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Application note

LoRaWAN® firmware update over the air with STM32CubeWL

Introduction

This application note describes the FUOTA (firmware update over the air) application embedded in the STM32CubeWL MCU
package, and explains how to use the overall FUOTA process to provide the components needed for a FUOTA campaign.

There are three environment projects:

. LoRaWAN® FUOTA SingleCore solution based on STM32WLESxx, STM32WL55xx or STM32WL5MOCHxx
microcontrollers series

. LoRaWAN® FUOTA DualCore solution based on STM32WL55xx or STM32WL5MOCHxx microcontrollers series

. LoRaWAN® FUOTA DualCore with External Flash (for Download slot) solution based on STM32WL5MOCHxx
microcontrollers series

This document applies within the framework of a FUOTA project, and targets particularly the FUOTA project integrators, or those

integrating FUOTA modules in a wider system implementing end-device functions.

LoRa® is a type of wireless telecommunication network designed to allow long-range communication at a very low

bitrate, enabling long-life battery-operated sensors. LoRaWAN® defines the communication and security protocol to ensure

interoperability with LoRa® networks.
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General information

General information

Note:

Note:

The STM32CubeWL runs on STM32WLSeries microcontrollers based on Arm® Cortex®-M processor.

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

The FUOTA application in STM32CubeWL is compliant with the LoRa Alliance® specification protocol
(LoRaWAN Link Layer v1.0.3 and v1.0.4, see document [1]).

The FUOTA feature implemented in the application layer is based on and compliant with the specific
functionalities defined by the LoRa Alliance. These functionalities allow a multicast group (Remote Multicast
Setup Spec V1.0.0, see document [4]) to be set up, to fragment and to send data packets (Fragmented Data
Block Transport Specification v1.0.0, see document [3]), and finally to synchronize clocks (LoRaWAN Application
Layer Clock Synchronization Specification v1.0.0, see document [2]), so that all devices agree on the start of a

FUOTA session.

Throughout this application note, the IAR Embedded Workbench® EWARM and Keil® MDK-ARM IDEs are used
as an example to provide guidelines for project configuration.

The FUOTA application:
. supports a full firmware upgrade image (entire firmware image sent to the end device)
. is only applicable in Class-C mode

. runs on STM32WL55xx or STM32WL5MOCHxx targets for DualCore, or STM32WLES5xx, STM32WL55xx
or STM32WL5MOCHXxx target for SingleCore

. supports a third-party middleware, mbed-crypto for the cryptographic services

Acronym or term

ABP
APDU
AS
BFU
DAP
DMA
End device
FEC
Firmware image
Firmware header
FUOTA
HAL
IDWG
KMS
L2
LoRa
LoRaWAN
LDPC
MAC

Mbed-crypto

Table 1. Acronyms and terms

Activation by personalization

Application protocol data unit

Application server

Boot and Firmware Update

Direct access port

Direct memory access

Device used as sensor or actuator in a networked system
Forward error correction

Binary image (executable) run by the end device
Meta-data describing the firmware image to be installed
Firmware update over the air

Hardware abstract layer

Independent watchdog

Key management services

Link layer

Long-range radio technology

LoRa wide-area network

Low-density parity code

Media access control

Mbed cryptography library implementation of the cryptography interface of the Arm PSA (platform
security architecture)
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MCPS MAC common part sublayer
MCU Microcontroller
MIB MAC information base
MLME MAC layer management entity
MPDU MAC protocol data unit
MPU Memory protection unit
MSC Message sequence chart
NS Network server
OTA Over the air
OTAA Over-the-air activation
PLME Physical layer management entity
PPDU Physical protocol data unit
RP Regional parameters
SAP Service access point
SE Secure Engine
SBSFU Secure Boot and Secure Firmware Update
sfb file Binary file packing the firmware header and the firmware image
SFU Secure Firmware Update
SKMS Secure key management services

Table 2. Document references

[1 LoRa Alliance Specification Protocol (LoRaWAN version V1.0.3), March 2018

2] LoRa Alliance Application layer clock synchronization over LoRaWAN Specification v1.0.0, September 2018 -
[TS-003]

[3] LoRa Alliance Fragmented Data Block Transport over LoRaWAN Specification v1.0.0, September 2018 -
[TS-004]

[4] LoRa Alliance Remote Multicast Setup over LoRaWAN Specification v1.0.0, September 2018 - [TS-005]

[5] Integration guide of SBSFU on STM32CubeWL (including KMS) (AN5544)

[6] Getting Started with the SBSFU of STM32CubeWL (UM2767)

[7] How to build a LoRa application with STM32CubeWL (AN5406)

[8] How to secure LoRaWAN and Sigfox with STM32CubeWL (AN5682)
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2 LoRaWAN standard and FUOTA application feature

This section provides a general overview of the LoRa and LoRaWAN recommendations. It deals with the
LoRaWAN end-device and the FUOTA feature, that are the core subjects of this application note.

2.1 Network architecture
The figure below shows the components and their protocol relationships, allowing the implementation of the
FUOTA feature.
Figure 1. Network diagram
Device APDU Device
Update £ management management Update server
K
Agent Mutt Multi F Clock
ulti Frag Clock APDU cast rag sync
cast sync

SB File distribution server

SFU
LoRa user APDU User 3
application application 3]

2 E
w
LoRaWAN MPDU[ | eowaN | Backend | TPDU Backend
transport transport
End device Network server Application server
Note: The LoRa Alliance technical FUOTA working group works on the LoRaWAN Firmware Management Protocol

Specification, that documents and defines this block. The proposed implementation in the FUOTA application, is
a proof of concept.

211 Client/server architecture

In the figure below, the end device where the software or firmware must be updated, is referred to as the end
node or client. The other part of the system is referred to as the cloud or server, and provides the new software or

firmware.
Figure 2. Client/server architecture example
Client (end node) Server
. Radio Application and
Sensor g MCU 1= Radio gateway = network server
21.2 End-device architecture

The end device consists of a host MCU (microcontroller) that reads sensor data to transmit the sensor reading
over the LoRaWAN network by means of the LoRa radio module.

Data is encrypted by the host MCU and the radio packet is received by the gateway, that forwards it to the
network server. The network server then sends data to the application server, that has the right key to decrypt the
application data.

2.2 End-device classes

The LoRaWAN protocol specification (see document [1]) has several end-device classes to address the various
needs of a wide range of applications.

The FUOTA application described in this document is only 'Class-C enable'. In other words, the FUOTA
application is validated for network infrastructure supporting at least Class-C mode.
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Note: The end device supports Class-B mode. Nevertheless, it is only 'Class B capable’. To be 'Class B enable’, a new
integration and validation phase must be proceeded on a network infrastructure supporting Class-B mode for the
FUQOTA campaign.

Class definition

The definition of the various classes is (see document [1]):

. Class A: bi-directional end devices (all devices)
. Class B: bi-directional end devices with scheduled receive slots (Beacon)
. Class C: bi-directional end devices with maximal receive slots (Continuous)

The Class-C mode is implemented to support FUOTA. Class-C end devices have almost continuously open
receive windows (RxC where the data blocks are received), and are only closed when transmitting (Tx) and
receiving (Rx1, Rx2) in Class-A mode (see the figure below).

Figure 3. Tx/Rx timing diagram (Class C)

Rxc Rxc Rxc

Tx Rx1 Rx2

RxDelay1 | :
; RxDelay2
i i

{

|

|

|
Transmit time on air ',

LY

|

|- »
: »

! Extends Rxc until next Tx

) 4

2.3 FUOTA overview

The FUOTA update process transfers a new software image (data file) from the server to the client, and updates
the current software image (version N) running on the client with the new received software image (version N+1).
Obstacles to successful completion of the FUOTA update process are listed below:

. Communication
The new firmware image must be sent from the server to the client. This challenge is performed through
the application-layer protocols running over LoRaWAN, that provide remote-multicast setup, fragmented
data-block transport, and application-layer clock-synchronization services. The LoRaWAN MAC layer
provides Class-C mode to transmit the data file in unicast or multicast mode.

. Firmware update
The client must migrate from the current to the new firmware image. This task is performed by the
Update Agent module. To succeed, the Update Agent module relies on the services provided by the
SBSFU (Secure Boot and Secure Firmware Update) application, using the SE (Secure Engine), KMS (key
management services) and mbed-crypto middleware.

. Memory
The software architecture must be organized so that it can be executed when the update process
completes. The solution must ensure the recovery of the new software version, if there are installation
issues. This task is handled by the SBSFU application.

. Security
When a new firmware image is sent wireless from server to client, several security services must be
assured (such as authentication, confidentiality, and integrity). This must be done either through the
LoRaWAN protocol or by means of the SBSFU application security services.
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24 Network protocol architecture

The figure below describes the end-to-end network protocol architecture. The following protocol exchanges are
used:

. MAC protocol data unit exchanges (MPDU)
. application protocol of an application data unit exchanges (APDU)
. LoRaWAN protocol physical protocol data unit layer (PPDU)

Figure 4. LoRaWAN network protocols
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241 Network layer

The LoRaWAN architecture is defined in terms of blocks called layers. As shown in the figure below, each layer is
responsible for one part of the standard and offers services to higher layers. An end device includes the following

elements:

. PHY: embeds the radio frequency transceiver

. MAC sublayer: provides access to the physical channel

. application layers: provide access to the LoRaWAN services protocol

Figure 5. LoRaWAN layers
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24.2 Physical layer (PHY)
The physical layer provides the following services:
. PHY data service: enables the Tx/Rx of physical protocol data units (PPDUs)

. PHY management service: enables the personal-area network-information base (PIB) management
243 MAC layer
The MAC layer provides the following services:
. MAC data service: enables transmission and reception of MAC protocol data units across the physical
layer (MPDU)
. MAC sublayer management: enables the PIB management
244 Application layer

The application layer provides several messaging packages running over the LoRaWAN protocol. FUOTA scopes
the following ones:

. Remote multicast setup package (Port 200)
- remotely creates a multicast group security context inside a group of end devices
- reports the list of multicast contexts existing in the end device
- remotely deletes a multicast security context
- programs a Class-C multicast session
- programs a Class-B multicast session
. Fragmented-data-block transport package (Port 201)
- sets up, reports and deletes fragmentation transport sessions
- may support several fragmentation sessions simultaneously for an end device
- can be used either over multicast or unicast
- reports the status of a fragmentation session
. Clock synchronization package (Port 202)
— synchronizes the end-device real-time clock to the network GPS
- makes all end devices of a multicast group to switch to Class C temporarily and synchronously

. Firmware management package (Port 203) - (proof-of-concept implementation only)
- queries the firmware version running on an end device (including availability of the firmware update
version)

- queries the end-device hardware version
- manages the end-device reboot at a given time
. Update agent module
- interfaces a LoRaWAN stack block to an SBSFU block

- gets, recombines and stores the complete file in the Download Image Slot, before the SFU execution
of the SBSFU (called by NVIC_Reset action)

. User application
- Sensor/actuator processing — application use cases

- required to start a FUOTA session, with some user uplinks to open useful Rx windows for the
packages described above

2.5 Network/end-device interworking

This section only shows the information flow between the end device and the application server, at the
application-layer level, during a FUOTA campaign. For a complete view and description of the end device and
network interactions, see document [7].

