
Introduction

This application note provides guidelines and a methodology to migrate easily from an application based on the STM8L and
STM8S series to the STM32C0 series platform. It groups all of the most important information, and lists the main aspects that
must be addressed. It describes a simple procedure using the HAL (hardware abstraction layer), and STM32Cube software, to
access a larger portfolio.

The STM32C0 platform is a starting point for simple cost-focused applications. It offers easy further migration within a wide
range of STM32 products, depending on the application needs (focused on costs, tailored to ultra low-power consumption, high
performance, or for products embedding wireless communication).

This document provides details about the hardware, peripheral, and firmware migration.

In addition, this document gives an overview of the STM32 ecosystem, for example the hardware development and IDE/
compiler available to start using the STM32C0 series.

For a better understanding, the user must be familiar with STM32 microcontrollers.

For additional information, refer to the documents in Reference documents. This does not provide a full list of electrical
parameters, for which the device datasheet is the reference document.

Migrating from STM8L and STM8S to STM32C0 MCUs

AN5775

Application note

AN5775 - Rev 4 - June 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

1 General information

This document applies to all STM32C0 series devices. All these products are Arm®-based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Reference documents

[1] Application note EMC design guide for STM8, STM32, and legacy MCUs (AN1709)

[2] Application note STM32 microcontroller system memory boot mode (AN2606)

[3] Application note How to use EEPROM emulation on STM32 MCUs (AN4894)

[4] Application note STM32 microcontroller GPIO hardware settings and low-power consumption (AN4899)

[5] Application note Introduction to FDCAN peripherals for STM32 product classes (AN5348)

[6] Application note Getting started with STM32C0 series hardware development (AN5673)

[7] Reference manual STM8L001xx and STM8L101xx microcontroller families (RM0013)

[8] Reference manual STM8S series and STM8AF series 8-bit microcontrollers (RM0016)

[9] Reference manual STM8L050J3, STM8L051F3, STM8L052C6, STM8L052R8 MCUs and STM8L151/
L152, STM8L162, STM8AL31, STM8AL3L lines (RM0031)

[10] Reference manual STM32C0x1 advanced Arm®-based 32-bit MCUs (RM0490)

[11] Programming manual How to program STM8S and STM8A flash program memory and data EEPROM
(PM0051)

[12] Programming manual STM32 Cortex®-M0+ MCUs programming manual (PM0223)

STM32C0 series All STM32C0 datasheets

All STM32C0 errata sheets

STM8L/S series All STM8S and STM8L datasheets

All STM8S and STM8L errata sheets

STM32CubeProg https://www.st.com/stm32cubeprog

Note: All documents are available at www.st.com. Contact STMicroelectronics when more information is needed.

AN5775
General information

AN5775 - Rev 4 page 2/41

https://www.st.com/en/development-tools/stm32cubeprog.html

2 STM32C0 series overview

The STM32C0 series includes all the STM8L/S series standard peripherals such as SPI and UART. (See Table 4
for more details.) It also has a set of peripherals with advanced features and optimized power consumption levels,
including:
• 32-bit CPU with maximum CPU frequency of 48 MHz
• DMA
• 12-bit ADC
• I2S
• USB FS
• FDCAN

AN5775
STM32C0 series overview

AN5775 - Rev 4 page 3/41

3 Hardware migration

3.1 Pinout compatibility
STM32C0 devices use a different system of power distribution (single-supply pair), with the merging of VDDA and
VDD and the absence of VCAP, embedding the capacitance required internally by the regulator. The STM32C0
provides better GPIO density than the STM8L/S series. It needs a 3.3 V supply voltage (compared to the STM8S
5 V supply voltage), with an allowed range of 2 V to 3.6 V.
Due to the significant difference between the STM8L/S series and the STM32C0 series, there is no pin-to-pin
compatibility. In the case of a replacement, the PCB routing must be reworked.

Table 1. Additional I/Os for STM32C0 vs STM8

Package pin count GPIO number in
STM32C0 series

GPIO number in
STM8S series

GPIO number in
STM8L series Difference I/Os

8 6 5 6 0 to +1

20 18 16 18 0 to +2

32 30 25 to 28 28 to 30 0 to +5

48 45 38 41 +4 to +7

64 61 52 54 +7 to +9

Table 2. Package type

Package pins STM32C0 series STM8S series STM8L series

8 SO8N SO8N SO8N

20 TSSOP/UFQFPN TSSOP/UFQFPN/SO TSSOP/UFQFPN

28 UFQFPN - UFQPN/CSP

32 UFQFPN/LQFP UFQFPN/LQFP/SDIP LQFP/UFQFPN/CSP

44 - LQFP -

48 UFQFPN/LQFP LQFP UFQFPN/LQFP

64 LQFP/BGA LQFP LQFP

80 (1) LQFP LQFP

1. The STM32G0 series supports this package.

Note: WLCSP12, WLCSP15, WLCSP19, and WLCSP24 are available on the STM32C0 series

AN5775
Hardware migration

AN5775 - Rev 4 page 4/41

Figure 1. Flash memory size versus pin count

D
T5

58
45

V2

256

128

64

32

16

8

4

8064483220128

Fl
as

h
m

em
or

y
si

ze

Pin count

STM32C0 series

STM8L series

STM8S series

3.2 Sales type selection
Figure 2 helps the user to find the suitable sales type to migrate from the STM8L/S series to the STM32C0 series,
with a flash memory size and package comparison.
WLCSP packages are available on STM32C0 series and STM8L/S series, but as they are unique to each product
they are not present in Figure 2.
If the STM32C0 series does not support the desired package or flash memory, the user can check the part
available on the STM32G0, STM32L0, and STM32L4 series.

