)

2.4.2 Physical layer (PHY)

The physical layer provides the following services:

- PHY data service: enables the Tx/Rx of physical protocol data units (PPDUs)
- PHY management service: enables the personal-area network-information base (PIB) management

2.4.3 MAC layer

The MAC layer provides the following services:

- MAC data service: enables transmission and reception of MAC protocol data units across the physical layer (MPDU)
- MAC sublayer management: enables the PIB management

2.4.4 Application layer

The application layer provides several messaging packages running over the LoRaWAN protocol. FUOTA scopes the following ones:

- Remote multicast setup package (Port 200)
 - remotely creates a multicast group security context inside a group of end devices
 - reports the list of multicast contexts existing in the end device
 - remotely deletes a multicast security context
 - programs a Class-C multicast session
 - programs a Class-B multicast session
- Fragmented-data-block transport package (Port 201)
 - sets up, reports and deletes fragmentation transport sessions
 - may support several fragmentation sessions simultaneously for an end device
 - can be used either over multicast or unicast
 - reports the status of a fragmentation session
- Clock synchronization package (Port 202)
 - synchronizes the end-device real-time clock to the network GPS
 - makes all end devices of a multicast group to switch to Class C temporarily and synchronously
- Firmware management package (Port 203) (proof-of-concept implementation only)
 - queries the firmware version running on an end device (including availability of the firmware update version)
 - queries the end-device hardware version
 - manages the end-device reboot at a given time
- Update agent module
 - interfaces a LoRaWAN stack block to an SBSFU block
 - gets, recombines and stores the complete file in the Download Image Slot, before the SFU execution of the SBSFU (called by NVIC_Reset action)
- User application
 - Sensor/actuator processing application use cases
 - required to start a FUOTA session, with some user uplinks to open useful Rx windows for the packages described above

2.5 Network/end-device interworking

This section only shows the information flow between the end device and the application server, at the application-layer level, during a FUOTA campaign. For a complete view and description of the end device and network interactions, see document [7].

Multicast and fragmentation setup are detailed below.

2.5.1 Time synchronization

Before setting up a FUOTA session, the end device must have synchronized its timing with the network, using either AppTimeReq or DeviceTimeReq as shown in the figure below.

Figure 6. MSC for device timing

Note: For the purposes of this presentation, the TimeReq sent by the MSC is divided into DeviceTimeReq and AppTimeReq parts. The LoRaWAN specification allows a MAC command to be piggybacked in an application payload. In the current implementation, DeviceTimeReq is piggybacked in the AppTimeReq payload.

2.5.2 Multicast, fragmentation setup and session creation (Class C only)

To receive a data block at the application level, it is necessary to have some exchanges between the network application layer and the end-device application layer. These exchanges are mainly to define the following:

- a multicast group ID
- fragmentation parameters (frag number and frag size)
- multicast Class C session (start time and end time)

Figure 7. MSC for Class-C creation

2.5.3 Fragment broadcasting and secure firmware update process

As soon as the end device is synchronized (Class C), it opens its Rx window to receive the data fragments (see document [3]). The end device stays in this state until all the data fragments are received.

When the complete data block (see the note below) is received, the end device closes its Rx windows, and, if everything is OK from the 'data-block transfer' point-of-view, the end device calls the Update Agent to start the SFU process.

Figure 8. MSC for data-block broadcasting

Note: Additional user 'proprietary' protocol statement:

The V1.0 package, and particularly Fragmented Data Transport specification [TS-004] (see document [3]), does not provide a way to inform the server that all data blocks have been properly received in order to rebuild the current download file. This is the case in the currently proposed implementation. The server always sends all the fragments (uncoded and coded), even if the current download file has been rebuilt before the end of the complete broadcast fragmentation transaction.

If needed, the user is responsible for implementing a 'proprietary' protocol to avoid such behavior. For instance, when all the required fragments have been received and the current download file rebuilt, a simple crc32 can be computed and sent back to the server. The server should decide to stop broadcasting the remaining fragments.

This approach requires cooperation between the device maker and the network operator to define the 'proprietary' part of the protocol.

3 FUOTA campaign

The MSC in the figure below presents the whole FUOTA communication exchange between the STM32WL end device and the application server (AS). The FUOTA campaign is divided into the following parts:

- FUOTA session setup between AS and end device
- fragment session exchange
 The file to be transferred is divided into N data fragments (called data block in the MSC).
- firmware update authentication check, firmware reboot and swap on new firmware

Figure 9. MSC for FUOTA campaign

The BFU allows the update of the device with a new firmware version, adding new features and correcting potential issues. The update process is performed in a secure way to prevent unauthorized updates.

3.1 How to create and manage a FUOTA campaign

This section does not show how to create a FUOTA campaign on an application server. These aspects of a FUOTA campaign depend on the services provided by the network operator. Only the salient points relating to FUOTA campaign support are outlined in this section.

The application server must:

- support the following packages:
 - Clock Synchro package (TS-003) (see document [2])
 - Fragmentation package (TS-004) (see document [3])
 - Multicast Setup package (TS-005) (see document [4])
- support Class-C mode (as defined in the LoRaWAN specifications V1.0.3 or V1.0.4, see document [1])
- be compliant with the 'Interop test' proposed by the FUOTA working group of the LoRa Alliance The 'Interop test' is the minimum test proving that the end device is able to receive a data block file from the server. This minimum test is shown in Section 2.5.
- have the capability to manage the data block (firmware image) to be downloaded

3.2 Reconstruction of missing fragments

During the FUOTA campaign, some LoRaWAN frames may be lost to the end device (following reception problem, frame corruption, or server lag for example).

To face this problem, the AS sends redundancy fragments to the end device after the whole uncoded fragments have been sent. The end device continues its FUOTA session to retrieve these redundancy fragments and try to reconstruct the missing fragments thanks to the redundancy ones.

3.2.1 Generation of redundancy fragments

The AS runs an algorithm that generates as many redundancy fragments as fragments of firmware update file sent. A maximum number of redundancy fragments, equivalent to the number of uncoded fragments, can be sent at the end of each FUOTA campaign.

The limitation to a smaller amount of redundancy fragments sent is on the AS responsibility.

Section Appendix A details the Python script of the algorithm generating redundancy fragments.

To simplify, the use case below has been run on an interoperability file (1 Kbyte), that is composed of 25 fragments of 40 bytes. The algorithm performed by the Python script generates also 25 redundancy fragments of 40 bytes (100% of redundancy fragments).

Each redundancy fragment is displayed on each line, as shown in the figure below.

Figure 10. Redundancy fragments

\$ py data_block_fragmentation.py	
2021-06-02 15:28:30,781 - [INFO] - Input file: Interoptest_file_1.bin Fragment size: 40 bytes Uncoded fragments: 25 Redund	lancy fragments: 25
2021-06-02 15:28:30,781 - [DEBUG] - Matrix:	
2021-06-02 15:28:30,781 - [DEBUG] - 001: [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1] - 009	
2021-06-02 15:28:30,781 - [DEBUG] - 002: [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] - 010	
2021-06-02 15:28:30,782 - [DEBUG] - 003: [1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0] - 012	
2021-06-02 15:28:30,782 - [DEBUG] - 004: [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1] - 011	
2021-06-02 15:28:30,782 - [DEBUG] - 005: [1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1] - 012	
2021-06-02 15:28:30,782 - [DEBUG] - 006: [0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0] - 009	1
2021-06-02 15:28:30,782 - [DEBUG] - 007: [1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0] - 009	
2021-06-02 15:28:30,782 - [DEBUG] - 008: [0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0] - 011	
2021-06-02 15:28:30,782 - [DEBUG] - 009: [0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0] - 008	Parity
2021 - 06 - 02 15:28:30,783 - [DEBUG] - 010: [0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0] - 009	motrix for
	matrix ioi
2021 - 06 - 02 - 15 - 26 - 30 - 6 - 0 - 00 - 00 - 00 - 00 - 00	redundancy
2021 - 06 - 02 - 15 - 26 - 30 + 60 - 01 - 01 - 01 - 0 + 1 - 0 + 1 - 0 + 0 + 1 - 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	fragmanta
	liagments
[201-06-2, 15:28:30, 78] = [DEBUG] = 015 [0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0] = 012	
221-06-02 15:28:30,783 - [DFBIG] - 017: [0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] - 009	
2021-06-02 15:28:30.783 - [DEBUG] - 018: [0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0] - 010	
2021-06-02 15:28:30.784 - [DEBUG] - 019: [0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0] - 008	
2021-06-02 15:28:30.784 - [DEBUG] - 020: [1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1] - 010	/
2021-06-02 15:28:30,784 - [DEBUG] - 021: [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0] - 010	
2021-06-02 15:28:30,784 - [DEBUG] - 022: [1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] - 010	
2021-06-02 15:28:30,784 - [DEBUG] - 023: [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1] - 010	
2021-06-02 15:28:30,784 - [DEBUG] - 024: [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0] - 009	
2021-06-02 15:28:30,784 - [DEBUG] - 025: [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1] - 011	

The Python script displays the parity matrix (25 x 25 in this use case). Each redundancy fragment is composed of some of the sent fragments XOR between themselves.

Example:

Redundancy fragment 1 = frag3 \oplus frag6 \oplus frag7 \oplus frag11 \oplus frag14 \oplus frag20 \oplus frag22 \oplus frag 24 \oplus frag25

Warning: Below a certain percentage of redundancy fragments (depending on the information sent), the decoder is not able to retrieve the missing fragments.

3.2.2 Reconstruction algorithm

As an example of FEC algorithm, the LDPC has been implemented in the LoRaWAN middleware stack in FragDecoderProcess () function from FragDecoder.c file (see [3] for more details).

The LDPC is used to retrieve the missed fragments from the redundancy fragments sent after the whole firmware image to update.

Figure 11. Reconstruction algorithm principle

Example

Four fragments (B1 to B4) and two redundancy fragments (R1 and R2) are sent, depicted in the figure below. In case B2 and B3 are missing fragments on end-device side (lost due to bad communication), the redundancy blocks contain the information of several blocks:

- R1 contains B1 and B2.
- R2 contains B1, B2, B3, and B4 information.

The operation between B1 and B2 to obtain R1 is a simple XOR, very convenient and easy to compute. Considering X as B1 and Y as B2, the two fragments to be recovered, the problem can be expressed as in the figure below.

Figure 12. FEC reconstruction example

Due to XOR associated operations:

- X is recovered from a XOR between B1 and R1.
- Y is recovered from a XOR between R1, R2, and B4.

Figure 13. FEC reconstruction of lost fragments

Note:

Finally, this simple example shows that missing fragments B1 and B2 can be recovered by the combination of other fragments and redundancy fragments.

3.2.3 Simulation and validation of lost fragments

The LDPC algorithm can be tested with the following steps:

- Simulate a loss of frames by an incomplete send of all the uncoded and coded fragments at different positions.
- Check that, depending on the redundancy fragments received, the initial data block can be recovered.

More details are provided in Section Appendix B

3.3 End-device design choices

3.3.1 Fragmentation decoder definitions

The fragmentation decoder process contains several defines that need to be sized depending on the application (details in LoRaWAN_End_Node\LoRaWAN\Target\frag_decoder_if.h):

- FRAG_MAX_SIZE: maximum fragment size that can be handled. It must be inferior or equal to the maximum MACPayload size length (M) of supported regions with maximum datarate (DR).
- FRAG_MAX_NB: maximum number of fragments that can be handled. It is obtained thanks to the formula:

FRAG_MAX_NB = SLOT_DWL_SIZE/ FRAG_MAX_SIZE
with SLOT_DWL_SIZE = SLOT_DWL_1_END SLOT_DWL 1_START

SLOT_DWL is the download area allocated in flash memory to store the new firmware image retrieved with FUOTA download.

- FRAG_MIN_SIZE: minimum fragment size that can be handled. It must be superior or equal to the minimum MACPayload size length (M) of supported regions with minimum datarate (DR).
 FRAG_MIN_SIZE must be also inferior or equal to FRAG_MAX_SIZE.
- FRAG_MAX_REDUNDANCY: maximum number of redundancy fragments that can be handled. In the STM32CubeWL FUOTA applications, the memory is allocated for a maximum of 10% redundancy fragments (design choices on end-device side).
- Note: In a FUOTA campaign, if the number of lost fragments is higher than the 10% redundancy fragments retrieved by the end-device, the decoder aborts the current fragmentation session in the end-device.

In STM32CubeWL firmware, FUOTA must be performed on flash memory. Due to conception constraint, any copy of flash memory blocks must be a multiple of eight, in order to avoid erasing a full flash memory sector at each data write. This applies to FRAG_MAX_SIZE and FRAG_MIN_SIZE.

Every definition corresponds to the worst-case value for the used region and multicast session data rate configurations.

3.3.2 Fragmentation decoder implementation

This section details how the four previous defines have been determined in STM32CubeWL FUOTA applications.