Multicast and fragmentation setup are detailed below.
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2.51 Time synchronization
Before setting up a FUOTA session, the end device must have synchronized its timing with the network, using
either AppTimeReq or DeviceTimeReq as shown in the figure below.

Figure 6. MSC for device timing

Endl-iiz\t/ilc(:r? End-device Network MAC aNeIr;tIi-gn
PP MAC layer layer PP
layer layer
MCPS.req (AppTimeReq)
AppTimeReq (202) DeVIce t|me
""""""""" MCPS. ind (AppTimeReq) synchronization at
MCPS . resp (AppTimeAns) application layer
AppTimeAns <
MCPS.cnf (AppTimeaAns) [+~~~ T T TTTTTT
MLME. req (DeviceTimeReq)
DeviceTimeReq (0) . Device time
. i menn synchronization at
E’ILME.cnf(DeviceTimeAns) MAC Iayer
| | |
[ [
End device Application server
Note: For the purposes of this presentation, the TimeReqg sent by the MSC is divided into DeviceTimeReqg and

AppTimeReq parts. The LoRaWAN specification allows a MAC command to be piggybacked in an application
payload. In the current implementation, DeviceTimeReq is piggybacked in the AppTimeReqg payload.
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252
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Multicast, fragmentation setup and session creation (Class C only)

To receive a data block at the application level, it is necessary to have some exchanges between the network
application layer and the end-device application layer. These exchanges are mainly to define the following:

. a multicast group ID
. fragmentation parameters (frag number and frag size)
. multicast Class C session (start time and end time)
Figure 7. MSC for Class-C creation
End-device End-device Network MAC Network
application MAC laver laver application
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253 Fragment broadcasting and secure firmware update process

As soon as the end device is synchronized (Class C), it opens its Rx window to receive the data fragments (see
document [3]). The end device stays in this state until all the data fragments are received.

When the complete data block (see the note below) is received, the end device closes its Rx windows, and, if
everything is OK from the 'data-block transfer' point-of-view, the end device calls the Update Agent to start the
SFU process.

Figure 8. MSC for data-block broadcasting

Endl-i((j:z\tlilgr? End-device Network MAC aNeﬁz\gIgn
PP MAC layer layer PP
layer layer
|
Device waiting for Class-C
I
Device Sync/Rx window ON MCPS . Req (Fragtl)
MCPS . Ind (Frag#1) l____Fragtlzoh) MCPS.Req (Frag#2)
<« Frag#2 (201) Data
MCPS.Ind(Frag#2) [C——————————=—=——=—==— e fragments
......... MCPS.Req (Frag#n-1)
......... Fragin-1(201) < broadcasted
MCPS. Ind (Frag#n-1) - -————— === — = — MCPS.Req (Frag#n)
Frag#n (201)
MCPS.Ind (Frag#n) ——————————— — — — — — —
Add proprietary user procotol when the|data block :
hgs been fully reconstructed H
Data block transferred/Rx window OFF When the last
I fragment has

| J 1 |~ been received,
| I start the Update
End device Application server Agent.

Note: Additional user ‘proprietary’ protocol statement:

The V1.0 package, and particularly Fragmented Data Transport specification [TS-004] (see document [3]), does
not provide a way to inform the server that all data blocks have been properly received in order to rebuild the
current download file. This is the case in the currently proposed implementation. The server always sends all
the fragments (uncoded and coded), even if the current download file has been rebuilt before the end of the
complete broadcast fragmentation transaction.

If needed, the user is responsible for implementing a ‘proprietary’ protocol to avoid such behavior. For instance,
when all the required fragments have been received and the current download file rebuilt, a simple crc32 can be
computed and sent back to the server. The server should decide to stop broadcasting the remaining fragments.

This approach requires cooperation between the device maker and the network operator to define the
'proprietary’ part of the protocol.
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3 FUOTA campaign

The MSC in the figure below presents the whole FUOTA communication exchange between the STM32WL end
device and the application server (AS). The FUOTA campaign is divided into the following parts:

. FUOTA session setup between AS and end device

. fragment session exchange
The file to be transferred is divided into N data fragments (called data block in the MSC).
. firmware update authentication check, firmware reboot and swap on new firmware
Figure 9. MSC for FUOTA campaign
End device AS
DevTimeReq ]
DevTimeAns
MCGroupSetupReq
McGroupSetupAns
FragSessionReq
FragSessionAns
McClassCSessionReq LoRaWAN FUOTA
X | scope (firmware delivery
McClassCSessionAns and management)
Wait for Class C
rendez-vous Fragment#1
Fragment#2
Data block
I splitinn
Fragment#n fragments
Full file received
I p—
SFU process | BFU scope for delta generation and
. update of device firmware

The BFU allows the update of the device with a new firmware version, adding new features and correcting
potential issues. The update process is performed in a secure way to prevent unauthorized updates.

3.1 How to create and manage a FUOTA campaign

This section does not show how to create a FUOTA campaign on an application server. These aspects of a
FUOTA campaign depend on the services provided by the network operator. Only the salient points relating to
FUOTA campaign support are outlined in this section.

The application server must:
. support the following packages:
- Clock Synchro package (TS-003) (see document [2])
- Fragmentation package (TS-004) (see document [3])
- Multicast Setup package (TS-005) (see document [4])
. support Class-C mode (as defined in the LoRaWAN specifications V1.0.3 or V1.0.4, see document [1])

. be compliant with the 'Interop test' proposed by the FUOTA working group of the LoRa Alliance
The 'Interop test' is the minimum test proving that the end device is able to receive a data block file from
the server. This minimum test is shown in Section 2.5 .

. have the capability to manage the data block (firmware image) to be downloaded
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Reconstruction of missing fragments

During the FUOTA campaign, some LoRaWAN frames may be lost to the end device (following reception
problem, frame corruption, or server lag for example).

To face this problem, the AS sends redundancy fragments to the end device after the whole uncoded fragments
have been sent. The end device continues its FUOTA session to retrieve these redundancy fragments and try to
reconstruct the missing fragments thanks to the redundancy ones.

Generation of redundancy fragments

The AS runs an algorithm that generates as many redundancy fragments as fragments of firmware update file
sent. A maximum number of redundancy fragments, equivalent to the number of uncoded fragments, can be sent
at the end of each FUOTA campaign.

The limitation to a smaller amount of redundancy fragments sent is on the AS responsibility.
Section Appendix A details the Python script of the algorithm generating redundancy fragments.

To simplify, the use case below has been run on an interoperability file (1 Kbyte), that is composed of 25
fragments of 40 bytes. The algorithm performed by the Python script generates also 25 redundancy fragments of
40 bytes (100% of redundancy fragments).

Each redundancy fragment is displayed on each line, as shown in the figure below.
Redundancy fragments

le: Interoptest_file_1.bin Fragment size: 40 bytes | Uncoded fragments: 25 | Redundancy fragments: 25

T S
Be a6 =
0, 0
1

Parity
matrix for
redundancy
fragments

The Python script displays the parity matrix (25 x 25 in this use case). Each redundancy fragment is composed of
some of the sent fragments XOR between themselves.

Example:
Redundancy fragment 1 = frag3 @ fragé @ frag7 @ frag11 @ frag14 @ frag20 & frag22 & frag 24 @ frag25

Warning:  Below a certain percentage of redundancy fragments (depending on the information sent),
the decoder is not able to retrieve the missing fragments.

Reconstruction algorithm

As an example of FEC algorithm, the LDPC has been implemented in the LoRaWAN middleware stack in
FragDecoderProcess () function from FragDecoder. c file (see [3] for more details).

The LDPC is used to retrieve the missed fragments from the redundancy fragments sent after the whole firmware
image to update.
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Figure 11. Reconstruction algorithm principle
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Example

Four fragments (B1 to B4) and two redundancy fragments (R1 and R2) are sent, depicted in the figure below.
In case B2 and B3 are missing fragments on end-device side (lost due to bad communication), the redundancy
blocks contain the information of several blocks:

. R1 contains B1 and B2 .
. R2 contains B1, B2, B3, and B4 information.

Note: The operation between B1 and B2 to obtain R1 is a simple XOR, very convenient and easy to compute.

Considering X as B1 and Y as B2, the two fragments to be recovered, the problem can be expressed as in the
figure below.

Figure 12. FEC reconstruction example

B4

7 =[]0 x
@] =[#]6 x & v 0[]

Due to XOR associated operations:
. X is recovered from a XOR between B1 and R1.
. Y is recovered from a XOR between R1, R2, and B4.

Figure 13. FEC reconstruction of lost fragments
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AN5554 - Rev 5 page 13/69



‘,_l AN5554

End-device design choices

Finally, this simple example shows that missing fragments B1 and B2 can be recovered by the combination of
other fragments and redundancy fragments.

3.23 Simulation and validation of lost fragments
The LDPC algorithm can be tested with the following steps:

. Simulate a loss of frames by an incomplete send of all the uncoded and coded fragments at different
positions.

. Check that, depending on the redundancy fragments received, the initial data block can be recovered.
More details are provided in Section Appendix B

3.3 End-device design choices

3.31 Fragmentation decoder definitions

The fragmentation decoder process contains several defines that need to be sized depending on the application
(details in LoRaWAN End Node\LoRaWAN\Target\frag decoder if.h):

. FRAG_MAX_SIZE: maximum fragment size that can be handled. It must be inferior or equal to the
maximum MACPayload size length (M) of supported regions with maximum datarate (DR).
. FRAG_MAX_NB: maximum number of fragments that can be handled. It is obtained thanks to the formula:

FRAG MAX NB = SLOT DWL SIZE/ FRAG MAX SIZE
with SLOT DWL SIZE = SLOT DWL 1 END -
SLOT DWL 1 START

SLOT_DWL is the download area allocated in flash memory to store the new firmware image retrieved with
FUOTA download.

. FRAG_MIN_SIZE: minimum fragment size that can be handled. It must be superior or equal to the
minimum MACPayload size length (M) of supported regions with minimum datarate (DR).
FRAG_MIN_SIZE must be also inferior or equal to FRAG_MAX_SIZE.

. FRAG_MAX_REDUNDANCY: maximum number of redundancy fragments that can be handled. In the
STM32CubeWL FUOTA applications, the memory is allocated for a maximum of 10% redundancy
fragments (design choices on end-device side).

Note: In a FUOTA campaign, if the number of lost fragments is higher than the 10% redundancy fragments
retrieved by the end-device, the decoder aborts the current fragmentation session in the end-device.

