
Introduction

For designers of STM32 microcontroller (MCU) applications, the ability to replace one microcontroller type with another from the
same product family easily is an important asset. Migrating an application to a different microcontroller is often needed when
product requirements grow, putting extra demands on memory size, or increasing the number of I/Os.

This application note analyzes the steps required to migrate a design based on the STM32L4+ series to STM32U595/5A5,
STM32U599/5A9, STM32U5F7/5G7, and STM32U5F9/5G9 MCUs (named STM32U59x/5Ax and STM32U5Fx/5Gx in this
document). This document is graphic-oriented, including only major peripherals dealing with graphic applications. For a more
complete view on STM32L4+ to STM32U5 series migration, refer to the application note Migrating from STM32L4 and
STM32L4+ to STM32U5 MCUs (AN5372).

Hardware, peripherals, and graphic software are the main aspects considered in this application note.

This document lists the full set of graphic features available for STM32L4+ and STM32U59x/5Ax/5Fx/5Gx devices.

Note: Only STM32U59x/5Ax/5Fx/5Gx devices embed advanced graphic peripherals in the STM32U5 series;
STM32U535/545/575/585 devices do not.

Note: To benefit from this application note, the user can refer to the STM32 microcontroller documentation available on
www.st.com, with particular focus on the reference manual and datasheets.

Migrating a graphic application from STM32L4+ to STM32U59x/5Ax/5Fx/5Gx
MCUs

AN5632

Application note

AN5632 - Rev 2 - September 2023
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/

1 STM32U59x/Ax/5Fx/5Gx overview

This document applies to the STM32U59x/5Ax and STM32U5Fx/5Gx Arm®-based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

These devices are ultra-low-power and security MCUs, with enhanced efficiency and performance, such as:
• Up to 4 Mbytes of flash memory with ECC accelerated by instruction cache
• Up to six SRAMs with optional ECC split as follows:

– SRAM1: 768 Kbytes (12 x 64-Kbyte blocks)
– SRAM2: 64 Kbytes (8-Kbyte + 56-Kbyte blocks)
– SRAM3: 832 Kbytes (13 x 64-Kbyte blocks)
– SRAM4: 16 Kbytes
– SRAM5: 832 Kbytes (13 x 64-Kbyte blocks)
– SRAM6: 512 Kbytes (8 x 64-Kbyte blocks)
– BKPSRAM (backup SRAM): 2 Kbytes retaining data in all low-power modes except Shutdown mode.

The backup SRAM can be optionally retained in VBAT mode.

The SRAM memory offer fits the graphic applications perfectly, with the fastest embedded memories to manage
the double‑frame buffer processing.
STM32U59x/5Ax/5Fx/5Gx devices use the embedded Arm® Cortex®-M33 32-bit core running at 160 MHz, versus
120 MHz for the STM32L4+ devices based on the Arm® Cortex®-M4 32-bit core. Cortex®-M33 provides improved
security features with the ultra-low-power Arm® TrustZone® for Armv8-M, and the STMicroelectronics instruction/
data caches (ICACHE/DCACHE) that support both internal and external memories. The instruction cache is
implemented for external and internal memory access, whereas the data cache is implemented only for external
memories.
STM32U59x/5Ax/5Fx/5Gx devices include a larger set of peripherals with more advanced features compared to
STM32L4+, such as the ones listed below:
• Power consumption

– Optimized power consumption in dynamic, using DC/DC and LDO in parallel (on-the-fly selection)
– Optimized power consumption in low-power modes:

◦ Low-power background autonomous mode (LPBAM): autonomous peripherals with DMA,
functional down to Stop 2 mode

◦ Possibility to power on or off some SRAM banks and to keep them in low-power modes
◦ Timers running in Stop mode with input capture mode
◦ Optimized RTC consumption
◦ Advanced 14-bit ADC and ultra-low-power 12-bit ADC

• Security
– AES and PKA (public key accelerator), side attack resistant (by hardware).
– HUK (hardware unique key) to get a secure storage resistant to logical, side, and physical attack.
– Life-cycle/RDP (readout protection): possibility to enable RDP regression with password.
– TrustZone® and securable peripherals.
– Up to eight configurable SAU regions.
– Octo‑SPI memory encryption.
– Active tampering, secure firmware upgrade support, secure hide protection.
– Temperature, voltage, and frequency protection monitoring for tamper detection.
– PKA intended for the computation of cryptographic public key primitives, specifically those related to

RSA, Diffie‑Hellmann, or ECC (elliptic curve cryptography) over GF(p) (Galois fields). To achieve high
performance at a reasonable cost, these operations are executed in the Montgomery domain.

– On-the-fly Octo‑SPI memory decryption by OTFDEC module.

AN5632
STM32U59x/Ax/5Fx/5Gx overview

AN5632 - Rev 2 page 2/36

• System
– Performance

◦ Cortex®-M33 at 160 MHz
◦ 100 k cycles for 256 Kbytes per bank of flash memory (the rest at 10 k cycles)
◦ Programmable ECC for the SRAM

– New coprocessors
◦ FMAC and CORDIC (mathematics accelerator coprocessors)
◦ Instruction cache for internal and external memories and data cache for external memories only

(ART Accelerator)
◦ Multifunction digital filters with advanced features

• USB OTG high-speed peripheral with embedded PHY
• Graphic subsystem

In addition to the peripherals included in both STM32L4+ and STM32U59x/5Ax/5Fx/5Gx devices, the latter
offer additional peripherals that increase performance and image processing capabilities, such as:
– GPU2D for dedicated graphics processing such as graphical user interface (GUI), menu display, or

animations (such as rotation, 3D perspective, mirroring, stretching, or texture mapping), as well as
hardware support for vector graphics on STM32U5Fx/5Gx.

– Hexadeca‑SPI interface (HSPI) to support most external memories such as PSRAMs, serial NAND
and serial NOR flash memories, HyperRAM™ and HyperFlash™ memories. It offers a parallel
interface up to 16 bits, supporting SDR or DDR modes for the data transfer rate.

Note: This document describes only the differences between STM32U59x/5Ax/5Fx/5Gx and STM32L4+, based on
their system and peripherals targeting graphic applications.

AN5632
STM32U59x/Ax/5Fx/5Gx overview

AN5632 - Rev 2 page 3/36

2 Memories

STM32U5 devices offer larger embedded memories than STM32L4+ devices, as shown in the table below.

Table 1. Memories in STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

Product
FLASH(1) RAM size (Kbytes)

CommentSize
(Kbytes) SRAM1 SRAM2 SRAM3 SRAM4 SRAM5 SRAM6 BKPSRAM

STM32U5F9 2048 to
4096

768 64 832 16 832

512

2

OTG_HS, LTDC, and/or
DSI

STM32U5G9 4096 OTG_HS, LTDC,
cryptography, and/or DSI

STM32U5F7 2048 to
4096 OTG_HS, LTDC

STM32U5G7 4096 OTG_HS, LTDC, and
cryptography

STM32U599 2048 to
4096

N/A

OTG_HS, LTDC, and/or
DSI

STM32U5A9 4096 OTG_HS, LTDC,
cryptography, and/or DSI

STM32U595 2048 to
4096 OTG_HS

STM32U5A5 4096 OTG_HS and
cryptography

STM32L4R9

1024 to
2048

192

64

384

N/A

OTG_FS and DSI

STM32L4S9 OTG_FS, DSI, and
cryptography

STM32L4R7 OTG_FS and LTDC

STM32L4S7 2048 OTG_FS, LTDC, and
cryptography

STM32L4R5 1024 to
2048 OTG_FS

STM32L4S5 2048 OTG_FS and
cryptography

STM32L4P5 512 to
1024

128 128
OTG_FS

STM32L4Q5 1024 OTG_FS and
cryptography

1. Dual bank for all devices.

STM32U59x/5Ax/5Fx/5Gx devices embed many internal SRAMs to meet the specific requirements for typical
graphic applications (for example, smart-watch devices). These can be used, depending on the screen resolution,
to handle the double-frame buffers in the internal SRAMs to increase the overall graphic performance and
memory bandwidth (as well as latency).

AN5632
Memories

AN5632 - Rev 2 page 4/36

3 Graphic resources

Most of the graphic resources are shared between STM32U59x/5Ax/5Fx/5Gx and STM32L4+ devices.
More powerful peripherals have been introduced from STM32U59x/5Ax onwards to increase the overall graphic
performance (very beneficial for animation purposes, for example).
GPU2D is one of these new peripherals contributing to offloading the CPU for image processing operations. The
HSPI peripheral improves access to the external PSRAM/HyperRAM™, or NorFlash/HyperFlash™, offering 16-bit
high-speed I/Os. This considerably speeds up the data transfer to and from the external memory GPU2D is
connected to for image processing, for instance (performance also increases when any controller peripheral uses
the H-SPI interface to communicate with external memories).
The table below details the set of peripherals for the various products.

Table 2. Peripherals involved in the graphic system

Peripheral
STM32

L4x7

STM32

L4x9

STM32

L4P5/4Q
5

STM32

L4R5/4S
5

STM32U

595/5A5

STM32U

599/5A9

STM32U

5F7/5G7

STM32U

5F9/5G9
Comment

Graphic
peripherals

DMA2D X X X X X X X X Refer to Section 3.1

GPU2D - - - - - X X X

New peripheral
actively participating
in the overall graphic
performance
increase.

Refer to Section 3.2

GFXMM
U X X - - - X X X Refer to Section 3.3

LTDC X X(1) X - - X X X Refer to Section 3.4

JPEG
codec - - - - - - X X Refer to Section 3.5

Memory
interfaces

OCTOSP
I1 X X X X X X X X

Refer to Section 3.6
OCTOSP
I2 X(2) X(1) X(3) X X X X(4) X

FSMC X X X(5) X X(5) X(5) X X Refer to Section 3.7

SDMMC X X X X X X X(6) X Refer to Section 3.10

HSPI - - - - - X - X

New peripheral to
interface with
high‑speed external
memories.