3.3.2.1 FRAG_MAX_SIZE computation

FRAG_MAX_SIZE worst-case (region and DR dependent) is equal to FRAG_MAX_SIZE = 240.

The critical criterion is the RAM use, which is defined at compilation, and used by fragmentation decoder process depending on these defines. The simplified fragmentation decoder RAM use equation is defined below:

 $FragRam = 2 \times N + S + ((R > 3) + 1) \times (R + 4) + 18$

where:

N = FRAG_MAX_NB S = FRAG_MAX_SIZE

R = FRAG_MAX_REDUNDANCY

3.3.2.2 FRAG_MAX_REDUNDANCY computation

The number of redundancy fragments are defined as 10% of the maximum number of fragments for the FUOTA campaign, which means:

$FRAG_MAX_REDUNDANCY = FRAG_MAX_NB \times 10\%$

3.3.2.3 FRAG_MAX_NB and FRAG_MIN_SIZE computation

FragRam is composed of
$FragDecoder_t + matrix + dataTemp$
where matrix is composed of
matrixRow + matrixDataTemp
and dataTemp is composed of
dataTempVector + dataTempVector2
For more details, refer to Middlewares\Third_Party\LoRaWAN\LmHandler\Packages\FragDecoder.c.

FUOTA single core fragmentation decoder implementation example

- In FUOTA single core, SLOT_DWL size is 86016 bytes.
- The best tradeoff is FRAG_MIN_SIZE = 40 and FRAG_MAX_NB = 2151.
- Note:

If FRAG_MIN_SIZE= 16 and FRAG_MAX_NB = 5376, the remaining RAM application is drastically reduced. All these values are computed with FRAG_MAX_SIZE = 240 (see Section 3.3.2.1 FRAG_MAX_SIZE computation).

Frag decoder configuration **RAM** memory requirement FRAG_MIN_SIZE FRAG_MAX_NB FRAG_MAX_REDUNDANCY FragDecoder_t matrix dataTemp FragRam Not enough memory 8 10752 1076 167456 1353 271 169312 16 5376 538 47557 689 137 48607 24 3584 359 23701 473 92 24482 OK but very reduced memory left 14743 32 2688 269 369 70 15390

Table 3. FUOTA single core RAM memory requirements

End-device design choices

	Frag decoder configuration		RAM memory requirement				
	FRAG_MIN_SIZE	FRAG_MAX_NB	FRAG_MAX_REDUNDANCY	FragDecoder_t	matrix	dataTemp	FragRam
	40	2151	216	10396	310	56	10962
	48	1792	180	7856	273	47	8368
	56	1536	154	6229	249	41	6703
	64	1344	135	5137	233	36	5582
	72	1195	120	4344	223	32	4767
	80	1076	108	3751	216	29	4156
	88	978	98	3286	212	27	3677
	96	896	90	2925	209	25	3303
	104	828	83	2630	209	23	2998
	112	768	77	2383	209	22	2742
left	120	717	72	2182	211	20	2533
nory	128	672	68	2018	213	19	2362
mer	136	633	64	1869	217	18	2208
cient	144	598	60	1733	220	17	2066
suffic	152	566	57	1622	224	17	1951
y	160	538	54	1521	229	16	1846
	168	512	52	1440	233	15	1760
	176	489	49	1353	239	15	1671
	184	468	47	1284	244	14	1598
	192	448	45	1219	249	14	1530
	200	431	44	1173	255	13	1481
	208	414	42	1115	261	13	1421
	216	399	40	1062	267	12	1365
	224	384	39	1021	273	12	1322
	232	371	38	985	280	12	1285
	240	359	36	940	286	11	1237

57

Figure 14. RAM use vs FRAG_MAX_NB (single core)

To conclude for FUOTA single core, the following implementation is proposed:

#define	FRAG_MAX_SIZE	240
#define	FRAG_MAX_NB	2151
#define	FRAG_MIN_SIZE	40
#define	FRAG_MAX_REDUNDANCY	216

Note: All previous values are the consequence of the SLOT_DWL size and the region/DR configuration. For more information, refer to document [3].

FUOTA dual core fragmentation decoder example

- In FUOTA dual core, SLOT_DWL size is 65536 bytes.
- The best tradeoff is FRAG_MIN_SIZE = 48 and FRAG_MAX_NB = 1366.

Warning: STM32CubeIDE toolchain requires 1.2 Kbytes more (private SECore bin stack) which must be aligned to 2-Kbyte boundary due to TZIC security. Consequently the highest values are FRAG_MIN_SIZE = 96 and FRAG_MAX_NB = 683.

For a harmonization purpose, this setting has been chosen for all toolchains. With these settings, APPLI_RAM and APPLI_ROM memory areas are almost full.

57/

	Frag decoder configuration		Frag decoder configuration RAM memory requirement				
	FRAG_MIN_SIZE	FRAG_MAX_NB	FRAG_MAX_REDUNDANCY	FragDecoder_t	matrix	dataTemp	FragRam
	8	8192	820	101376	1033	207	102616
nory	16	4096	410	29685	529	105	30319
i mei	24	2731	274	15174	367	71	15612
hguo	32	2048	205	9599	289	54	9942
Not en	40	1639	164	6844	246	43	7133
	48	1366	137	5252	220	37	5509
	56	1171	118	4235	204	32	4471
only	64	1024	103	3509	193	28	3730
DE	72	911	92	3003	187	25	3215
Cube	80	820	82	2592	184	23	2799
Not enough memory for STM3	88	745	75	2297	183	21	2501
	96	683	69	2058	183	20	2261
	104	631	64	1865	184	18	2067
	112	586	59	1693	187	17	1897
	120	547	55	1553	190	16	1759
	128	512	52	1440	193	15	1648
	136	482	49	1339	198	15	1552
	144	456	46	1248	202	14	1464
ains	152	432	44	1175	207	13	1395
olch	160	410	41	1096	213	13	1322
all tc	168	391	40	1046	218	12	1276
for	176	373	38	989	224	12	1225
ð	184	357	36	936	230	11	1177
	192	342	35	896	236	11	1143
	200	328	33	849	242	11	1102
	208	316	32	815	249	10	1074
	216	304	31	782	255	10	1047
	224	293	30	752	262	10	1024
	232	283	29	723	269	10	1002
	240	274	28	697	276	9	982

Table 4. FUOTA dual core RAM memory requirements

Figure 15. RAM use vs FRAG_MAX_NB (dual core)

To conclude for FUOTA dual core, the following implementation is proposed:

#define	FRAG MAX SIZE	240
#define	FRAG_MAX_NB	683
#define	FRAG_MIN_SIZE	96
#define	FRAG MAX REDUNDANCY	69

Note:

5

All previous values are the consequence of the SLOT_DWL size and the region/DR configuration. For more information, refer to document [3].

4 LoRaWAN_FUOTA project overview

4.1 Single-core project overview

(1)

LoRaWAN_FUOTA is a single-core project based on BFU_2_Slots solution for the STM32WLE5xx, STM32WL55xx, or STM32WL5MOCHxx microcontrollers series.

This LoRaWAN_FUOTA project is split into three main subprojects:

- 1_Image_SECoreBin (generating the Secure Engine core binary file to be linked with the BFU application)
- 1_Image_BFU (updates of the MCU built-in program with new firmware versions)
- LoRaWAN_End_Node (End_Node application tailored for FUOTA)

The middleware is provided in source-code format and is compliant with the STM32CubeWL HAL driver.

Figure 16. Single-core project file structure

The other directories of the LoRaWAN_FUOTA project are more specific:

- Linker Common: generates linker files shared between the three projects:
 - mapping_fwimg.icf contains firmware image definitions such as active slots, download slots, and swap area.
 - mapping_sbsfu.icf contains BFU definitions such as SE_Code_region, SE_Key_region, and SE_IF_region.
 - mapping_export.h exports the symbols from mapping_sbsfu.icf and mapping_fwimg.icf to the BFU applications.
- Scripts: automatic scripts to build all projects in a specific order and to program the final all-in-one binary file

1_Image_KMS_Blob generates KMS blob binary file to be downloaded with KMS through the ImportBlob() API. This feature is present but not used in this project.

4.2 Dual-core project overview

Two DualCore applications are available based on SBSFU_2_Slots_DualCore solution:

- LoRaWAN_FUOTA_DualCore for the STM32WL55xx MCUs
- LoRaWAN_FUOTA_DualCore_ExtFlash for the STM32WL5MOCHxx MCUs

Theses LoRaWAN_FUOTA_DualCore projects are split into five main subprojects:

- 2_Images_SECoreBin
- 2_Images_SBSFU [CM4 and CM0PLUS]
- LoRaWAN_EndNode_DualCore_[CM4 and CM0PLUS]

The middleware is provided in source-code format and is compliant with the STM32CubeWL HAL driver.

Figure 17. Project file structure

4.3 BFU and SBSFU features

4.3.1 BFU single-core configuration

This section is dedicated to single-core FUOTA and BFU features. For more information concerning SBSFU and dual-core security features, Secure Boot and SKMS features, refer to document [8].

The BFU allows the update of the STM32 microcontroller built-in program with new firmware versions, adding new features, and correcting potential issues. The update process is performed in a secure way to prevent unauthorized updates.

Boot (root-of-trust services)

 checks and activates the STM32 security mechanisms to protect critical operations and secret data from an attack

• checks the authenticity and integrity of the user application code before every execution, to ensure that an invalid or malicious code cannot be run

Firmware Update (FU)

- detects the new (encrypted) firmware version to install, pre-downloaded over-the-air via the user application (LoRaWAN)
- manages the firmware version by checking for unauthorized update/installation
- decrypts the firmware (if encryption activated)
- checks the firmware authentication and integrity
- installs the firmware
- recovers the firmware image if any error occurrence during the new image installation (rollback to the previous valid firmware version not supported)
- executes the installed firmware (once authenticated and integrity checked)

Key management services (KMS)

- provides cryptographic services to the user application, through the PKCS #11 APIs
- provides cryptographic services to the SFU to authenticate the user application with some protected keys

BFU cryptographic middleware

The BFU for STM32CubeWL supports the mbed-crypto (open-source code) cryptographic services for SHA256.

Figure 18. Cryptographic library structure

BFU cryptographic schemes

The BFU for STM32CubeWL is delivered with the following cryptographic schemes, using symmetric and asymmetric cryptographic operations:

- ECDSA asymmetric cryptography for firmware verification without firmware encryption
- ECDSA asymmetric cryptography for firmware verification, and AES-CBC symmetric cryptography for firmware decryption
- AES-GCM symmetric cryptography, for both firmware verification and decryption

By default, the LoRaWAN_FUOTA project is configured with asymmetric cryptography. The firmware authentication, integrity, and confidentiality (encryption) are ensured.

Figure 19. File structure of cryptographic scheme

Figure	20 .	Default	cryptograph	ic scheme
--------	-------------	---------	-------------	-----------

```
#define SECBOOT_CRYPTO_SCHEME SECBOOT_ECCDSA_WITH_AES128_CBC_SHA256
#define SECBOOT_ECCDSA_WITHOUT_ENCRYPT_SHA256
#define SECBOOT_ECCDSA_WITH_AES128_CBC_SHA256
#define SECBOOT_AES128 GCM_AES128_GCM
```

BFU application features

Various configuration possibilities are offered through option compilation switches (due to the optimized memory mapping, several options are set by default):

- All the following algorithms are enabled:
 - AES CBC and AES GCM used to perform encryption and decryption
 - AES ECB used to perform encryption decryption and key derivation
 - AES CMAC used to perform signature and verification
 - ECDSA used to perform verification

LoRaWAN FUOTA Name 2_Images_KMS_Blob 🧢 ca_conf.h 2_Images_SBSFU 🧢 ca_low_level.h 2_Images_SECoreBin 🥥 kms_config.h Binary 🥥 kms_low_level.h 🦪 kms_mem_pool_def.h EWARM kms_platf_objects_config.h.pattern Inc 🦉 kms_platf_objects_interface.h MDK-ARM 🥥 mbed_crypto_config.h Src 🥥 nvms_low_level.h Linker_Common 🥒 se_crypto_config.h LoRaWAN_End_Node_DualCore 🥒 se_def_metadata.h Scripts 🥥 se_low_level.h

Figure 21. File structure of cryptographic definition

Table 5. Default features

Feature	Status
AES CBC algorithm support	Encryption and decryption
AES CCM algorithm support	No
AES ECB algorithm support	Encryption, decryption and key derivation
AES CGM algorithm support	Encryption and decryption
AES CMAC algorithm support	Signature and verification
RSA algorithm support	No
RSA algorithm	Not activated
RSA 1024-bit modulus length	No
RSA 2048-bit modulus length	No
ECDSA algorithm support	Verification
ECDSA algorithm	Activated and associated to an elliptic curve
Elliptic curve SECP-192	No
Elliptic curve SECP-256	Yes
Elliptic curve SECP-384	No
SHA1 digest algorithm	No
SHA256 digest algorithm	Digest

All security peripherals can be enabled in the app_sfu.h configuration file, where a general define can be used to enable/disable all security peripherals at once as shown below.


```
/* The define below allows disabling all security IPs at once.
 *
 * Enabled: all security IPs (WRP, watchdog...) are disabled.
 * Disabled: the security IPs can be used (if their specific compiler switches are enabled too).
 *
 */
```

#define SECBOOT_DISABLE_SECURITY_IPS /*!< Disable all security IPs at once when activated */

4.3.2 SBSFU dual-core specific configuration

The main difference between BFU and SBSFU is that the SBSFU embeds all available security features, whereas BFU allows limited security features.