In STM32CubeWL firmware, FUOTA must be performed on flash memory. Due to conception constraint, any copy
of flash memory blocks must be a multiple of eight, in order to avoid erasing a full flash memory sector at each
data write. This applies to FRAG_MAX_SIZE and FRAG_MIN_SIZE.

Every definition corresponds to the worst-case value for the used region and multicast session data rate
configurations.

3.3.2 Fragmentation decoder implementation
This section details how the four previous defines have been determined in STM32CubeWL FUOTA applications.

3.3.2.1 FRAG_MAX_SIZE computation
FRAG_MAX_SIZE worst-case (region and DR dependent) is equal to FRAG_MAX_SIZE = 240.

The critical criterion is the RAM use, which is defined at compilation, and used by fragmentation decoder process
depending on these defines. The simplified fragmentation decoder RAM use equation is defined below:

FragRam = 2xXN+S+((R> >3)+ 1) x(R+4)+18
where:
N = FRAG_MAX_NB
S = FRAG_MAX_SIZE
R = FRAG_MAX_REDUNDANCY

3.3.2.2 FRAG_MAX_REDUNDANCY computation

The number of redundancy fragments are defined as 10% of the maximum number of fragments for the FUOTA
campaign, which means:
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FRAG_MAX_REDUNDANCY = FRAG_MAX _NB X 10 %

3.3.2.3 FRAG_MAX_NB and FRAG_MIN_SIZE computation

FragRam is composed of
FragDecoder_t + matrix + dataTemp

where matrix is composed of
matrixRow + matrixDataTemp

and dataTemp is composed of
dataTempVector + dataTempVector?2

For more details, refer to Middlewares\Third Party\LoRaWAN\LmHandler\Packages\FragDecoder.c.

FUOTA single core fragmentation decoder implementation example

. In FUOTA single core, SLOT_DWL size is 86016 bytes.
. The best tradeoff is FRAG_MIN_SIZE = 40 and FRAG_MAX_NB = 2151.

Note: If FRAG_MIN_SIZE= 16 and FRAG_MAX_NB = 5376, the remaining RAM application is drastically reduced.
All these values are computed with FRAG_MAX_SIZE = 240 (see Section 3.3.2.1 FRAG_MAX_SIZE
computation).

Table 3. FUOTA single core RAM memory requirements

Frag decoder configuration RAM memory requirement
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S o e | e o e L e [ e

2151 216 10396 310 10962

48 1792 180 7856 273 47 8368

56 1536 154 6229 249 41 6703

64 1344 135 5137 233 36 5582

72 1195 120 4344 223 32 4767

80 1076 108 3751 216 29 4156

88 978 98 3286 212 27 3677

96 896 90 2925 209 25 3303

104 828 83 2630 209 23 2998

112 768 77 2383 209 22 2742

E 120 717 72 2182 211 20 2533
§ 128 672 68 2018 213 19 2362
g 136 633 64 1869 217 18 2208
E 144 598 60 1733 220 17 2066
E 152 566 57 1622 224 17 1951
é 160 538 54 1521 229 16 1846
168 512 52 1440 233 15 1760

176 489 49 1353 239 15 1671

184 468 47 1284 244 14 1598

192 448 45 1219 249 14 1530

200 431 44 1173 255 13 1481

208 414 42 1115 261 13 1421

216 399 40 1062 267 12 1365

224 384 39 1021 273 12 1322

232 371 38 985 280 12 1285

240 359 36 940 286 11 1237
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Figure 14. RAM use vs FRAG_MAX_NB (single core)
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FRAG_MAX_NB (in bytes)

To conclude for FUOTA single core, the following implementation is proposed:

#define FRAG_MAX SIZE 240
#define FRAG MAX NB 2151
#define FRAG_MIN_ SIZE 40
#define FRAG MAX REDUNDANCY 216
Note: All previous values are the consequence of the SLOT_DWL size and the region/DR configuration.

For more information, refer to document [3].

FUOTA dual core fragmentation decoder example

. In FUOTA dual core, SLOT_DWL size is 65536 bytes.
. The best tradeoff is FRAG_MIN_SIZE = 48 and FRAG_MAX_NB = 1366.

Warning:  STM32CubelDE toolchain requires 1.2 Kbytes more (private SECore bin stack) which must
be aligned to 2-Kbyte boundary due to TZIC security. Consequently the highest values are
FRAG_MIN_SIZE = 96 and FRAG_MAX_NB = 683.

For a harmonization purpose, this setting has been chosen for all toolchains. With these settings, APPLI_RAM
and APPLI_ROM memory areas are almost full.
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Table 4. FUOTA dual core RAM memory requirements

Frag decoder configuration RAM memory requirement
FRAG_MIN_SIZE | FRAG_MAX_NB | FRAG_MAX_REDUNDANCY | FragDecoder t m dataTemp
8192 101376 1033 102616
CE 16 4096 410 29685 529 105 30319
£ 24 2731 274 15174 367 71 15612
Ny
2 32 2048 205 9599 289 54 9942
g
2 40 1639 164 6844 246 43 7133
48 1366 137 5252 220 37 5509
56 1171 118 4235 204 32 4471
? 64 1024 103 3509 193 28 3730
a 72 911 92 3003 187 25 3215
(0]
2 80 820 82 2592 184 23 2799
Q
™
=
'_
n
S
>
[o]
£
£
< 88 745 75 2297 183 21 2501
2
[e]
c
(0]
5
zZ
9 683 69 2058 183 20 2261
104 631 64 1865 184 18 2067
112 586 59 1693 187 17 1897
120 547 55 1553 190 16 1759
128 512 52 1440 193 15 1648
136 482 49 1339 198 15 1552
144 456 46 1248 202 14 1464
2 152 432 44 1175 207 13 1395
©
5 160 410 41 1096 213 13 1322
o
£ 168 391 40 1046 218 12 1276
©
5 176 373 38 989 224 12 1225
o) 184 357 36 936 230 11 177
192 342 35 896 236 11 1143
200 328 33 849 242 11 1102
208 316 32 815 249 10 1074
216 304 31 782 255 10 1047
224 293 30 752 262 10 1024
232 283 29 723 269 10 1002
240 274 28 697 276 9 982
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Figure 15. RAM use vs FRAG_MAX_NB (dual core)
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FRAG_MAX_NB (in bytes)

To conclude for FUOTA dual core, the following implementation is proposed:

#define FRAG MAX SIZE 240
#define FRAG_MAX NB 683
#define FRAG MIN SIZE 96
#define FRAG MAX REDUNDANCY 69
Note: All previous values are the consequence of the SLOT_DWL size and the region/DR configuration.

For more information, refer to document [3].
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4 LoRaWAN_FUOTA project overview

4.1 Single-core project overview

LoRaWAN_FUOTA is a single-core project based on BFU_2_Slots solution for the STM32WLE5xx,
STM32WL55xx, or STM32WL5MOCHXxx microcontrollers series.

This LoRaWAN_FUOTA project is split into three main subprojects:

. 1_Image_SECoreBin (generating the Secure Engine core binary file to be linked with the BFU application)
. 1_Image_BFU (updates of the MCU built-in program with new firmware versions)

. LoRaWAN_End_Node (End_Node application tailored for FUOTA)

The middleware is provided in source-code format and is compliant with the STM32CubeWL HAL driver.

Figure 16. Single-core project file structure

KMS middleware

Secure Engine middleware

FUOTA project

LoRaWAN middleware BFU application

mbed_crypto middleware

SubGHz_Phy middleware

Secure Engine
core library

Linker files common

The other directories of the LoRaWAN_FUOTA project are more specific:
. Linker Common: generates linker files shared between the three projects:
- mapping fwimg.icf contains firmware image definitions such as active slots, download slots, and
swap area.
- mapping sbsfu.icf contains BFU definitions such as SE_Code_region, SE_Key_region, and
SE_IF_region.
- mapping export.h exports the symbols from mapping sbsfu.icf and mapping fwimg.icf
to the BFU applications.
. Scripts: automatic scripts to build all projects in a specific order and to program the final all-in-one
binary file

1_Image_KMS_BIlob generates KMS blob binary file to be downloaded with KMS through the
ImportBlob () API. This feature is present but not used in this project.
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4.2 Dual-core project overview
Two DualCore applications are available based on SBSFU_2_Slots_DualCore solution:
. LoRaWAN_FUOTA_DualCore for the STM32WL55xx MCUs
. LoRaWAN_FUOTA_DualCore_ExtFlash for the STM32WL5MOCHxx MCUs
Theses LoRaWAN_FUOTA_DualCore projects are split into five main subprojects:
. 2_Images_SECoreBin
. 2_Images_SBSFU [CM4 and CMOPLUS]
. LoRaWAN_EndNode_DualCore_[CM4 and CMOPLUS]
The middleware is provided in source-code format and is compliant with the STM32CubeWL HAL driver.

Figure 17. Project file structure

B ht b l LoRaWaM_FUOTA_DualCore
B Documentation . 2 Images_KMS
B Drivers v [l 2mages_SBs SBSFU
e B cvopLus application
R Middlewares . (including CM4
B sT and CMO0+)
KMS middleware B STM32_Key Management_Service i
Secure Engine S cure_Engine
middleware B Third_Party 2
R FatFs Secure Engine
=-2Ek core library
LoRaWAN B FreeRTOS
middleware
mbed-crypto
middleware
SubGHz_Phy B SubGHz_Phy
middleware B Project
'rojects
: Common
linker files
LoRaWAN_End_
Node_DualCore
application
(including CM4
and CMO0+)
. Scripts
4.3 BFU and SBSFU features
431 BFU single-core configuration

This section is dedicated to single-core FUOTA and BFU features. For more information concerning SBSFU and
dual-core security features, Secure Boot and SKMS features, refer to document [8].

The BFU allows the update of the STM32 microcontroller built-in program with new firmware versions, adding
new features, and correcting potential issues. The update process is performed in a secure way to prevent
unauthorized updates.

Boot (root-of-trust services)

. checks and activates the STM32 security mechanisms to protect critical operations and secret data from an
attack
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. checks the authenticity and integrity of the user application code before every execution, to ensure that an
invalid or malicious code cannot be run

Firmware Update (FU)

. detects the new (encrypted) firmware version to install, pre-downloaded over-the-air via the user
application (LoRaWAN)

. manages the firmware version by checking for unauthorized update/installation

. decrypts the firmware (if encryption activated)

. checks the firmware authentication and integrity

. installs the firmware

. recovers the firmware image if any error occurrence during the new image installation (rollback to the
previous valid firmware version not supported)

. executes the installed firmware (once authenticated and integrity checked)

Key management services (KMS)

. provides cryptographic services to the user application, through the PKCS #11 APIs
. provides cryptographic services to the SFU to authenticate the user application with some protected keys

BFU cryptographic middleware
The BFU for STM32CubeWL supports the mbed-crypto (open-source code) cryptographic services for SHA256.