AN5775
Hardware migration

AN5775 - Rev 4 page 5/41

Figure 2. Sales type help selection

D
T5

58
46

V3

STM8S001J3Mx

STM32C011J4Mx STM32C011J6Mx

STM8S103F2Px STM8S003F3Px

STM8S103F3Px

4K 8K 16K 32K 64K 128K

SO8

TSSOP20

STM8S903F3Px

STM8S103F2Ux

STM8S903F3Ux

STM8S003F3Ux

STM32C011F4Ux STM32C011F4UxUFQFPN20

STM8S103F3Ux

STM8S103F2Mx STM8S903F3Mx

STM8S103F3Mx
SO20

UFQFPN28 STM32C031G4Ux

STM8S903K3Tx

STM8S207K8TxSTM8S003K3Tx

STM32C031K4Tx

STM32C051K6Tx

LQFP32 STM8S103K3Tx STM8S105K4Tx

STM8S207K6Tx

STM8S005K6Tx

STM8S105K6Tx

STM8S003K3Ux

STM8S105K4Ux STM8S105K6Ux

STM8S103K3Ux

STM32C031K4Ux
UFQFPN32

STM8S903K3Bx STM8S105K4Bx STM8S105K6Bx

STM8S103K3Bx
SDIP32

STM8S105S4Tx

STM8S208S6Tx STM8S208S8Tx STM8S208SBTx

STM8S207S6Tx STM8S207S8Tx STM8S207SBTxLQFP44

STM8S105S6Tx

STM32C031C4Tx

LQFP48 STM8S105C4Tx

STM8S208C6Tx

STM8S207C6Tx

STM8S005C6Tx

STM8S105C6Tx

STM8S208C8Tx

STM8S207C8Tx

STM8S007C8Tx

STM8S208CBTx

STM8S207CBTx

STM32C031C6UxSTM32C031C4Ux

UFQFPN48

STM8S208R6Tx

STM8S208R8Tx

STM8S208RBTx

STM8S207R6Tx

STM8S207R8Tx

STM8S207RBTxLQFP64

STM8S207M8Tx

STM8S208MBTx

STM8S207MBTx
LQFP80

STM8L050J3Mx

STM8L001J3Mx

STM8L051F3Px

2K

STM8L101F1Px

STM8L101F2Px

STM8L151F2Px

STM8L101F3Px

STM8L151F3Px

STM8L101F1Ux

STM8L101F2Ux

STM8L151F2Ux

STM8L101F3Ux

STM8L151F3Ux

STM8L101G2Ux STM8L101G3Ux

STM8L151G2Ux STM8L151G3Ux

STM8L151G4Ux STM8L151G6Ux

STM8L151K4Tx

STM8L152K4Tx

STM8L151K6Tx

STM8L152K6Tx

STM8L151K2Ux

STM8L151K3Ux STM8L152K4Ux STM8L152K6Ux

STM8L151C2Tx STM8L151C3Tx

STM8L151C4Tx

STM8L152C4Tx

STM8L151C6Tx

STM8L152C6Tx STM8L152C8Tx

STM8L101C3Tx

STM8L151C2Ux

STM8L151C3Ux STM8L151C4Ux

STM8L152C4Ux

STM8L151C6Ux

STM8L152C6Ux STM8L152C8UxSTM8L101C3Ux

STM8L052C6Tx

STM8L151R6Tx

STM8L152R6Tx

STM8L151R8Tx

STM8L152R8Tx

STM8L052R8Tx

STM8L162R8Tx

STM8L151M8Tx

STM8L152M8Tx

STM8L052M8Tx

STM8L101K3Ux

STM8L152C8Tx

STM32C0 series STM8L series STM8S series

STM32C031F4Px

STM32C031F6PxSTM32C011F4Px

STM32C011F6Px

STM32C051F6Px STM32C071F8Px

STM32C051F8Px

STM32C09xFBPx

STM32C071FBPx STM32C09xFCPx

STM32C051G6Ux

STM32C031G6Ux

STM32C071G8Ux

STM32C051G8Ux

STM32C09xGBUx

STM32C071GBUx

STM32C09xGCUx

STM32C031K6Tx

STM32C071K8Tx

STM32C051K8Tx

STM32C09xKBTx

STM32C071KBTx

STM32C09xKCTx

STM32C051K6Ux

STM32C031K6Ux

STM32C071K8Ux

STM32C051K8Ux

STM32C09xKBUx

STM32C071KBUx

STM32C09xKCUx

STM32C051C6Tx

STM32C031C6Tx

STM32C071C8Tx

STM32C051C8Tx

STM32C09xCBTx

STM32C071CBTx

STM32C09xCCTx

STM32C071R8Tx

STM32C09xRBTx

STM32C071RBTx

STM32C09xRCTx

UFBGA64
STM32C071R8Ix STM32C09xRBIx STM32C09xRCIx

STM32C071RBIx

256K

STM32C051C6Ux STM32C071C8Ux

STM32C051C8Ux

STM32C09xCBUx

STM32C071CBUx

STM32C09xCCUx

Package

Flash memory
size

AN5775
Hardware migration

AN5775 - Rev 4 page 6/41

3.3 Pinout migration
A comparison between two packages is available to help the customer to evaluate how much the PCB needs to
be reworked. The comparison considers only the different position of power pins, reset, and oscillator input/
output. The product datasheets give more details in case the user would like to check timer, communication
peripherals, or even ADC channel similarities.

Figure 3. TSSOP20 GPIO comparison

MS55847V1

STM8S003F3 TSSOP20 PINOUT

STM32C011FxP TSSOP20 PINOUT

Critical to re-route

Similar role

Possible to re-route

MS57021V1

AN5775
Hardware migration

AN5775 - Rev 4 page 7/41

Figure 4. LQFP48 GPIO comparison

MS55847V1

STM8L151C4, STM8L151C6 LQFP48 PINOUT (WITHOUT LCD)

STM32C031CxT LQFP48 PINOUT

Critical to re-route

Similar role

Possible to re-route

MS57022V1

AN5775
Hardware migration

AN5775 - Rev 4 page 8/41

4 Boot mode selection

The boot configuration of the STM32C0 is based on the STM32 Cortex®-M0+ core products.
In the STM8L/S series, the software can boot only from the flash memory or the system bootloader. The
STM32C0 series allows the BOOT vector to be located in the flash memory, the system memory (bootloader), or
the RAM based on Table 3. It relocates the boot memory start address if, for example, the user chooses to boot
from the main flash memory. This memory area is aliased in the boot memory space (0x0000 0000), but is still
accessible from its original memory space (0x0800 0000). It is reciprocal to the other boot area.
A feature to check if the device is virgin is implemented on the STM32C0 series. If the BOOT0 pin defines the
main flash memory as the target boot area, and after loading the option byte, the flash memory interface checks if
the first location of the main memory is programmed. It returns the result on the FLASH_ACR register.

Table 3. Boot mode configuration

Boot mode configuration Selected boot
areaBOOT_LOCK bit nBOOT1 bit BOOT0 pin nBOOT_SEL bit nBOOT0 bit

0 X 0 0 X Main flash memory

0 1 1 0 X System memory

0 0 1 0 X Embedded SRAM

0 X X 1 1 Main flash memory

0 1 X 1 0 System memory

0 0 X 1 0 Embedded SRAM

1 X X X X Main flash memory
forced

AN5775
Boot mode selection

AN5775 - Rev 4 page 9/41

5 Peripheral migration

5.1 STM32 product cross-compatibility
The peripheral platform shares a common base. There are some differences between STM8 and STM32C0
peripherals due to continuous improvement, and the addition of new functionalities. The comparison below helps
the user to identify and use these improvements.
The major difference between the STM8 and the STM32 is the number of register bits: 32 or 16 bits in STM32.
Only 8 bits in STM8. Sometimes, register names are similar.

Figure 5. Register name sharing

D
T5

58
47

V2

STM8: SPI register map

STM32C0: SPI register map

AN5775
Peripheral migration

AN5775 - Rev 4 page 10/41

Table 4. Peripheral summary of STM32C0 series and STM8S and STM8L series

Peripheral STM32C0 series STM8S series STM8L series

Power supply See Table 8

Core Cortex® M0+ (32-bit) STM8 core (8-bit) STM8 core (8-bit)

Maximum frequency 48 MHz Up to 24 MHz 16 MHz

Flash memory Up to 256 Kbytes Up to 128 Kbytes Up to 64 Kbytes

SRAM Up to 36 Kbytes Up to 6 Kbytes Up to 4 Kbytes

EEPROM Emulated in the flash
memory(1) Up to 2 Kbytes Up to 2 Kbytes

TIMER

General purpose (16‑bit) Up to 5 Up to 2 Up to 3

General purpose (32‑bit) 1(5) - -

Advanced (16‑bit) 1 1(5) 1(5)

Basic (8‑bit) 0 1(5) 1(5)

ADC 1 1 1

DAC (2)(3)(4) - Up to 2(5)

DMA (number of independently configurable
channels request) Up to 7 - Up to 4

USART Up to 4 Up to 2 Up to 3

SPI Up to 2 1 Up to 2

I2C Up to 2 Up to 4 Up to 2

I2S (Inter-IC-sound) 1 - -

CRC X - -

RTC X - X(5)

WWDG X X X(5)

IWDG X X X(5)

LCD -(3)(4) - X

COMP -(2)(3)(4) - Up to 2

CAN FDCAN(5) beCAN beCAN

USB X(5) - -

Bootloader supported peripheral USART / I²C / SPI(5) /
USB DFU(5) / FDCAN(5) UART/SPI UART/SPI

1. Refer to AN4894.
2. The STM32G0 series supports this feature.
3. The STM32L0 series supports this feature.
4. The STM32L4 series supports this feature.
5. Not on all devices.

AN5775
Peripheral migration

AN5775 - Rev 4 page 11/41

5.2 System architecture
The STM32C0 series implement an Arm® 32-bit architecture with Cortex®-M0+ core, while the STM8L/S series
use the STM8 8-bit proprietary core. The STM32 uses a RISC instruction set, while the STM8 uses a CISC
instruction set. This allows the STM32 to be faster, at the price of greater code size, as described below. See in
Table 5 the full list of differences.

Table 5. Comparison of CPU core

Feature Cortex®-M0+ STM8 core

Data path 32-bit 8-bit

Architecture Von Neumann Harvard

Pipeline Two stages Three stages

Instruction set RISC CISC

Program bus data width 32-bit 32-bit

Prefetch buffer 2 x 32-bit 2 x 32-bit

Debug interface 2-wire (SWD) 1-wire (SWIM)

Number of registers 15 x 32-bit, 1 x 64-bit, 3 special registers 11 x 8-bit

Cache instruction 16 bytes NA

Aligned memory, is an address where an "n-byte" value is stored. It must be divisible by "n". This means:
• Word (32-bit) aligned to an address divisible by 4 [UINT32/INT32].
• Half-word (16-bit) aligned to an address divisible by 2 [UINT16/INT16].
• Byte accesses are always aligned [UINT8/INT8].

The Cortex® -M0+ uses the ARM-v6M. This architecture does not permit an unaligned memory access. If
attempted, the CPU raises a hard fault exception.
Usually, compilers are aware of the aligned access requirement, so they automatically adjust in several ways:
• Automatically place variables in aligned addresses.
• Use of packed structures to align members.
• Use of byte-by-byte access whenever a variable is unaligned for some reason.

5.3 Code density and CoreMark®

To help the developer to find the appropriate sales type for their needs, a comparison code size has been made
on the CoreMark®. It is easily portable between both families. It ensures that compilers cannot precompute the
results. Moreover, it provides the user with a benchmark comparison based on the IAR Embedded Workbench®,
with different code optimization.
For further information about the code density between the libraries available on the STM32C0 series, check the
Programming part.