The SBSFU allows the update of the STM32 microcontroller built-in program with new firmware versions, adding new features and correcting potential issues. The update process is performed in a secure way to prevent unauthorized updates and access to confidential on-device data (such as secret code and firmware encryption key):

- no local loader inside the SBSFU application (firmware update only possible through OTA)
- no debug mode (no more information displayed on the terminal during the SBSFU execution)

4.4 LoRaWAN features

The main LoRaWAN features are listed below:

- LoRaWAN L2 (link layer) V1.0.3 or V1.0.4: Class A (baseline), Class C (continuous) and Class B (beacon)
- LoRaWAN RP (regional parameters) V1.0.3 or RP002-1.0.1
- LoRaWAN additional packages:
 - v1.0.0 packages include:
 - Application Layer Clock Synchronization v1.0.0
 - Remote Multicast Setup v1.0.0
 - Fragmented Data Block Transport v1.0.0
 - v2.0.0 packages include:
 - Application Layer Clock Synchronization v2.0.0
 - Remote Multicast Setup v2.0.0
 - Fragmented Data Block Transport v2.0.0
 - Firmware Management Protocol v1.0.0

4.5 Firmware architecture

The figure below summarizes the firmware design and the components involved in an end device supporting the FUOTA feature.

Figure 24. Top-level firmware design

5 LoRaWAN middleware programming guidelines

This section describes the LoRaMAC handler APIs.

5.1 LoRaWAN middleware initialization

LmHandlerInit initializes the LoRaMAC layer. This function initializes the callback system primitives of the MCPS and MLME services (see document [7]), and registers the following required packages:

- PACKAGE_ID_COMPLIANCE (mandatory)
- PACKAGE_ID_CLOCK_SYNC (*)
- PACKAGE_ID_REMOTE_MCAST_SETUP (*)
- PACKAGE_ID_FRAGMENTATION (*)
- PACKAGE_ID_FIRMWARE_MANAGEMENT (*)

Table 6. LmHandlerInit description

Function	Parameter	Description
LmHandlerErrorStatus_t LmHandlerInit ()	LmHandlerCallbacks_t *handlerCallbacks	LoRaMAC handler initialization

Note: All packages (*) are hidden and disabled by default into the LoRaWAN middleware. It is necessary to add the following define to activate these features.

#define LORAWAN_DATA_DISTRIB_MGT 1

This constant is set into the lorawan_conf.h configuration file.

Figure 25. File structure of LoRaWAN configuration

5.2 LoRaWAN middleware configuration

LmHandlerConfigure configures the run-time LoRaMAC layers (such as active region or Tx parameters).

Table 7. LmHandlerConfigure description

Function	Parameter	Description
<pre>LmHandlerErrorStatus_t LmHandlerConfigure ()</pre>	LmHandlerParams_t *handlerParams	LoRaMAC handler configuration

5.3 LoRaWAN middleware process

LmHandlerProcess processes the LoRaMAC and radio events.

Table 8. LmHandlerProcess description

Function	Parameter	Description
void LmHandlerProcess ()	void	Processes the LoRaMAC and Radio events. Asks to go in low-power mode, when no pending operation.

5.4 LoRaWAN middleware start process

LmHandlerJoin runs the LoRaMAC layer with a MLME JoinReq, if OTAA mode is used. This run action requires to process periodically some uplink frames.

Table 9. LmHandlerJoin description

Function	Function Parameter	
<pre>void LmHandlerJoin () ActivationType_t mode</pre>		Starts the LoRaMAC.
	ActivationType_t mode	For OTAA mode, performs a JoinReq.
		For ABP mode, this is a pass-through function.

5.5 LoRaWAN middleware stop process

LmHandlerStop stops the LoRaMAC layer execution and disables all the internal timers.

Table 10. LmHandlerStop description

Function	Parameter	Description
LmHandlerErrorStatus_t LmHandlerStop ()	void	Stops a LoRa network connection.

5.6 LoRaWAN middleware send uplink frame

 ${\tt LmHandlerSend} \ requests \ the \ LoRaMAC \ layer \ to \ send \ a \ Class \ A \ uplink \ frame.$

Table 11. LmHandlerSend description

Function	Parameters	Description
	LmHandlerAppData_t *appData	
LmHandlerErrorStatus_t LmHandlerSend ()	LmHandlerMsgTypes_t isTxConfirmed	be sent with an indication of
	TimerTime_t *nextTxIn	whether the Tx is confirmed
	bool allowDelayedTx	or uncommed.

6 Getting started

This section is dedicated to single-core FUOTA firmware programming guide. For more information concerning the dual-core firmware programming guide, refer to document [8].

6.1 Single-core firmware programing guide

This section describes how to generate a FUOTA single-core application, and this flow must be followed step-by-step. The figure below shows a top-level view of the file structure.

Figure 26. Project order structure

57/

6.1.1 How to generate a FUOTA single-core application

The following steps must be followed to generate a FUOTA single-core application. For each step, open the associated subproject in the dedicated IDE folder, and regenerate the respective binary files.

Figure 27. Application generation steps

The following output binaries are generated in these steps (all of them in clear format, not encrypted):

- SE_Core.bin
- BFU.bin
- LoraWAN_End_node.bin

In addition, the following output files are generated through the postbuild process:

- LoraWAN_End_node.sfb (LoraWAN_End_node.bin encrypted + header)
- BFU_LoraWAN_End_node.bin (three first binary files merged with the memory placement to produce the final memory image)

This step is needed to create the SECoreBin binary that includes all the required "trusted" code and keys. The binary is linked to the BFU code in step B.

The LoRaWAN keys are stored through the kms_platf_objects_config.h.pattern configuration file, using the Commissioning.h header file from LoRaWAN_End_Node project.

Figure 28. File structure of KMS user keys configuration

1_Image_SECoreBin	^ Name
🔒 Binary	🎱 ca conf.h
- EWARM	g ca_low_level.h
nc Inc	🗳 kms_config.h
MDK-ARM	🍪 kms_low_level.h
Src	
STM32CubeIDF	kms_platf_objects_config.h.pattern

For more details about the KMS configuration, refer to the section 'Key Management Services' of the document [7].

The generated SE_Core.bin output file is located in the IDE folder.

1_Image_SECoreBin	^	Name
<mark>,</mark> Binary		Project.dep
EWARM		SE_Core.bin
🔄 Inc		% kms_platf_objects_config.h
MDK-ARM		🍘 crypto.txt
Src		🎱 output.txt
STM32CubelDE		ostbuild.bat

Figure 29. File structure of SECoreBin output

2. 1_Image_BFU

This step compiles the BFU source code that implements the state machine protection configurations. This step links the code with the Secure Engine bin, including the "trusted" code. The generated Project.bin output file is located in the IDE folder.

This step also generates a file that includes symbols used by the LoRaWAN_End_Node application to call the SE interface public functions.

Figure 31. File structure of SE interface

3. LoRaWAN_End_Node

This step compiles the LoRaWAN End_Node source code that implements the LoRaWAN middleware, the user application, and the sequence configuration.

The generated LoRaWAN_End_Node.bin output file is located in the IDE folder.

Figure 32. File structure of LoRaWAN_End_Node output (1 / 2)

This step also generates the following files:

- LORAWAN End Node.sfb (user application binary in encrypted format including the SFU header.)
- BFU_LORaWAN_End_Node.bin (final big binary that concatenates the BFU binaries and user application binaries in clear format)

BFU_LoRaWAN_End_Node.bin must be used to program the STM32WL55xx flash memory on the first use. LoRaWAN_End_Node.sfb must be used to generate a firmware update

Figure 33. File structure of LoRaWAN_End_Node output (2 / 2)

6.1.2 How to download the firmware to the end device (single-core configuration)

There are only three ways to download a firmware:

through the STM32CubeProgrammer tool, using the final big binary BFU_LoRaWAN_End_Node.bin

Warning: This action requires to erase the full device flash memory, and to remove all security option bytes.

- through local download via UART Virtual COM port LoRaWAN FUOTA single-core project offers the possibility to download the firmware update via Ymodem transfer procedure and TeraTerm tool. For more details refer to document [6].
- through the remote download, via FUOTA mechanisms proposed by the LoRaWAN protocol, using the LoRaWAN_End_Node.sfb.

6.1.3 How to debug the End_Node application

The complete system consists of a Secure Boot and an End_Node application. When the target resets, the Secure Boot starts first. After a low-level initialization, the BFU starts and checks all required security steps. If the BFU does not detect any system error, the Secure Boot codes jump to the entry point of the application. Unless general security has been disabled as explained in Section 4.3, since the End_Node application is linked to the Secure Boot, the BFU_LoRaWAN_End_Node.bin cannot be downloaded directly with the debugger. To debug the End_Node application, the following steps must be respected:

1. Set the debugger and low-power defines on End_Node.

LoRaWAN_End_Node	stm32wlxx_nucleo_conf.h
Core	🥝 subghz.h
Inc	🥙 sys_app.h
Src .	sys_cont.n
/** & @brief Enable MCU Debugger pins (dbg serial wires, s */ */ *define DEBUGGER_ENABLED	sbg spi, etc) de, 1: LowPowerMode disabled. MCU enters sleep mode only
#define LOW_POWER_DISABLE	

Figure 34. File structure of End_Node_DualCore debug configuration

- 2. Compile the End_Node projects as described in Section 6.1.1 .
- 3. Flash the target with the complete big binary BFU_LoRaWAN_End_Node.bin, using the STM32CubeProgrammer tool.
- 4. Once the target is flashed, the subproject can be attached to the running target in debug mode (with breakpoints, watch variables, and so on).

6.2 Dual-core specific programming guide

Only the dual-core programming specific to FUOTA application is described here. All other dual-core programming parts are detailed in document [8].

6.2.1 How to download the firmware to the end device (dual-core configuration)

Due to the memory optimization on the SBSFU project, there are only two ways to download a firmware:

through the STM32CubeProgrammer tool, using the final big binary SBSFU LORAWAN End Node DualCore CM4.bin

Warning: This action requires to erase the full device flash memory, and to remove all security option bytes.

through the remote download, via FUOTA mechanisms proposed by the LoRaWAN protocol, using LoRaWAN_End_Node_DualCore_CM4.sfb **Or** LoRaWAN_End_Node_DualCore_CM0Plus.sfb.

As it is not possible to update the Cortex-M0+ and Cortex-M4 firmware in the same time, it is mandatory to create some modifications that do not lead to an execution error (like a missing function interface with a call between Cortex-M4 and Cortex-M0+).

6.2.2 How to automate the generate and load processes

Three scripts are available to automate the compilation of all SBSFU projects and the programming of the concatenate binary on the STM32WL55xx or STM32WL5MOCHxx flash memory: build.bat, program.bat, and disable_security.bat.

Figure 35. File structure of automated process scripts

Table 12. Automated process scripts

Script	Description
	Compiles all project files with IAR Embedded Workbench, including prebuild.bat and
Scripts\EWARM\build.bat	postbuild.bat scripts, with the mandatory project order.
	The $-app$ parameter is used to compile only the user application if the SBSFU projects are not modified.
Scripts \ EWARM \ program bat	Runs the disable_security.bat script to remove the write-access protection.
Seripts (Ewake (program. Dat	Programs the SBSFU_UserApp_M4.bin to the STM32WL55xx, using the STM32CubeProgrammer tool.
Scripts\disable_security.bat	Resets all option bytes to be compliant with a non-secure firmware (including a full erase memory).

Note: The path of the tools must be updated according to the versions and location of the user installations, by modifying the *Scripts\setenv.bat* file content.

6.3 Firmware configuration

6.3.1 Crypto switches

Table 13. Crypto switches

Location: LoRaWAN_FUOTA_DualCore\2_Images_SECoreBin\Inc\se_crypto_config.h

Symbols	Description
SECBOOT_ECCDSA_WITHOUT_ENCRYPT_SHA256	No firmware encryption Only authentication and integrity are ensured with asymmetric cryptography.
SECBOOT_ECCDSA_WITH_AES128_CBC_SHA256	Authentication, integrity, and confidentiality are ensured with asymmetric cryptography.
SECBOOT_AES128_GCM_AES128_GCM_AES128_GCM	Authentication, integrity, and confidentiality are ensured with symmetric cryptography.