Figure 18. Cryptographic library structure

v B Middlewares

R st

v R Third_Party

FatFs
FreeRTOS

n

n

B LoRaWAN

R mbed-crypto I
n

n

Sigfox

SubGHz_Phy
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BFU cryptographic schemes

The BFU for STM32CubeWL is delivered with the following cryptographic schemes, using symmetric and
asymmetric cryptographic operations:

. ECDSA asymmetric cryptography for firmware verification without firmware encryption

. ECDSA asymmetric cryptography for firmware verification, and AES-CBC symmetric cryptography for
firmware decryption

. AES-GCM symmetric cryptography, for both firmware verification and decryption

By default, the LoRaWAN_FUQOTA project is configured with asymmetric cryptography. The firmware
authentication, integrity, and confidentiality (encryption) are ensured.

Figure 19. File structure of cryptographic scheme

kms_pla

mbed_crypto_confi

o .
o -
@ n
o
o
B
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[
@ n
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o
o
[

Figure 20. Default cryptographic scheme
gdefine SECBOOT_CRYPTO_SCHEME SECBOOT_!OGDS&_HIIH_L!S].ZB_GBC_WSd

gdefine SECBOOT_ECCDSA_WITHOUT_ENCRYPT_SHA2SE
¢define SECBOOT_ECCDSA_WITH_AES128_CBC_SHA25E
gdefine SECBOOT_AES128_GCM_AES128_GCM_AES128_GCM
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BFU application features

Various configuration possibilities are offered through option compilation switches (due to the optimized memory

mapping, several options are set by default):
. All the following algorithms are enabled:

- AES CBC and AES GCM used to perform encryption and decryption
- AES ECB used to perform encryption decryption and key derivation
- AES CMAC used to perform signature and verification

- ECDSA used to perform verification

Figure 21. File structure of cryptographic definition

B LoRaWAN_FUQOTA
B 2_Images_KMS_Blob
B 2 Images SBSFU
B 2_Images_SECoreBin
R Binary
B EWARM
B Inc
B MDK-ARM
B Sic
B Linker Common
B LoRaWAN End Node DualCore
B Scripts

Name

. | ca_conf.h

” ca_low levelh

! kms_config.h

8 kms_low levelh

v} kms_mem_pool_defh

B kms platf objects config.h.pattern
. | kms_platf_objects_interface.h

” mbed_crypto_config.h

M nvms_low levelh

8 se_crypto_config.h
# se def metadatah

M se low levelh

Table 5. Default features

. R

AES CBC algorithm support
AES CCM algorithm support
AES ECB algorithm support
AES CGM algorithm support
AES CMAC algorithm support
RSA algorithm support

RSA algorithm

RSA 1024-bit modulus length
RSA 2048-bit modulus length
ECDSA algorithm support
ECDSA algorithm

Elliptic curve SECP-192
Elliptic curve SECP-256
Elliptic curve SECP-384
SHA1 digest algorithm
SHA256 digest algorithm

Encryption and decryption

No

Encryption, decryption and key derivation
Encryption and decryption

Signature and verification

No

Not activated

No

No

Verification

Activated and associated to an elliptic curve
No

Yes

No

No

Digest
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All security peripherals can be enabled in the app_sfu.h configuration file, where a general define can be used
to enable/disable all security peripherals at once as shown below.

Figure 22. File structure of general security configuration
(AN _FUOTA Marme

l 1_lmage_BFU € app_sfu.h
B sru
l Core

sfu_boot.c

sfu_boot.h

sfu_com_loader.h

sfu_com_trace.c

@
Fir
@ sfu_com_loader.c
&
o

5TM32CubelDE

Figure 23. General security disable flag
/* The define below allows disabling all security IPs at once.

* Enabled: all security IPs (WRP, watchdog...) are disabled.

* Disabled: the security IPs can be used (if their specific compiler switches are enabled too) .
*

bt

#define SECBOOT DISABIE SECURITY TIPS /*!< Disable all security IPs at once when activated */

4.3.2 SBSFU dual-core specific configuration

The main difference between BFU and SBSFU is that the SBSFU embeds all available security features, whereas
BFU allows limited security features.

The SBSFU allows the update of the STM32 microcontroller built-in program with new firmware versions,
adding new features and correcting potential issues. The update process is performed in a secure way to
prevent unauthorized updates and access to confidential on-device data (such as secret code and firmware
encryption key):

. no local loader inside the SBSFU application (firmware update only possible through OTA)
. no debug mode (no more information displayed on the terminal during the SBSFU execution)

4.4 LoRaWAN features

The main LoRaWAN features are listed below:
. LoRaWAN L2 (link layer) V1.0.3 or V1.0.4: Class A (baseline), Class C (continuous) and Class B (beacon)
. LoRaWAN RP (regional parameters) V1.0.3 or RP002-1.0.1
. LoRaWAN additional packages:
- v1.0.0 packages include:
° Application Layer Clock Synchronization v1.0.0
° Remote Multicast Setup v1.0.0
° Fragmented Data Block Transport v1.0.0
- v2.0.0 packages include:
° Application Layer Clock Synchronization v2.0.0
° Remote Multicast Setup v2.0.0
° Fragmented Data Block Transport v2.0.0
° Firmware Management Protocol v1.0.0
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4.5 Firmware architecture
The figure below summarizes the firmware design and the components involved in an end device supporting the
FUOTA feature.
Figure 24. Top-level firmware design
Secure Boot User application
root of trust A
Firmware management
Update y
Secure firmware Agent Clock
loader Mcast Frag
sync
A A A
. v A4 \ 4
Safe firmware
programming LoRaWAN
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5 LoRaWAN middleware programming guidelines

This section describes the LoRaMAC handler APls.

5.1 LoRaWAN middleware initialization

LmHandlerInit initializes the LoORaMAC layer. This function initializes the callback system primitives of the
MCPS and MLME services (see document [7]), and registers the following required packages:

. PACKAGE_ID_COMPLIANCE (mandatory)

. PACKAGE_ID_CLOCK_SYNC (*)

. PACKAGE_ID_REMOTE_MCAST_SETUP (*)

. PACKAGE_ID_FRAGMENTATION (*)

. PACKAGE_ID_FIRMWARE_MANAGEMENT (*)

Table 6. LmHandlerlnit description

L L R

LmHandlerErrorStatus t LmHandlerCallbacks t LoRaMAC handler initializati
LmHandlerInit (..) *handlerCallbacks ona andler initialization
Note: All packages (*) are hidden and disabled by default into the LoRaWAN middleware. It is necessary to add the

following define to activate these features.

#define LORAWAN DATA DISTRIB MGT 1

This constant is set into the lorawan conf . h configuration file.

Figure 25. File structure of LoRaWAN configuration

B LoRaWAN_FUOTA Name

| mage_BFU * frag_decoder_if.c

B 1_image_KMS_Blob 8 frag_decoder_ifh
B 1_Image_SECoreBin # lorawan_conf.h

B Linker Common ] mw_log_conf.h

B LoRaWAN_End_Node ] radio_board_if.c

8 radio_board_if.h
] radio_conf.h

N systime.h

# timerh

l Core

B EWARM
B Kkvs

B LoRaWAN
B App

B Target
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5.2 LoRaWAN middleware configuration

LmHandlerConfigure configures the run-time LoRaMAC layers (such as active region or Tx parameters).

Table 7. LmHandlerConfigure description

LmHandlerErrorStatus t LmHandlerParams t LoRaMAC handl fi ti
LmHandlerConfigure (..) *handlerParams ona andler configuration
5.3 LoRaWAN middleware process

LmHandlerProcess processes the LoRaMAC and radio events.

Table 8. LmHandlerProcess description

void Processes the LoRaMAC and Radio events.

LmHandlerProcess void

) Asks to go in low-power mode, when no pending operation.
54 LoRaWAN middleware start process

LmHandlerJoin runs the LoORaMAC layer with a MLME JoinRegq, if OTAA mode is used. This run action
requires to process periodically some uplink frames.

Table 9. LmHandlerJoin description

Starts the LoRaMAC.

void LmHandlerJoin (..) ActivationType t mode For OTAA mode, performs a JoinReq.
For ABP mode, this is a pass-through
function.

5.5 LoRaWAN middleware stop process

LmHandlerStop stops the LORaMAC layer execution and disables all the internal timers.

Table 10. LmHandlerStop description

LmHandlerErrorStatus t

LmHandlerStop (.) void Stops a LoRa network connection.
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5.6 LoRaWAN middleware send uplink frame

ILmHandlerSend requests the LoORaMAC layer to send a Class A uplink frame.

Table 11. LmHandlerSend description

LmHandlerAppData t *appData
Requests application data to

LmHandlerMsgTypes t isTxConfirmed be sent with an indication of
whether the Tx is confirmed
or unconfirmed.

LmHandlerErrorStatus t
LmHandlerSend (..) TimerTime t *nextTxIn

bool allowDelayedTx
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6 Getting started

This section is dedicated to single-core FUOTA firmware programming guide. For more information concerning
the dual-core firmware programming guide, refer to document [8].

6.1 Single-core firmware programing guide

This section describes how to generate a FUOTA single-core application, and this flow must be followed
step-by-step. The figure below shows a top-level view of the file structure.

Figure 26. Project order structure

v [} LoRaWAN_FUOTA
W l 1_Image_BFU
B cru
l Core
B ewarm
B MDK-ARM

B 1_mage_KMS _Blob
W l 1_Image_SECoreBin
l Binary
B ewarm
l Inc
B MDK-ARM
l Src
B s™32CubelDE
l Linker_Common
v l LoRaWAM_End_Mode
l Core
B ewarm
B s
B LorawaN
B MDK-ARM
B s™32CubelDE

l Scripts
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6.1.1 How to generate a FUOTA single-core application

The following steps must be followed to generate a FUOTA single-core application. For each step, open the
associated subproject in the dedicated IDE folder, and regenerate the respective binary files.

Figure 27. Application generation steps

Step A Step B
SECoreBin generation BFU generation
se_crypto_config.h l
SECBOOT CRYPTO SCHEME
prebuild.bat
\
postbuild.bat SE Core.bin | BFU.bin
i
!
Step C L __

LoRaWAN End_Node
generation

y
LoRaWAN_End_Node.bin ‘)CEZI

v v

LoRaWAN_End_Node.sfb || BFU_LoRaWAN_End_Node.bin

The following output binaries are generated in these steps (all of them in clear format, not encrypted):

. SE Core.bin
° BFU.bin
. LoraWAN End node.bin

In addition, the following output files are generated through the postbuild process:
. LoraWAN End node.sfb (LoraWAN End node.bin encrypted + header)

. BFU LoraWAN End node.bin (three first binary files merged with the memory placement to produce the
final memory image)
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1. 1_Image_SECoreBin
This step is needed to create the SECoreBin binary that includes all the required “trusted” code and keys.
The binary is linked to the BFU code in step B.
The LoRaWAN keys are stored through the kms_platf objects config.h.pattern configuration
file, using the Commissioning.h header file from LoRaWAN_End_Node project.