Table 6. Code density between STM32C0 series and STM8L series

Optimization Size Balanced Medium Speed Unit

STM32C0 16073 16921 17085 20473
Bytes

STM8L 15188 14752 15371 18935

The code size does not increase excessively. However, it is necessary to accommodate an increase of 6 to 15%
in code size.
The CoreMark® is not the perfect benchmark to compare both families. This is because one uses 8 bits, and the
other uses 32 bits, while the CoreMark® uses a 16/32-bit variable. However, it indicates that the Cortex®-M0+ is
seven times better than the STM8 8-bit core.

AN5775
Peripheral migration

AN5775 - Rev 4 page 12/41

Table 7. CoreMark® comparison

STM32C0 series STM8L/S series Unit

2.22 0.30 CoreMark/MHz

5.4 Debug
The STM32 series uses a different debug methodology with respect to the STM8L/S series. The STM32 devices
need two wires for debug, while one is needed in STM8 devices (SWIM).
The new debug methodology allows:
• SW-DP: serial wire
• BPU: break point unit
• DWT: data watchpoint trigger
• Flexible debug pinout assignment
• NVIC debug
• MCU debug box (support for low-power modes, control over peripheral clocks, etc.)

Figure 6. Block diagram of STM32C0 MCU and Cortex®-M0 +-level debug support

D
T1

92
40

V1

Cortex-M0
Core

SW-DP

System
interface

Debug AP

Bus matrix

DBGMCU

STM32 MCU debug support
Cortex-M0 debug support

Debug AP
SWDIO
SWCLK

Bridge

NVIC

DWT

BPU

AN5775
Peripheral migration

AN5775 - Rev 4 page 13/41

5.5 Power control peripheral
In the STM32C0 series, the PWR controller presents some differences compared to the STM8S/L series. This is
especially the case for the STM8S series, which has a 5.0 V supply.

Table 8. Power control peripheral

PWR STM32C0 series STM8S series STM8L series

Power supplies

• VDD: 2.0 V to 3.6 V
(one pair VDD/VSS) is
the external power
supply for the internal
regulator and the
system analog such as
reset, power
management, and
internal clocks

• VDDA: is the analog
power supply for the
A/D converter and
shorted to VDD due to
the low number of pins

• VDDIOx: is the power
supply for the I/Os to
reduce the number of
supply pin, usually this
power supply is shorten
to VDD. However on
some products a
second VDDIO2 power
supply is available.

• VREF+: 2.0 V to VDDA is
the input reference
voltage for the ADC, on
a lower pin-count
package VREF+ is
shorted to VDD

• VDD: 2.95 V to 5.5 V
(one pair VDD/VSS) is
the external power
supply for the main
regulator ballast
transistor supply

• VDDIO: 3.0 V to 5.0 V is
the power supply for
the I/Os and on a lower
pin-count package is
shorted to VDD, due to
the low number of pins

• VDDA: 3.0 V to 5.5 V
(one pair of VDDA/
VSSA) is the analog
power supply for the
A/D converter and on a
lower pin-count
package is shorted to
VDD, due to the low
number of pins

• VREF+: 2.0 V to VDDA is
the input reference
voltage for the ADC, on
a lower pin-count
package VREF+ is
shorted to VDD

• VDD: 1.65 V or 1.8 V to
3.6 V is the external
power supply for the
main regulator

• VDDA: 1.8 V to 3.6 V is
the analog power
supply for the analog
part and on lower pin-
count package is
shorted to VDD, due to
the low number of pins

• VDDIO: 1.8 V to 3.6 V is
the power supply for
the I/Os and on lower
pin-count package is
shorted to VDD, due to
the low number of pins

• VREF+: If VDDA > 2.4 V:
2.4 V to VDDA else:
VREF+ = VDDA is the
input reference voltage
for the ADC, on lower
pin-count package
VREF+ is shorted to
VDD

Power supply supervisor
• Integrated

POR/PDR/BOR
circuitry

• Integrated POR/PDR
circuitry

• Integrated
POR/PDR/BOR
circuitry

• Programmable voltage
detector (PVD)

5.6 Power consumption mode
The STM32C0 series and the STM32 family generally have different low-power modes compared to the STM8L/S
series. There are four low-power modes:
• Sleep
• Stop
• Standby
• Shutdown
The STM32C0 series has a lower consumption than the STM8L under most conditions. The different consumption
modes are described below.

AN5775
Peripheral migration

AN5775 - Rev 4 page 14/41

Dynamic power consumption

Respective to the STM8, the dynamic consumption of the STM32C0 is lower. Regarding the Figure 7, the
STM32C0 series can be up to 7.5 times more efficient than the STM8S series, and up to twice as efficient as the
STM8L series.

Figure 7. STM32C0 versus STM8 dynamic consumption

MS55847V1

Static power consumption

In the STM32C0 series and the STM8L/S series, the low-power modes have different names. However, the low-
power modes have some similarities, so it is possible to compare them.

Table 9. Low-power consumption comparison

Consumption mode Clock STM32C011/31 STM8S105C4/6 STM8L151x4/6 Unit

Wait/sleep
mode

From flash
memory HSE 16 MHz

0.33 1.55 1.00
mA

From RAM 0.32 1.55 0.76

Stop/active halt mode LSI/LSE 80 200 0.90 µA

Standby/halt mode All clocks off 7.45 6.50 0.35 µA

Shutdown mode All clocks off 19 NA NA nA

• Sleep mode corresponds to wait mode in the STM8. The CPU is clocked off, but other peripherals and the
interrupt controller continue to run.

• Stop mode is like active halt mode. The HSI/HSE clocks are stopped, and the SRAM is retained.
• Standby mode is similar to halt mode. The HSE/HSI clocks are off. The LSI and LSE clocks can be running

if the application uses IWDG. The main difference, however, is that the RAM is powered off in the
STM32C0.

• Shutdown mode has no equivalent in the STM8. It is the ultimate low-power mode. All clocks and
peripherals are off.

AN5775
Peripheral migration

AN5775 - Rev 4 page 15/41

Wake-up source

Table 10. Wake-up source comparison

PWR STM32C0 series STM8S series STM8L series

Low-power
modes and

wake-up
sources

Sleep mode
• Peripheral event/interrupt
• EXTI interrupt/event
• NVIC IRQ interrupt
• IWDG
• Reset

Stop mode
• Peripheral event/interrupt
• EXTI interrupt/event
• NVIC IRQ interrupt
• IWDG
• Reset

Standby mode
• Wake-up pins
• IWDG
• Reset

Shutdown mode
• Wake-up pins
• Reset

Wait mode
• All internal or external

interrupts (including auto wake-
up)

• Reset
• IWDG

Active halt mode
• Auto wake-up
• External interrupts
• Reset
• IWDG

Halt mode
• External interrupts
• Reset
• IWDG

Wait mode
• All internal or external interrupts
• Wake-up events
• Reset
• IWDG

Low-power run mode
• Software sequence
• Reset
• IWDG

Low-power wait mode
• Internal or external event
• Reset
• IWDG

Active halt mode
• External interrupts
• RTC interrupts
• Reset
• IWDG

Halt mode
• External interrupts
• Reset
• IWDG

AN5775
Peripheral migration

AN5775 - Rev 4 page 16/41

5.7 Reset and clock controller (RCC) interface

5.7.1 Clocks

Table 11. RCC peripheral STM32C0 series versus STM8S/L series

RCC STM32C0 series STM8S series STM8L series

HSI48 48 MHz high-speed internal RC oscillator - -

HSIUSB48(1) 48 MHz high-precision RC oscillator to the clock
USB - -

HSI16 - 16 MHz high-speed
internal RC oscillator

16 MHz high-speed
internal RC oscillator

LSI 32 kHz low-speed internal RC 128 kHz low-speed
internal RC

38 kHz low-speed internal
RC

HSE 4 to 48 MHz 1 to 24 MHz 1 to 16 MHz

LSE 32.768 kHz - 32.768 kHz

System clock
source HSI48, HSIUSB48(1), HSE, LSI, LSE HSI16, HSE, LSI HSI16, HSE, LSI, LSE

System clock
frequency

• Up to 48 MHz
• 12 MHz after reset based on HSI

• Up to 24 MHz
• 2 MHz after reset

based on HSI

• Up to 16 MHz
• 2 MHz after reset

based on HSI

APB frequency Up to 48 MHz - -

RTC clock source LSI, LSE, or HSE clocks divided by 32 - HSI, HSE, LSI, LSE

Clock output
MCO1/2: LSI, LSE, SYSCLK, HSI48,
HSIUSB48(1), HSE

LSCO: LSI, LSE available in stop mode

CCO: HSE, HSI,
HSIDIV, LSI, MASTER,
CPU

CCO: HSE, HSI, LSI, LSE

Internal oscillator
measurement and
calibration

Internal/external clock measurement inputs
• TIM14 inputs: GPIO, RTC, HSE/32, MCO,

MCO2
• TIM16 inputs: GPIO, LSI, LSE, MCO2
• TIM17 inputs: GPIO, HSIUSB48/256(1),

HSE/32, MCO, MCO2

-
Internal/external clock
measurement inputs
• TIM2/3: LSE

1. Only available on STM32C071xx devices.

Table 12. High-speed and low-speed clock internal accuracy comparison

Clock accuracy Temperature STM32C03/C01 STM8S105C6 STM8L101F1

HSI factory calibrated

Full range -2.5% to 2% ±3% -4.5% to 3%

0°C to 85°C ±1% ±2% -2.5% to 2%

30°C -0.83% to 0.2% ±1% ±1%

LSI Full range ±7% ±20% -12% to 11%

The STM32C0 has a better clock accuracy than the STM8. It can clock other peripherals with the MCO output.
The HSI can be used for USART communication.