These switches are managed with an additional define given in the table below.

Table 14. Crypto default switch

Symbols	Description	Default state
SECBOOT_CRYPTO_SCHEME	Selected crypto scheme	SECBOOT_ECCDSA_WITH_AES128_CBC_SHA256

6.3.2 Security switches

The SBSFU instantiates the security item selected through SECBOOT_DISABLE_SECURITY_IPS. When this symbol is defined, the security protections (such as WRP, RDP, IWDG, DAP) are disabled for all peripherals (see the document [5]).

Single-core security switches

Table 15. Single-core security switches

Location: LoRaWAN FUOTA\1 Image BFU\BFU\App\app sfu.h

Symbols	Description	Default state
SECBOOT_DISABLE_SECURITY_IPS	Disables all secure peripherals simultaneously when activated.	Enabled
SFU_WRP_PROTECT_ENABLE	Write-access protection to protect trusted code	Enabled
SFU_RDP_PROTECT_ENABLE	RDP protection	Enabled
SFU_DAP_PROTECT_ENABLE	DAP protection	Enabled
SFU_DMA_PROTECT_ENABLE	DMA access protection	Enabled
SFU_IWDG_PROTECT_ENABLE	IDWG protection	Disabled
SFU_MPU_PROTECT_ENABLE	MPU area protection	Enabled
SFU_MPU_USERAPP_ACTIVATION	User application MPU area protection	Enabled

Dual-core security switches

Table 16. Security common switches

Location: LoRaWAN_FUOTA_DualCore\2_Images_SBSFU\Common\app_sfu_common.h

Symbols	Description	Default state
SECBOOT_DISABLE_SECURITY_IPS	Disables all secure peripherals simultaneously when activated.	Disabled
SFU_WRP_PROTECT_ENABLE	Write-access protection to protect trusted code	Enabled
SFU_DAP_PROTECT_ENABLE	DAP protection	Enabled
SFU_DMA_PROTECT_ENABLE	DMA access protection	Enabled
SFU_IWDG_PROTECT_ENABLE	IDWG protection	Disabled
SFU_C2_DDS_PROTECT_ENABLE	Static CPU2 (Cortex-M0+)debug protection	Enabled
SFU_SECURE_USER_PROTECT_ENABLE	Secure user memory protection	Enabled
SFU_FINAL_SECURE_LOCK_ENABLE	Secure production protection	Disabled
SFU_HIDE_PROTECTION_CFG	Hide-protection area configuration	Enabled
OB_SECURE_SYSTEM_AND_FLASH	Flash memory and system secure area protection	Enabled
OB_SECURE_SRAM1	SRAM1 area protection	Disabled
OB_SECURE_SRAM2	SRAM2 area protection	Enabled

Table 17. Security Cortex-M4 switches

Location: LoRaWAN FUOTA DualCore\2 Images SBSFU\CM4\Inc\app sfu.h

Symbols	Description	Default state
SFU_MPU_PROTECT_ENABLE	MPU protection on Cortex-M4 regions	Enabled
SFU_MPU_USERAPP_ACTIVATION	User application memory protection during execution	Enabled

Table 18. Security Cortex-M0+ switches

Location: LoRaWAN_FUOTA_DualCore\2_Images_SBSFU\CM0PLUS\SBSFU\App\app_sfu.h

Symbols	Description	Default state
SFU_RDP_PROTECT_ENABLE	Read-access protection	Enabled
SFU_TAMPER_PROTECT_ENABLE	Tamper protection (hardware pin)	Disabled
SFU_MPU_PROTECT_ENABLE	MPU protection on Cortex-M0+ regions	Enabled
SFU_MPU_USERAPP_ACTIVATION	User application memory protection during execution	Enabled
SFU_GTZC_PROTECT_ENABLE	GTZC protection	Enabled
SFU_C2SWDBG_PROTECT_ENABLE	Dynamic CPU2 (Cortex-M0+) debug protection	Enabled

6.3.3 Debug switches

The End_Node_DualCore_Mx projects can enable some debug features through two defines on each core.

Table 19. Debug switches

Location for single core: LoRaWAN_FUOTA\LoRaWAN_End_Node\Core\Inc\sys_conf.h Location for dual core:

LoRaWAN_FUOTA_DualCore\LoRaWAN_End_Node_DualCore\CMxxx\Core\Inc\sys_conf.h

Symbols	Description	Default state
DEBUGGER_ENABLE	 Enables the debugger mode: 1: debugger and four debug pins enabled 0: debugger disabled 	0
LOW_POWER_DISABLE	 Disables the low-power mode: 0: low-power mode enabled (MCU enters Stop 2 mode) 1: low-power mode disabled (MCU enters Sleep mode only) 	0

7 Memory mapping

7.1 LoRaWAN_FUOTA

The flash and RAM memory mapping of the device contains the following elements:

- SB (Secure Boot)
- BFU (Boot and Firmware Update)
- Active slots (including the active user application firmware)
- Firmware header (flash memory area where the not-contiguous firmware header is stored)
- Download slot (downloaded firmware header and encrypted firmware to be installed at next reboot)
- Swap area (flash memory area used to swap the content of active and download slots during the installation process)
- KMS Data Storage (non-volatile memory area to store session keys)

Start address	End address	Flash memory region	Start address	End address	RAM region
0x0800 0000	0x0800 8FFF	Secure Engine	0x2000 0000	0x2000 0BFF	Secure Engine stack
0x0800 9000	0x0801 2FFF	BFU	0x2000 0C00	0x2000 33FF	Secure Engine region
0x0801 3000	0x0801 4FFF	KMS Data Storage (8 Kbytes)	0x2000 3400	0x2000 7FFF	BFU boot region
0x0801 5000	0x0801 5FFF	Swap area			
0x0801 6000	0x0802 9FFF	Download image (80 Kbytes)			
0x0802 A000	0x0802 A1FF	Active image #1 header			
0x0802 A200	0x0803 DFFF	Active image #1 (80 Kbytes)			52V1
0x0803 F000	0x0803 FFFF	LoRaWAN NVM)Т6915

Figure 36. Mapping of flash memory and RAM (single-core)

7.2 LoRaWAN_FUOTA_DualCore

The flash and RAM memory mapping of the device contains the following elements:

- SB CM4
- SBSFU CM0+
- SE CM0+
- Active slots (including the active user application firmware)
- Firmware header (flash memory area where the not-contiguous firmware header is stored)
- Download slot (downloaded firmware header and encrypted firmware to be installed at next reboot)
- Swap area (flash memory area used to swap the content of active and download slots during the installation process)
- KMS Data Storage (non-volatile memory area to store session keys)
- User/SE keys (LoRaWAN and Secure Engine static embedded keys)

End address	Flash memory region
0x0800 1FFF	Secure Boot CM4
0x0800 2FFF	Swap area
0x0800 31FF	Download image header
0x0801 2FFF	Download image (64 Kbytes)
0x0801 31FF	Reserved
0x0801 DFFF	Active image #2 End_Node_DualCore_CM4 (44 Kbytes)
0x0801 EFFF	LoRaWAN NVM
0x0801 F1FF	Reserved
0x0802 EFFF	Active image #1 End_Node_DualCore_CM0+ (64 Kbytes)
0x0802 FFFF	KMS Data Storage (4 Kbytes)
0x0803 12FF	SE interface Cortex-M0+
0x0803 6FFF	SBSFU Cortex-M0+
0x0803 71FF	SBSFU CM0+ vector table
0x0803 E4FF	SE Cortex-M0+
0x0803 E7FF	User keys
0x0803 EFFF	SE keys
0x0803 F7FF	Active image #2 header
0x0803 FFFF	Active image #1 header
	End address 0x0800 1FFF 0x0800 2FFF 0x0800 31FF 0x0801 2FFF 0x0801 31FF 0x0801 DFFF 0x0801 EFFF 0x0802 EFFF 0x0802 FFFF 0x0803 12FF 0x0803 6FFF 0x0803 6FFF 0x0803 E4FF 0x0803 E7FF 0x0803 E7FF 0x0803 F7FF

Figure 37. Mapping of flash memory and RAM (dual-core)

Start address	End address	RAM region
0x2000 0000	0x2000 0CDF	Secure Boot CM4
0x2000 0CE0	0x2000 0CFF	Cortex-M0+/M4 sync flag
0x2000 0D00	0x2000 6FFF	End_Node_DualCore_CM4
0x2000 7000	0x2000 73FF	Mapping table Mailbox MEM1 Cortex-M4
0x2000 7400	0x2000 7FFF	Mailbox MEM2 Cortex-M0+
0x2000 8000	0x2000 D3FF	SBSFU Cortex-M0+ End_Node_DualCore_CM0+
0x2000 D400	0x2000 FFFF	SE Cortex-M0+

DT68185V1

These elements are defined into two common linker script files in the Linker_Common folder.

Figure 38. Structure of common linker files

For more details about this configuration, refer to the document [5].

7.3 LoRaWAN_FUOTA_DualCore_ExtFlash

The flash and RAM memory mapping of the device contains the following elements:

- SB CM4
- SBSFU CM0+
- SE CM0+
- Active slots (including the active user application firmware)
- Firmware header (flash memory area where the not-contiguous firmware header is stored)
- KMS Data Storage (non-volatile memory area to store session keys)
- User/SE keys (LoRaWAN and Secure Engine static embedded keys)

The external flash memory available on the B-WL5M-SUBG1 board contains the following element:

• Download slot (downloaded firmware header and encrypted firmware to be installed at next reboot)

Figure 39. Mapping of flash memory, RAM, and external flash memory

Start address	End address	Flash memory region
0x0800 0000	0x0800 67FF	Secure Boot CM4
0x0800 6800	0x0800 6FFF	Download slot (2 Kbytes) for KMS blob
0x0800 7000	0x0800 71FF	Reserved
0x0800 7200	0x0801 3FFF	Active image #2 End_Node_DualCore_CM4 (52 Kbytes)
0x0801 4000	0x0801 4FFF	LoRaWAN NVM
0x0801 5000	0x0801 51FF	Reserved
0x0801 5200	0x0802 97FF	Active image #1 End_Node_DualCore_CM0+ (82 Kbytes)
0x0802 9800	0x0802 B7FF	KMS Data Storage (8 Kbytes)
0x0802 B800	0x0802 CBFF	SE interface Cortex-M0+
0x0802 CC00	0x0803 5FFF	SBSFU Cortex-M0+
0x0803 6000	0x0803 61FF	SBSFU CM0+ vector table
0x0803 6200	0x0803 E4FF	SE Cortex-M0+
0x0803 E500	0x0803 E7FF	User keys
0x0803 E800	0x0803 EFFF	SE keys
0x0803 F000	0x0803 F7FF	Active image #2 header
0x0803 F800	0x0803 FFFF	Active image #1 header

0x9000 0000	0x9000 01FF	Download image header	
0x9000 0200	0x9001 4FFF	Download image (84 Kbytes)	
Start address	End address	RAM region	

Start address	End address	RAM region
0x2000 0000	0x2000 0CDF	Secure Boot CM4
0x2000 0CE0	0x2000 0CFF	Cortex-M0+/M4 sync flag
0x2000 0D00	0x2000 6FFF	End_Node_DualCore_CM4
0x2000 7000	0x2000 73FF	Mapping table Mailbox MEM1 Cortex-M4
0x2000 7400	0x2000 7FFF	Mailbox MEM2 Cortex-M0+
0x2000 8000	0x2000 C7FF	SBSFU Cortex-M0+ End_Node_DualCore_CM0+
0x2000 C800	0x2000 FFEF	SE Cortex-M0+
0x2000 FFF0	0x2000 FFFF	KMS DataStorage key (encrypt/decrypt blob)

DT71516V1

8 Memory footprint

8.1 LoRaWAN application memory footprint

8.1.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution

Values in the table below are measured for the following configuration of the IAR Embedded Workbench compiler (EWARM version 9.20.1):

- Optimization level 3 for size
- Debug option off
- Trace option VLEVEL_MEDIUM
- Target: STM32WL55
- End_Node application
- LoRaMAC Class A+C
- LoRaMAC region EU868 only

Table 20. Memory footprint values for LoRaWAN_End_Node application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	8240	3005	Core, application, and target components
FUOTA	6084	11524	Firmware update packages modules
HAL	14826	36	STM32WL HAL and LL drivers
IAR Lib	1674	0	Proprietary IAR libraries
IAR Startup	869	2048	Int_vect, init routines, init table, CSTACK, and HEAP
LoRaWAN stack	30264	5894	Middleware LmHandler interface, crypto, MAC, and region
SubGHz_Phy	6676	417	Middleware radio interface
Utilities	2931	1620	All STM32 services (sequencer, time server, low-power mgr, trace, mem)
Total application	71564	24544	Memory footprint for LoRaWAN_End_Node application