Figure 28. File structure of KMS user keys configuration

1_lmage_SECoreBin Mame

l Binary @ ca_confh
l EWARM @ ca_low_levelh

l Inc @ kms config.h
B VDK-ARM € kms_low_level.h
l e a@ kms_mem_pool_def.h
B kms_platf_objects_config.h.pattern

For more details about the KMS configuration, refer to the section 'Key Management Services' of the
document [7].
The generated SE_Core.bin output file is located in the IDE folder.

Figure 29. File structure of SECoreBin output
1_Image_SECoreBin MName
l Binary [ ] Project.dep
B Ewarm B st Corebin
l Inc a kms_platf_objects_config.h

B VDK-ARM @ crypto.txt
l Src @ outputtxt
B postbuild.bat

B s™32CubeiDE
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2. 1_Image_BFU

This step compiles the BFU source code that implements the state machine protection configurations. This
step links the code with the Secure Engine bin, including the “trusted” code.

The generated Project.bin output file is located in the IDE folder.

Figure 30. File structure of BFU output

B LoRaWAN_FUOTA Name

l 1_Image_BFU
W BrU
l Core

B EWARM

[ | Project.bin
[ | Project.out

v [ STM32WL55JC_Nucleo

- Exe

This step also generates a file that includes symbols used by the LoRaWAN_End_Node application to call
the SE interface public functions.

Figure 31. File structure of SE interface
l LoRaWAMN_FUOTA MName

B 1image BFU B sTM22WL55IC_Nucleo

F Project.dep
. Project.ewd
B Project.ewp

k=4 - rlj_i ect.eww

. se_interface_appli.o

AN5554 - Rev 5 page 33/69



‘,_l AN5554

Single-core firmware programing guide

3. LoRaWAN_End_Node
This step compiles the LoRaWAN End_Node source code that implements the LoRaWAN middleware, the

user application, and the sequence configuration.
The generated LoRaWAN End Node.bin output file is located in the IDE folder.

Figure 32. File structure of LoORaWAN_End_Node output (1/2)
LoRaWAN_FUOTA Mame

W 1_image BFU /AN_End_Node.dep

B 1_mage_KMS_Blob A output.tit

l 1_Image_SECoreBin I LoRaWAM_End MNode.bin

I Linker_Common B LoRaWAN_End_Node.ewd

"N End Mode I LoRaWAM_End_MNode.ewp

2 Project.eww

F startup_stm32wl3

‘ strn32y _flash_cmd.icf
l Binary

B LoRaWAN_End_Node

This step also generates the following files:

- LoRaWAN End Node.sfb (user application binary in encrypted format including the SFU header.)

- BFU_ LoRaWAN End Node.bin (final big binary that concatenates the BFU binaries and user
application binaries in clear format)

BFU_LoRaWAN End Node.bin must be used to program the STM32WL55xx flash memory on the first
use. LoRaWAN End Node.sfb must be used to generate a firmware update

Figure 33. File structure of LoORaWAN_End_Node output (2 / 2)

. LoRaWAN_FUOTA Mame
B 1_image BFU B BFU_LoRaWAN_End_Node.bin
. 1_Image_KM5_Blob I LoRaWAN_End_MNode.sfb
l 1_Image_SECoreBin
. Linker_Common

B LoRaWAN_End_Node
l Core
B
. Binary
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6.1.2 How to download the firmware to the end device (single-core configuration)
There are only three ways to download a firmware:
. through the STM32CubeProgrammer tool, using the final big binary BFU_LoRaWAN End Node.bin

Warning: This action requires to erase the full device flash memory, and to remove all security
option bytes.

. through local download via UART Virtual COM port
LoRaWAN FUQOTA single-core project offers the possibility to download the firmware update via Ymodem
transfer procedure and TeraTerm tool. For more details refer to document [6].

. through the remote download, via FUOTA mechanisms proposed by the LoRaWAN protocol, using the
LoRaWAN End Node.sfb.

6.1.3 How to debug the End_Node application

The complete system consists of a Secure Boot and an End_Node application. When the target resets, the
Secure Boot starts first. After a low-level initialization, the BFU starts and checks all required security steps. If the
BFU does not detect any system error, the Secure Boot codes jump to the entry point of the application.

Unless general security has been disabled as explained in Section 4.3 , since the End_Node application is linked
to the Secure Boot, the BFU_LoRaWAN End Node.bin cannot be downloaded directly with the debugger. To
debug the End_Node application, the following steps must be respected:

1. Set the debugger and low-power defines on End_Node.
Figure 34. File structure of End_Node_DualCore debug configuration

. LoRaWAN_End_Mode ) stm3 nucleo_conf.h
l Core ! subghz.h

B nc ' sys_app.h
* sys_conf.h

/.(A
% @brief Enable MCU Debugger pins (dbg serial wires, sbg spi, etc)

A/'
#define DEBUGGER_ENABLED @
/ L

* gbrief Disable Low Power mode
% @note (0: LowPowerMode enabled. MCU enters stop? mode, 1: LowPowerMode disabled. MCU enters sleep mode only

A/’
#define LOW_POWER DISABLE @

2. Compile the End_Node projects as described in Section 6.1.1 .

3. Flash the target with the complete big binary BFU LoRaWAN End Node.bin, using the
STM32CubeProgrammer tool.
4. Once the target is flashed, the subproject can be attached to the running target in debug mode (with

breakpoints, watch variables, and so on).
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6.2 Dual-core specific programming guide

Only the dual-core programming specific to FUOTA application is described here. All other dual-core
programming parts are detailed in document [8].

6.2.1 How to download the firmware to the end device (dual-core configuration)
Due to the memory optimization on the SBSFU project, there are only two ways to download a firmware:

. through the STM32CubeProgrammer tool, using the final big binary
SBSFU LoRaWAN End Node DualCore CM4.bin

Warning: This action requires to erase the full device flash memory, and to remove all security
option bytes.

. through the remote download, via FUOTA mechanisms proposed by the LoRaWAN protocol, using
LoRaWAN End Node DualCore CM4.sfb or LoRaWAN End Node DualCore CMOPlus.sfb.

As it is not possible to update the Cortex-M0+ and Cortex-M4 firmware in the same time, it is mandatory to create
some modifications that do not lead to an execution error (like a missing function interface with a call between
Cortex-M4 and Cortex-M0+).

6.2.2 How to automate the generate and load processes

Three scripts are available to automate the compilation of all SBSFU projects and the programming of the
concatenate binary on the STM32WL55xx or STM32WL5MOCHxx flash memory: build.bat, program.bat,
and disable security.bat.

Figure 35. File structure of automated process scripts

l LoRaWAMN_FUOTA_DualCore MName

B 2_mages KMS_Blob B build.bat
l 2_Images_SB5FU B program.bat
l 2_Images_SECoreBin

l Linker_ Common

l LoRaWAN_End_Mode DualCore

l Scripts

Mame

B ewarm
B 2_images SBSFU _ :
l 2_Images_5l 1 l STM321
l Linker_Common = disable_security.bat

B LoRaWAN_End_Node_DualCore B setenv.bat

l Scripts
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Table 12. Automated process scripts

I

Compiles all project files with IAR Embedded Workbench, including prebui
ld.bat and

Scripts\EWARM\build.bat postbuild.bat scripts, with the mandatory project order.

The —app parameter is used to compile only the user application if the
SBSFU projects are not modified.

Runs the disable security.bat script to remove the write-access
protection.

Programs the SBSFU UserApp M4 .bin tothe STM32WL55xx, using the
STM32CubeProgrammer tool.

Scripts\EWARM\program.bat

Resets all option bytes to be compliant with a non-secure firmware (including

Scripts\disable security.bat a full erase memory).

Note: The path of the tools must be updated according to the versions and location of the user installations, by
modifying the Scripts\setenv.bat file content.

6.3 Firmware configuration
6.3.1 Crypto switches

Table 13. Crypto switches

Location: LoRaWAN FUOTA DualCore\2 Images SECoreBin\Inc\se crypto config.h

No firmware encryption
SECBOOT_ECCDSA_WITHOUT_ ENCRYPT_ SHA256 Only authentication and integrity are ensured with asymmetric
cryptography.
Authentication, integrity, and confidentiality are ensured with

SECBOOT ECCDSA WITH AES128 CBC SHA256 .
— - — - - asymmetric cryptography.

Authentication, integrity, and confidentiality are ensured with

SECBOOT AES128 GCM AES128 GCM AES128 GCM .
— — — — — — symmetric cryptography.

These switches are managed with an additional define given in the table below.

Table 14. Crypto default switch

Symbols Default state

Selected crypto

SECBOOT CRYPTO SCHEME
- - scheme

SECBOOT ECCDSA WITH AES128 CBC_SHA256

6.3.2 Security switches

The SBSFU instantiates the security item selected through SECBOOT DISABLE SECURITY IPS.When this
symbol is defined, the security protections (such as WRP, RDP, IWDG, DAP) are disabled for all peripherals (see
the document [5]).
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Single-core security switches

Table 15. Single-core security switches

Location: LoRaWAN_ FUOTA\1 Image BFU\BFU\App\app_ sfu.h

SECBOOT DISABLE SECURITY IPS

SFU WRP PROTECT ENABLE

SFU RDP PROTECT ENABLE
SFU DAP PROTECT ENABLE
SFU DMA PROTECT ENABLE
SFU IWDG PROTECT ENABLE
SFU MPU PROTECT ENABLE

SFU_MPU USERAPP ACTIVATION

Dual-core security switches

Disables all secure peripherals
simultaneously when activated.

Write-access protection to protect
trusted code

RDP protection

DAP protection

DMA access protection
IDWG protection

MPU area protection

User application MPU area protection

Table 16. Security common switches

Location: LoRaWAN FUOTA DualCore\2 Images SBSFU\Common\app sfu common.h

SECBOOT DISABLE SECURITY IPS

SFU WRP PROTECT ENABLE

SFU DAP PROTECT ENABLE
SFU DMA PROTECT ENABLE

SFU_ IWDG PROTECT ENABLE
SFU C2 DDS PROTECT ENABLE

SFU_ SECURE USER PROTECT ENABLE
SFU FINAL SECURE LOCK ENABLE

SFU_HIDE PROTECTION CFG
OB_SECURE_SYSTEM AND FLASH

OB_SECURE_SRAM1

OB SECURE_SRAM2

Disables all secure peripherals
simultaneously when activated.