Refer to Section 3.8

Graphic
system
interfaces

DCMI X X X X X X X X Refer to Section 3.9

DSI - X - - - X(7) - X Refer to Section 3.11

1. Not available on STM32L4x9VI/VG.
2. Not available on STM32L4x7VI.
3. Not available for packages below 132 pins.
4. Not available for packages below 208 pins.
5. Not available for packages below 100 pins.
6. Not available for LQFP100 DSI SMPS.
7. Available on STM32U5x9ZI/JY, STM32U5x9BJY, and STM32U5x9NI/JH.

AN5632
Graphic resources

AN5632 - Rev 2 page 5/36

The peripheral memory mapping differences are detailed in the table below.

Table 3. Peripheral memory mapping in STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

Peripheral STM32L4+ STM32U59x/5Ax/5Fx/5Gx

OCTOSPI1
Nonsecure 0xA000 1000 - 0xA000 13FF 0x420D 1400 - 0x420D 17FF

Secure - 0x520D 1400 - 0x520D 17FF

OCTOSPI2
Nonsecure 0xA000 1400 - 0xA000 17FF 0x420D 2400 - 0x420D 27FF

Secure - 0x520D 2400 - 0x520D 27FF

OCTOSPIM
Nonsecure 0x5006 1C00- 0x5006 1FFF 0x420C 4000- 0x420C 43FF

Secure - 0x520C 4000- 0x520C 43FF

HSPI(1)
Nonsecure

-
0x420D 3400 - 0x420D 37FF

Secure 0x520D 3400 - 0x520D 37FF

DMA2D
Nonsecure 0x4002 B000 - 0x4002 BBFF 0x4002 B000 - 0x4002 BBFF

Secure - 0x5002 B000 - 0x5002 BBFF

GFXMMU(1)
Nonsecure 0x4002 C000 - 0x4002 EFFF 0x4002 C000 - 0x4002 EFFF

Secure - 0x5002 C000 - 0x5002 EFFF

LTDC(1)
Nonsecure 0x4001 6800 - 0x4001 6BFF 0x4001 6800 - 0x4001 6BFF

Secure - 0x5001 6800 - 0x5001 6BFF

FSMC
Nonsecure 0xA000 0000 - 0xA000 03FF 0x420D 0400 - 0x420D 07FF

Secure - 0x520D 0400 - 0x520D 07FF

SDMMC1
Nonsecure 0x5006 2400 - 0x5006 27FF 0x420C 8000 - 0x420C 83FF

Secure - 0x520C 8000 - 0x520C 83FF

SDMMC2(1)
Nonsecure 0x5006 2800 - 0x5006 2BFF 0x420C 8C00 - 0x420C 8FFF

Secure - 0x520C 8C00 - 0x520C 8FFF

GPU2D(1)
Nonsecure

-
0x4002 F000 - 0x4002 FFFF

Secure 0x5002 F000 - 0x5002 FFFF

DCMI
Nonsecure 0x5005 0000 - 0x5005 03FF 0x4202 C000 - 0x4202 C3FF

Secure - 0x5202 C000 - 0x5202 C3FF

DSI(1)
Nonsecure 0x4001 6C00 - 0x4001 73FF 0x4001 6C00 - 0x4001 7BFF

Secure - 0x5001 6C00 - 0x5001 7BFF

JPEG
Nonsecure - 0x4002 A000 - 0x4002 AFFF

Secure - 0x5002 A000 - 0x5002 AFFF

1. For devices having this feature.

3.1 Chrom-ART Accelerator (DMA2D)
The Chrom-ART Accelerator (DMA2D) is a graphic-dedicated peripheral allowing image manipulation without
using the CPU. DMA2D is a hardware accelerator for graphical operations (such as plane blending, pixel format
conversions, or antialiasing fonts with specific modes). DMA2D is built around a graphic 2D DMA for fast data
copy operations.
There is no major difference between the STM32L4+ and the STM32U59x/5Ax/5Fx/5Gx devices that are fully
compatible.

AN5632
Chrom-ART Accelerator (DMA2D)

AN5632 - Rev 2 page 6/36

STM32U59x/5Ax/5Fx/5Gx devices offer new trigger capabilities from the Chrom-ART Accelerator compared to
STM32L4+ devices. These new trigger capabilities can trigger a system GPDMA channel. This brings more
flexibility for synchronizing the application software based on specific events, as shown in the table below.

Table 4. Additional trigger connections on STM32U59x/5Ax

DMA2D trigger source GPDMA trigger connection

Transfer complete GPDMA_CxTR2.TRIGSEL[5:0] = 50

CLUT transfer complete GPDMA_CxTR2.TRIGSEL[5:0] = 51

Transfer watermark complete GPDMA_CxTR2.TRIGSEL[5:0] = 52

3.2 Neo-Chrom graphic processor (GPU2D)
GPU2D is a dedicated graphic processing unit accelerating numerous 2.5D graphic applications, such as
graphical user interfaces (GUIs), menu displays, or animations. GPU2D works alongside an optimized software
stack designed for state-of-the-art graphic rendering (TouchGFX). For example, the texture mapper is now fully
hardware accelerated, with a x10 factor compared to a classical software implementation and no code
modification on the user side (additional material and software packages can be provided on demand).
GPU2D is mainly used to transform images (3D perspective correct projections, texture mapping with bilinear
filtering, or sampling point). GPU2D supports blit operations like rotation or mirroring, stretching, color keying, and
pixel format conversions.
GPU2D can be used for 2D drawing with pixel and line drawing, or filling rectangles, triangles, and quadrilaterals.
GPU2D supports text rendering (A1, A2, A4, and A8 antialiasing bitmap) and alpha blending with a hardware
blender.
GPU2D uses the embedded graphic peripherals in STM32U599/5A9 devices and internal and external memory
resources to improve graphic performances, resulting in a state-of-the-art graphic system. STM32U5Fx/5Gx
devices further enhance GPU2D with the hardware support of vector graphic calculation, offering high-end
performances.

3.3 Chrom-GRC (GFXMMU)
The Chrom-GRC (GFXMMU) is a graphical memory management unit aiming to optimize memory use according
to the display shape. GFXMMU operates an address translation from the virtual buffer space to the physical
address memory in a linear way. There are up to four virtual memory spaces (and so four physical memory
spaces as well).
GFXMMU acts as the controller on the AHB bus to target the physical memory when performing the address
translation to read or write the physical memory.
The table below summarizes the connection of GFXMMU for each product and for each controller/target.

Note: This peripheral is not present on STM32U595/5A5 devices.

Table 5. GFXMMU connection to controller/target ports for STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

Peripheral STM32L4+(1) STM32U59x/5Ax/5Fx/5Gx

Controller

CPU X X

LTDC X X

DMA2D X X

DMA X -

SDMMC X -

GPU2D - X

Target

FLASH X X

SRAM1 X X

SRAM2 X X

SRAM3 X X

AN5632
Neo-Chrom graphic processor (GPU2D)

AN5632 - Rev 2 page 7/36

Peripheral STM32L4+(1) STM32U59x/5Ax/5Fx/5Gx

Target

SRAM4 - -

SRAM5 - X

BKPSRAM - -

OCTOSPI X X

FSMC X X

HSPI - X

1. No GFXMMU on STM32L4R5x/4S5x/4P5x/4Q5x devices.

3.4 LCD-TFT display controller (LTDC)
The LCD-TFT display controller (LTDC) provides a parallel digital RGB (Red, Green, Blue), pixel clock, data
enable, and synchronization signals, to interface directly with a wide range of LCD or TFT panels. LTDC is the
same for STM32U59x/5Ax/5Fx/5Gx and STM32L4+ devices (no functional differences).

Note: This peripheral is not present on STM32U595/5A5 devices.

Table 6. Additional LTDC trigger connection on STM32U59x/5Ax/5Fx/5Gx

DMA2D trigger source GPDMA trigger connection

LTDC line interrupt (ltdc_li) GPDMA_CxTR2.TRIGSEL[5:0] = 47

The LTDC pixel clock is connected differently to the PLL depending on the targeted device (see the table below).

Table 7. LTDC pixel clock connection to RCC

STM32L4+(1) STM32U59x/5Ax/5Fx/5Gx

PLLSAI2 (/R) PLL2 (/R) or PLL3 (/R)

1. No LTDC on SMT32L4R5x/4S5x devices.

LTDC uses several I/Os to connect an external display to the MCU. The alternate function (AF) number used to
map the LTDC output to the I/Os is different depending on the device, as shown in the table below.

Table 8. Alternate function to map the LTDC to the external I/Os

STM32L4+(1) STM32U59x/5Ax/5Fx/5Gx

AF11 AF7, AF8

1. No LTDC on the STM32L4R5x/4S5x devices.

The LTDC output signals mapped on the GPIOs are strictly compatible when porting software from STM32L4+ to
STM32U59x/5Ax/5Fx/5Gx devices.
The table below shows an additional remapping for STM32U59x/5Ax/5Fx/5Gx devices. Only the alternate function
number is different, and the software developer needs to be cautious when porting the part of the code that
configures LTDC.

Table 9. LTDC I/O port mapping in STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

Pin name STM32L4+ STM32U59x/5Ax/5Fx/5Gx

LCD_VSYNC - PD13

AN5632
LCD-TFT display controller (LTDC)

AN5632 - Rev 2 page 8/36

3.5 JPEG codec
The hardware 8-bit JPEG codec encodes uncompressed image data streams and decodes JPEG-compressed
image data streams. It also fully manages JPEG headers. The main JPEG codec features are:
• Fully synchronous, high-speed operations.
• Configurable as encoder or decoder.
• Single-clock-per-pixel encode/decode.
• RGB, YCbCr, YCMK, and BW (gray scale) image color space support.
• 8-bit depth per image component for encode/decode.
• JPEG header generator/parser with enable/disable.
• Four programmable quantization tables.
• Single-clock Huffman coding and decoding.
• Fully programmable Huffman tables (two AC and two DC).
• Fully programmable minimum coded unit.
• Concurrent input and output data stream interface.