8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench compiler (EWARM version 9.20.1):

- Optimization level 3 for size
- Debug option off
- Trace option VLEVEL_LOW (minimal traces)
- Target: STM32WL55xx
- End_Node_DualCore application
- LoRaMAC Class A+C
- LoRaMAC region EU868 only

Table 21. Memory footprint values for LoRaWAN_End_Node_CM0+ application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	4001	176	Core, application, and target components
FUOTA	6369	2928	Firmware update packages modules
HAL	5330	0	STM32WL HAL and LL drivers
IAR Lib	1038	0	Proprietary IAR libraries
IAR Startup	583	4096	Int_vect, init routines, init table, CSTACK, and HEAP
LoRaWAN stack	28654	5846	Middleware LmHandler interface, crypto, MAC, and region
MBMux	2556	1156	Mailbox multiplexer wrappers and services
SubGHz_Phy	6491	417	Middleware radio interface
Utilities	3169	1648	All STM32 services (sequencer, time server, low-power mgr, trace, mem)
Total application	58191	16267	Memory footprint for LoRaWAN_End_Node_DualCore_CM0+ application

Figure 41. Flash memory and RAM footprint for LoRaWAN_End_Node_CM0+

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	7331	2958	Core, application, and target components
HAL	14262	36	STM32WL HAL and LL drivers
IAR Lib	1012	0	Proprietary IAR libraries
IAR Startup	867	2048	Int_vect, init routines, init table, CSTACK, and HEAP
MBMux	2686	954	Mailbox multiplexer wrappers and services
Utilities	2784	1628	All STM32 services (sequencer, time server, low-power mgr, trace, mem)
Total application	28922	7624	Memory footprint for LoRaWAN_End_Node_DualCore_CM4 application

Table 22. Memory footprint values for LoRaWAN_End_Node_CM4 application

8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution

> Values in the tables below are measured for the following configuration of the IAR Embedded Workbench compiler (EWARM version 9.20.1):

- Optimization level 3 for size •
- Debug option off
- Trace option VLEVEL_LOW (minimal traces)
- Target: STM32WL5MOCHxx
- End_Node_DualCore application
- LoRaMAC Class A+C
- LoRaMAC region EU868 only

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	3897	176	Core, application, and target components
FUOTA	6371	2928	Firmware update packages modules
HAL	5290	0	STM32WL HAL and LL drivers
IAR Lib	1038	0	Proprietary IAR libraries
IAR Startup	582	4096	Int_vect, init routines, init table, CSTACK, and HEAP
LoRaWAN stack	28653	5846	Middleware LmHandler interface, crypto, MAC, and region
MBMux	2556	1156	Mailbox multiplexer wrappers and services
SubGHz_Phy	6491	417	Middleware radio interface
Utilities	3169	1648	All STM32 services (sequencer, time server, low-power mgr, trace, mem)
Total application	58047	16267	Memory footprint for LoRaWAN_End_Node_DualCore_CM0+ application

Table 23. Memory footprint values for LoRaWAN_End_Node_ExtFlash_CM0+ application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	7761	5002	Core, application, and target components
HAL	18312	140	STM32WL HAL and LL drivers
IAR Lib	1012	0	Proprietary IAR libraries
IAR Startup	867	2048	Int_vect, init routines, init table, CSTACK, and HEAP
MBMux	2684	954	Mailbox multiplexer wrappers and services
Utilities	2784	1628	All STM32 services (sequencer, time server, low-power mgr, trace, mem)
Total application	33420	9772	Memory footprint for LoRaWAN_End_Node_DualCore_CM4 application

 Table 24. Memory footprint values for LoRaWAN_End_Node_ExtFlash_CM4 application

8.2 BFU and SBSFU application memory footprint

8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA SingleCore solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench compiler (EWARM version 9.20.1):

- Optimization level 3 for size
- Debug option off
- Trace option off
- Target: STM32WL55xx

	-	•	•
Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	666	4	Core, application, and target components
HAL	4052	24	STM32WL HAL and LL drivers
IAR Lib	134	0	Proprietary IAR libraries
IAR Startup	188	0	Int_vect, init routines, init table, CSTACK, and HEAP
KMS	20452	9276	Middleware Key Management Services
SE	1088	16	Middleware Secure Engine
Total application	26580	9320	Memory footprint for SECoreBin application

Table 25. Memory footprint values for SECoreBin single-core application

Figure 45. Flash memory and RAM footprint for SECoreBin single-core

Table 26. Memory footprint values for BFU single-core application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	417	4	Core, application, and target components
HAL	6952	108	STM32WL HAL and LL drivers
IAR Lib	7424	280	Proprietary IAR libraries
IAR Startup	897	6656	Int_vect, init routines, init table, CSTACK, and HEAP
SBSFU	16530	2776	Secure Firmware Update and Secure boot
SE	1654	1	Middleware Secure Engine
SE_BIN	34132	0	Secure Engine compiled library
Total application	68006	9825	Memory footprint for BFU application

Figure 46. Flash memory and RAM footprint for BFU

8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench compiler (EWARM version 9.20.1):

- Optimization level 3 for size
- Debug option off
- Trace option off
- Target: STM32WL55xx

Table 27. Memory footprint values for SECoreBin dual-core application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	838	4	Core, application, and target components
HAL	4664	76	STM32WL HAL and LL drivers
IAR Lib	180	0	Proprietary IAR libraries
IAR Startup	220	0	Int_vect, init routines, init table, CSTACK, and HEAP
KMS	22050	9284	Middleware Key Management Services
SE	1380	16	Middleware Secure Engine
Total application	29332	9380	Memory footprint for SECoreBin application

Figure 47. Flash memory and RAM footprint for SECoreBin dual-core

Table 28. Memory footprint values for SBSFU CM0+ application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	182	4	Core, application, and target components
HAL	3525	100	STM32WL HAL and LL drivers
IAR Lib	268	0	Proprietary IAR libraries
IAR Startup	514	6656	Int_vect, init routines, init table, CSTACK, and HEAP
SBSFU	12140	1260	Secure Firmware Update and Secure boot
SE	4768	1	Middleware Secure Engine
SE_BIN	30972	0	Secure Engine compiled library
Total application	52369	8021	Memory footprint for SBSFU CM0+ application

Table 29. Memory footprint values for SBSFU CM4 application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	800	8	Core, application, and target components
HAL	2554	24	STM32WL HAL and LL drivers
IAR Lib	186	0	Proprietary IAR libraries
IAR Startup	728	512	Int_vect, init routines, init table, CSTACK, and HEAP
SBSFU	1744	100	Secure Firmware Update and Secure boot
Total application	6012	644	Memory footprint for SBSFU CM4 application

Figure 49. Flash memory and RAM footprint for SBSFU CM4

8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench compiler (EWARM version 9.20.1):

- Optimization level 3 for size
- Debug option off •
- Trace option off
- Target: STM32WL5MOCHxx

Table 30. Memory footprint values for SECoreBin_ExtFlash dual-core application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	890	4	Core, application, and target components
HAL	5778	76	STM32WL HAL and LL drivers
IAR Lib	180	0	Proprietary IAR libraries
IAR Startup	220	0	Int_vect, init routines, init table, CSTACK, and HEAP
KMS	23964	10380	Middleware Key Management Services
SE	1380	16	Middleware Secure Engine
Total application	32412	10476	Memory footprint for SECoreBin application

Figure 50. Flash memory and RAM footprint for SECoreBin_ExtFlash

Flash memory RAM (bytes) Project module Description

Table 31. Memory footprint values for SBSFU_ExtFlash_CM0+ application

	(bytes)		
Application	222	4	Core, application, and target components
HAL	10001	212	STM32WL HAL and LL drivers
IAR Lib	6794	284	Proprietary IAR libraries
IAR Startup	576	6656	Int_vect, init routines, init table, CSTACK, and HEAP
SBSFU	16163	1528	Secure Firmware Update and Secure boot
SE	4768	1	Middleware Secure Engine
SE_BIN	35116	0	Secure Engine compiled library
Total application	73640	8685	Memory footprint for SBSFU CM0+ application

Figure 51. Flash memory and RAM footprint for SBSFU_ExtFlash_CM0+

SE

Table 32. Memory footprint values for SBSFU_ExtFlash_CM4 application

Project module	Flash memory (bytes)	RAM (bytes)	Description
Application	1329	328	Core, application, and target components
HAL	10913	152	STM32WL HAL and LL drivers
IAR Lib	7373	280	Proprietary IAR libraries
IAR Startup	891	512	Int_vect, init routines, init table, CSTACK, and HEAP
SBSFU	4215	1688	Secure Firmware Update and Secure boot
Total application	24721	2960	Memory footprint for SBSFU CM4 application

57

Figure 52. Flash memory and RAM footprint for SBSFU_ExtFlash_CM4

9

Implementation validation over network operators

Actility	FUOTA campaign has been performed in front of Actility network in several regions. For more details, refer to the related blog article: https://blog.st.com/thingpark/.
Senet	FUOTA campaign has been performed in front of Senet network in US region
	FUOTA campaign has been performed in front of AWS Network server.
AWS IoT Core for LoRaWAN	The hardware setup requires an AWS certified Gateway.
	For more details, refer to: https://aws.amazon.com/iot-core/lorawan/.

Appendix A

The Python script that includes the algorithm generating redundancy fragments is detailed below.

```
#! /usr/bin/env python3
# -*- coding: utf-8 -*
# Imports
import os
import sys
import logging
import socket
import binascii
import math
from datetime import datetime
from time import sleep
# ______
# Global variables
#
                              _____
logger = logging.getLogger(' name ')
test matlab = False
test_interop = False
fec algo version = 1
if test interop:
   input file = 'Interoptest_file_1.bin'
   fragment_size = 40
   redundancy = 25
else:
  input file = 'LoRaWAN End Node.sfb'
   fragment_size = 120
   redundancy = 72
# ______
def prbs23(start):
    ''The prbs23() function implements a PRBS generator with 2^23 period.
     standard implementation of a 23bit prbs generator'''
   x = start
  b0 = x & 1
   b1 = int((x \& 32) / 32)
   x = (x >> 1) | ((b0 ^ b1) << 22)
   return x
#
def matrix line(N, M):
   '''the matrix_line function generating a parity check vector:
     this function returns line N of the MxM parity matrix'''
   nb_coeff = 0
   line = [0] * M
   \ensuremath{\texttt{\#}} if M is a power of 2
   if (M & (M - 1) == 0) and M != 0:
      pow2 = 1
   else:
      pow2 = 0
   # initialize the seed differently for each line
   x = 1 + (1001 * (N + 1))
   \# will generate a line with M / 2 bits set to 1 (50 \% )
   while (((fec algo version == 2) and (line.count(1) < math.floor(M / 2))) or
         ((fec algo_version == 1) and (nb_coeff < math.floor(M / 2)))):</pre>
```

```
r = math.pow(2, 16)
        # this can happen if m=1, in that case just try again with a different random number
        while r >= M:
           x = prbs23(x)
            # bit number r of the current line will be switched to 1
           r = x % (M + pow2)
        # set to 1 the column which was randomly selected
        line[r] = 1
       nb_coeff += 1
    return line
#
 _____
#
   __name__ == ' main ':
i f
   logging.basicConfig(format='%(asctime)s - [%(levelname)s] - %(message)s',
level=logging.DEBUG)
   output_file = os.path.splitext(input_file)[0] + '_coded' + os.path.splitext(input_file)
[1]
   uncoded frag = []
    # nb of bytes per fragment
    if test matlab:
        fragment_size = 10
        nb fragment = 32
        for i in range(nb_fragment):
           buffer = ''
           for j in range(fragment_size):
               buffer += '{:02X}'.format((i*fragment size+j) % 256)
           logger.debug(buffer)
           uncoded frag.append(buffer)
    else:
        # Read the binary file and convert into fragments list of size <fragment size>
        try:
           with open(input_file, "rb") as f:
    while bytes str := f.read(fragment size):
                   uncoded frag.extend([binascii.hexlify(bytes str).decode()])
        except FileNotFoundError as e:
           logger.error(e)
           exit(1)
        # Get the number of fragments into the binary file
        nb fragment = len(uncoded frag)
        # 0-Padding of the last fragments
        uncoded_frag[-1] += '0'*(fragment_size*2-len(uncoded_frag[-1]))
        logger.info(('Input file: {} | Fragment size: {} bytes | Uncoded fragments: {} | '
                     'Redundancy fragments: {}').format(input_file, fragment_size,
nb fragment, redundancy))
    # generate a coded array based on uncoded content
    coded frag = []
    logger.debug('Matrix:')
    for y in range(nb fragment):
        s = '0'*(2 * fragment size)
        # line y of M x M matrix
       A = matrix_line(y, nb_fragment)
        logger.debug('{:03}: {} - {:03}'.format(y + 1, A, A.count(1)))
        for x in range(nb fragment):
            # if bit x is set to 1 then xor the corresponding fragment
            if A[x] == 1:
               s = '{:X}'.format(int(s, 16) ^ int(uncoded_frag[x], 16))
        # prevent Odd-length string
        s = '0'*((fragment_size * 2) - len(s)) + s
```

```
# save coded fragment
    coded_frag.extend([s])
# write the ouput file containing uncoded + coded fragments
with open(output_file, "wb") as f:
    logger.debug('Uncoded fragments:')
    for num, frag in enumerate(uncoded_frag, start=1):
        logger.debug('{:03}: {}'.format(num, frag.upper()))
        f.write(binascii.unhexlify(frag.encode()))
        logger.debug('Coded fragments:')
        for num, frag in enumerate(coded_frag, start=1):
            logger.debug('{:03}: {}'.format(num, frag.upper()))
            f.write(binascii.unhexlify(frag.encode()))
            f.write(binascii.unhexlify(frag.encode()))
            logger.info('Output file: {} | File size: {}'.format(output_file,
            os.path.getsize(output_file)))
```

Appendix B

This appendix details simulations needed to validate the reconstruction of the initial firmware update image in the flash memory area (full .sfb image).