Write-access protection to protect
trusted code

DAP protection
DMA access protection
IDWG protection

Static CPU2 (Cortex-MO0+)debug
protection

Secure user memory protection
Secure production protection
Hide-protection area configuration

Flash memory and system secure area
protection

SRAM1 area protection
SRAM2 area protection

Table 17. Security Cortex-M4 switches

Location: LoRaWAN FUOTA DualCore\2 Images SBSFU\CM4\Inc\app sfu.h

SFU _MPU PROTECT ENABLE

SFU _MPU USERAPP ACTIVATION

MPU protection on Cortex-M4 regions

User application memory protection
during execution

Enabled

Enabled

Enabled
Enabled
Enabled
Disabled
Enabled
Enabled

Disabled

Enabled

Enabled
Enabled
Disabled

Enabled

Enabled
Disabled
Enabled

Enabled

Disabled
Enabled

Enabled

Enabled
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Table 18. Security Cortex-M0+ switches

Location: LoRaWAN FUOTA DualCore\2 Images SBSFU\CMOPLUS\SBSFU\App\app sfu.h

SFU_RDP_PROTECT_ENABLE Read-access protection Enabled

SFU TAMPER PROTECT ENABLE Tamper protection (hardware pin) Disabled

SFU MPU PROTECT ENABLE MPU protection on Cortex-MO+ regions Enabled

SFU _MPU USERAPP ACTIVATION | User application memory protection during execution Enabled

SFU_GTZC_PROTECT_ENABLE GTZC protection Enabled

SFU C2SWDBG PROTECT ENABLE | Dynamic CPU2 (Cortex-MO+) debug protection Enabled
6.3.3 Debug switches

The End_Node_DualCore_Mx projects can enable some debug features through two defines on each core.

Table 19. Debug switches

Location for single core: LoRaWAN FUOTA\LoRaWAN End Node\Core\Inc\sys conf.h
Location for dual core:
LoRaWAN FUOTA DualCore\LoRaWAN End Node DualCore\CMxxx\Core\Inc\sys conf.h

Enables the debugger mode:

DEBUGGER_ENABLE . 1: debugger and four debug pins enabled 0
. 0: debugger disabled
Disables the low-power mode:

LOW_POWER_DISABLE . 0: low-power mode enabled (MCU enters Stop 2 mode) 0
. 1: low-power mode disabled (MCU enters Sleep mode only)
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71 LoRaWAN_FUOTA
The flash and RAM memory mapping of the device contains the following elements:
. SB (Secure Boot)
. BFU (Boot and Firmware Update)
. Active slots (including the active user application firmware)
. Firmware header (flash memory area where the not-contiguous firmware header is stored)
. Download slot (downloaded firmware header and encrypted firmware to be installed at next reboot)
. Swap area (flash memory area used to swap the content of active and download slots during the
installation process)
. KMS Data Storage (non-volatile memory area to store session keys)
Figure 36. Mapping of flash memory and RAM (single-core)

Start address  End address Flash memory region Start address  End address RAM region
0x0800 0000 0x0800 8FFF Secure Engine 0x2000 0000 0x2000 OBFF Secure Engine stack
0x0800 9000 0x0801 2FFF BFU 0x2000 0C00 0x2000 33FF Secure Engine region
0x0801 3000 | 0x0801 4FFF | KMS Data Storage (8 Kbytes) | [ 9X20003400 | 0x2000 7FFF BFU boot region
0x0801 5000 0x0801 5FFF Swap area
0x0801 6000 0x0802 9FFF | Download image (80 Kbytes)
0x0802 A000 0x0802 A1FF Active image #1 header
0x0802 A200 0x0803 DFFF S
0x0803 FO00 0x0803 FFFF LoRaWAN NVM 2

°
[a]
7.2 LoRaWAN_FUOTA_DualCore

The flash and RAM memory mapping of the device contains the following elements:

. SB CM4

. SBSFU CMO0+

. SE CMO+

. Active slots (including the active user application firmware)

. Firmware header (flash memory area where the not-contiguous firmware header is stored)

. Download slot (downloaded firmware header and encrypted firmware to be installed at next reboot)

. Swap area (flash memory area used to swap the content of active and download slots during the

installation process)
. KMS Data Storage (non-volatile memory area to store session keys)

. User/SE keys (LoRaWAN and Secure Engine static embedded keys)
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Start address

End address

Flash memory region

Start address

Figure 37. Mapping of flash memory and RAM (dual-core)

End address

RAM region

0x0800 0000

0x0800 1FFF

Secure Boot CM4

0x2000 0000

0x2000 OCDF

Secure Boot CM4

0x0800 2000

0x0800 2FFF

Swap area

0x2000 OCEO

0x2000 OCFF

Cortex-M0+/M4 sync flag

0x0800 3000

0x0800 31FF

Download image header

0x2000 0D0OO

0x2000 6FFF

End_Node_DualCore_CM4

0x0800 3200

0x0801 2FFF

Download image
(64 Kbytes)

0x2000 7000

0x2000 73FF

Mapping table
Mailbox MEM1 Cortex-M4

0x0801 3000

0x0801 31FF

Reserved

0x0801 3200

0x0801 DFFF

0x0801 E000

0x0801 EFFF

LoRaWAN NVM

0x0801 FOOO

0x0801 F1FF

Reserved

0x0801 F200

0x0802 EFFF

0x0802 FO00

0x0802 FFFF

KMS Data Storage (4 Kbytes)

0x0803 0000 0x0803 12FF SE interface Cortex-MO+
0x0803 1300 0x0803 6FFF SBSFU Cortex-MO+
0x0803 7000 0x0803 71FF SBSFU CMO0+ vector table
0x0803 7200 0x0803 E4FF SE Cortex-M0O+
0x0803 E500 0x0803 E7FF User keys

0x0803 E800 0x0803 EFFF SE keys

0x0803 FO00

0x0803 F7FF

Active image #2 header

0x0803 F800

0x0803 FFFF

Active image #1 header

0x2000 7400

0x2000 7FFF

Mailbox MEM2 Cortex-MO+

0x2000 8000

0x2000 D3FF

SBSFU Cortex-M0+
End_Node_DualCore_ CM0+

0x2000 D400

0x2000 FFFF

SE Cortex-MO+

DT68185V1

These elements are defined into two common linker script files in the Linker Common folder.

For more details about this configuration, refer to the document [5].
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Figure 38. Structure of common linker files

B LoRaWAN_FUOTA DualCore

R 2_Images_KMS_Blob

B 2_Images_SBSFU

n 2_Images_SECoreBin

B Linker Common

N mapping_export.h

P mapping_fwimg.icf

P mapping_sbsfu.icf
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LoRaWAN_FUOTA_DualCore_ExtFlash

The flash and RAM memory mapping of the device contains the following elements:

Start address

SB CM4

SBSFU CMO+

SE CMO+

Active slots (including the active user application firmware)
Firmware header (flash memory area where the not-contiguous firmware header is stored)
KMS Data Storage (non-volatile memory area to store session keys)
User/SE keys (LoRaWAN and Secure Engine static embedded keys)
The external flash memory available on the B-WL5M-SUBG1 board contains the following element:

Download slot (downloaded firmware header and encrypted firmware to be installed at next reboot)

Figure 39. Mapping of flash memory, RAM, and external flash memory

End address

Flash memory region

0x0800 0000

0x0800 67FF

Secure Boot CM4

Start address End address External flash memory region

0x0800 6800

0x0800 6FFF

Download slot
(2 Kbytes) for KMS blob

0x9000 0000

0x9000 01FF

Download image header

0x0800 7000

0x0800 71FF

0x0800 7200

0x0801 3FFF

0x0801 4000

0x0801 4FFF

Reserved

LoRaWAN NVM

0x0801 5000

0x0801 51FF

0x0801 5200

0x0802 97FF

0x0802 9800

0x0802 B7FF

Reserved

KMS Data Storage (8 Kbytes)

0x9000 0200 | 0x9001 4FFF Download image (84 Kbytes)
Start address  End address RAM region
0x2000 0000 0x2000 OCDF Secure Boot CM4
0x2000 OCEO 0x2000 OCFF Cortex-M0+/M4 sync flag
0x2000 0DO0O 0x2000 6FFF End_Node_DualCore_CM4
Mapping table
0x2000 7000 0x2000 73FF Mailbox MEM1 Cortex-M4
0x2000 7400 0x2000 7FFF Mailbox MEM2 Cortex-M0+

0x2000 8000

0x2000 C7FF

SBSFU Cortex-M0+
End_Node DualCore_ CM0+

0x0802 B800 0x0802 CBFF SE interface Cortex-M0+
0x0802 CCO00 0x0803 5FFF SBSFU Cortex-M0+
0x0803 6000 0x0803 61FF SBSFU CMO+ vector table

0x2000 C800

0x2000 FFEF

SE Cortex-M0+

0x0803 6200

0x0803 E4FF

SE Cortex-M0+

0x2000 FFFO

0x2000 FFFF

KMS DataStorage key
(encrypt/decrypt blob)

0x0803 E500

0x0803 E7FF

User keys

0x0803 E800

0x0803 EFFF

SE keys

0x0803 FO00

0x0803 F7FF

Active image #2 header

0x0803 F800

0x0803 FFFF

Active image #1 header

DT71516V1
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8 Memory footprint
8.1 LoRaWAN application memory footprint
8.1.1 LoRaWAN_End_Node of LoRaWAN_FUOTA SingleCore solution

Values in the table below are measured for the following configuration of the IAR Embedded Workbench compiler
(EWARM version 9.20.1):

. Optimization level 3 for size

. Debug option off

. Trace option VLEVEL_MEDIUM
. Target: STM32WL55

. End_Node application

. LoRaMAC Class A+C

. LoRaMAC region EU868 only

Table 20. Memory footprint values for LoORaWAN_End_Node application

. Flash memory o

Application 8240 3005 Core, application, and target components

FUOTA 6084 11524 Firmware update packages modules

HAL 14826 36 STM32WL HAL and LL drivers

IAR Lib 1674 0 Proprietary IAR libraries

IAR Startup 869 2048 Int_vect, init routines, init table, CSTACK, and HEAP
LoRaWAN stack 30264 5894 Middleware LmHandler interface, crypto, MAC, and region
SubGHz_Phy 6676 417 Middleware radio interface

Utilities 2931 1620 ﬁg;Tl;Anzfnjewices (sequencer, time server, low-power mgr,
Total application 71564 24544 Memory footprint for LoRaWAN_End_Node application

Figure 40. Flash memory and RAM footprint for LoRaWAN_End_Node

Utilities SubGHz_Phy
2%

IAR Lib

0% yaL
1AR Startup 0%

1%
[FLASH] LoRaWAN_FUOTA_End_Node [RAM] LoRaWAN_FUOTA_End_Node
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8.1.2 LoRaWAN_End_Node_DualCore of LoRaWAN_FUOTA_DualCore solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench
compiler (EWARM version 9.20.1):

. Optimization level 3 for size

. Debug option off

. Trace option VLEVEL_LOW (minimal traces)
. Target: STM32WL55xx

. End_Node_ DualCore application

. LoRaMAC Class A+C

. LoRaMAC region EU868 only

Table 21. Memory footprint values for LoRaWAN_End_Node_CMO0+ application

Flash memory

Application 4001 Core, application, and target components

FUOTA 6369 2928 Firmware update packages modules

HAL 5330 0 STM32WL HAL and LL drivers

IAR Lib 1038 0 Proprietary IAR libraries

IAR Startup 583 4096 Int_vect, init routines, init table, CSTACK, and HEAP
LoRaWAN stack 28654 5846 Middleware LmHandler interface, crypto, MAC, and region
MBMux 2556 1156 Mailbox multiplexer wrappers and services

SubGHz_Phy 6491 417 Middleware radio interface

Utilities 3169 1648 ﬁg‘iTl;Anfifnjewices (sequencer, time server, low-power mgr,
Total application 58191 16267 Memory footprint for LoRaWAN_End_Node_DualCore_CMO+

application

Figure 41. Flash memory and RAM footprint for LoRaWAN_End_Node_CMO0+

Application
1%

SubGHz_Phy
3% <

MBMux
4%

HAL |

9%
‘llAR Lib
2%
IAR
~ Startuy,
1%

DT71520V1

[FLASH] LoRaWAN_FUOTA_DC_End_Node CMO [RAM] LoRaWAN_FUOTA_DC_End_Node CMO
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Table 22. Memory footprint values for LoRaWAN_End_Node_CM4 application

. Flash memory e
ProjeCt mOdUIe (byteS) RAN (byteS)

Application 7331 2958 Core, application, and target components

HAL 14262 36 STM32WL HAL and LL drivers

IAR Lib 1012 0 Proprietary IAR libraries

IAR Startup 867 2048 Int_vect, init routines, init table, CSTACK, and HEAP

MBMux 2686 954 Mailbox multiplexer wrappers and services

Utilities 2784 1628 All STM32 services (sequencer, time server, low-power mgr,
trace, mem)

Total application 28922 7624 Merr)oryl footprint for LoORaWAN_End_Node_DualCore_CM4
application

Figure 42. Flash memory and RAM footprint for LoRaWAN_End_Node_CM4

IAR Startup
27% HAL
0%
IAR Lib
0%

[FLASH] LoRaWAN_FUOTA_DC_End_Node CM4 [RAM]LoRaWAN_FUOTA_DC End_Node CM4

DT71521V1

8.1.3 LoRaWAN_End_Node_DualCore of LoORaWAN_FUOTA_DualCore_ExtFlash solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench
compiler (EWARM version 9.20.1):

. Optimization level 3 for size

. Debug option off

. Trace option VLEVEL_LOW (minimal traces)
. Target: STM32WL5MOCHxx

. End_Node_DualCore application

. LoRaMAC Class A+C

. LoRaMAC region EU868 only
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Table 23. Memory footprint values for LoORaWAN_End_Node_ExtFlash_CMO0+ application

. Flash memory e
ProjeCt mOdUIe (byteS) RAN (byteS)

Application 3897 176 Core, application, and target components

FUOTA 6371 2928 Firmware update packages modules

HAL 5290 0 STM32WL HAL and LL drivers

IAR Lib 1038 0 Proprietary IAR libraries

IAR Startup 582 4096 Int_vect, init routines, init table, CSTACK, and HEAP
LoRaWAN stack 28653 5846 Middleware LmHandler interface, crypto, MAC, and region
MBMux 2556 1156 Mailbox multiplexer wrappers and services

SubGHz_Phy 6491 417 Middleware radio interface

Utilities 3169 1648 ﬁ! CS(;TI\n/::(Sjn jervices (sequencer, time server, low-power mgr,
Total application 58047 16267 Memory footprint for LoRaWAN_End_Node_DualCore_CMO0+

application

Figure 43. Flash memory and RAM footprint for LoRaWAN_End_Node_ExtFlash_CMO0+

Application
1%

SubGHz_Phy
3% <

[FLASH] LoRaWAN_FUOTA_DC_EXF_End_Node CMO [RAM] LoRaWAN_FUOTA DC_EXF_End_Node CMO

DT71518V1
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Table 24. Memory footprint values for LoRaWAN_End_Node_ExtFlash_CM4 application

. Flash memory e
ProjeCt mOdUIe (byteS) RAN (byteS)

Application 7761 5002 Core, application, and target components

HAL 18312 140 STM32WL HAL and LL drivers

IAR Lib 1012 0 Proprietary IAR libraries

IAR Startup 867 2048 Int_vect, init routines, init table, CSTACK, and HEAP

MBMux 2684 954 Mailbox multiplexer wrappers and services

Utilities 2784 1628 All STM32 services (sequencer, time server, low-power mgr,
trace, mem)

Total application 33420 9772 Memory footprint for LoORaWAN_End_Node_DualCore_CM4

application

Figure 44. Flash memory and RAM footprint for LoORaWAN_End_Node_ExtFlash_CM4

IAR Startup

IAR Startup
21%

IAR Lib |
0% -—HAL

[FLASH] LoRaWAN_FUOTA_DC_EXF_End_Node_CM4 [RAM] LoRaWAN_FUOTA DC_EXF_End_Node_CM4

DT71519V1
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8.2 BFU and SBSFU application memory footprint

8.2.1 SECoreBin and BFU of LoORaWAN_FUOTA SingleCore solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench
compiler (EWARM version 9.20.1):

. Optimization level 3 for size
. Debug option off
. Trace option off

. Target: STM32WL55xx

Table 25. Memory footprint values for SECoreBin single-core application

Flash memory

Application Core, application, and target components

HAL 4052 24 STM32WL HAL and LL drivers

IAR Lib 134 0 Proprietary IAR libraries

IAR Startup 188 0 Int_vect, init routines, init table, CSTACK, and HEAP
KMS 20452 9276 Middleware Key Management Services

SE 1088 16 Middleware Secure Engine

Total application 26580 9320 Memory footprint for SECoreBin application

Figure 45. Flash memory and RAM footprint for SECoreBin single-core

HAL Application IAR Lib
o IAR Startup 0% SE
Application o
p3% 0% 0%
Dy
HAL
15%
IAR Lib
0% IAR
= Startuj
1%
KMS
100%
&
[FLASH] LoRaWAN_FUOTA_SECoreBin [RAM] LoRaWAN_FUOTA SECoreBin £
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Table 26. Memory footprint values for BFU single-core application

Flash memory
ProjeCt modde (byteS) RAN (bthS)

Application 417 Core, application, and target components

HAL 6952 108 STM32WL HAL and LL drivers

IAR Lib 7424 280 Proprietary IAR libraries

IAR Startup 897 6656 Int_vect, init routines, init table, CSTACK, and HEAP
SBSFU 16530 2776 Secure Firmware Update and Secure boot

SE 1654 1 Middleware Secure Engine

SE_BIN 34132 0 Secure Engine compiled library

Total application 68006 9825 Memory footprint for BFU application

Figure 46. Flash memory and RAM footprint for BFU

SE_BlNﬁppliwtion HAL
0% 0% 1% _I1ARLib

Application T\ 3%
1% —L
SBSFU
28%
I1AR
Startu|
A 1%
IAR Startup
68%
2
[FLASH] LoRaWAN_FUOTA_BFU [RAM] LoRaWAN_FUOTA_BFU E
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8.2.2 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench
compiler (EWARM version 9.20.1):

. Optimization level 3 for size
. Debug option off
. Trace option off

. Target: STM32WL55xx

Table 27. Memory footprint values for SECoreBin dual-core application

Flash memory

Application Core, application, and target components

HAL 4664 76 STM32WL HAL and LL drivers

IAR Lib 180 0 Proprietary IAR libraries

IAR Startup 220 0 Int_vect, init routines, init table, CSTACK, and HEAP
KMS 22050 9284 Middleware Key Management Services

SE 1380 16 Middleware Secure Engine

Total application 29332 9380 Memory footprint for SECoreBin application

Figure 47. Flash memory and RAM footprint for SECoreBin dual-core

Application SE HAL 1AR Lib
0% / 0% 1 0% AR Startup
Application 0%
3%
HAL
IAR Lib
_0%
IAR
Startuy
1%
KMS
99% -
g
[FLASH] LoRaWAN_FUOTA_DC_SECoreBin [RAM] LoRaWAN_FUOTA_DC_SECoreBin g
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Table 28. Memory footprint values for SBSFU CMO0+ application

Flash memory
ProjeCt modde (byteS) RAN (byteS)

Application 182

HAL 3525 100
IAR Lib 268 0
IAR Startup 514 6656
SBSFU 12140 1260
SE 4768 1
SE_BIN 30972 0
Total application 52369 8021

Core, application, and target components
STM32WL HAL and LL drivers

Proprietary IAR libraries

Int_vect, init routines, init table, CSTACK, and HEAP
Secure Firmware Update and Secure boot
Middleware Secure Engine

Secure Engine compiled library

Memory footprint for SBSFU CMO+ application

Figure 48. Flash memory and RAM footprint for SBSFU CMO0+

Application
0% IAR Lib
1%

IAR Startup
1%

[FLASH] LoRaWAN_FUOTA_DC_SBSFU_CMO

Application
0%
SE SE_BIN

0% 0% | 4o J1ARLD

0%

SBSFU
16%

IAR Startup
83%

DT71528V1

[RAM] LoRaWAN_FUOTA_DC_SBSFU_CMO

Table 29. Memory footprint values for SBSFU CM4 application

Flash memory

Application

HAL 2554 24
IAR Lib 186 0
IAR Startup 728 512
SBSFU 1744 100
Total application 6012 644

Core, application, and target components
STM32WL HAL and LL drivers

Proprietary IAR libraries

Int_vect, init routines, init table, CSTACK, and HEAP
Secure Firmware Update and Secure boot

Memory footprint for SBSFU CM4 application

page 51/69




‘,_l AN5554

BFU and SBSFU application memory footprint

Figure 49. Flash memory and RAM footprint for SBSFU CM4

Application
1% IAR Lib
—_ 0%
HAL
SBSFU 4%
16%
IAR Startup
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IAR Startup
79%
IARLib

3%
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8.2.3 SECoreBin and SBSFU of LoRaWAN_FUOTA_DualCore_ExtFlash solution

Values in the tables below are measured for the following configuration of the IAR Embedded Workbench
compiler (EWARM version 9.20.1):

. Optimization level 3 for size
. Debug option off
. Trace option off

. Target: STM32WL5MOCHxx

Table 30. Memory footprint values for SECoreBin_ExtFlash dual-core application

Flash memory

Application Core, application, and target components

HAL 5778 76 STM32WL HAL and LL drivers

IAR Lib 180 0 Proprietary IAR libraries

IAR Startup 220 0 Int_vect, init routines, init table, CSTACK, and HEAP
KMS 23964 10380 Middleware Key Management Services

SE 1380 16 Middleware Secure Engine

Total application 32412 10476 Memory footprint for SECoreBin application
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Figure 50. Flash memory and RAM footprint for SECoreBin_ExtFlash

Application SE e
Application 0% 0% 1%
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IAR Lib

0% __IAR Startup
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IAR Lib

KMS
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[FLASH] LoRaWAN_FUOTA_DC_EXF_SECoreBin [RAM] LoRaWAN_FUOTA_DC_EXF_SECoreBin

Table 31. Memory footprint values for SBSFU_ExtFlash_CMO0+ application

Flash memory

Application Core, application, and target components

HAL 10001 212 STM32WL HAL and LL drivers

IAR Lib 6794 284 Proprietary IAR libraries

IAR Startup 576 6656 Int_vect, init routines, init table, CSTACK, and HEAP
SBSFU 16163 1528 Secure Firmware Update and Secure boot

SE 4768 1 Middleware Secure Engine

SE_BIN 35116 0 Secure Engine compiled library

Total application 73640 8685 Memory footprint for SBSFU CMO+ application
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Figure 51. Flash memory and RAM footprint for SBSFU_ExtFlash_CMO0+
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Table 32. Memory footprint values for SBSFU_ExtFlash_CM4 application

Flash memory

Application 1329 Core, application, and target components

HAL 10913 152 STM32WL HAL and LL drivers

IAR Lib 7373 280 Proprietary IAR libraries

IAR Startup 891 512 Int_vect, init routines, init table, CSTACK, and HEAP
SBSFU 4215 1688 Secure Firmware Update and Secure boot

Total application 24721 2960 Memory footprint for SBSFU CM4 application
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Figure 52. Flash memory and RAM footprint for SBSFU_ExtFlash_CM4
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Implementation validation over network operators

FUOTA campaign has been performed in front of Actility network in several regions.

Actllity For more details, refer to the related blog article: https://blog.st.com/thingpark/.
Senet FUOTA campaign has been performed in front of Senet network in US region
FUOTA campaign has been performed in front of AWS Network server.
AWS loT Core for LoRaWAN The hardware setup requires an AWS certified Gateway.

For more details, refer to: https://aws.amazon.com/iot-core/lorawan/.
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Appendix A

The Python script that includes the algorithm generating redundancy fragments is detailed below.

#! /usr/bin/env python3
# -*- coding: utf-8 —-*-

#
# Imports
#
import os

import sys

import logging

import socket

import binascii

import math

from datetime import datetime
from time import sleep

#

# Global variables

#

logger = logging.getLogger (' _name ')

test_matlab = False
test_interop = False
fec_algo _version = 1

if test_interop:
input file = 'Interoptest file 1.bin'
fragment size = 40
redundancy = 25

@ls@s
input file = 'LoRaWAN_End Node.sfb'
fragment size = 120
redundancy = 72

def prbs23(start):
''"'The prbs23() function implements a PRBS generator with 2723 period.
standard implementation of a 23bit prbs generator'''
X = start

b0 =x &1
bl = int((x & 32) / 32)
X = (x > 1) | ((bO ~ bl) << 22)

return x

#
#
def matrix line (N, M):
'''the matrix line function generating a parity check vector:
this function returns line N of the MxM parity matrix'''
nb_coeff = 0
line = [0]*M

# if M is a power of 2

if (M & (M - 1) == 0) and M != 0:
pow2 = 1

else:
pow2 = 0

# initialize the seed differently for each line
x =1 + (1001 * (N + 1))

# will generate a line with M / 2 bits set to 1 (50 % )
while (((fec algo version == 2) and (line.count(l) < math.floor(M / 2))) or
((fec_algo version == 1) and (nb coeff < math.floor(M / 2)))):
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r = math.pow(2, 16)
# this can happen if m=1, in that case Jjust try again with a different random number
while r >= M:

x = prbs23(x)

# bit number r of the current line will be switched to 1

)

r=x % (M + pow2)

# set to 1 the column which was randomly selected
line([r] =1
nb_coeff += 1

return line

#
#
if name == "'_main_ ':

logging.basicConfig (format="'%(asctime)s - [%(levelname)s] - % (message)s',
level=logging.DEBUG)

output file = os.path.splitext (input file) [0] + ' coded' + os.path.splitext (input file)
[1]

uncoded_frag = []
# nb of bytes per fragment

if test matlab:

fragment size = 10

nb_ fragment = 32

for 1 in range (nb_fragment) :
buffer = "'
for j in range (fragment size):

buffer += '{:02X}'.format ((i*fragment size+j) % 256)

logger.debug (buffer)
uncoded_frag.append (buffer)

else:
# Read the binary file and convert into fragments list of size <fragment size>
try:
with open (input file, "rb") as f:
while bytes str := f.read(fragment size):

uncoded frag.extend([binascii.hexlify(bytes str).decode()])
except FileNotFoundError as e:
logger.error (e)
exit (1)

# Get the number of fragments into the binary file
nb_fragment = len (uncoded frag)

# 0-Padding of the last fragments
uncoded frag[-1] += '0'* (fragment size*2-len (uncoded frag[-1]))

logger.info (('Input file: {} | Fragment size: {} bytes | Uncoded fragments: {} | '
'Redundancy fragments: {}').format (input file, fragment size,
nb_ fragment, redundancy))

# generate a coded array based on uncoded content
coded frag = []
logger.debug ('Matrix:")
for y in range (nb_fragment) :
s = '0'*(2 * fragment size)
# line y of M x M matrix
A = matrix line(y, nb_ fragment)
logger.debug ('{:03}: {} - {:03}'.format(y + 1, A, A.count(l)))

for x in range (nb_fragment) :
# if bit x is set to 1 then xor the corresponding fragment

if A[x] ==
s = '"{:X}'.format (int(s, 16) ~ int (uncoded frag[x], 16))
# prevent Odd-length string
s = '0'*((fragment_size * 2) - len(s)) + s
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# save coded fragment
coded_frag.extend([s])

# write the ouput file containing uncoded + coded fragments
with open (output file, "wb") as f:
logger.debug ('Uncoded fragments:')
for num, frag in enumerate (uncoded frag, start=1):
logger.debug ('{:03}: {}'.format (num, frag.upper()))
f.write (binascii.unhexlify(frag.encode()))
logger.debug ('Coded fragments:')
for num, frag in enumerate (coded frag, start=1l):
logger.debug ('{:03}: {}'.format (num, frag.upper()))
f.write(binascii.unhexlify(frag.encode()))
logger.info ('Output file: {} | File size: {}'.format (output file,
os.path.getsize (output file)))
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Appendix B

This appendix details simulations needed to validate the reconstruction of the initial firmware update image in the
flash memory area (full . sfb image).

Context

The Python script defined in Section Appendix A sends via a LoRaWAN tester LoRaWAN End Node.sfb viaa
fragmentation session on the embedded firmware.

The serial is recovered in Serial. log file and logs trace values. The Python script simulates the loss of several
fragments.

In FUOTA single-core case, redundancy (FRAG_MAX REDUNDANCY) is allocated to 10% of total fragment number
(FRAG_MAX NB) with the code below:

#define FRAG MAX NB 716
#define FRAG_MAX REDUNDANCY 72

Due to the flash memory limitation, a fragment size must be a multiple of eight (8 x 8 bytes = 64 bits):

#define FRAG MAX SIZE 120

This simulation environment is used to validate FUOTA firmware with a loss up to 72 fragments. If the
communication is more degraded and leads to more than 72 fragments loss, the reconstruction is discarded.

The figure below shows the difference between the full firmware to download (on the left), and data sent by
Python simulation (on the right).

Figure 53. Example of datablock sent by FUOTA Python simulation on a LoRaWAN tester

@) LoRaWAN _End Nodesid <> full_dump_mem flash |1 last modified hex - Hex Compare - Beyond Compare - o x
[ Sesion_pie_searn yiew Tools_tieip New verion ailatie.
& LoRaWAN_End_Nodests <--_ — 5] LoRaWAN,End Nodasfo - 3 "% LORSWAN_End Nodefo < | & ash it-Dacsd12.001c <-- _ 3 | @ LoRSWAN [nd Nodelo <-—_. 2 | LoRaWAN £nd Nodeso <-—_ 3
Sessions *
,C.‘\LURI\BEE\G\Tmamuﬂ}UOT_ i ftest) (End Modesfh <] & = [C\GIT test automation FUOTA\SubGHZ rwan_ automaticn!recwoodtfullest loghfull dump mem fash if st modifiedher. -] =
4/22/2021 124605 PM 69184 bytes. 4/22/2021 35713 PM 76,800 bytes
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F3 A4 4F B1 C2 CD DD 61 B3 01 DA SURSHuNDATUA" .0

3A 62 49 33 DF 24 DO D FF 6F 48 LE.*2:bD38%D1YoH
59 SF AD CO BE 51 23 1E B3 D2 62 [$0.0V_-A.Q#.5D.

73 +.p.BIEA*EVL0s  Fragment not sent by
'1"':"‘;” python simulation
<Ka2+dx. Bpil

¥..15%. 9/ gl (FRAG_MAX_SIZE lenght)
2 . 5 o

“iw(0. ]

92 @3 BA 9F E5 68 5C B6 18 98 AE 3@ 21 8@ EC (D *.5VA \9.:%0l.1f ~

94 70 1F €8 97 16 C4 C4 1E 34 06 96 1E 69 10 20 "}.E—.Ad.:.—.i.-

77 77 4E 98 5 BA 47 3C E7 21 37 45 48 E7  wlvwli".5G<c ] TEHG

4@ 35 01 EC DF F9 2F 72 92 E3 ED B5 D4 ¥ 0B5 1R/ r” ENud

EA D1 47 7E D8 14 4A 88 48 42 D7 C5 00 B-zdfiG-4. 1 KB~A.
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page 60/69




AN5554

Debug manipulations

3

After the loss of several fragments, the Frag decoder calls the LDPC algorithm to reconstruct these missing
fragments. The figure below shows a memory dump in case of a failed memory reconstruction.

Figure 54. Example of failed datablock reconstruction by LDPC

1O LoRaWAN End Nodesfb <--> mem_dump flash if_rebase_ modifiec.hex - Hex Compare - Beyond Compare - 8 X
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AC 97 7€ 1D B6 68 62 B4 4C 29 8D 31 F2 E9 DC AE  L—.9hb L)10éN ~ [80083ACO 4C 97 7E 1D B6 68 62 BA AC 29 8D 31 F2 E9 DC 4E  L—.%hb L)10é0N -
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00000000

1% Binary ditferences Load time: 0.03 seconds

B.2 Debug manipulations

To check the FUOTA session integrity, the execution must be broken at the end of the FUOTA session, before the
BFU takes the hand to authenticate the firmware obtained in SLOT DWL 1. A dump of the whole SLOT DWL 1
area is required to compare it to <myAppli>.sfb sent by the network over FUOTA.

Log traces below display the end of the FUOTA mechanism: BFU process to check integrity and reboot on new
firmware received by the firmware update mechanism.

Figure 55. End of FUOTA campaign/ datablock check, authentication by BFU/
reboot on updated firmware traces
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