5.7.2 Reset
The STM32C0 series has several types of reset:
• Power reset: this sets all registers to their reset values. Exiting Standby mode is an exception. In this case

the registers outside the VCORE domain (back up registers, IWDG, Standby/Shutdown mode control) are
not impacted.

• System reset: this resets all registers to their reset value, except the reset flags, and the RTC registers.

AN5775
Peripheral migration

AN5775 - Rev 4 page 17/41

• RTC domain reset: this only affects the RTC domains (LSE oscillator, RTC and RCC_CSR1 register).
The main difference is the addition of the software reset. It is no longer mandatory to use a trick with the WWDG
to emulate a software reset, as in the STM8.

Table 13. Reset source comparison

Reset source STM32C0 series STM8S series STM8L series

Power-on Reset/Power-down reset X(1)(2) X X

Brown-out reset X(1) X X

Power voltage detection (PVD) - - X

Exit from Standby mode X(1) - -

Exit from Shutdown mode X(1) - -

Low level on the NRST pin X(2) X X

WWDG reset X(2) X X

IWDG reset X(2) X X

Software reset X(2) - -

Low-power mode security reset X(2) - -

Option-byte loader reset X(2) - -

EMC reset - X -

Illegal opcode reset - X X

1. Power reset
2. System reset

5.8 Nested vectored interrupt controller (NVIC)
STM32C0 devices do not use the same interrupt system as STM8 devices. They use a nested vectored interrupt
controller (NVIC). There are some similarities with the STM8L/S series such as: interrupt vector, priority
management, and EXTI. In the STM32C0, each IP has its own vector, so there is no interrupt sharing (as in
STM8L151x6/8 STM8L152x6/8).

Table 14. Interrupt features comparison

Parameter STM32C0 series STM8S series STM8L series

Interrupt vectors Up to 32 interrupt vectors (+ 5 system
ones) Up to 32 interrupt vectors

Interrupt priorities
4 levels

lower number = higher priority
3 levels

Disable interrupts yes, apart from NMI and HardFault Yes

External
interrupts

16 external interrupt channels linked
to IO lines

5 external interrupts linked to
ports

8 external interrupts linked to IO
lines + 4 linked to ports

Reset vector 4 bytes (address of the IRQ
procedure) 4 bytes (0x82 code + 24-bit address of the IRQ procedure)

Interrupt latency

16 cycles to save context

16 cycles to restore context

Tail chaining supported

9 cycles to save context

9 cycles to restore context

Tail chaining supported

The Cortex®-M0+ has six system interrupts (three more than the STM8). The priority of reset, NMI and HardFault
are fixed, in contrast to SVC, PendSV, and SysTick, which are programmable.

AN5775
Peripheral migration

AN5775 - Rev 4 page 18/41

Table 15. System interrupts comparison

Offset STM32C0 series STM8L/S series

0x00 - Reset: Address of the application start

0x04 Reset: Address of the application start TRAP: Software interrupt

0x08
NMI: Nonmaskable interrupt connected to SRAM parity error, HSE, and
LSE clock security systems (may be slightly different in other STM32
lines)

TLI: Top-level interrupt. (It is assigned to
various interrupt sources depending on the
family, that is, in STM32L15xx8 it is TIM2
and TIM4 overflow IRQ.)

0x0C HardFault: Reports all issues related to bus/memory accesses -

0x2C SVC: System service call, software interrupt. Used by operating
systems -

0x38 PendSV: Pendable request for system service software interrupt. Used
by operating systems -

0x3C SysTick: Interrupt from the built-in 24-bit counter (part of the core), used
for delays, timeouts, and operating system timing -

There are two ways to handle the interrupts with the help of STM32CubeMX: the hardware abstraction layer
(HAL), and the low layer (LL). The first one takes longer, due to the high level, but it is easier to implement the
interrupt processing flow.

Table 16. Interrupt handler comparison

Features STM32C0 LL library STM32C0 HAL library STM8 SPL

Vector table definition startup_stm32c0xx.s startup_stm32c0xx.s stm8_interrupt_vector.c

Interrupt processing flow

startup file with complete IRQ
table definition

↓
Interrupt handler in

stm32c0xx_it.c

startup file with complete IRQ
table definition

↓
Interrupt handler in

stm32c0xx_it.c
↓

HAL IRQ handler in
stm32c0xx_hal_ppp.c (1) to
handle flags and status bits

↓
Final callback overwriting

„weak” callback within HAL
library

stm8_interrupt_vector.c with
complete IRQ table definition

↓
Interrupt handler in

stm8xx_it.c

1. “ppp” = peripheral name (ADC, UART, RCC etc.)

AN5775
Peripheral migration

AN5775 - Rev 4 page 19/41

5.9 DMA
The DMA IP is new in the STM32C0 series, compared to the STM8S series and some STM8L lines. It is clearly a
major asset to improve the product consumption when it is possible to make a memory transfer without a CPU.

Table 17. DMA peripheral

Feature STM32C0 series STM8S
series STM8L series

DMA channel Up to 7 - 4 (only on STM8L05xxx/15xxx,
STM8L162xx)

DMA controller

DMAMUX:
• The trigger for each channel is either a

peripheral request, or any of the four
generated requests

- Up to 3 requests per channel

Transfer size Byte, half-word, word - Byte, half-word

Transfer type
Peripherals to memory, memory to peripherals,
memory to memory, and peripherals to
peripherals

- Peripherals to memory, memory to
peripherals and memory to memory

Interrupt request per
channel Transfer complete, half transfer, or transfer error - Transfer complete or half transfer

Addressing mode Incrementing - Incrementing and decrementing

5.10 GPIO interface
The STM32C0 GPIOs are different to those of the STM8L/S series.
Some new features are available in STM32C0 series devices:
• Internal pull-down resistor
• Output open-drain with pull-up or pull-down capability
• Output push-pull with pull-up or pull-down capability
• Alternate function push-pull with pull-up or pull-down capability
• Alternate function open-drain with pull-up or pull-down capability
• Analog input
• VIN is no longer limited by VDD + 0.3 V, but by 5.5 V (see Table 19)

Due to different pin protection architectures, and as for all STM32 devices, positive current injection is not allowed
on the STM32C0. (An exception is certain MCUs with switchable diodes.) In fact, there is no clamping diode
between the IO and VDD (due to 5 V tolerant capability). If the user application needs to be protected against
positive injection, it is necessary to add external clamping diodes (see Figure 8). For further details about the
GPIO (FT) and EMC design, refer to AN4899 and AN1709, respectively.

AN5775
Peripheral migration

AN5775 - Rev 4 page 20/41

Figure 8. Clamping diodes protection

DT57077V2

VDD

VSS

Device pin

VIN Z

The STM32C0 series can share the same pin for reset or GPIO functionality. One specific pin, PF2, is configured
with an appropriate value in the option bytes. In the small package, due to the limited number of pins, multiple
GPIOs are connected to the I/Os.
The user can also freeze the GPIO control register by applying a specific write sequence. Moreover, each pin of
the GPIO can be set as an analog input (Schmitt trigger deactivated) to reduce the power consumption.