B.1 Context

The Python script defined in Section Appendix A sends via a LoRaWAN tester LoRaWAN_End_Node.sfb via a fragmentation session on the embedded firmware.

The serial is recovered in Serial.log file and logs trace values. The Python script simulates the loss of several fragments.

In FUOTA single-core case, redundancy (FRAG_MAX_REDUNDANCY) is allocated to 10% of total fragment number (FRAG_MAX_NB) with the code below:

#define FRAG_MAX_NB 716
#define FRAG_MAX_REDUNDANCY 72

Due to the flash memory limitation, a fragment size must be a multiple of eight (8 × 8 bytes = 64 bits):

#define FRAG_MAX_SIZE 120

This simulation environment is used to validate FUOTA firmware with a loss up to 72 fragments. If the communication is more degraded and leads to more than 72 fragments loss, the reconstruction is discarded. The figure below shows the difference between the full firmware to download (on the left), and data sent by Python simulation (on the right).

jession Eile Search View Tools Help	New version available
🗊 LoRaWAN_End_Nodesfb < 💷 🍘 LoRaWAN_End_Nodesfb < 🦉 🏶 LoRaWAN_End_Nodesfb <	🛛 😹 flash_if-0ada01f7.001.c <> 🖓 😹 LoRaWAN_End_Nodesfb < 🖄 😹 LoRaWAN_End_Nodesfb < 🖏
Sessions ▼ × ≠ = 2 ↓ ↓ ↑ ↑ ↑ 3 ↓ □	
C\LoRa\BEE\GIT_test_automation_FUOTA\SubGHz\Irwan_automation\redwood\fulltest_log\LoRaWAN_End_Node.sfb	🔹 C_\GIT_test_automation_FUOTA\SubGHz\Irwan_automation\redwood\fulltest_log\full_dump_mem_flash_if_last_modified.hex
4/22/2021 12:46:05 PM 69:184 bytes	4/22/2021 3:57:13 PM 76 800 bytes
000000000 02 03 00 00 00 00 00 00 00 00 00 00 00 00	2 00007150 02 02 00 00 50 00 50 00 10 00 00 20 20 21 00 57 70 2 205110 100 37
00000D040 94 7D 1F C8 97 16 C4 C4 1F 3A 08 96 1F 69 1D 2D "); F- AA.:i	0000003F0 94 7D 1F C8 97 16 C4 C4 1F 3A 08 96 1F 69 1D 2D "), F-XAi
00000D50 77 21 98 77 4E 98 05 8A 47 3C E7 21 37 45 48 E7 w12wN*.5G <cl7ehc< td=""><td>00000400 77 21 9B 77 4E 9B 05 8A 47 3C E7 21 37 45 48 E7 with start starts</td></cl7ehc<>	00000400 77 21 9B 77 4E 9B 05 8A 47 3C E7 21 37 45 48 E7 with start starts
00000DD60 59 92 6F 40 35 91 EC DF F9 2F 72 92 E3 8D 85 D4 Y'0#5'18u/r'8%u0 frammant land	00000C410 59 92 6F 40 35 91 EC DF F9 2F 72 92 E3 BD B5 D4 Y'o@5'iBu/r'a%u0
00000DD20 38 7E F6 F4 D1 47 7E D8 14 44 88 48 42 D7 C5 00 8-75500 J1 KBA	00000420 38 7E E6 E4 D1 47 7E D8 14 44 88 48 42 D7 C5 00 8-#BNG-Ø, 1'KB×Å.
2000000080 35 D0 01 35 4A 38 62 4F BB DE 06 C7 48 73 26 B3 50 51 b0 5 cmss repartition in whole	00000430 35 D0 01 35 4A 38 62 4F BB DE 05 C7 48 73 26 B3 5D.53:b0mb.CHs&3
- 000000090 3A FC 7E 2C 8D 6D F8 65 5A 9C 5E C8 16 C0 12 AD : Un. Mode7e*E.E.! Firmware file	00000440 3A FC 7E 2C BD 6D F8 65 5A 9C 5E C8 16 C8 15 A6 :uv. MmdeZgrht, E.
00000DA0 34 78 4D 36 CE 12 45 M ox 3D A2 DD 1E 51 48 57 4xM61.F#1=4Y.OKW	0000C450 34 78 4D 36 CE 12 46 A4 6C 3D A2 DD 1E 51 48 57 4x461.FH1=4Y.OKW
900000000 55 10 84 1F 62 C2 85 F9 D4 18 69 89 50 88 A9 C9 nbAuù0.iºP @E	0000C460 6E 16 84 1F 62 C2 85 F9 D4 18 69 89 50 88 A9 C9 nbAuŭ0.i*P*0É
- 10200DC0 59 F4 56 98 78 74 DA 50 88 25 D2 6E AD E8 78 50 YôV"{tUP %On-exP	0000C470 59 F4 56 98 78 74 DA 50 88 25 D2 6E AD E8 78 50 YOV {tUP %On-exP
00000DDD0 68 62 3F 89 CC E2 FF 55 3E 46 43 5A 55 75 1D D4 hb?klagU>FCZUu.0	0000C480 68 62 3F 89 CC E2 FF 55 3E 46 43 5A 55 75 1D D4 hb?klåÿU>FCZUu.Ö
00000DDE0 29 11 2F 93 33 C5 D1 3E FF 64 6A 9B 28 83 E8 E4)./"3AN>ÿdj>(fèä	00000C490 29 11 2F 93 33 C5 D1 3E FF 64 6A 9B 28 83 E8 E4)./"3ÅN>ÿdj>(fèä
■ 00000DDF0 17 3D 46 C1 16 6F 37 26 3E 63 68 F2 9F 95 F1 D9 .=FÅ.o7&>chòY•ñÚ	0000C4A0 17 3D 46 C1 16 6F 37 26 3E 63 68 F2 9F 95 F1 D9 .=FÅ.o78>chòY•ñU
00000E00 47 38 70 EC E1 B4 A7 CA 7C B7 7B BD 0F 21 66 75 G8pia 5Ê -{%.!fu	0000C4B0 47 38 70 EC E1 B4 A7 CA 7C B7 7B BD 0F 21 66 75 G8pia \$E -{%.!fu
- 00000DE10 BF A5 06 95 77 C9 40 F6 4A AE 2F 1E B7 9D 99 1E ¿¥.•₩Ê@Ö3♥/	000004C0 BF A5 06 95 77 C9 40 F6 4A AE 2F 1E B7 9D 99 1E ¿¥.•₩É@ÖJ0/
0000DE20 6C F4 F3 F5 C1 73 4E DD E5 6F E9 2E A5 A7 31 C9 1666ÅsNÝãoé.¥§1É	0000C4D0 6C F4 F3 F5 C1 73 4E DD E5 6F E9 2E A5 A7 31 C9 1066ÅsNýãoé.¥§1É
- 0000DE30 F4 55 DF 23 ED F9 A4 4F 81 C2 CD D8 61 B3 01 DA ∂U6#iù#OÅIÛa³.Û	0000C4E0 F4 55 DF 23 ED F9 A4 4F 81 C2 CD D8 61 B3 01 DA 008#iù#0AIDa ³ .0
0000DE40 4C CA 1D 2A 9E 3A 62 49 33 DF 2A D0 CD FF 6F 48 LÊ.*Ž:bI38*DÍýoH	0000C4F0 4C CA 1D 2A 9E 3A 62 49 33 DF 2A D0 CD FF 6F 48 LÊ.*ž:bI3B*DÍÿoH
00000E50 5B 24 DE 1A DB 59 5F AD C0 0E 51 23 1E 83 D2 02 [\$P.0YA.Q#.f0.	0000C500 5B 24 DE 1A DB 59 5F AD C0 0E 51 23 1E 83 D2 02 [\$P.ÛYÀ.Q#.fÒ.
00000E60 F7 1B FE 14 F4 31 40 BD 2A CA 9F 97 9D 43 FB 73 ÷.b.61@%*EY-Cus Fragment not sent by	0000C510 F7 1B FE 14 F4 31 40 BD 2A CA 9F 97 9D 43 FB 73 ÷.þ.ôl@%*ÉŸ-Cûs
00000E70 6D 29 76 9C 82 CE 73 87 EC 24 30 CE 52 BB 77 C1 m)væ, Isti*; IR=wA python simulation	0000C520 6D 29 76 9C 82 CE 73 87 EC 2A 38 CE 52 BE 77 C1 m)væ,Is‡l*;IR>+uA
00000E80 3C 48 F2 3Z 2B D8 78 18 DF 90 FE FC E4 DF 40 64 <k62+0x.8bus.d (epag="" length)<="" max="" size="" td=""><td>0000C530 3C 4B F8 32 2B D8 78 18 DF 90 FE FC E4 1A 10 64 <k02+0x.8büäd< td=""></k02+0x.8büäd<></td></k62+0x.8bus.d>	0000C530 3C 4B F8 32 2B D8 78 18 DF 90 FE FC E4 1A 10 64 <k02+0x.8büäd< td=""></k02+0x.8büäd<>
00000E90 DD 01 2E 31 E3 B3 14 70 B6 2F F8 40 69 11 20 5 Y. 183.) 9/08-1	0000C540 DD 04 2E 31 E3 B3 14 7D B6 2F F8 40 69 11 20 57 Y.183.}9/001. W
00000EA0 08 3F 43 0C 3E A7 69 18 F9 35 6A D6 20 8C C0 94	0000C550 98 3F 43 0C 3E A7 69 18 ~?C.>§1.
00000DEP AL AD CF C7 DE 8E 78 AF 88 69 A8 28 D5 88 60 5D	
- 000000 C0 AF D9 98 25 98 1B 3B 3C F3 83 54 D3 10 78 9A 94 "UVF.; c6/TO-{\$"	
00000ED0 03 7E 88 2C 45 7E C5 C0 27 A8 D1 26 64 08 36 31	
0000 EE0 08 60 1C 93 74 35 31 41 89 53 77 DF 26 93 77 22 "CSIA"SW88"w"	
00000 F0 29 53 AA 2D AI 78 C7 AF 0E D0 A9 34 F8 94 89 AB)5" 1XC	
00000D100 6E 88 D1 61 D7 78 24 97 30 36 90 DB 3C 61 CE 26 n RaxxS-06Ucal&	
00000F16 E0 75 8F 06 58 41 58 A5 10 84 00 CE 8C FE E8 DE AUT[A[1 10pep	
200001/20 73 03 A3 23 31 11 23 50 04 04 09 80 82 8/ A1 40 2017 * ALUT* + ALUT*	000002058 A5 03 A3 23 91 11 23 50 C4 C4 D5 80 82 87 A1 40 ¥C2#, #\ALU9*, [M
00000130 72 13 00 41 33 CA CA AD DO DO DO FO FA CA 40 50 08 F, 4A3EA; #800.	00000000 72 19 20 41 33 CA CA AD DE DE CE TA EA AD 64 DB C, +ASEA; "MRU.#00
00000/140 E2 08 F/ DAT 54 9A 3F 9E 0/ UA 3E 0E D2 3C 15 AL 81+*85/28U*2	000000276 02 00 F7 DA 22 9A 37 9E 07 DA 26 00 A1 15 A1 01+*8572gU*2
00000/30 90 C2 12 07 03 71 1C 05 73 M2 MC 90 03 14 15 PC A.8. 7,940-1.10	000000000 00 C2 12 07 00 71 1C UC 70 N7 MC 70 00 10 10 10 PC A.R. (-) PPPU
anapiro de de de pe ca la zo pi pe de 12 a de 20 pi pe de 29 pe 20 de 29 - Thijd. (QCUY=0	000000000 00 00 00 00 00 00 00 00 00 00
CONSULTE OF TO TO TO SO SA TA 1A 27 05 12 20 07 06 40 70 30 X0 12, N. TUATKA	00000000 00 r r0 r0 30 30 r r1 10 22 02 12 20 00 r0 40 70 30 X0 12 10 70000X
	00000000 00 00 00 00 00 00 00 00 00 00
pagenter as to the broken by the term of the broken by the	2 000001508 A2 15 BB FB 08 CF FA 19 FA 15 CB 16 CB F 23 BF 82 (A) A1 78 G F08%

Figure 53. Example of datablock sent by FUOTA Python simulation on a LoRaWAN tester

After the loss of several fragments, the Frag decoder calls the LDPC algorithm to reconstruct these missing fragments. The figure below shows a memory dump in case of a failed memory reconstruction.