3.6 Octo-SPI interface (OCTOSPI)
Octo‑SPI supports most external serial memories, including serial PSRAMs, serial NANDs and serial NORFlash
memories, and HyperRAM™ and HyperFlash™ memories, with different modes (indirect, automatic status-polling,
or memory-mapped).
The Octo‑SPI interface can be used to store graphic primitives, pointed by the graphic application software, for
instance. STM32U59x/5Ax/5Fx/5Gx and STM32L4+ devices embed two Octo‑SPI instances.
The kernel clock connection for each Octo‑SPI instance is slightly different.

Table 10. OCTOSPI kernel clock source connection

STM32L4+ STM32U59x/5Ax/5Fx/5Gx

PLL48M1CLK (PLL/Q) MSIK, PLL1/Q, PLL2/Q, and SYSCLK

STM32U59x/5Ax/5Fx/5Gx devices support the new features listed below:

• Differential clock for 1.8 V HyperBus™ mode.
• Support of AP memory Quad- and Octal-SPI PSRAMs.
• CS boundary and refresh
• OTFDEC protecting the flash memory code
• TrustZone® security
The I/O port mapping differences on the Octo‑SPI I/O manager (OCTOSPIM) are detailed in the table below.

Table 11. OCTOSPIM I/O port mapping on STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

Pin name STM32L4+ STM32U59x/5Ax/5Fx/5Gx

OCTOSPIM_P1_IO7 - PC0

OCTOSPIM_P1_NCLK - PF11, PE9, PB12, PB5

OCTOSPIM_P2_IO0 PI11 PI3

OCTOSPIM_P2_IO1 PI10 PI2

OCTOSPIM_P2_IO2 PI9 PI1

OCTOSPIM_P2_NCLK - PF5, PH7, PI7

OCTOSPIM_P2_NCS PI8 PA0, PA12, PF6

AN5632
JPEG codec

AN5632 - Rev 2 page 9/36

3.7 Flexible static memory controller (FSMC)
The FSMC includes two memory controllers:
• A NOR/PSRAM memory controller.
• A NAND memory controller.
The FMSC is almost the same for STM32L4+ and STM32U59x/5Ax/5Fx/5Gx, except for a new PSRAM counter
timing embedded in STM32U59x/5Ax/5Fx/5Gx devices, which can also be secure using the TrustZone® controller
(refer to the reference manual for more details).
The FSMC can be used to interface the LCD_TFT display through an 8- or 16-bit parallel interface (called MCU
interface or MIPI DBI).
This solution offers a low pin-count cost to connect to the display and there is no specific memory refresh
performed by the MCU to consider. All operations are managed by the external LCD‑TFT display controller. The
FSMC signals needed to interface the external LCD‑TFT display controller are the following:
• FSMC [D0:D15]: FSMC databus: 16-bit width
• FSMC NEx: FSMC chip select
• FSMC NOE: FSMC output enable
• FSMC NWE: FSMC write enable
• FSMC Ax (x = 0 to 25): one address line used to select between command and data

Table 12. Signals correspondence between the FSMC and the external LCD display

FSMC signals External LCD display signals

FSMC_Ax RS

FSMC_NEx CSn

FSMC_NWE WRn/SCL

FSMC_NOE RDn

FSMC [D0:D15] D0-D15

The FSMC can also be used to connect external PSRAMs.
On STM32U599/5A9/5F9/5G9 devices, it is recommended to use HSPI to connect external memories for
graphics. This high-speed interface offers outstanding performance to store graphic primitives or, if necessary, to
interface external memories to store application frame buffers pointed by GPU2D.
The STM32U59x/5Ax/5Fx/5Gx FSMC is mapped using two alternate function (AF) numbers (a single one for
STM32L4+). The table below presents this difference.

Table 13. Alternate function to map the FSMC to the I/O ports

STM32L4 STM32U59x/5Ax

AF11 AF11, AF12

There is one additional I/O port mapping on STM32U59x/5Ax/5Fx/5Gx devices as detailed in the table below.

Table 14. Additional FSMC I/O port mapping on STM32U59x/5Ax/5Fx/5Gx

Pin name STM32U59x/5Ax/5Fx/5Gx

FMC_NBL1 PB15 (AF11)

AN5632
Flexible static memory controller (FSMC)

AN5632 - Rev 2 page 10/36

3.8 Hexadeca-SPI (HSPI)
HSPI supports most of the external serial memory types (such as serial PSRAMs, serial NAND/NOR flash
memories, HyperRAM™, and HyperFlash™ memories), with the following functional modes:
• Indirect mode: all operations are performed using the HSPI registers.
• Automatic status-polling mode: the external memory status register is periodically read and an interrupt can

be generated in the case of flag setting.
• Memory-mapped mode: the external memory is memory mapped. The system sees it as if it was an

internal memory supporting read and write operations.
Data access can be 8, 16, and 32 bits wide. HSPI supports quad, dual-quad, octal, dual-octal, and 16-bit
configurations.
HSPI runs at up to 160 MHz and is new in STM32U599/5A9/5F9/5G9 devices. It offers better performance for
data access and reduced latency (higher for applications using Octo‑SPI or FSMC to target external memories). It
is an added value when migrating a graphic application from STM32L4+ to STM32U599/5A9/5F9/5G9 devices.

Note: This peripheral is not present on STM32U595/5A5/5F7/FG7.
For more details, see the reference manual or the datasheet.

3.9 Digital camera interface (DCMI)
The DCMI is a synchronous parallel interface able to receive a high-speed data flow from an external 8-, 10-, 12-,
or 14-bit CMOS camera module. The DCMI supports different data formats: YCbCr4:2:2/RGB565 progressive
video and compressed data (JPEG). This interface can be used with black-and-white, X24, and X5 image
sensors, provided preprocessing (such as resizing) is performed in the camera module.
The DCMI is the same in STM32L4+ and STM32U59x/5Ax/5Fx/5Gx devices. The only difference is highlighted in
the table below.

Table 15. DCMI I/O port mapping difference on STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

Pin name STM32L4+ STM32U59x/5Ax/5Fx/5Gx

DCMI_D12 PI8(AF10) PF6 (AF4)

3.10 Secure digital input output multimedia card interface (SDMMC)
The SD/SDIO embedded multimedia card (eMMC) host interface (SDMMC) provides an interface between the
AHB bus and SD memory cards, SDIO cards, and eMMC devices. The multimedia card system specifications are
available through the multimedia card association website (www.mmca.org), published by the MMCA technical
committee. SD memory card and SDIO card system specifications are available through the SD card association
website (www.sdcard.org).
STM32L4+ and STM32U59x/5Ax/5Fx/5Gx devices embed two SDMMC instances (except STM32L4Sx, which
has only one SDMMC instance). The main feature differences are described in the table below.

Table 16. SDMMC features of STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

Feature STM32L4+ STM32U59x/5Ax

Full compliance with MultiMediaCard
system specification Version 4.5 Version 5.1

Full compliance with SD memory card
specification Version 4.1 Version 6.0

Data transfer Up to 104 Mbyte/s for the 8‑bit mode Up to 208 Mbyte/s for the 8‑bit mode(1)

IDMA linked list Not supported Supported

1. Depending on GPIO performance. Refer to product datasheet.

AN5632
Hexadeca-SPI (HSPI)

AN5632 - Rev 2 page 11/36

http://www.mmca.org
http://www.sdcard.org

The SDMMC clock connection sources into the RCC (reset and clock control) are described in the table below.

Table 17. SDMMC clock connection to the RCC for STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

STM32L4+ STM32U59x/5Ax/5Fx/5Gx

PLL/P (PLLSAI3CLK) PLL1/P (pll1_p_ck)

MSI MSIK

PLL/Q (PLL48M1CLK) PLL1/Q (pll1_q_ck)

PLLSAI1/Q (PLL48M2CLK) PLL2/Q (pll2_q_ck)

HSI48 HSI48

The alternate function (AF) numbers used to map the SDMMC signals on the I/O ports are not exactly the same
for STM32U59x/5Ax/5Fx/5Gx and STM32L4+ devices (refer to the product datasheet), as shown in the table
below.

Table 18. Alternate function to map the SDMMC to the I/O ports

Instance STM32L4+ STM32U59x/5Ax/5Fx/5Gx

SDMMC1 AF7 AF8

SDMMC2 AF11 AF11

SDMMC1/2 AF8, AF12 AF12

There are some differences in the I/O port mapping between STM32L4+ and STM32U59x/5Ax/5Fx/5Gx devices,
as detailed in the table below.

Table 19. SDMMC I/O port mapping on STM32L4+ and STM32U59x/5Ax/5Fx/5Gx

Pin name STM32L4+ STM32U59x/5Ax/5Fx/5Gx

PA0 - SDMMC2_CMD

PA1 SDMMC2_CMD
-

PB12 SDMMC2_CK

PC0 SDMMC2_CKIN/SDMMC1_CMD SDMMC1_D5

PC1 - SDMMC2_CK

PD4 SDMMC2_CKIN

-

PG2 SDMMC2_D4

PG3 SDMMC2_D5

PG4 SDMMC2_D6

PG5 SDMMC2_D7

PG9 SDMMC2_D0

PG10 SDMMC2_D1

PG11 SDMMC2_D2

PG12 SDMMC2_D3

3.11 DSI host (DSI)
The DSI is part of a group of communication protocols defined by the MIPI Alliance. The MIPI DSI® host is a
digital core that implements all protocol functions defined in the MIPI DSI® specification. The DSI host provides an
interface between the system (LTDC and APB interfaces) and the MIPI D‑PHY, allowing the user to communicate
with a DSI-compliant display.

AN5632
DSI host (DSI)

AN5632 - Rev 2 page 12/36

The kernel of the DSI host is compatible with both STM32U599/5A9/5F9/5G9 and STM32L4+ devices. The
D‑PHY is different, with the following updates:
• Wrapper to control the D-PHY
• Power supply
• PLL source
The D-PHY physical layer configuration phase needs to be adapted to the STM32U599/5A9/5F9/5G9 devices
when porting a graphic application code from a STM32L4+ device.

Note: This peripheral is not present on STM32U595/5A5/5F7/5G7.
The differences in power supply are highlighted in the table below.

Table 20. DSI power supply for STM32L4+ and STM32U599/5A9/5F9/5G9

Feature STL32L4R9/S9 STM32U599/5A9/5F9/5G9

Internal voltage regulator Available N/A

DSI host power supply VDDDSI (connected to the internal voltage
regulator)

VDDDSI

DSI DPHY transceiver power
supply

VDD12DSI (an external capacitor of 2.2µF
must be connected to the VDD12DSI pin)

VDD11DSI (must be connected to VDD11)

Output DSI regulator VCAPDSI (to be connected externally to
VDD12DSI pin) N/A

The source clock connections from the RCC to the DSI are detailed in the table below.

Table 21. DSI clock source connections of STM32L4+ and STM32U599/5A9/5F9/5G9

STL32L4R9/S9 STM32U599/5A9/5F9/5G9

DSI_PHY PLL clock DSI_PHY PLL clock

PLLSAI2/Q PLL3/P

The mapping of the tearing effect input pin is only software compatible if the PF11 pin is used when porting the
graphic application code from STM32L4+ to STM32U599/5A9/5F9/5G9 devices.

Table 22. DSI I/O port mapping on STM32L4+ and STM32U599/5A9/5F9/5G9

Pin name STL32L4R9/S9 STM32U599/5A9/5F9/5G9

DSI_TE PB7, PB11, PF11, PG6 PF10, PF11, PG5

AN5632
DSI host (DSI)

AN5632 - Rev 2 page 13/36

D-PHY configuration parameters

D-PHY transceivers are intrinsically linked to the targeted technology that is different between
STM32U599/5A9/5F9/5G9 and STM32L4+ devices. The transceiver configuration is also different and must be
adjusted to match the device specificities. The major ones are described below to help the user port the graphic
application from STM32L4+ to STM32U599/5A9/5F9/5G9:
• The UIX4[4:0] bitfield defining the bit period in high-speed mode (in units of 0.25 ns) is in DSI_WPRCR0 for

STM32L4+, but does not exist for STM32U599/5A9/5F9/5G9. For the latter, the software must configure
the frequency band of:
– The clock line in BC[4:0] of DSI_DPCBCR.
– The data lanes in BC[4:0] of DSI_DPDL0BCR and DSI_DPDL1BCR.

• In STM32U599/5A9/5F9/5G9, the slew rate of the clock and the data lines must be set to 0x0E (not the
reset value) in SRC[7:0] of DSI_DPCSRCR, DSI_DPDL0SRCR, and DSI_DPDL1SRCR, respectively.

• In STM32U599/5A9/5F9/5G9, the reference bias must be powered up by setting PWRUP in DSI_BCFGR
(not available on STM32L4+).

• In STM32U599/5A9/5F9/5G9, the PLL has to be configured according to DSI_WPTR (PLL loop filter
control, as well as charge pump) and DSI_WPRPCR, knowing that STM32U599/5A9/5F9/5G9 devices no
longer have a regulator (the REGEN bit on STM32L4+ is not present on STM32U599/5A9/5F9/5G9).

After these mandatory configurations above, the D-PHY PLL can be enabled by setting PLLEN in DSI_WRPCR.

AN5632
DSI host (DSI)

AN5632 - Rev 2 page 14/36

4 Neo-Chrom software integration

The GPU2D is able to accelerate most graphic operations required by modern applications: for example, classic
2D blitting operations with rotations and alpha-blending, Porter/Duff compositing, perspective-correct texture
mapping, point-sampling and bilinear filtering, 8x MSAA antialiasing when rendering triangles and quadrilaterals.
All these operations are available for a wide range of supported pixel formats.

4.1 GPU2D and DCACHE2
The figure below describes the interconnections between the GPU2D and the rest of the system.

Figure 1. STM32U5 system architecture

D
T7

07
38

V1

S-
bu

s

Fa
st

-b
us

Sl
ow

-b
us

32-bit bus matrix

C
-b

us

MPCBB1

MPCBB2

MPCWM1 OCTOSPI1

AHB2
peripherals

AHB1
peripherals

SRAM2

SRAM1

FLASH
(512-Kbyte/
2/4-Mbyte)

FSMC

MPCBBx: Block-based memory protection controller

Bus multiplexer
Legend

Master Interface

Slave Interface

MPCWMx: Watermark-based memory protection controller

DCACHE1
(4/16-Kbyte)

128-bit cache refill

MPCBB3 SRAM3

MPCWM5 OCTOSPI2

Fast bus multiplexer

SRD

OTFDEC1

MPCWM2
MPCWM3

OTFDEC2

MPCWM4 BKPSRAM

MPCBB4 SRAM4

MPCBB5 SRAM5

HSPI1MPCWM6

DCACHE2
(16-Kbyte)

GPDMA1 DMA2D SD
MMC1

SD
MMC2

Po
rt

1

Po
rt

0

LTDC GPU2D GFXMMUOTG_
HS

Cortex-M33
with TrustZone mainline and FPU

ICACHE
 (8/32-Kbyte)

Peripheral not present in STM32U535/545

Fast bus multiplexer on STM32U59x/5Ax/5Fx/5Gx
Fast bus multiplexer on STM32U575/585

Peripheral not present in STM32U535/545/575/585

Peripheral present only in STM32U5Fx/5Gx

MPCBB6 SRAM6

M
0

po
rt

M
1

po
rt

APB1 peripherals

APB2 peripherals

32-Kbyte

16-Kbyte

AHB3
peripherals

The GPU2D has access to both internal SRAM and external memories through Octo‑SPI, HSPI, and the FMC. A
dedicated 16‑Kbyte data cache (DCACHE2) is placed in front of the GPU2D (on the M0 port) in order to cache
data fetched from external memories with high-access latencies. The DCACHE2 is used exclusively by the
GPU2D, and caches read transactions only. The DCACHE2 is similar to the DCACHE1 that is attached to the
Cortex®-M33 CPU. The same software driver (stm32u5xx_hal_dcache) can operate the DCACHE1 and
DCACHE2.

AN5632
Neo-Chrom software integration

AN5632 - Rev 2 page 15/36

The HSPI controller operates an external 16-bit PSRAM memory, whereas external octal flash memory modules
can be attached to the OCTOSPI1/2 controllers (HyperFlash™ and HyperRAM™ memories are also supported).
The unified HAL XSPI driver, which is part of the STM32Cube MCU Package for the STM32U5 series
(STM32CubeU5), drives the HSPI and Octo‑SPI memory controllers. These memories are then memory mapped
into the system and made accessible to the software application and other peripherals on the platform.
Both the GPU2D and the DCACHE2 are clocked at the same clock rate: hclk system clock.

4.2 NemaGFX/NemaVG API
At software level, the GPU2D is exclusively operated using the NemaGFX/NemaVG library. NemaGFX/NemaVG
acts as a device driver, and as the API interface towards middleware and applications that want to leverage the
graphic hardware acceleration.
The NemaGFX/NemaVG library is provided as a precompiled library to customers through the NeoChromSDK
and X‑CUBE‑TOUCHGFX packages.

4.3 GPU2D initialization
The following code snippet initializes the GPU2D:
/* Enable GPU2D */
__HAL_RCC_GPU2D_CLK_ENABLE();

NVIC_SetPriority(GPU2D_IRQn, 5);
NVIC_EnableIRQ(GPU2D_IRQn);

Once the DCACHE2 is enabled, it must be invalidated before actual use, as shown in Section 4.10.
The application prepares command lists and source textures, and submits these to the GPU2D for execution.
The command lists are attached to a master ring buffer (a singleton circular DMA buffer), which is also allocated
by the application and initialized in the nema_sys_init() API.
The underlying buffers (nema_buffer_t objects) of the ring buffer and commands lists, when allocated (or explicitly
placed using the linker script) must be 64-bit aligned in the system memory. The allocation of such buffers is
described in the next section.

AN5632
NemaGFX/NemaVG API

AN5632 - Rev 2 page 16/36

4.4 GPU2D platform integration
The figure below shows the software architecture that pertains to graphics applications.

Figure 2. GPU2D graphic software architecture

D
T7

11
79

V2

Middleware level

Drivers

Application

TouchGFX

NemaGFX
low-level user library

Qt

Hardware abstraction layer (HAL)Board support
package (BSP) CMSIS

Hardware components

STM32U59x/5Ax/5Fx/5Gx

Embedded
wizardSTemWin

Additional
libraries
(libjpeg,
FatFs)

OS
(FreeRTOS,

ThreadX)

Cortex-M GPU2D OCTOSPI DMA2D

HAL_GPU2D HAL_NVIC HAL_DMA2D

NemaGFX porting layer Provided as a
customizable template

Dependency

NemaVG low-level user library Only present on
STM32U5Fx/Gx devices

Embeds a hardware vector graphic
accelerator on STM32U5Fx/5Gx

AN5632
GPU2D platform integration

AN5632 - Rev 2 page 17/36

In terms of platform integration, the GPU2D is managed by two software components:
• the HAL_GPU2D module that handles the device initialization and interrupts servicing
• the NemaGFX porting layer that handles command lists, texture buffer allocations, and CPU / GPU2D

synchronization
The NemaGFX library expects the NemaGFX porting layer to provide the adequate implementation of the
functions listed in the table below, for the correct operations on the STM32 target.

Table 23. NemaGFX porting layer functions

Function Description

int32_t nema_sys_init(void);
int nema_wait_irq(void);
int nema_wait_irq_cl(int cl_id);
int nema_wait_irq_brk(int brk_id);
uint32_t nema_reg_read(uint32_t reg);
void nema_reg_write(uint32_t reg, uint32_t value);

Device and interrupt
management

nema_buffer_t nema_buffer_create(int size);
nema_buffer_t nema_buffer_create_pool(int pool, int size);
void *nema_buffer_map(nema_buffer_t *bo);
void nema_buffer_unmap(nema_buffer_t *bo);
void nema_buffer_destroy(nema_buffer_t *bo);
uintptr_t nema_buffer_phys(nema_buffer_t *bo);
void nema_buffer_flush(nema_buffer_t *bo);
void nema_host_free(void *ptr);
void *nema_host_malloc(unsigned size);

GPU2D buffer management

int nema_mutex_lock(int mutex_id);
int nema_mutex_unlock(int mutex_id);

Multi-threading
synchronization

The NemaGFX porting layer implementation depends on the operating system (OS) used by the application,
because the CPU/GPU2D synchronization uses the task synchronization primitives offered by this OS. The
porting layer calls into the HAL_GPU2D module for operations such as register access and interrupt
management. To ease the integration in STM32 platforms, the NeoChromSDK package provides templates of the
NemaGFX porting layer (for example, for FreeRTOS™ or baremetal).
The code below is an implementation example of the NemaGFX porting layer, for a baremetal application
configuration. It relies on the C heap for the buffer allocations (key exported functions highlighted in bold).
#include <nema_core.h>
#include <nema_sys_defs.h>

#include <stdlib.h>
#include <assert.h>

#define RING_SIZE 1024 /* Ring buffer size in byte */

static nema_ringbuffer_t ring_buffer_str = {{0}};

volatile static int last_cl_id = -1;
GPU2D_HandleTypeDef hgpu2d = { 0 };

#if (USE_HAL_GPU2D_REGISTER_CALLBACKS == 1)
static void GPU2D_CommandListCpltCallback(GPU2D_HandleTypeDef *hgpu2d, uint32_t CmdListID)
#else
void HAL_GPU2D_CommandListCpltCallback(GPU2D_HandleTypeDef *hgpu2d, uint32_t CmdListID)
#endif
{
 UNUSED(hgpu2d);
 last_cl_id = CmdListID;
}

int32_t nema_sys_init(void)
{
 /* Initialize the GPU2D device */

AN5632
GPU2D platform integration

AN5632 - Rev 2 page 18/36

 hgpu2d.Instance = GPU2D;
 HAL_GPU2D_Init(&hgpu2d);

#if (USE_HAL_GPU2D_REGISTER_CALLBACKS == 1)
 HAL_GPU2D_RegisterCommandListCpltCallback(&hgpu2d, GPU2D_CommandListCpltCallback);
#endif

 /* Allocate ring buffer memory */
 ring_buffer_str.bo = nema_buffer_create(RING_SIZE);
 (void)nema_buffer_map(&ring_buffer_str.bo);

 /* Initialize the ring buffer */
 int ret = nema_rb_init(&ring_buffer_str, 1);
 if (ret < 0)
 {
 return ret;
 }

 /* Reset last_cl_id counter */
 last_cl_id = 0;

 return 0;
}
int nema_wait_irq(void)
{
 return 0;
}

int nema_wait_irq_cl(int cl_id)
{
 while (last_cl_id < cl_id)
 {
 (void)nema_wait_irq();
 }

 return 0;
}
int nema_wait_irq_brk(int brk_id)
{
 while (nema_reg_read(GPU2D_BREAKPOINT) == 0U) {
 (void)nema_wait_irq();
 }

 return 0;
}

uint32_t nema_reg_read(uint32_t reg)
{
 return HAL_GPU2D_ReadRegister(&hgpu2d, reg);
}

void nema_reg_write(uint32_t reg, uint32_t value)
{
 HAL_GPU2D_WriteRegister(&hgpu2d, reg, value);
}

nema_buffer_t nema_buffer_create(int size)
{
 nema_buffer_t bo;
 bo.base_virt = malloc(size);
 assert(bo.base_virt);
 bo.base_phys = (uint32_t)bo.base_virt;
 bo.size = size;
 bo.fd = 0;
 return bo;
}

nema_buffer_t nema_buffer_create_pool(int pool, int size)
{
 UNUSED(pool);

AN5632
GPU2D platform integration

AN5632 - Rev 2 page 19/36

 return nema_buffer_create(size);
}

void *nema_buffer_map(nema_buffer_t *bo)
{
 return bo->base_virt;
}

void nema_buffer_unmap(nema_buffer_t* bo)
{
}

void nema_buffer_destroy(nema_buffer_t* bo)
{
 assert(bo->base_virt);
 free(bo->base_virt);

 bo->base_virt = (void*)0;
 bo->base_phys = 0;
 bo->size = 0;
 bo->fd = -1;
}

uintptr_t nema_buffer_phys(nema_buffer_t* bo)
{
 return bo->base_phys;
}
void nema_buffer_flush(nema_buffer_t* bo)
{
}

void nema_host_free(void* ptr)
{
 if (ptr)
 {
 free(ptr);
 }
}

void* nema_host_malloc(unsigned size)
{
 return malloc(size);
}

int nema_mutex_lock(int mutex_id)
{
 return 0;
}

int nema_mutex_unlock(int mutex_id)
{
 return 0;
}

The code below is the typical GPU2D_IRQHandler implementation for servicing GPU2D interrupts.
extern GPU2D_HandleTypeDef hgpu2d;

void GPU2D_IRQHandler(void)
{
 HAL_GPU2D_IRQHandler(&hgpu2d);
}

To ease the integration in STM32 platforms, the NeoChromSDK package provides some template
implementations of the NemaGFX porting layer (such as for FreeRTOS™ and CMSIS).

AN5632
GPU2D platform integration

AN5632 - Rev 2 page 20/36

4.5 TSi memory allocation (tsi_malloc)
The NemaGFX library comes with a custom memory allocator, called tsi_malloc. It is used with the GPU2D and its
associated NemaGFX API to allocate buffers in RAM. This includes buffers for storing commands to be executed
by the GPU2D. It also includes source textures and destination framebuffers or render targets that the GPU2D
reads and writes into respectively. Thanks to the tsi_malloc, a portion of the system RAM can be dedicated to the
GPU2D and application needs (at runtime). The tsi_malloc provides also a clear RAM partitioning versus the
application requirements, thus improving the software design and the application maintainability.
The tsi_malloc provides a memory region in system RAM at initialization time: this constitutes a pool of memory
from which buffers are allocated. The tsi_malloc allows the application to register up to eight memory pools: each
pool resides in a particular memory (for example, one pool in the internal SRAM, a second pool in an external
PSRAM, a third pool in an external SDRAM). The pools are represented by their integer IDs, starting with zero.
The NemaGFX library expects to have at least one pool declared, with pool ID = 0. This pool is used to allocate
command buffers to store instructions for the GPU2D.
/* tsi_malloc_init_pool() for initializing a new memory pool with ID pool, physical
 address base_pyhs and size in bytes. On MCU systems, base_virt equals base_phys. */
int tsi_malloc_init_pool(int pool, void *base_virt, uintptr_t base_phys, int size, int reset)
;

/* tsi_malloc_pool() to allocate a buffer of size bytes from memory pool ID pool. */
void *tsi_malloc_pool(int pool, int size);

/* tsi_free() to free a buffer previously allocated by tsi_malloc_pool(). */
void tsi_free(void *ptr);

The NemaGFX porting layer can use the tsi_malloc for the graphic buffer allocation, and to free functions as
shown in the code below (differences highlighted in bold).
#define POOL_ADDR 0x200D0000U
#define POOL_SIZE (2 * 832 * 1024) /* SRAM3 + SRAM5 slices */

int32_t nema_sys_init(void)
{
 /* Initialize the GPU2D device */
 hgpu2d.Instance = GPU2D;
 HAL_GPU2D_Init(&hgpu2d);

#if (USE_HAL_GPU2D_REGISTER_CALLBACKS == 1)
 HAL_GPU2D_RegisterCommandListCpltCallback(&hgpu2d, GPU2D_CommandListCpltCallback);
#endif

 /* register pool 0, located at address 0x200D0000 and of size 2 * 832 * 1024 bytes */
 tsi_malloc_init_pool(0, (void*)POOL_ADDR, POOL_ADDR, POOL_SIZE, 1);

 /* Allocate ring buffer memory */
 ring_buffer_str.bo = nema_buffer_create(RING_SIZE);
 (void)nema_buffer_map(&ring_buffer_str.bo);

 /* Initialize the ring buffer */
 int ret = nema_rb_init(&ring_buffer_str, 1);
 if (ret < 0)
 {
 return ret;
 }

 /* Reset last_cl_id counter */
 last_cl_id = 0;

 return 0;
}

nema_buffer_t nema_buffer_create(int size)
{
 nema_buffer_t bo = { 0 };
 bo.base_virt = tsi_malloc(size);
 assert(bo.base_virt);
 bo.base_phys = (uint32_t)bo.base_virt;
 bo.size = size;

AN5632
TSi memory allocation (tsi_malloc)

AN5632 - Rev 2 page 21/36

 return bo;
}

nema_buffer_t nema_buffer_create_pool(int pool, int size)
{
 UNUSED(pool);
 return nema_buffer_create(size);
}

void nema_buffer_destroy(nema_buffer_t* bo)
{
 assert(bo->base_virt);
 tsi_free(bo->base_virt);

 bo->base_virt = (void*)0;
 bo->base_phys = 0;
 bo->size = 0;
}

void nema_host_free(void* ptr)
{
 if (ptr)
 {
 tsi_free(ptr);
 }
}

void* nema_host_malloc(unsigned size)
{
 return tsi_malloc(size);
}

4.6 Framebuffer memory allocation
The STM32U5x9 and STM32U5F7/5G7 microcontrollers operate with 16-, 24-, and 32-bit framebuffers, in RGB
and ARGB pixel formats respectively. The application can allocate one or two framebuffers, depending on
whether it wants to drive a single-buffered or double-buffered display. Such framebuffers must be allocated from
the internal SRAM memory on the MCU. The application must reserve a dedicated part of the internal SRAM for
the command lists and framebuffers.

AN5632
Framebuffer memory allocation

AN5632 - Rev 2 page 22/36

The TSi memory allocator manages this memory.
#include <nema_core.h>

nema_buffer_t framebuffer_bo[2] = { { 0 } };

uint32_t stride = nema_stride_size(NEMA_BGR24, 0, 480);

/* allocate two 480x480 RGB24 Framebuffers from NEMA_MEM_POOL_FB pool */
framebuffer_bo[0] = nema_buffer_create_pool(NEMA_MEM_POOL_FB, stride * 480);
framebuffer_bo[1] = nema_buffer_create_pool(NEMA_MEM_POOL_FB, stride * 480);

nema_cmdlist_t cl = nema_cl_create();

/* make cl current */
nema_cl_bind(&cl);
nema_cl_rewind(&cl);

/* bind framebuffer_bo[0] as the destination buffer (GPU2D writing into it) */
nema_bind_dst_tex((uint32_t)framebuffer_bo[0].base_phys, 480, 480, NEMA_BGR24, stride);
/* set scissor to the entire buffer */
nema_set_clip(0, 0, 480, 480);

/* fill the entire buffer with red color */
nema_fill_rect(0, 0, 480, 480, nema_rgba(255, 0, 0, 255));

/* submit commands to GPU2D and wait for their completion */
nema_cl_submit(&cl);
nema_cl_wait(&cl);

/* put framebuffer_bo[0] onscreen */
swap_framebuffer();

4.7 Framebuffer configuration across GPU2D, LTDC, and DSI
Once allocated by the tsi_malloc, the framebuffer physical address can be accessed via the
nema_buffer_t::base_phys field. This address is passed to the LTDC and the DSI HAL drivers to access the
same framebuffer (for example, to scan it out or to transmit it over the DSI bus to the display module).
The following code snippets show how it is done.
#include <stm32u5xx_hal.h>

LTDC_HandleTypeDef LtdcHandle;
LTDC_LayerCfgTypeDef LayerCfg;

HAL_LTDC_Init(&LtdcHandle);

LayerCfg.WindowX0 = 0;
LayerCfg.WindowX1 = 480
LayerCfg.WindowY0 = 0;
LayerCfg.WindowY1 = 480;
LayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB888;
LayerCfg.Alpha = 0xFF;
LayerCfg.Alpha0 = 0;
LayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_PAxCA;
LayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_PAxCA;
LayerCfg.FBStartAdress = framebuffer_bo[0].base_phys;
LayerCfg.ImageWidth = 480;
LayerCfg.ImageHeight = 480;
LayerCfg.Backcolor.Red = 0;
LayerCfg.Backcolor.Green = 0;
LayerCfg.Backcolor.Blue = 0;
LayerCfg.Backcolor.Reserved = 0xFF;

HAL_LTDC_ConfigLayer(&LtdcHandle, &LayerCfg, LTDC_LAYER_1);

AN5632
Framebuffer configuration across GPU2D, LTDC, and DSI

AN5632 - Rev 2 page 23/36

4.8 Double-buffered display synchronization
In some applications, a double-buffered display allows the user to use a parallel display interface (DPI), or to
achieve a higher and consistent frame-rate onscreen for example. In this case, the application allocates two
framebuffers:
• a front-buffer sent to display (scanned out by LTDC), what is made visible onscreen
• a back-buffer composed by the GPU2D (and the DMA2D or the CPU), the next frame to be presented to

the user
When the application finishes preparing the next frame, it swaps the front-buffer and back-buffer in a
synchronized manner, usually on the “enter active area” event, as received from the display controller.
The code below shows how to swap the front- and back-buffers, using the LTDC line interrupt events and
FreeRTOS™, in a double-buffered display configuration:
1. Call init_tft_display() to allocate the two framebuffers, the synchronization object, and to configure

the LTDC.
2. Get into app_main_loop(), the main rendering loop whereby it renders a frame into the current back-

buffer.
3. Call swap_buffers() to post it to display. This function blocks and only returns after the LTDC line event

interrupt corresponding to the “enter active area” is fired.
4. The corresponding interrupt callback HAL_LTDC_LineEventCallback swaps the back- and front-buffer

indices, so that the now-read back-buffer becomes the current front-buffer.
5. The LTDC scans out the current front-buffer, and becomes the new back-buffer, where the application

renders to.
The cycle continues like that and within the app_main_loop() function.

// Display mode: 480x480p @ 60Hz
struct DisplayTimingsTypeDef timing = {
 .HSYNC = 2;
 .HBP = 1;
 .HFP = 1;
 .VSYNC = 1;
 .VBP = 12;
 .VFP = 50;
 .HACT = 480;
 .VACT = 481;
};

static nema_buffer_t framebuffer_bo[2] = { { 0 } };

/* FreeRTOS synchronization object */
static SemaphoreHandle_t vsync_sem = NULL;

static volatile uint32_t request_refresh;
static volatile uint32_t refreshing;

static volatile uint8_t cur_fb; /* current back-buffer index */
static volatile uint8_t present_fb; /* current front-buffer index */

static void LTDC_Init(void)
{
 LTDC_LayerCfgTypeDef pLayerCfg;

 /* Configure and enable the LTDC */
 __HAL_LTDC_RESET_HANDLE_STATE(&hltdc);

 hltdc.Instance = LTDC;
 hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
 hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
 hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
 hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
 hltdc.Init.HorizontalSync = timing.HSYNC - 1;
 hltdc.Init.AccumulatedHBP = timing.HSYNC + timing.HBP - 1;
 hltdc.Init.AccumulatedActiveW = timing.HACT + timing.HBP + timing.HSYNC - 1;
 hltdc.Init.TotalWidth = timing.HACT + timing.HBP + timing.HFP + timing.HSYNC - 1;
 hltdc.Init.VerticalSync = timing.VSYNC - 1;
 hltdc.Init.AccumulatedVBP = timing.VSYNC + timing.VBP - 1;

AN5632
Double-buffered display synchronization

AN5632 - Rev 2 page 24/36

 hltdc.Init.AccumulatedActiveH = timing.VSYNC + timing.VACT + timing.VBP - 1;
 hltdc.Init.TotalHeigh = timing.VSYNC + timing.VACT + timing.VBP + timing.VFP - 1;

 hltdc.Init.Backcolor.Red = 0;
 hltdc.Init.Backcolor.Green = 0;
 hltdc.Init.Backcolor.Blue = 0;
 hltdc.Init.Backcolor.Reserved = 0xFF;

 HAL_LTDC_Init(&hltdc);

 /* LTDC layer configuration */
 pLayerCfg.WindowX0 = 0;
 pLayerCfg.WindowX1 = timing.HACT;
 pLayerCfg.WindowY0 = 0;
 pLayerCfg.WindowY1 = timing.VACT;
 pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
 pLayerCfg.Alpha = 0xFF;
 pLayerCfg.Alpha0 = 0;
 pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_PAxCA;
 pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_PAxCA;
 pLayerCfg.FBStartAdress = framebuffer_bo[0].base_phys;
 pLayerCfg.ImageWidth = timing.HACT;
 pLayerCfg.ImageHeight = timing.VACT;
 pLayerCfg.Backcolor.Red = 0;
 pLayerCfg.Backcolor.Green = 0;
 pLayerCfg.Backcolor.Blue = 0;
 pLayerCfg.Backcolor.Reserved = 0xFF;

 HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0);
}

static int lcd_int_active_line;
static int lcd_int_porch_line;

int init_tft_display(void)
{
 uint32_t stride = nema_stride_size(NEMA_BGR24, 0, 480);

 /* allocate two 480x480 RGB24 Framebuffers from NEMA_MEM_POOL_FB pool */
 framebuffer_bo[0] = nema_buffer_create_pool(NEMA_MEM_POOL_FB, stride * 480);
 framebuffer_bo[1] = nema_buffer_create_pool(NEMA_MEM_POOL_FB, stride * 480);

 LTDC_Init();

 vsync_sem = xSemaphoreCreateBinary();

 lcd_int_active_line = (LTDC->BPCR & 0x7FF) - 1;
 lcd_int_porch_line = (LTDC->AWCR & 0x7FF) - 1;

 /* set the line event position, enable line interrupts */
 LTDC->LIPCR = lcd_int_active_line;
 LTDC->IER |= LTDC_IER_LIE;
}

void HAL_LTDC_LineEventCallback(LTDC_HandleTypeDef* hltdc)
{
 if (LTDC->LIPCR == lcd_int_active_line)
 {
 /* configure line interrupt for next back porch */
 HAL_LTDC_ProgramLineEvent(hltdc, lcd_int_porch_line);

 if (request_refresh && !refreshing)
 {
 if (framebuffers_count == 2) /* when using a double-buffered display */
 {
 /* swap front and back buffers */
 present_fb = cur_fb;
 cur_fb = (cur_fb + 1) % 2;

 /* present the new front-buffer */

AN5632
Double-buffered display synchronization

AN5632 - Rev 2 page 25/36

 LTDC_LAYER(hltdc, 0)->CFBAR = framebuffer_bo[present_fb].base_phys;
 __HAL_LTDC_RELOAD_IMMEDIATE_CONFIG(hltdc);

 /* signal the new back-buffer is now available */
 {
 portBASE_TYPE px = pdFALSE;
 xSemaphoreGiveFromISR(vsync_sem, &px);
 portEND_SWITCHING_ISR(px);
 }
 }

 request_refresh = 0;
 refreshing = 1;
 }
 }
 else
 {
 /* configure line interrupt for next active area */
 HAL_LTDC_ProgramLineEvent(hltdc, lcd_int_active_line);

 if (refreshing)
 {
 refreshing = 0;

 if (framebuffers_count == 1) { /* when using a single-buffered display */
 portBASE_TYPE px = pdFALSE;
 xSemaphoreGiveFromISR(vsync_sem, &px);
 portEND_SWITCHING_ISR(px);
 }
 }
 }
}

void swap_buffers(void)
{
 /* request a refresh */
 request_refresh = 1;

 /* wait for vsync before returning */
 xSemaphoreTake(vsync_sem, portMAX_DELAY);
}

nema_buffer_t *get_current_framebuffer(void)
{
 return &framebuffer_bo[cur_fb];
}

void app_main_loop(void)
{
 while (app_running)
 {
 nema_buffer_t *bo = get_current_framebuffer();

 render_frame(bo); /* render a frame into the current back-buffer */

 swap_buffers(); /* request a display refresh + swap front and back buffers */
 }
}

4.9 GPU2D external cache
The GPU2D external cache is connected on the GPU2D M0 port, which serves for reading texture data. These
textures are usually fetched from external memories. Having the cache in place reduces then the pressure on the
external memories, and improves the graphic performance when used adequately. The GPU2D external cache
size is 16 Kbytes. It is disabled by default (after reset/boot), and must be explicitly enabled by the application to
benefit from it.

AN5632
GPU2D external cache

AN5632 - Rev 2 page 26/36

4.9.1 GPU2D external cache initialization
The code snippet below enables the external cache.
/* Enable GPU2D DCACHE */
__HAL_RCC_DCACHE2_CLK_ENABLE();

hgcache.Instance = DCACHE2;
hgcache.Init.ReadBurstType = DCACHE_READ_BURST_INCR;

HAL_DCACHE_Init(&hgcache);
HAL_DCACHE_Enable(&hgcache);
HAL_DCACHE_Invalidate(&hgcache);

SYSCFG->CFGR1 &= ~(1L << 28);

The first time the external cache is enabled, it is recommended to also invalidate it before use.

4.9.2 GPU2D external cache invalidation
With the cache enabled, when the application updates a graphic buffer with a new content (buffer, which has been
previously accessed by the GPU2D, so potentially cached), the application needs to invalidate the external cache:
this allows the GPU2D to pick up the recent data from this buffer. The application must follow this process as the
GPU2D does not know the data state in the texture buffers.
The HAL_DCACHE_Invalidate() API from the DCACHE HAL driver invalidates the external cache.

HAL_DCACHE_Invalidate(&hgcache);

4.9.3 GPU2D external cache and internal SRAM access
The external cache is mainly designed to optimize the access time for textures located in external memories. On
the other hand, accessing graphic buffers located in an internal SRAM is very fast, and caching these types of
access does not bring any further value.
STM32U5x9 and STM32U5F7/5G7 devices propose the following option in SYSCFG registers to disable caching
access to buffers located in an internal SRAM.
SYSCFG->CFGR1 &= ~(1L << 28);

The cache must be disabled for the internal SRAM buffers (for example, vector graphic applications that require
an intermediary stencil buffer stored in an internal SRAM).
The cache monitors help the software developer to direct the efforts to improve the application graphic rendering
performance. These counters are exposed through the HAL DCACHE driver, via the APIs listed below.
HAL_DCACHE_Monitor_Start(&hgcache, DCACHE_MONITOR_READ_HIT| DCACHE_MONITOR_READ_MISS);
HAL_DCACHE_Monitor_Reset(&hgcache, DCACHE_MONITOR_READ_HIT| DCACHE_MONITOR_READ_MISS);

uint32_t hit = HAL_DCACHE_Monitor_GetReadHitValue(&hgcache);
uint32_t miss = HAL_DCACHE_Monitor_GetReadMissValue(&hgcache);

The application developer optimizes then the texture use, and maximizes the cache hit ratio throughout the
rendering routine.

AN5632
GPU2D external cache

AN5632 - Rev 2 page 27/36

4.10 GPU2D tiled access to textures
The GPU2D is able to access source textures in a tiled fashion (versus linear access). This mode offers an
opportunity for the GPU2D to cache neighboring texels internally. These texels can then be reused (since
improving locality) within a rendering operation involving a transformation (such as rotation and perspective
projection). The software user code has to call the nema_enable_tiling API to enable tiled access.

nema_cl_bind(&cl);
nema_cl_rewind(&cl);

nema_bind_dst_tex((uintptr_t)fbo->bo.base_phys, 454, 454, NEMA_BGR24, 3 * 454);
nema_set_blend_blit(NEMA_BL_SRC_OVER);
nema_set_clip(0, 0, 454, 454);

nema_bind_src_tex((uintptr_t)Compass_454x454, 454, 454, NEMA_BGRA8888, 454 * 4, NEMA_FILTER_B
L);

nema_enable_tiling(1);

nema_blit_quad_fit(x1, y1, x2, y2, x3, y3, x4, y4);

nema_cl_submit(&comp_cl);
nema_cl_wait(&comp_cl);

4.11 GPU2D interrupts
The GPU2D has two interrupt lines connected to the NVIC:
• gpu2d_irq, used to inform the host CPU about command-list completion events

When the bit [1] is set to one in the NEMA_INTERRUPT register (at offset 0x00F8), the interrupt signals
that a command list has been entirely executed. The NEMA_CLID register contains the 32-bit identifier of
this command list. The software application has to clear the bit [1] in NEMA_INTERRUPT and in the
respective GPU2D_IRQ interrupt handler, before continuing.

• gpu2d_er_irq, used to raise errors observed at GPU level or at interconnect level (such as relayed by the
memory controllers)
This interrupt is issued to signal system (bus) errors. For example, when the GPU2D tries to access an
external memory through the FMC or the OCTOSPI. The bit [0] in the NEMA_SYS_INTERRUPT register
(at offset 0x0FF8) indicates whether a bus error has been observed.
The bits [10:7] in NEMA_SYS_INTERRUPT indicate the source of the error as follows.
1000: AHB Slave Port
0100: AHB M0 Master Port
0010: AHB M1 Master Port

Bus errors are usually considered fatal and non-recoverable. A gpu2d_er_irq interrupt informs the
application that such a condition has been observed. The default IRQ handler for gpu2d_er_irq is an infinite
loop, which halts the execution.
The gpu2d_er_irq interrupt line also signals events from the general-purpose lines, detailed in the next
section.

4.12 GPU2D general-purpose flags
The GPU2D exposes four general purpose flags that are connected (depending on the device architecture) to the
CPU and to other peripherals present on the STM32 microcontroller. These flags are used to synchronize
operations between the GPU2D and the peripherals, without intervention of the CPU and software (without
incurring overhead).
On the STM32U5x9 devices, the general-purpose flags are connected to the GPDMA and the CPU.
The flags can be individually asserted or deasserted, dynamically using instructions emitted within a command
list. This is done via the dedicated nema_ext_hold API of the NemaGFX library.

AN5632
GPU2D tiled access to textures

AN5632 - Rev 2 page 28/36

A gpu2d_er_irq interrupt can be associated to a given general-purpose line, and triggered by the GPU2D when
this line is set high. The individual bits[3:0] in the NEMA_SYS_INTERRUPT register indicate which general-
purpose flag was set, and act accordingly.
Bit 0: Indicates that IRQ_SYSERROR due to GP_FLAG line 0.
Bit 1: Indicates that IRQ_SYSERROR due to GP_FLAG line 1.
Bit 2: Indicates that IRQ_SYSERROR due to GP_FLAG line 2.
Bit 3: Indicates that IRQ_SYSERROR due to GP_FLAG line 3.

4.12.1 Using the general-purpose flags for CPU and GPU2D synchronization
This section details how to use the general-purpose flags to trigger a processing on the CPU when the GPU2D
comes across at a specific point while executing instructions from the command list. The processing to trigger, in
this example, is invalidating the external GPU cache.
In the example below, the trigger processing invalidates the external GPU cache. The application renders a
texture-mapped rectangle, updates the texture with new content, then redraws the rectangle again. Because the
texture content changes, the application needs to invalidate the GPU2D cache before drawing the rectangle the
second time.
The general-purpose line events are signaled through the gpu2d_er_irq to the host CPU. The IRQ has to be
enabled at application startup with the following code.
/* Enable GPU2D IRQs */
 NVIC_SetPriority(GPU2D_IRQn, 5);
 NVIC_EnableIRQ(GPU2D_IRQn);

 NVIC_SetPriority(GPU2D_ER_IRQn, 5);
 NVIC_EnableIRQ(GPU2D_ER_IRQn);

 /* Enable GPU2D DCACHE */
 __HAL_RCC_DCACHE2_CLK_ENABLE();

 hgcache.Instance = DCACHE2;
 hgcache.Init.ReadBurstType = DCACHE_READ_BURST_INCR;

 HAL_DCACHE_Init(&hgcache);
 HAL_DCACHE_Enable(&hgcache);
 HAL_DCACHE_Invalidate(&hgcache);

The gpu2d_er_irq interrupt handler must similarly be implemented, forwarding the IRQ to the HAL GPU2D driver
to be handled, as shown below.
void GPU2D_ER_IRQHandler(void)
{
 HAL_GPU2D_ER_IRQHandler(&hgpu2d);
}

HAL_GPU2D_ER_IRQHandler calls the HAL_GPU2D_ErrorCallback function, which is a weak symbol that
can be overridden and implemented alternatively by the application. The specialized processing that is triggered
by the GPU2D, at the synchronization points within the command list, has to be implemented in a custom
HAL_GPU2D_ErrorCallback handler as listed below.

void HAL_GPU2D_ErrorCallback(GPU2D_HandleTypeDef *hgpu2d)
{
 uint32_t val = nema_reg_read(GPU2D_SYS_INTERRUPT);

 HAL_DCACHE_Invalidate(&hgcache); /* action to perform on sync points */
 nema_ext_hold_deassert_imm(0); /* immediately deassert gp line 0 */

 nema_reg_write(GPU2D_SYS_INTERRUPT, val); /* clear the ER interrupt */
}

HAL_GPU2D_ErrorCallback starts by reading the content of the GPU2D_SYS_INTERRUPT register, holding
status bits about the origin of the system interrupt (a general-purpose line or a bus error). It then calls to
HAL_DCACHE_Invalidate (action defined to perform on a sync point), followed by a call to
nema_ext_hold_deassert_imm(0) to immediately reset the general-purpose line #0 to low.
nema_reg_write(GPU2D_SYS_INTERRUPT, val) is finally called to clear the gpu2d_er_irq interrupt
(otherwise it stays high).

AN5632
GPU2D general-purpose flags

AN5632 - Rev 2 page 29/36

On the synchronization points, these are special instructions emitted within the command list, alongside the
rendering instructions. When these special instructions are executed by the GPU2D, the execution is suspended
(hold), and the gpu2d_er_irq interrupt is triggered (and thus the HAL_GPU2D_ErrorCallback execution).
These special instructions are listed in the code below.
nema_ext_hold_enable(0); /* enable gp line 0 */
nema_ext_hold_irq_enable(0); /* enable SYS IRQ generation associated with gp line 0 */

nema_cmdlist_t cl = nema_cl_create();

nema_cl_bind(&cl);
nema_cl_rewind(&cl);

nema_bind_dst_tex((uint32_t)fb.bo.base_phys, 320, 240, NEMA_RGB565, 320 * 2);
nema_set_clip(0, 0, 320, 240);
nema_clear(0xff000000);

nema_bind_src_tex((uint32_t)texture.bo.base_phys, 32, 32, NEMA_BGR24, 32 * 3, NEMA_FILTER_PS)
;

nema_blit_rect_fit(0, 0, 320, 240); /* first draw */

nema_ext_hold_assert(0, 1); /* use general-purpose line 0, GPU2D stops execution once hit */

nema_blit_rect_fit(0, 0, 320, 240); /* second draw */

nema_cl_submit(&cl); /* actual GPU2D execution starts here */
nema_cl_wait(&cl); /* wait for all instructions to complete */

The nema_ext_hold_assert(0, 1) statement causes a hold instruction emission in the currently bound
command list:
• The first argument specifies that line 0 is used to signal the hold condition.
• The second argument indicates that the GPU2D execution is suspended once the hold instruction is

encountered.

Important: All NemaGFX API calls in the sequence construct an instruction buffer. These instructions are executed only
when the software submits this buffer for execution (via the nema_cl_submit API).

4.13 TouchGFX and STM32CubeMX support
The STM32CubeMX version 6.5.0 and X‑CUBE-TOUCHGFX version 4.19.0 introduce support for STM32U5x9
and STM32U5F7/5G7 devices, including configuration and graphic hardware acceleration using the GPU2D.
Refer to STM32 Graphical User Interface.

AN5632
TouchGFX and STM32CubeMX support

AN5632 - Rev 2 page 30/36

https://www.st.com/content/st_com/en/ecosystems/stm32-graphic-user-interface.html

Revision history

Table 24. Document revision history

Date Version Changes

20-Apr-2021 0.1 Initial draft release.

23- Nov-2022 0.2

Updated:
• Introduction
• Section 2 Memories
• Section 3 Graphic resources
• New Section 4 Neo-Chrom software integration
• Section 4.6 Framebuffer memory allocation
• Section 4.8 Double-buffered display synchronization

16-Dec-2022 1
Updated Figure 2. GPU2D graphic software architecture

Generated a public version of the document

18-Sep-2023 2

Updated:
• Title
• Section Introduction
• Section 1 STM32U59x/Ax/5Fx/5Gx overview
• Section 2 Memories
• Section 3 Graphic resources and all subsections
• Section 4.1 GPU2D and DCACHE2
• Section 4.2 NemaGFX/NemaVG API
• Figure 2. GPU2D graphic software architecture
• Section 4.9.3 GPU2D external cache and internal SRAM access
• Section 4.13 TouchGFX and STM32CubeMX support

Added Section 3.5 JPEG codec

AN5632

AN5632 - Rev 2 page 31/36

Contents

1 STM32U59x/Ax/5Fx/5Gx overview .2
2 Memories. .4
3 Graphic resources .5

3.1 Chrom-ART Accelerator (DMA2D) . 6

3.2 Neo-Chrom graphic processor (GPU2D) . 7

3.3 Chrom-GRC (GFXMMU) . 7

3.4 LCD-TFT display controller (LTDC). 8

3.5 JPEG codec. 9

3.6 Octo-SPI interface (OCTOSPI) . 9

3.7 Flexible static memory controller (FSMC) . 10

3.8 Hexadeca-SPI (HSPI). 11

3.9 Digital camera interface (DCMI) . 11

3.10 Secure digital input output multimedia card interface (SDMMC). 11

3.11 DSI host (DSI) . 12

4 Neo-Chrom software integration .15
4.1 GPU2D and DCACHE2 . 15

4.2 NemaGFX/NemaVG API . 16

4.3 GPU2D initialization . 16

4.4 GPU2D platform integration. 17

4.5 TSi memory allocation (tsi_malloc) . 21

4.6 Framebuffer memory allocation. 22

4.7 Framebuffer configuration across GPU2D, LTDC, and DSI . 23

4.8 Double-buffered display synchronization . 24

4.9 GPU2D external cache. 26
4.9.1 GPU2D external cache initialization . 27

4.9.2 GPU2D external cache invalidation. 27

4.9.3 GPU2D external cache and internal SRAM access. 27

4.10 GPU2D tiled access to textures. 28

4.11 GPU2D interrupts . 28

4.12 GPU2D general-purpose flags. 28
4.12.1 Using the general-purpose flags for CPU and GPU2D synchronization 29

4.13 TouchGFX and STM32CubeMX support . 30

Revision history .31
List of tables .34

AN5632
Contents

AN5632 - Rev 2 page 32/36

List of figures. .35

AN5632
Contents

AN5632 - Rev 2 page 33/36

List of tables
Table 1. Memories in STM32L4+ and STM32U59x/5Ax/5Fx/5Gx . 4
Table 2. Peripherals involved in the graphic system . 5
Table 3. Peripheral memory mapping in STM32L4+ and STM32U59x/5Ax/5Fx/5Gx . 6
Table 4. Additional trigger connections on STM32U59x/5Ax . 7
Table 5. GFXMMU connection to controller/target ports for STM32L4+ and STM32U59x/5Ax/5Fx/5Gx 7
Table 6. Additional LTDC trigger connection on STM32U59x/5Ax/5Fx/5Gx . 8
Table 7. LTDC pixel clock connection to RCC . 8
Table 8. Alternate function to map the LTDC to the external I/Os . 8
Table 9. LTDC I/O port mapping in STM32L4+ and STM32U59x/5Ax/5Fx/5Gx . 8
Table 10. OCTOSPI kernel clock source connection . 9
Table 11. OCTOSPIM I/O port mapping on STM32L4+ and STM32U59x/5Ax/5Fx/5Gx . 9
Table 12. Signals correspondence between the FSMC and the external LCD display . 10
Table 13. Alternate function to map the FSMC to the I/O ports . 10
Table 14. Additional FSMC I/O port mapping on STM32U59x/5Ax/5Fx/5Gx . 10
Table 15. DCMI I/O port mapping difference on STM32L4+ and STM32U59x/5Ax/5Fx/5Gx . 11
Table 16. SDMMC features of STM32L4+ and STM32U59x/5Ax/5Fx/5Gx . 11
Table 17. SDMMC clock connection to the RCC for STM32L4+ and STM32U59x/5Ax/5Fx/5Gx . 12
Table 18. Alternate function to map the SDMMC to the I/O ports . 12
Table 19. SDMMC I/O port mapping on STM32L4+ and STM32U59x/5Ax/5Fx/5Gx . 12
Table 20. DSI power supply for STM32L4+ and STM32U599/5A9/5F9/5G9. 13
Table 21. DSI clock source connections of STM32L4+ and STM32U599/5A9/5F9/5G9 . 13
Table 22. DSI I/O port mapping on STM32L4+ and STM32U599/5A9/5F9/5G9 . 13
Table 23. NemaGFX porting layer functions. 18
Table 24. Document revision history . 31

AN5632
List of tables

AN5632 - Rev 2 page 34/36

List of figures
Figure 1. STM32U5 system architecture . 15
Figure 2. GPU2D graphic software architecture . 17

AN5632
List of figures

AN5632 - Rev 2 page 35/36

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5632

AN5632 - Rev 2 page 36/36

http://www.st.com/trademarks

	AN5632
	Introduction
	1 STM32U59x/Ax/5Fx/5Gx overview
	2 Memories
	3 Graphic resources
	3.1 Chrom-ART Accelerator (DMA2D)
	3.2 Neo-Chrom graphic processor (GPU2D)
	3.3 Chrom-GRC (GFXMMU)
	3.4 LCD-TFT display controller (LTDC)
	3.5 JPEG codec
	3.6 Octo-SPI interface (OCTOSPI)
	3.7 Flexible static memory controller (FSMC)
	3.8 Hexadeca-SPI (HSPI)
	3.9 Digital camera interface (DCMI)
	3.10 Secure digital input output multimedia card interface (SDMMC)
	3.11 DSI host (DSI)

	4 Neo-Chrom software integration
	4.1 GPU2D and DCACHE2
	4.2 NemaGFX/NemaVG API
	4.3 GPU2D initialization
	4.4 GPU2D platform integration
	4.5 TSi memory allocation (tsi_malloc)
	4.6 Framebuffer memory allocation
	4.7 Framebuffer configuration across GPU2D, LTDC, and DSI
	4.8 Double-buffered display synchronization
	4.9 GPU2D external cache
	4.9.1 GPU2D external cache initialization
	4.9.2 GPU2D external cache invalidation
	4.9.3 GPU2D external cache and internal SRAM access

	4.10 GPU2D tiled access to textures
	4.11 GPU2D interrupts
	4.12 GPU2D general-purpose flags
	4.12.1 Using the general-purpose flags for CPU and GPU2D synchronization

	4.13 TouchGFX and STM32CubeMX support

	Revision history
	Contents
	List of tables
	List of figures