Table 18. GPIO differences between STM32C0 series and STM8L/S series

Feature STM32C0 series STM8L/S series

Speeds

(2 bits → 4 speeds)

3 MHz

15 MHz

60 MHz

80 MHz

1 bit (2 speeds)

2 MHz

10 MHz

Pull-up/down YES Pull-up only

Table 19. GPIO input voltage comparison

Voltage STM32C0 series STM8S series STM8L series

VIL 0 V to 0.3 × VDD -0.3 V to 0.3 × VDD VSS-0.3 V to 0.3 × VDD

VIH 0.7 × VDD to 5.5 V 0.7 × VDD to VDD+0.3 0.7 × VDD to 5 V (for 5 V tolerant input)

AN5775
Peripheral migration

AN5775 - Rev 4 page 21/41

5.11 RTC
The STM8S series does not have an RTC. However, an RTC is present on the STM8L series.

Table 20. RTC peripheral

Peripheral Feature STM32C0 series STM8L (low-density
devices)

STM8L (medium-
density devices)

STM8L (medium+ and
high-density devices)

RTC Number of
alarms 1 1 (or wake-up signal) 1 (or wake-up signal)

RTC Number of
outputs

2 (RTC calibration
+ alarm/wake-up
signal)

2 (RTC calibration + alarm/wake-up signal) 2 (RTC calibration +
alarm/wake-up signal)

Tamper Number of
events 0 0 3

5.12 USART

Table 21. USART peripheral

Feature STM32C0 series STM8S series STM8L series

Configurable oversampling method 16 or 8 - -

Rx/Tx FIFO 2 × 8 bytes 2 × 1 byte (TDR/
RDR) 2 × 1 byte (TDR/RDR)

Common programmable transmit and
receive baud rate YES - -

Programmable data word length 7, 8, or 9 bits 8 or 9 bits 8 or 9 bits

Programmable data order with MSB-first or
LSB-first shifting YES - -

SPI slave transmission underrun error flag YES - -

DMA

Continuous communications
using DMA

Received/transmitted bytes are
buffered in reserved SRAM using
centralized DMA

- Configurable multibuffered
communication using DMA

Separate signal polarity control for
transmission and reception YES - -

Swappable Tx/Rx pin configuration YES - -

Hardware flow control for modem and
RS-485 transceiver YES - -

Wake-up from low-power mode YES - -

Modbus YES - -

AN5775
Peripheral migration

AN5775 - Rev 4 page 22/41

5.13 I2C

Table 22. I2C configuration

Feature STM32C0 series STM8S series STM8L series

Communication speeds

Standard-mode (up to 100 kHz)

Fast-mode (up to 400 kHz)

Fast-mode plus (up to 1 MHz)

Standard speed (up to 100 kHz

Fast speed (up to 400 kHz)

Standard speed (up to 100 kHz

Fast speed (up to 400 kHz)

SMBus 3.0 - 2.0

PMBus 1.3 - YES

DMA capability 1-byte buffer - 1-byte buffer

Clock selection PCLK, SYSCLK, HSIKER - -

5.14 Flash memory
The STM32C0 series has a maximum frequency of 48 MHz, and the flash memory's maximum frequency is 24
MHz. To compensate the flash memory speed, and to be sure to have valid and uncorrupted data, a wait state
feature is added. The wait state feature is not implemented on most STM8 products, because the CPU speed
does not go above the flash memory speed.

Table 23. Flash memory

Feature STM32C0 series STM8S series STM8L series

Page size • 2 Kbytes
• 64 bytes (low and

medium density)
• 128 bytes (high density)

• 64 bytes (low density)
• 128 bytes (medium and

medium+ density)
• 256 bytes (high density)

Data width 64-bit 32-bit 32-bit

Programming granularity 8-byte 4-byte 4-byte

Flash read protection
(RDP)

Three levels:
• No protection
• Read and write

protection
• No debug

Two levels:
• No protection
• Read and write

protection

Two levels:
• No protection
• Read and write protection

Flash writes protection
area

Two configurable areas
(WRP) One configurable area (UBC) One configurable area (UBC)

Flash proprietary code
readout protection

Two configurable areas
(PCROP) - One configurable area (ROP)

"On Time" programmable
area 1 Kbytes - -

AN5775
Peripheral migration

AN5775 - Rev 4 page 23/41

Table 24. Flash memory characteristics comparison

Parameter STM32C0 series STM8S105x6 STM8L152x6 Unit

Page size 2 k 128 128 byte

Programing time for one page
21.8 6 6 ms

10.6 46.9 46.9 µs/byte

Fast programing time for one page
13.7 3 3 ms

6.7 23.4 23.4 µs/byte

Page erase time
22 3 3 ms

10.7 23.4 23.4 µs/byte

5.15 SRAM

Table 25. SRAM density, STM32C0 series versus STM8L/S series

Maximum flash
memory density STM32C0 series STM8S series STM8L series

4 Kbytes - STM8S103F2: 1 Kbytes STM8L151x2: 1 Kbytes

8 Kbytes -
STM8S103x3/STM8S001J3/

STM8S003x3/STM8S903x3: 1
Kbytes

STM8L151x3: 1 Kbytes

16 Kbytes
STM32C011x4: 6 Kbytes

STM8S105x4: 2 Kbytes STM8L151x4/STM8L152x4:
2 KbytesSTM32C031x4: 12 Kbytes

32 Kbytes
STM32C011x6: 6 Kbytes STM8S005x6/STM8S105x6: 2

Kbytes STM8L151x6/STM8L152x6:
2 KbytesSTM32C031x6, STM32C051x6:

12 Kbytes
STM8S207x6/STM8S208x6: 6
Kbytes

64 Kbytes
STM32C051x8: 12 Kbytes STM8S007x8/STM8S207x8/

STM8S208x8: 6 Kbytes
STM8L151x8/STM8L152x8:
4 KbytesSTM32C071x8: 24 Kbytes

128 Kbytes

STM32C071xB: 24 Kbytes
STM8S207xB/STM8S208xB: 6
Kbytes -STM32C091xB: 36 Kbytes

STM32C092xB: 30 Kbytes

256 Kbytes
STM32C091xC: 36 Kbytes

- -
STM32C092xC: 30 Kbytes

AN5775
Peripheral migration

AN5775 - Rev 4 page 24/41

5.16 Timers

Table 26. Timers available in STM32C0 series MCUs

Timer type Timer Counter
resolution

Counter
type

Maximum
operating
frequency

Prescaler
factor

DMA
request

generation

Capture/
compare
channels

Compleme
ntary

outputs

TIM1 Advanced
control 16-bit Up, down,

up/down 48 MHz
Integer from
1 to 216 Yes 4

+2 internal 3

TIM2 General
purpose 32-bit Up, down,

up/down 48 MHz
Integer from
1 to 216 Yes 4 -

TIM3 General
purpose 16-bit Up, down,

up/down 48 MHz
Integer from
1 to 216 Yes 4 -

TIM14 General
purpose 16-bit Up 48 MHz

Integer from
1 to 216 No 1 -

TIM15 General
purpose 16-bit Up 48 MHz

Integer from
1 to 216 Yes 2 1

TIM16
TIM17

General
purpose 16-bit Up 48 MHz

Integer from
1 to 216 Yes 1 1

STK Systick 24-bit Down - HCLK/8 - - -

All timers in the STM32C0 series have a minimum resolution of 16-bit. For STM32C051xx, STM32C071xx and
STM32C091/92 devices an additional 32-bit timer is available. The maximum clock frequency is now 48 MHz.
There is one 24-bit timer inside the Cortex®-M0+ core, which is generally used as a 1 ms time base.
The new functions are listed below:
• Advanced timer (TIM1):

– 3 more independent channels
– 1 more break input
– Asymmetric, combined, combined 3-phase PWM
– Bidirectional break inputs
– UIF bit remapping

• General purpose timers (TIM2/3/14/15/16/17)
In STM32 MCUs, 8-bit timers are not present.

AN5775
Peripheral migration

AN5775 - Rev 4 page 25/41

5.17 ADC

Table 27. ADC differences between STM32C0 series and STM8L/S series

Feature STM32C0 series STM8S series STM8L series

Resolution 12-bit, 10-bit, 8-bit, or 6-bit
configurable 10 bits 12-bit, 10-bit, 8-bit, or 6-bit

configurable

Conversion time Down to 0.4 µs (2.5 Msps) Down to 2.33 µs
(0.43 Msps) Down to 1 µs (1 Msps)

Self-calibration YES - -

Programmable sampling
time YES - YES

DMA support YES NA YES

Oversampling YES - -

Number of external
channels Up to 19 Up to 16 Up to 28

Internal channel

• Vsense (temp sensor)
• Vrefint
• VDDA
• VSSA

-
• Vtemp_sensor
• Vrefint

5.18 SPI/I2S

Table 28. SPI comparison

Feature STM32C0 series STM8S series STM8L series

Half-duplex synchronous transfer on two lines
(with bidirectional data line) YES - -

Data size selection 4 to 16-bit data size selection Only 8-bit Only 8-bit

Multimaster mode capability YES - -

Faster communication - maximum SPI speed 12 MHz 10 MHz 8 MHz

SPI Motorola support YES - -

DMA capability Two 32-bit embedded Rx and
Tx FIFOs - 1-byte transmission and

reception buffer

Enhanced TI and NSS pulse modes support YES - -

STM32C0 devices no longer have a beep output (sound generated). However, they have an I2S IP, so it is
possible to connect the STM32C0 to an audio interphase. Or the PWM output can be used as sound generation.

AN5775
Peripheral migration

AN5775 - Rev 4 page 26/41

5.19 Independent watchdog (IWDG)
In STM32C0 series devices, the independent watchdog (IWDG) can be driven in two ways:
• Without the window option activated, the IWDG works in the same way as that in the STM8. The counter

value is reloaded when the key is written in IWDG_KR. The chip is reset when the down counter value
becomes lower than 0x000.

• With the window option activated, the counter value can be reloaded in two ways. The first is the same
methodology as the STM8, by writing a special key in IWDG_KR. The second, new, way is to refresh the
counter value, with a value written in the window register. This new feature adds a new conditional reset, in
addition to the one previously described. The circuit is reset if the down counter is reloaded outside the
window.

Table 29. IWDG comparison

Feature STM32C0 series STM8S series STM8L series

Clock source LSI (32 kHz) LSI/2 (64 kHz) 38 kHz

Down counter size 12-bit 8-bit 8-bit

Window option Yes - -

Minimum time out period 125 µs 62.5 µs 110 µs

Maximum time out period 32.76 s 1.07 s 1.72 s

Debug mode (suspend the IWDG when the core is halted) Yes - -

Freeze IWDG in low power mode Yes (STOP and STANDBY) - Yes (HALT)

5.20 System window watchdog (WWDG)

Table 30. WWDG comparison

Feature STM32C0 series STM8S series STM8L series

Clock source HSI, HSE, LSI, LSE HSI, HSE HSI, HSE

Static prescaler 4096 12288 12288

Variable prescaler 1-128 - -

Minimum time out period for FWWDG=16 MHz 0.512 ms 0.768 ms 0.768 ms

Maximum time out period for FWWDG=16 MHz 2097.152 ms 49.152 ms 49.152 ms

WWDG interrupt Yes - -

Debug mode (suspend the WWDG when the core is halted) Yes - -

5.21 Option and engineering bytes
For the option bytes, the STM32C0 series and the STM8L/S series share the same methodology. However, the
implementation is different.
In the STM8L/S series, there is no special protocol to program the option bytes. It is done on-the-fly by the
application, or through the SWIM interface by accessing the EEPROM address.
Conversely, for the STM32C0 series, it is no longer possible to write the option bytes directly to the flash memory
address. There is a dedicated programming protocol with a locking mechanism to protect the option bytes from
unwanted write operations.

AN5775
Peripheral migration

AN5775 - Rev 4 page 27/41

Table 31. Option bytes comparison

Feature STM32C0 series STM8S series STM8L series

Register size 64 bits (32-bit option byte + 32-bit
complemented option byte)

16-bit (8-bit option byte + 8-bit
complemented option byte) 8-bit

Register
location Flash memory EEPROM memory

Peripheral
configuration

• NRST pin, reset holder, BOR, and
low power mode entry protection

• Boot configuration
• Multiple bonding
• Clock remapping
• Watchdog selection and freeze

option
• Flash protection (RDP, PCROP,

WRP, SEC)

• Alternate function
remapping

• Bootloader option byte
• Watchdog selection and

freeze option
• Clock
• Flash protection (ROP,

UBC)

• BOR
• Bootloader option byte
• Watchdog selection and

freeze option
• Clock
• Flash protection (ROP,

UBC, PCODESIZE)

In addition to the option bytes, the user can find the engineering bytes on the STM32C0. They contain some
useful information written during the production test, such as:
• Unique device ID
• Flash size
• Package type
• Calibration value of internal voltage reference and temperature sensor

5.22 Controller area network (CAN)
The STM32C092 devices embed an FDCAN peripheral. CAN FD® is an extension to the original CAN bus
protocol. This peripheral is compatible with the beCAN available in the STM8L/S series product.

Table 32. FDCAN/beCAN comparison

Feature STM32C0 series STM8L/S series

CAN FD version 1.0 Yes No

CAN version 2.0 A, B A, B active

Message RAM Yes (1 Kbyte) No

CAN error logging Yes No

AUTOSAR and J1939 support Yes No

Clock domain 2 (PCLK + kernel clock) 1 (fMASTER)

Rx FIFO 6 elements 3 elements

Tx BUFFER 3 elements 3 elements

Tx FIFO 3 elements 0

Filter 36 elements (28 × 11 bits + 8 × 29 bits) 6 elements (scalable)

AN5775
Peripheral migration

AN5775 - Rev 4 page 28/41

The main differences between FDCAN and beCAN are shown in the table below. For more detailed information,
refer to the document [5].

Table 33. Main differences between FDCAN and beCAN

Features FDCAN beCAN

Compatibility Supports beCAN A/B Does not support FDCAN

Maximum bit rate (Mbit/s)
Arbitration bitrate: Up to 1

Data bitrate: Up to 8
Frame bitrate: Up to 1

DLC (4-bit) code Coded in 0 to 64 Coded in 0 to 8

Maximum data bytes in one message 64 bytes of data 8 bytes of data

BRS support Yes No

EDL support Yes No

ASI support Yes No

CRC bits check codes Bits included in CRC calculation Bits not included in CRC calculation

Remote frame support No Yes

5.23 USB FS
The USB full-speed host/device is a new peripheral on the STM32C0 series compared to the STM8L/S series.
The main features are:
• USB specification version 2.0 full-speed compliant
• Supports both host and device modes
• Configurable number of endpoints from 1 to 8
• Dedicated packet buffer memory (SRAM) of 2048 bytes
• Cyclic redundancy check (CRC) generation/checking, nonreturn-to-zero inverted (NRZI) encoding/

decoding and bit-stuffing
• Isochronous transfer support
• Double-buffered bulk/isochronous endpoint/channel support
• USB suspend/resume operations
• Frame locked clock pulse generation
• USB 2.0 link power management support (device mode only)
• Battery Charging Specification revision 1.2 support (device mode only)
• USB connect/disconnect capability (controllable embedded pull-up resistor on the USB_DP line)

AN5775
Peripheral migration

AN5775 - Rev 4 page 29/41

6 Getting started with STM32C0Cube

Due to the huge difference between the STM8 proprietary core and the Cortex®-M0+, the software is not portable
between the STM8L/S series and the STM32C0 series devices. The user needs to rewrite the code.
Nevertheless, some useful software and libraries are available to simplify the transfer.

6.1 Initialization code from STM32CubeMX
The STM32CubeMX helps the user to generate the MCU initialization functions. A graphical interface and a
different menu help to configure the STM32C0 as needed. This facilitates starting from a healthy working
environment.
By default, STM32CubeMX generates initialization code based on the HAL, but this can be modified to generate
code based on an LL driver.
Then, the user just needs to integrate their own functions to get the desired behavior. If the chip does not
correspond to the desired configuration, it is possible to change it in the tool, and regenerate the code. This can
be done without deleting the user functions.
Compared to the SPL utilization, the STM32CubeMX performs the configuration modification for the customer. It
no longer needs to add or delete any libraries.

6.2 Migration
The standard tools used when developing the STM8L/S series are:
1. ST Visual Develop IDE with Cosmic compiler
2. IAR Embedded Workbench® for STM8
The first tool is selected as the starting point. The paragraphs below explain how to get started with STM32C0
series devices, and help to understand the system behavior. For this, they detail, step-by-step, the migration of a
simple application from the STM8S105C6 to the STM32C031C6. The goal is to fill a memory buffer by A-D
conversion with a timer trigger, while using sleep/wait mode.

Getting the workspace

There are three main IDEs for STM32C0 series devices, and for the STM32 family in general. Two are fully free of
charge, such as STM32CubeIDE or µVision® from Keil® (only for M0+ core). The third needs a subscription or a
free-of-charge part with code limitation, such as IAR Embedded Workbench®. All these IDEs include the essential
features, such as a compiler, STLINK, and a driver that permits programming and debugging.
When the toolchain is installed and ready to use, the user must download the various needed libraries. If the user
chooses to use STM32CubeMX, the tool downloads the latest available library. Otherwise, it is possible to
download these libraries from the www.st.com website.
The user can find many examples to begin their application development easily, or to learn the different ways to
use the MCU, both in HAL and LL.
To start developing an application easily, a preconfiguration is also available for the STM32 board (Nucleo,
Discovery, and so on).

Starting configuration

By default, the STM32C0 device boots in flash memory as soon as the code is flashed. It is possible that the
application needs to use the bore on reset, memory protection, or modify the system reset. In such cases, the
option byte must be correctly configured for the required function when the product is powered on. To do this,
installing the STM32CubeProg tool is recommended.
The first-level system initialization is done in the SystemInit() function. It is located in system_stm32c0xx.c. After a
reset, HSI 48 MHz is selected by default with division by four. Hence, the system clock starts at 12 MHz. It is easy
to modify the clock configuration in STM32CubeMX, or in the SystemClock_Config() function.

Programming part

To develop code for the STM8L/S series, it is advisable to use the standard peripheral library (SPL). This gives
the base function to configure and use the MCU peripherals. Moreover, STMicroelectronics offers some useful
examples to help users to develop their application. Despite the use of libraries, the SPL is close to the register-
level programming.

AN5775
Getting started with STM32C0Cube

AN5775 - Rev 4 page 30/41

https://www.st.com

Also, the STM32 series uses the hardware abstraction level (HAL) and the low level (LL) libraries, which are an
evolution of the SPL.
The HAL allows the user to develop an application quickly and port it to the entire STM32 portfolio. The downside
is that it is not optimized in terms of code size and execution time. However, this library is perfect for discovering
the functionalities of the STM32C0 series.
To compensate for the size of the HAL library, the customer can use the LL, which is closer to the SPL.
The lower level is the best compromise between software development time and code size.
If the code size is a problem, the user can also program the software at register level. This is the best way to
optimize the code size. However, it makes development more time-consuming.
Table 34 gives the user a comparative idea of the different abstraction levels, in terms of code size, and
development time.

Table 34. Abstraction-level programming

Abstraction level Development time Code size

HAL + +++

LL ++ ++

Register level +++ +

In addition to Table 7, a comparison based on a classic use case has been made. This uses the different available
software libraries (a standard peripheral library for the STM8L/S series, and the LL and HAL for the STM32C0
series). The goal is a more precise comparison of the code size between STM8S, STM8L, and STM32C0. This is
based on a simple application using ADC, TIM, USART, and DMA (if available).

Table 35. Use case ADC code comparison

Product Libraries Speed Size Balance Medium Low None Unit

STM32C0
LL 10090 9462 10082 11158 11728 11862

Byte
HAL 15782 15666 15742 15898 17162 17432

STM8L SPL 8567 8454 8454 8490 9010 9192

STM8S SPL 10839 10461 10471 10859 11417 11454

The data in Table 35 supports Table 34. The HAL takes 50% more space in the memory compared to the LL. Due
to the limited flash memory size of the STM32C0, using the LL library as early as possible is recommended.
It also shows the same gap between the STM8 and the STM32 as seen in the CoreMark part. It is less visible for
the STM8S due to the bad library optimization.

Execution

One of the main advantages of the STM32C0 compared to the STM8S is the possibility to use different
peripherals without the CPU. This optimizes the current consumption and therefore the battery lifespan. For
example, the use of DMA permits data transfer between the ADC and the RAM memory without the CPU. The
STM32C0 stays in sleep mode during the whole operation, whereas the STM8S needs to wake up from wait state
to save the data in the buffer. The flow chart below represents the hardware execution of the example.

AN5775
Getting started with STM32C0Cube

AN5775 - Rev 4 page 31/41

Figure 9. Example code diagram

Start

Setup (Timer,
ADC, GPIO

and interrupts)

START Timer
and ADC

Entry in WFI
(Wait For
Interrupt)

Timer trig
ADC and start
a conversion

Interrupt
"end of conversion" and

wake-up

Timer overflow

ADC result
stored in RAM

buffer

ADC buffer full?

Data
processing

CPU OFF
(WAIT STATE)

CPU ON
(RUN MODE)No

Yes

Start

Setup (Timer,
ADC, DMA, GPIO

and interrupts)

START Timer,
ADC and entry
in SLEEP mode

Timer trig ADC
and start a
conversion

End of
conversion

Timer overflow

ADC result
stored in RAM
buffer by DMA

ADC buffer full ?

Data processing

CPU OFF
(SLEEP MODE)

CPU ON
(RUN MODE)

No

YesInterrupt

STM8S execution diagram STM32 execution diagram

In each case, the HSI clock is used as the clock source. It is clocked at 12 MHz for the STM32C0, and 16 MHz for
the STM8S.

AN5775
Getting started with STM32C0Cube

AN5775 - Rev 4 page 32/41

Figure 10. Consumption mode and timeline behavior

• Step 1: Both products are under reset
• Step 2: The STM32C031C6 stays in sleep mode during the whole operation (ADC conversion and DMA

transfer).
While the STM8S105C6 makes a wait-run-wait transition to wake up after an ADC conversion to fill the
RAM buffer. That is why there are eight spikes.

• Step 3: This is the final step, when the buffer is full, both MCUs treat the value in run mode.
As shown in Figure 10, the STM32C0 is more efficient than the STM8S, whether in run mode, or low-power
mode.

AN5775
Getting started with STM32C0Cube

AN5775 - Rev 4 page 33/41

7 Ecosystem

Compared to the STM8L/S series, the STM32 series offers a large choice of different software. This helps the
user to program the application with the new STM32CubeMX configuration tool, or the many available IDEs.
The next sections describe how the developer can choose and set up the software part to start to use the
STM32C0 series.

7.1 Compilers Cosmic, IAR™ for the STM8L/S series versus Keil® IAR™, and
STM32CubeIDE for the STM32 series
To develop code for the STM8L/S series, there are two main possibilities:
• STVD and Cosmic compiler: free of charge
• IAR Embedded Workbench® for STM8: paid license needed
For the STM32C0, there is a wider choice:

• Keil® IDE by Arm®, using the MDK-Arm compiler: free of charge
• STM32CubeIDE with GCC compile: free of charge
• IAR Embedded Workbench® for STM32 with the EWARM toolchain: a paid license or free limited version

(32-Kbyte code size limitation)
All these IDEs and compilers are compatible with STM32CubeMX.

7.2 STM8CubeMX versus STM32CubeMX
In the migration example, the STM8CubeMX is not mentioned because this tool does not have code-generation
capability (initialization code for the RCC, GPIOs, and IPs). This tool only gives the customer an idea about STM8
usage with the GPIO distribution, the clock configuration, or even an estimation of the product consumption. It can
also help the designer to build the layout.
All these functionalities are found in the STM32CubeMX, but with a direct interaction with the code. Programmers
need to be careful to write their own function in the associated boxes:
/* USER CODE BEGIN 1 */
/*USER CODE END 1 */

7.3 STVP and FLASHER-STM8 versus STM32CubeProgrammer
There are two ways to program the STM8. These are part of the programming tool integrated into IDEs:
• STVP (ST Visual Programmer) using the debug pin (SWIM) it is possible to use:

– S19 and HEX format
– erase, program, view, and verify the device memory
– project mode, to automate the configuration and programming tasks

• FLASHER-STM8. This software can program and communicate with the STM8 system bootloader through
the RS232 interface.

Compared to the STM8, STM32 MCUs use STM32CubeProgrammer. This merges all the functionalities
described above. It uses the SWD/JTAG debug interface (only SWD is available on STM32C0 series devices), or
the system bootloader. Moreover, it offers new functionalities:
• ELF and binary format
• In addition to USART, it is possible to use USB DFU/I²C/SPI/CAN bootloader interface. (Only I²C and

USART is available on STM32C0 series devices.)
• Command-line interface for automation through scripting

AN5775
Ecosystem

AN5775 - Rev 4 page 34/41

7.4 STM32C0 hardware available
The STM32 inherits the board methodology developed for the STM8L/S series and STM32 series devices. There
are two board families that help to learn on the product, and to develop first prototypes quickly.
1. Nucleo 64 boards:

These are the mainstream boards. They allow the user to learn about and evaluate the STM32C0 features.
They use a simple PCB that is common to all Nucleo 64 boards. This board includes an STLINK device for
chip debugging, and provides an Rx-Tx link between the computer and the MCU.
Moreover, to help the user to do a quick prototyping, the Nucleo board usually embeds:
– Two buttons: one user button and a reset button
– Two LEDs: the user LED and the power-up LED
Furthermore, the NUCLEO-C071RB and NUCLEO-C092RE offer added functionality such as:
– An additional button and an extra LED
– A USB Type-C® connector for the full-speed USB peripheral embedded inside the STM32C071 device
– An FDCAN PHY for the FDCAN peripheral embedded inside the STM32C092 device

It is also possible to use some add-ons that are compatible with the ARDUINO® Uno and the ST morpho
connector.

2. Discovery boards:
The discovery boards are cheaper than the Nucleo boards. They are relatively simple pieces of hardware, to
test the key features of the product.
There are three add-on connectors: STMod+, DIP28 ARDUINO® compatible pinout, and a Bluetooth®

connector. However, it is necessary to add an STLINK (for example the MB1762A board).

AN5775
Ecosystem

AN5775 - Rev 4 page 35/41

Revision history

Table 36. Document revision history

Date Version Changes

12-Apr-2022 1 Initial release.

19-Sep-2022 2

Updated:
• Section 4: Boot mode selection, Section 5.2: System architecture,

Section 5.7.1: Clocks, Section 5.10: GPIO interface,
Section 5.16: Timers, Section 6: Getting started with STM32C0Cube,
Section 6.2: Migration, Section 7.1: Compilers Cosmic, IAR™ for the
STM8L/S series versus Keil® IAR™, and STM32CubeIDE for the
STM32 series

• Table 5, Table 8, Table 17, Table 20, Table 23. Flash memory ,
Table 26. Timers available in STM32C0 series MCUs, Table 27. ADC
differences between STM32C0 series and STM8L/S series

Added: Section 5.7.1: Clocks, Section 5.19: Independent watchdog (IWDG),
Section 5.20: System window watchdog (WWDG), Section 5.21: Option and
engineering bytes, Section 7.3: STVP and FLASHER-STM8 versus
STM32CubeProgrammer

11-Jan-2023 3

Updated:
• Programming part
• Figure 10. Consumption mode and timeline behavior
• Figure 8. Clamping diodes protection
• Generated a public version of the document.

Updated the title and information about the STM8 series (STM8L/S series).

24-Jun-2024 4

Updated:
• Document title
• Table 1. Additional I/Os for STM32C0 vs STM8
• Table 2. Package type
• Figure 1. Flash memory size versus pin count
• Figure 2. Sales type help selection
• Figure 5. Register name sharing
• Table 4. Peripheral summary of STM32C0 series and STM8S and

STM8L series
• Table 8. Power control peripheral
• Table 11. RCC peripheral STM32C0 series versus STM8S/L series
• Table 17. DMA peripheral
• Table 25. SRAM density, STM32C0 series versus STM8L/S series
• Table 26. Timers available in STM32C0 series MCUs
• Table 27. ADC differences between STM32C0 series and STM8L/S

series
• "Nucleo 64 boards" in Section 7.4: STM32C0 hardware available
Added:
• Section 5.22: Controller area network (CAN)
• Section 5.23: USB FS

Small text changes throughout.

AN5775

AN5775 - Rev 4 page 36/41

Contents

1 General information .2
2 STM32C0 series overview. .3
3 Hardware migration. .4

3.1 Pinout compatibility . 4

3.2 Sales type selection . 5

3.3 Pinout migration . 7

4 Boot mode selection. .9
5 Peripheral migration .10

5.1 STM32 product cross-compatibility . 10

5.2 System architecture . 12

5.3 Code density and CoreMark® . 12

5.4 Debug . 13

5.5 Power control peripheral . 14

5.6 Power consumption mode . 14

5.7 Reset and clock controller (RCC) interface . 17
5.7.1 Clocks . 17

5.7.2 Reset . 17

5.8 Nested vectored interrupt controller (NVIC) . 18

5.9 DMA . 20

5.10 GPIO interface. 20

5.11 RTC. 22

5.12 USART . 22

5.13 I2C. 23

5.14 Flash memory . 23

5.15 SRAM . 24

5.16 Timers. 25

5.17 ADC . 26

5.18 SPI/I2S . 26

5.19 Independent watchdog (IWDG) . 27

5.20 System window watchdog (WWDG) . 27

5.21 Option and engineering bytes . 27

5.22 Controller area network (CAN) . 28

5.23 USB FS . 29

6 Getting started with STM32C0Cube .30

AN5775
Contents

AN5775 - Rev 4 page 37/41

6.1 Initialization code from STM32CubeMX . 30

6.2 Migration. 30

7 Ecosystem .34
7.1 Compilers Cosmic, IAR™ for the STM8L/S series versus Keil® IAR™, and

STM32CubeIDE for the STM32 series . 34

7.2 STM8CubeMX versus STM32CubeMX . 34

7.3 STVP and FLASHER-STM8 versus STM32CubeProgrammer . 34

7.4 STM32C0 hardware available . 35

Revision history .36

AN5775
Contents

AN5775 - Rev 4 page 38/41

List of tables
Table 1. Additional I/Os for STM32C0 vs STM8 . 4
Table 2. Package type . 4
Table 3. Boot mode configuration . 9
Table 4. Peripheral summary of STM32C0 series and STM8S and STM8L series. 11
Table 5. Comparison of CPU core . 12
Table 6. Code density between STM32C0 series and STM8L series . 12
Table 7. CoreMark® comparison . 13
Table 8. Power control peripheral . 14
Table 9. Low-power consumption comparison . 15
Table 10. Wake-up source comparison . 16
Table 11. RCC peripheral STM32C0 series versus STM8S/L series . 17
Table 12. High-speed and low-speed clock internal accuracy comparison . 17
Table 13. Reset source comparison . 18
Table 14. Interrupt features comparison . 18
Table 15. System interrupts comparison . 19
Table 16. Interrupt handler comparison . 19
Table 17. DMA peripheral . 20
Table 18. GPIO differences between STM32C0 series and STM8L/S series . 21
Table 19. GPIO input voltage comparison . 21
Table 20. RTC peripheral . 22
Table 21. USART peripheral . 22
Table 22. I2C configuration . 23
Table 23. Flash memory . 23
Table 24. Flash memory characteristics comparison . 24
Table 25. SRAM density, STM32C0 series versus STM8L/S series. 24
Table 26. Timers available in STM32C0 series MCUs . 25
Table 27. ADC differences between STM32C0 series and STM8L/S series . 26
Table 28. SPI comparison . 26
Table 29. IWDG comparison . 27
Table 30. WWDG comparison . 27
Table 31. Option bytes comparison . 28
Table 32. FDCAN/beCAN comparison . 28
Table 33. Main differences between FDCAN and beCAN . 29
Table 34. Abstraction-level programming . 31
Table 35. Use case ADC code comparison . 31
Table 36. Document revision history . 36

AN5775
List of tables

AN5775 - Rev 4 page 39/41

List of figures
Figure 1. Flash memory size versus pin count . 5
Figure 2. Sales type help selection . 6
Figure 3. TSSOP20 GPIO comparison . 7
Figure 4. LQFP48 GPIO comparison. 8
Figure 5. Register name sharing. 10
Figure 6. Block diagram of STM32C0 MCU and Cortex®-M0 +-level debug support . 13
Figure 7. STM32C0 versus STM8 dynamic consumption . 15
Figure 8. Clamping diodes protection . 21
Figure 9. Example code diagram . 32
Figure 10. Consumption mode and timeline behavior . 33

AN5775
List of figures

AN5775 - Rev 4 page 40/41

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN5775

AN5775 - Rev 4 page 41/41

http://www.st.com/trademarks

	AN5775
	Introduction
	1 General information
	2 STM32C0 series overview
	3 Hardware migration
	3.1 Pinout compatibility
	3.2 Sales type selection
	3.3 Pinout migration

	4 Boot mode selection
	5 Peripheral migration
	5.1 STM32 product cross-compatibility
	5.2 System architecture
	5.3 Code density and CoreMark®
	5.4 Debug
	5.5 Power control peripheral
	5.6 Power consumption mode
	5.7 Reset and clock controller (RCC) interface
	5.7.1 Clocks
	5.7.2 Reset

	5.8 Nested vectored interrupt controller (NVIC)
	5.9 DMA
	5.10 GPIO interface
	5.11 RTC
	5.12 USART
	5.13 I2C
	5.14 Flash memory
	5.15 SRAM
	5.16 Timers
	5.17 ADC
	5.18 SPI/I2S
	5.19 Independent watchdog (IWDG)
	5.20 System window watchdog (WWDG)
	5.21 Option and engineering bytes
	5.22 Controller area network (CAN)
	5.23 USB FS

	6 Getting started with STM32C0Cube
	6.1 Initialization code from STM32CubeMX
	6.2 Migration

	7 Ecosystem
	7.1 Compilers Cosmic, IAR™ for the STM8L/S series versus Keil® IAR™, and STM32CubeIDE for the STM32 series
	7.2 STM8CubeMX versus STM32CubeMX
	7.3 STVP and FLASHER-STM8 versus STM32CubeProgrammer
	7.4 STM32C0 hardware available

	Revision history