LoRaWAN_End_Node.sfb <> mem_dump_flash_if_rebase_modified.hex - Hex C	ompare - Beyond Compare	- 🛚 🗡
Session Eile Search View Tools Help		New version available
DoRaWAN_End_Nodesfb <	WAN_End_Nodesfb < 🗂 🗊 LoRaWAN_End_Nodesfb < 🗂 🎒 flash_if-0ada0117.001.c <> 🗂 🇊 LoRaWAN_End_Nodesfb < 🗂 🗊 LoRaWAN_End_Nodesfb	ID 0
🙊 Sessions 🔻 💌 🛎 💺 🛉 🐴 🇐 🕫 🔚		
C\LoRa\BEE\GIT_test_automation_FUOTA\SubGHz\Irwan_automation\redwood	d\LoRaWAN_End_Node.sfb 🗸 🖏 🖉 🗸 C\LoRa\BEE\GIT_test_automation_FUOTA\SubGHz\Irwan_automation\redwood\mem_dump_flash_if_reba	se_modified.hex 🛛 🗸 🍃 🛩 🖛
4/21/2021 12:32:53 PM 68,864 bytes	4/21/2021 2:43:54 PM 84,499 bytes	
Image: Control and the set of th	Le., Bib '1)162H Gif A., s-U, -Ch'h D'1, -A, s-U,	← fragment reconstruction "by LDPC started but didn't succeed
I ≠ Binary differences Load time: 0.03 seconds		

Figure 54. Example of failed datablock reconstruction by LDPC

B.2 Debug manipulations

To check the FUOTA session integrity, the execution must be broken at the end of the FUOTA session, before the BFU takes the hand to authenticate the firmware obtained in $SLOT_DWL_1$. A dump of the whole $SLOT_DWL_1$ area is required to compare it to <myAppli>.sfb sent by the network over FUOTA.

Log traces below display the end of the FUOTA mechanism: BFU process to check integrity and reboot on new firmware received by the firmware update mechanism.

Figure 55. End of FUOTA campaign/ datablock check, authentication by BFU/ reboot on updated firmware traces

Revision history

57

Table 33. Document revision history

Date	Version	Changes
26-Nov-2020	1	Initial release.
9-Jul-2021	2	 Updated: Figure 7. MSC for Class-C creation Figure 8. MSC for data-block broadcasting Section 3: SBSFU/end-device manager relationship replaced by Section 3 FUOTA campaign Section 4.1 Single-core project overview Section 4.2 Dual-core project overview Section 4.3 BFU and SBSFU features Figure 23. File structure of LoRaWAN configuration Section 6 Getting started Section 7 Memory mapping Section 8 Memory footprint Added: Section Appendix A Section Appendix B
22-Feb-2022	3	Updated: Section 3.3 End-device design choices Table 20. Memory footprint values for LoRaWAN_End_Node application Table 21. Memory footprint values for LoRaWAN_End_Node_CM0+ application Table 22. Memory footprint values for LoRaWAN_End_Node_CM4 application Table 24. Memory footprint values for BFU single-core application Table 26. Memory footprint values for SBSFU CM0+ application Added: Section 3.3.1 Fragmentation decoder definitions Section 3.3.2 Fragmentation decoder implementation Section 3.3.2.1 FRAG_MAX_SIZE computation Section 3.3.2.3 FRAG_MAX_REDUNDANCY computation Section 3.3.2.3 FRAG_MAX_NB and FRAG_MIN_SIZE computation Section 9 Implementation validation over network operators
17-Nov-2022	4	Updated: • Section Introduction • Section 1 General information • Section 3.1 How to create and manage a FUOTA campaign • Section 4.1 Single-core project overview • Section 4.2 Dual-core project overview • Section 4.4 LoRaWAN features • Section 4.4 LoRaWAN features • Section 4.5 Firmware architecture • Section 6.2.2 How to automate the generate and load processes • Figure 36. Mapping of flash memory and RAM (single-core) • Figure 37. Mapping of flash memory and RAM (dual-core) • Section 8.1.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution • Section 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution • Section 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_DualCore solution • Section 7.3 LoRaWAN_FUOTA_DualCore_ExtFlash • Section 7.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution
10-Jan-2023	5	Updated: Section 3.2.1 Generation of redundancy fragments Section Appendix A Section B.1 Context

Contents

1	Gen	eral info	ormation	2
2	LoR	aWAN s	standard and FUOTA application feature	4
	2.1	Netwo	rk architecture	4
		2.1.1	Client/server architecture	4
		2.1.2	End-device architecture	4
	2.2	End-de	evice classes	4
	2.3	FUOT	A overview	5
	2.4	Network protocol architecture		
		2.4.1	Network layer	6
		2.4.2	Physical layer (PHY)	7
		2.4.3	MAC layer	7
		2.4.4	Application layer	7
	2.5	Netwo	rk/end-device interworking	7
		2.5.1	Time synchronization	8
		2.5.2	Multicast, fragmentation setup and session creation (Class C only)	9
		2.5.3	Fragment broadcasting and secure firmware update process	10
3	FUO	TA cam	npaign	11
	3.1	How to	o create and manage a FUOTA campaign	11
	3.2	Recon	struction of missing fragments	12
		3.2.1	Generation of redundancy fragments	12
		3.2.2	Reconstruction algorithm	12
		3.2.3	Simulation and validation of lost fragments	14
	3.3	End-de	evice design choices	14
		3.3.1	Fragmentation decoder definitions	14
		3.3.2	Fragmentation decoder implementation	14
4	LoR	aWAN_	FUOTA project overview	20
	4.1	Single	-core project overview	20
	4.2	Dual-c	core project overview	21
	4.3	BFU and SBSFU features		
		4.3.1	BFU single-core configuration	21
		4.3.2	SBSFU dual-core specific configuration	25
	4.4	LoRaV	VAN features	25
	4.5	Firmwa	are architecture	26
5	LoR	aWAN r	niddleware programming guidelines	27
	5.1	LoRaV	VAN middleware initialization	27

57

5.2 LoRaWAN middleware configuration 2 5.3 LoRaWAN middleware start process 2 5.4 LoRaWAN middleware start process 2 5.5 LoRaWAN middleware start process 2 5.6 LoRaWAN middleware start process 2 6.6 Single-core firmware programing guide 3 6.1.1 How to dewnload the firmware to the end device (dual-core configuration) 3 6.2.1 How to dewnload the firmware to the end device (dual-core configuration) 3 6.2.1 How to dewnload the generate and load processes 5 6.3 Firmware configuration 3 6.3.1 6.3.2 Security switches 5 6.3.2 Security switches 6.3.3 Debug switches 3 6.1.1 LoRaWAN_FUOTA_Dua					
5.3 LoRaWAN middleware process		5.2	LoRaW	AN middleware configuration	28
5.4 LoRaWAN middleware start process 2 5.5 LoRaWAN middleware stop process 2 5.6 LoRaWAN middleware send uplink frame 2 6.6 Getting started 3 6.1 Single-core firmware programing guide 3 6.1.1 How to generate a FUOTA single-core application 2 6.1.2 How to download the firmware to the end device (single-core configuration) 3 6.1.3 How to debug the End_Node application 3 6.2 Dual-core specific programming guide 3 6.2.1 How to download the firmware to the end device (dual-core configuration) 3 6.2.2 How to automate the generate and load processes 3 6.3.4 Crypto switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 4 7.4 LoRaWAN_FUOTA 4 7.1 LoRaWAN_FUOTA_ 4 7.2 LoRaWAN_End_Node fulcare of LoRaWAN_FUOTA_SingleCore solution 4 8.1.1 LoRaWAN_End_Node of LoRaWAN_FUOTA_SingleCore solution 4		5.3	LoRaW	/AN middleware process	28
5.5 LoRaWAN middleware stop process 2 5.6 LoRaWAN middleware send uplink frame 2 6 Getting started 3 6.1 Single-core firmware programing guide 3 6.1.1 How to generate a FUOTA single-core application 5 6.1.2 How to download the firmware to the end device (single-core configuration) 5 6.1.3 How to download the firmware to the end device (dual-core configuration) 5 6.2.1 How to download the firmware to the end device (dual-core configuration) 5 6.2.1 How to download the firmware to the end device (dual-core configuration) 5 6.2.1 How to download the firmware to the end device (dual-core configuration) 5 6.2.2 How to automate the generate and load processes 5 6.3.3 Debug switches 5 6.3.4 Crypto switches 5 6.3.3 Debug switches 5 6.3.4 Debug switches 5 6.3.5 Debug switches 5 6.3.6 Debug switches 5 6.3.7 LoRaWAN_FUOTA_DualCore 4 7.1 LORaWAN_FU		5.4	LoRaW	AN middleware start process	28
5.6 LoRaWAN middleware send uplink frame 2 6 Getting started 3 6.1 Single-core firmware programing guide 3 6.1.1 How to generate a FUOTA single-core application 3 6.1.2 How to debug the End_Node application 3 6.1.3 How to download the firmware to the end device (single-core configuration) 3 6.2.1 How to download the firmware to the end device (dual-core configuration) 3 6.2.1 How to auomate the generate and load processes 3 6.3.3 Debug switches 3 6.3.4 Crypto switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 3 6.3.4 LoRaWAN_FUOTA_DualCore 4 7.4 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA SingleCore solution 4 8.1 LORaWAN_End_Node_DualCore of LoRaWAN_FUOTA_SingleCore solution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_SingleCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_SingleCore solution 4 8.1.3		5.5	LoRaW	/AN middleware stop process	28
6 Getting started		5.6	LoRaW	/AN middleware send uplink frame	29
6.1 Single-core firmware programing guide	6	Getti	ng star	ted	30
6.1.1 How to generate a FUOTA single-core application 3 6.1.2 How to download the firmware to the end device (single-core configuration) 3 6.1.3 How to debug the End_Node application 3 6.1.4 How to download the firmware to the end device (dual-core configuration) 3 6.2.1 How to download the firmware to the end device (dual-core configuration) 3 6.2.1 How to download the firmware to the end device (dual-core configuration) 3 6.2.2 How to automate the generate and load processes 3 6.3.3 Firmware configuration 3 6.3.1 Crypto switches 3 6.3.2 Security switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 3 7.4 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_FUOTA_DualCore_ExtFlash 4 8 Memory footprint 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.1 LoRaWAN_End_Node _DualCore of LoRaWAN_FUOTA_DualCore _ExtFlash solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution		6.1	Single-	core firmware programing guide	30
6.1.2 How to download the firmware to the end device (single-core configuration) 3 6.1.3 How to debug the End_Node application 3 6.2 Dual-core specific programming guide 3 6.2.1 How to download the firmware to the end device (dual-core configuration) 3 6.2.2 How to automate the generate and load processes 3 6.3.3 Firmware configuration 3 6.3.4 Crypto switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 3 6.3.4 Crypto switches 3 6.3.3 Debug switches 3 6.3.4 Memory mapping 4 7.1 LoRaWAN_FUOTA_DualCore 4 7.2 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore esolution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore esolution 4 8.2 <t< td=""><td></td><td></td><td>6.1.1</td><td>How to generate a FUOTA single-core application</td><td> 31</td></t<>			6.1.1	How to generate a FUOTA single-core application	31
6.1.3 How to debug the End_Node application 3 6.2 Dual-core specific programming guide 3 6.2.1 How to download the firmware to the end device (dual-core configuration) 3 6.2.2 How to automate the generate and load processes 3 6.3.4 Crypto switches 3 6.3.3 Debug switches 3 6.3.4 Crypto switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 3 6.3.4 Crypto switches 3 6.3.5 Security switches 3 6.3.3 Debug switches 3 6.3.4 Crypto switches 3 6.3.5 Security switches 3 6.3.6 Debug switches 3 6.3.3 Debug switches 3 6.3.4 LoRaWAN_FUOTA 4 7.1 LoRaWAN_FUOTA_DualCore 4 7.2 LoRaWAN_FUOTA_DualCore of LoRaWAN_FUOTA_SingleCore solution 4 8.1 LoRaWAN application memory footprint 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA			6.1.2	How to download the firmware to the end device (single-core configuration)	35
6.2 Dual-core specific programming guide 3 6.2.1 How to download the firmware to the end device (dual-core configuration) 3 6.2.2 How to automate the generate and load processes 3 6.3 Firmware configuration 3 6.3.1 Crypto switches 3 6.3.2 Security switches 3 6.3.3 Debug switches 3 6.3.4 Nemory mapping 4 7.1 LoRaWAN_FUOTA 4 7.2 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_FUOTA_DualCore 4 8.1 LoRaWAN_FUOTA_DualCore 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_END_FUOTA SingleCore solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_DualCore esolution			6.1.3	How to debug the End_Node application	35
6.2.1 How to download the firmware to the end device (dual-core configuration) 3 6.2.2 How to automate the generate and load processes 3 6.3 Firmware configuration 3 6.3.1 Crypto switches 3 6.3.2 Security switches 3 6.3.3 Debug switches 3 6.3.3 Debug switches 3 7 Memory mapping 4 7.1 LoRaWAN_FUOTA 4 7.2 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_FUOTA_DualCore_ExtFlash 4 8 Memory footprint 4 8.1 LoRaWAN_Application memory footprint 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_DualCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 <td></td> <td>6.2</td> <td>Dual-co</td> <td>pre specific programming guide</td> <td> 36</td>		6.2	Dual-co	pre specific programming guide	36
6.2.2 How to automate the generate and load processes 3 6.3 Firmware configuration 3 6.3.1 Crypto switches 3 6.3.2 Security switches 3 6.3.3 Debug switches 3 6.3.4 Crypto switches 3 6.3.5 Debug switches 3 6.3.6 Debug switches 3 6.3.7 Memory mapping 4 7.1 LoRaWAN_FUOTA_DualCore 4 7.2 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_FUOTA_DualCore 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1 LoRaWAN application memory footprint 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 <			6.2.1	How to download the firmware to the end device (dual-core configuration)	36
6.3 Firmware configuration 3 6.3.1 Crypto switches 3 6.3.2 Security switches 3 6.3.3 Debug switches 3 7 Memory mapping 4 7.1 LoRaWAN_FUOTA 4 7.2 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_FUOTA_DualCore_ExtFlash 4 8 Memory footprint 4 8.1 LoRaWAN_End_DualCore_ExtFlash 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_DualCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_Dual			6.2.2	How to automate the generate and load processes	36
6.3.1 Crypto switches. 3 6.3.2 Security switches. 3 6.3.3 Debug switches. 3 7 Memory mapping. 4 7.1 LoRaWAN_FUOTA. 4 7.2 LoRaWAN_FUOTA_DualCore. 4 7.3 LoRaWAN_FUOTA_DualCore. 4 7.3 LoRaWAN_FUOTA_DualCore. 4 8.1 LoRaWAN_FUOTA_DualCore. 4 8.1 LoRaWAN_FUOTA_DualCore. 4 8.1 LoRaWAN_FUOTA_DualCore 4 8.1 LoRaWAN_FUOTA_DualCore ExtFlash 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 <td></td> <td>6.3</td> <td>Firmwa</td> <td>re configuration</td> <td> 37</td>		6.3	Firmwa	re configuration	37
6.3.2 Security switches 3 6.3.3 Debug switches 3 7 Memory mapping 4 7.1 LoRaWAN_FUOTA 4 7.2 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_FUOTA_DualCore_ExtFlash 4 8 Memory footprint 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_DualCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 Appendix A 5 Appendix A 5 8.2 Debug manipulations 6			6.3.1	Crypto switches.	37
6.3.3 Debug switches. 3 7 Memory mapping 4 7.1 LoRaWAN_FUOTA. 4 7.2 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_FUOTA_DualCore_ExtFlash 4 8 Memory footprint 4 8.1 LoRaWAN_application memory footprint 4 8.1.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_SingleCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 9 Implementation validation over network operators 5 Appendix A 6 B.1 Co			6.3.2	Security switches	37
7 Memory mapping			6.3.3	Debug switches.	39
7.1 LoRaWAN_FUOTA 4 7.2 LoRaWAN_FUOTA_DualCore 4 7.3 LoRaWAN_FUOTA_DualCore_ExtFlash 4 8 Memory footprint 4 8.1 LoRaWAN application memory footprint 4 8.1.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_DualCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 9 Implementation validation over network operators 5 Appendix A 5 6 8.1 Context 6 8.2 Debug manipulations 6 <td>7</td> <td>Mem</td> <td>ory ma</td> <td>pping</td> <td>40</td>	7	Mem	ory ma	pping	40
7.2 LoRaWAN_FUOTA_DualCore. 4 7.3 LoRaWAN_FUOTA_DualCore_ExtFlash 4 8 Memory footprint 4 8.1 LoRaWAN application memory footprint 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.1 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_SingleCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 9 Implementation validation over network operators 5 Appendix A 5 Appendix B 6 B.1 Context 6 B.2 Debug manipulations 6		7.1	LoRaW	/AN_FUOTA	40
7.3 LoRaWAN_FUOTA_DualCore_ExtFlash 4 8 Memory footprint 4 8.1 LoRaWAN application memory footprint 4 8.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_DualCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 9 Implementation validation over network operators 5 Appendix A 5 Appendix B 6 B.1 Context 6 B.2 Debug manipulations 6		7.2	LoRaW	/AN_FUOTA_DualCore	40
 8 Memory footprint		7.3	LoRaW	/AN_FUOTA_DualCore_ExtFlash	42
8.1 LoRaWAN application memory footprint 4 8.1.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA_DualCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 9 Implementation validation over network operators 5 Appendix A 5 A 6 B.1 Context 6 B.2 Debug manipulations 6 B.2 Debug manipulations 6	8	Mem	ory foo	tprint	43
8.1.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution 4 8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA SingleCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 9 Implementation validation over network operators 5 Appendix A 5 8.2 Debug manipulations 6 8.2 Debug manipulations 6		8.1	LoRaW	/AN application memory footprint	43
8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution 4 8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution 4 8.2 BFU and SBSFU application memory footprint 4 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA SingleCore solution 4 8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 9 Implementation validation over network operators 5 9 Implementation validation over network operators 5 Appendix A			8.1.1	LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution	43
8.1.3 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution			8.1.2	LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution	44
 8.2 BFU and SBSFU application memory footprint			8.1.3	LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore_ExtFlash solution	45
 8.2.1 SECoreBin and BFU of LoRaWAN_FUOTA SingleCore solution		8.2	BFU ar	nd SBSFU application memory footprint	48
8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution 5 8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 Appendix A .5 B.1 Context .6 B.2 Debug manipulations .6 Revision history .6			8.2.1	SECoreBin and BFU of LoRaWAN_FUOTA SingleCore solution	48
8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution 5 9 Implementation validation over network operators 5 Appendix A .5 Appendix B .6 B.1 Context .6 B.2 Debug manipulations .6 Revision history .6			8.2.2	SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution	50
9 Implementation validation over network operators			8.2.3	SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution	52
Appendix A	9	Imple	ementat	tion validation over network operators	56
Appendix B	Арр	oendix	Α		57
B.1 Context 6 B.2 Debug manipulations 6 Revision history 6	Арр	oendix	в		60
B.2 Debug manipulations		B.1	Contex	t	60
Revision history		B.2	Debug	manipulations	61
	Rev	vision ł	nistory		62

57

List of tables	66
List of figures	67

List of tables

Table 1.	Acronyms and terms	. 2
Table 2.	Document references	3
Table 3.	FUOTA single core RAM memory requirements	15
Table 4.	FUOTA dual core RAM memory requirements	18
Table 5.	Default features	24
Table 6.	LmHandlerInit description	27
Table 7.	LmHandlerConfigure description	28
Table 8.	LmHandlerProcess description	28
Table 9.	LmHandlerJoin description	28
Table 10.	LmHandlerStop description	28
Table 11.	LmHandlerSend description	29
Table 12.	Automated process scripts	37
Table 13.	Crypto switches	37
Table 14.	Crypto default switch	37
Table 15.	Single-core security switches.	38
Table 16.	Security common switches	38
Table 17.	Security Cortex-M4 switches	38
Table 18.	Security Cortex-M0+ switches	39
Table 19.	Debug switches	39
Table 20.	Memory footprint values for LoRaWAN_End_Node application	43
Table 21.	Memory footprint values for LoRaWAN_End_Node_CM0+ application	44
Table 22.	Memory footprint values for LoRaWAN_End_Node_CM4 application	45
Table 23.	Memory footprint values for LoRaWAN_End_Node_ExtFlash_CM0+ application	46
Table 24.	Memory footprint values for LoRaWAN_End_Node_ExtFlash_CM4 application	47
Table 25.	Memory footprint values for SECoreBin single-core application	48
Table 26.	Memory footprint values for BFU single-core application	49
Table 27.	Memory footprint values for SECoreBin dual-core application	50
Table 28.	Memory footprint values for SBSFU CM0+ application	51
Table 29.	Memory footprint values for SBSFU CM4 application	51
Table 30.	Memory footprint values for SECoreBin_ExtFlash dual-core application	52
Table 31.	Memory footprint values for SBSFU_ExtFlash_CM0+ application	53
Table 32.	Memory footprint values for SBSFU_ExtFlash_CM4 application	54
Table 33.	Document revision history	62

List of figures

Figure 1.	Network diagram.	4
Figure 2.	Client/server architecture example	4
Figure 3.	Tx/Rx timing diagram (Class C)	5
Figure 4.	LoRaWAN network protocols	6
Figure 5.	LoRaWAN layers	6
Figure 6.	MSC for device timing	8
Figure 7.	MSC for Class-C creation.	9
Figure 8.	MSC for data-block broadcasting	10
Figure 9.	MSC for FUOTA campaign	11
Figure 10.	Redundancy fragments	12
Figure 11	Reconstruction algorithm principle	13
Figure 12	FEC reconstruction example	13
Figure 13	FEC reconstruction of lost fragments	13
Figure 14	RAM use vs ERAG MAX NB (single core)	17
Figure 14.		17
Figure 15.		19
Figure 16.		20
Figure 17.		21
Figure 18.		22
Figure 19.		23
Figure 20.		23
Figure 21.	File structure of cryptographic definition	24
Figure 22.	File structure of general security configuration	25
Figure 23.	General security disable flag	25
Figure 24.	Top-level firmware design.	26
Figure 25.	File structure of LoRaWAN configuration	27
Figure 26.	Project order structure	30
Figure 27.	Application generation steps.	31
Figure 28.	File structure of KMS user keys configuration	32
Figure 29.	File structure of SECoreBin output	32
Figure 30.	File structure of BFU output	33
Figure 31.	File structure of SE interface	33
Figure 32.	File structure of LoRaWAN End Node output (1 / 2)	34
Figure 33.	File structure of LoRaWAN End Node output (2 / 2)	34
Figure 34.	File structure of End Node DualCore debug configuration	35
Figure 35.	File structure of automated process scripts.	36
Figure 36.	Mapping of flash memory and RAM (single-core)	40
Figure 37.	Mapping of flash memory and RAM (dual-core).	41
Figure 38.	Structure of common linker files	41
Figure 39.	Mapping of flash memory RAM and external flash memory	42
Figure 40	Flash memory and RAM footprint for LoRaWAN End Node	43
Figure 41	Elash memory and RAM footprint for LoRaWAN_End_Node_CM0+	44
Figure 42	Elash memory and RAM footprint for LoRaWAN_End_Node_CM4	45
Figure 42.	Elash memory and RAM footprint for LoRaWAN_End_Node_Civit+	40 46
Figure 43.	Flash memory and RAM footprint for LoRaWAN_End_Node_Extrash_CM0+	+0 17
Figure 44.	Flash memory and RAM footprint for SECoroBin single core	+1 10
Figure 45.	Flash memory and RAM footprint for SECOREDIT single-core	40 40
Figure 46.		+9 50
Figure 47.		5U
Figure 48.	Fiash memory and RAM tootprint for SBSFU CMU+	51
Figure 49.	Flash memory and RAM tootprint for SBSFU CM4	52
Figure 50.	Flash memory and RAM tootprint for SECoreBin_ExtFlash.	53
Figure 51.	Hash memory and RAM footprint for SBSFU_ExtFlash_CM0+	54
Figure 52.	Flash memory and RAM footprint for SBSFU_ExtFlash_CM4	55
Figure 53.	Example of datablock sent by FUOTA Python simulation on a LoRaWAN tester	60

57

Figure 54.	Example of failed datablock reconstruction by LDPC	61
Figure 55.	End of FUOTA campaign/ datablock check, authentication by BFU/ reboot on updated firmware traces	61

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved