
Introduction

The ST25DVxxKC is the evolution of the ST25DVxxK, proposing strong backward compatibility along with improvements and
new features, among which I2C programming speed increase.
This application note explains how to get the better of this I2C programming speed increase by optimizing I2C writes time.

Table 1. Applicable products

Type Part number

Dual interface EEPROM

ST25DV04KC

ST25DV16KC

ST25DV64KC

 Optimizing I2C write time for ST25DVxxKC dynamic tags

AN5779

Application note

AN5779 - Rev 1 - February 2022
For further information contact your local STMicroelectronics sales office.

www.st.com

1 I2C programming cycle time

ST25DVxxKC user memory is EEPROM memory type. EEPROM memory technology requires a programming
cycle, which consists of an erase phase followed by a programming and a verification phase. This programming
cycle requires a certain time to perform all those tasks and writing to an EEPROM memory is not immediate. The
EEPROM memory is not available for read or write operation during a programming cycle and data written is only
valid at the end of the programming cycle.
When receiving a valid I2C write request in EEPROM memory, the ST25DVxxKC starts the internal programming
cycle at the I2C stop condition of the I2C command. During all the programming cycle time, the EEPROM memory
access is inhibited and any I2C command sent to the ST25DVxxKC is not acknowledged. This programming cycle
time is defined as tW in the ST25DvxxKC datasheet.

I2C polling usually used to know when the bus is available after a write command (but an alternative method is
explained in Section 4 I2C_WRITE GPO interrupt).

Figure 1. I2C write command and programming cycle time

I2C write Next I2C commandN N N A

Programming cycle (n*tW)
Access to ST25DVxxKC inhibited

I2C polling command Not AcknowledgedN

A I2C polling command Acknowledged
MS55856V1

AN5779
I2C programming cycle time

AN5779 - Rev 1 page 2/12

2 Memory organization

ST25DVxxKC internal EEPROM user memory is organized in rows and columns. The organization of the rows
and columns is different when addressed from the RF interface and from the I2C interface.
From the RF interface perspective, the EEPROM user memory is organized as rows of four bytes, and it is only
possible to program blocks of four bytes at a time. Those blocks correspond to a memory row.

Table 2. EEPROM user memory as seen from RF interface

RF user memory 0 1 2 3

0
Block 0

Byte 0

Block 0

Byte 1

Block 0

Byte 2

Block 0

Byte 3

1
Block 1

Byte 0

Block 1

Byte 1

Block 1

Byte 2

Block 1

Byte 3

2
Block 2

Byte 0

Block 2

Byte 1

Block 2

Byte 2

Block 2

Byte 3

...

For example, as shown in Table 2, block address two corresponds to the third row of the EEPROM user memory.
Programming a memory row of four bytes (one block) from RF interface takes WtBLOCK time, which is around 5
ms depending on temperature conditions (see ST25DVxxKC datasheet for exact WtBLOCK value).

From the I2C interface perspective, the ST25DVxxKC EEPROM user memory is organized as rows of 16 bytes
(versus rows of four bytes in the ST25DVxxK).

Table 3. EEPROM user memory as seen from I2C interface

I2C
user
mem
ory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Byte
13

Byte
14

Byte
15

1 Byte
16

Byte
17

Byte
18

Byte
19

Byte
20

Byte
21

Byte
22

Byte
23

Byte
24

Byte
25

Byte
26

Byte
27

Byte
28

Byte
29

Byte
30

Byte
31

2 Byte
32

Byte
33

Byte
34

Byte
35

Byte
36

Byte
37

Byte
38

Byte
39

Byte
40

Byte
41

Byte
42

Byte
43

Byte
44

Byte
45

Byte
46

Byte
47

...

For example, as shown in Table 3, Byte address 7, 19 and 32 respectively belong to the first, second and third
row of the EEPROM user memory. It is possible to program from 1 byte, up to 256 bytes at a time from the I2C
interface. Nevertheless, whatever the number of bytes to be programmed, the programming is internally done by
row and thus the time to program a single byte is the same as the time to program a full row of 16 bytes. This time
is defined as tW in the ST25DVxxKC datasheet (around 5 ms depending on temperature conditions).

AN5779
Memory organization

AN5779 - Rev 1 page 3/12

3 I2C write optimization

With programming rows of 16 Bytes in 5 ms and the possibility to send I2C write commands of 256 bytes of data,
the ST25DVxxKC allows very fast programming of large amount of data.
Nevertheless, programming time can be optimized by making clever use of the EEPROM user memory
organization.
As seen in previous chapter, programming time depends on number of rows to be programmed. For instance,
programming a single byte, as well as programming several bytes of the same row takes the same time as
programming the complete corresponding row.
In the below example, Table 4, the user wants to write 14 Bytes in total in the user memory:
• 1 Byte at memory address 1
• 2 Bytes at memory addresses 19 to 20
• 4 bytes at memory addresses 25 to 28
• 7 Bytes at memory addresses 37 to 43

Table 4. Example of not optimized way of programming less than a row of data

I2C
user
mem
ory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 - Byte
1 - - - - - - - - - - - - - -

1 - - - Byte
19

Byte
20 - - - - Byte

25
Byte
26

Byte
27

Byte
28 - - -

2 - - - - - Byte
37

Byte
38

Byte
39

Byte
40

Byte
41

Byte
42

Byte
43 - - - -

... - - - - - - - - - - - - - - - -

To write those 14 Bytes, the user issues four I2C write commands (since data presented in a single sequential
write command must be contiguous). Each I2C write command requires 5 ms of programming time, even if there
is less than a row to program. The total programming time for those 14 Bytes then is 4*tW ~ 20 ms.
An optimized way of writing 14 Bytes would have been to organize data so that all data are contiguous (whenever
that is possible) and place it in a same memory row as shown in Table 5.

Table 5. Example of optimized way of programming less than a row of data

I2C
user
mem
ory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 - - - - - - - - - - - - - - - -

1 Byte
16

Byte
17

Byte
18

Byte
19

Byte
20

Byte
21

Byte
22

Byte
23

Byte
24

Byte
25

Byte
26

Byte
27

Byte
28

Byte
29 - -

2 - - - - - - - - - - - - - - - -

... - - - - - - - - - - - - - - - -

With this way of organizing data in memory, the 14 bytes can be programed with a single I2C sequential write
command. The programming time is ~5 ms only in that case.
In another example, the user wants to program 28 Bytes. The Bytes are contiguous but are not aligned at the
beginning of a row, as shown in Table 6.

AN5779
I2C write optimization

AN5779 - Rev 1 page 4/12

Table 6. Example of not optimized programming of several bytes on multiple rows

I2C
user
mem
ory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 - - - - - - - Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Byte
13

Byte
14

Byte
15

1 Byte
16

Byte
17

Byte
18

Byte
19

Byte
20

Byte
21

Byte
22

Byte
23

Byte
24

Byte
25

Byte
26

Byte
27

Byte
28

Byte
29

Byte
30

Byte
31

2 Byte
32

Byte
33

Byte
34 - - - - - - - - - - - - -

...

To write those 28 Bytes, the user issues a single I2C sequential write command of 28 Bytes, starting at memory
address 7. The data are contiguous but spread over 3 different rows of memory. Each row is programmed in tW,
so the total programming time is 3*tW ~ 15 ms.
An optimized way of writing 28 Bytes would have been to organize data so that it spread over the minimum
number of memory rows, as shown in Table 7.

Table 7. Example of optimized programming of several bytes on multiple rows

I2C
user
mem
ory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 - - - - - - - - - - - - - - - -

1 Byte
16

Byte
17

Byte
18

Byte
19

Byte
20

Byte
21

Byte
22

Byte
23

Byte
24

Byte
25

Byte
26

Byte
27

Byte
28

Byte
29

Byte
30

Byte
31

2 Byte
32

Byte
33

Byte
34

Byte
35

Byte
36

Byte
37

Byte
38

Byte
39

Byte
40

Byte
41

Byte
42

Byte
43 - - - -

...

With this alignment of data to optimize the number of memory rows used, only two rows need to be programmed
in a single I2C sequential write command. The total programming time is 2*tW ~ 10 ms only in that case.

In a general way, the EEPROM programming cycle time can be calculated, depending on I2C write start address
and number of bytes to be written (max 256 bytes). Application can use the following C code to calculate the
programming time:
ST25DVxxKC programming cycle = tW*(((start_address + nb_bytes_to_write - 1)>>4) - (start_address>>4) + 1);

Another way to optimize I2C writing speed, is to group data to write in a minimum number of I2C commands. The
ST25DVxxKC can treat I2C sequential write commands of up to 256 Bytes. The device internally buffers the data
received from the I2C write command and starts to program the memory row by row in an optimal timing after the
stop condition.
It is more efficient to send only one long I2C sequential write command than several small I2C write commands for
several reasons:
• Optimized usage of the memory rows programming time, as seen previously.
• Less I2C protocol overhead: for each I2C write command, 3 Bytes must be sent before the data: one Byte for

device address and two Bytes for memory address.
• Less time lost between I2C write commands: this is the time taken by the I2C master to prepare the next I2C

command.
• Less time lost in polling to check the end of the programming cycle (the next chapter show how this can be

optimized): after each I2C write command, the master usually polls the I2C bus to know when it is available
for the next command.

AN5779
I2C write optimization

AN5779 - Rev 1 page 5/12

The next Figure 2 illustrates the gain of time using a long I2C sequential write command rather than several short
I2C write commands. For the same number of data written, the long I2C sequential write command is shorter
than the four short commands by 87 I2C clock cycles. The sum of programming cycle time for the four short I2C
command is at best equal to the programming cycle of the long I2C command (depending on data organization in
memory). The total number of polling commands and time spent by the I2C master to prepare next command also
is reduced.

Figure 2. Short I2C write versus long I2C sequential write

I2C write I2C write I2C writeN N N A N N N A I2C writeN N N A N N N A

I2C write N N N N N N N N N N N N A

Programming cycle

Programming cycle

Programming cycle Programming cycle Programming cycle

I2C polling command Not AcknowledgedN

A I2C polling command Acknowledged
MS55857V1

As a summary, if writing performances is important to the application, it is recommended to:

• Organize data in memory to minimize the number of I2C writes commands.
• Use I2C sequential write commands as longest as possible (which implies contiguous data organization).
• Align I2C writes addresses on memory rows to minimize the number of rows used. This means aligning with

addresses with the 4 less significant bits equal to 0000b.

AN5779
I2C write optimization

AN5779 - Rev 1 page 6/12

4 I2C_WRITE GPO interrupt

To reduce the inconvenience of I2C polling after an I2C write command, the ST25DVxxKC provides an
I2C_WRITE interrupt on the GPO pin at the completion of the I2C EEPROM programming cycle. This interrupt
can be advantageously used by the I2C master to know exactly when the ST25DVxxKC is ready to receive a new
I2C command after an I2C write.
The benefits of using this interrupt instead of polling the I2C bus are double:
• reduce lost time due to polling delay
• reduce CPU load of for I2C master
The I2C_WRITE interrupt is triggered on the GPO pin at the completion of the programming cycle. As soon as
the GPO line goes low (for open drain version, or high for CMOS version), the ST25DVxxKC is ready to receive a
new I2C command.
Next Figure 3 shows an example of I2C_WRITE interrupt. In this example, an I2C write command is received
by the ST25DVxxKC (yellow and pink traces for SDA and SCL signals). The GPO pin (blue trace) goes low as
soon as the EEPROM programing cycle is finished. Some I2C polling commands are also present but are only
shown as reference for the example and are not necessary: the first four polling commands in this example are
not acknowledged, and only the fifth one, which occurs after the GPO goes low, is acknowledged.

Figure 3. GPO I2C_WRITE interrupt versus I2C polling

AN5779
I2C_WRITE GPO interrupt

AN5779 - Rev 1 page 7/12

Revision history

Table 8. Document revision history

Date Version Changes

17-Feb-2022 1 Initial release.

AN5779

AN5779 - Rev 1 page 8/12

Contents

1 I2C programming cycle time .2
2 Memory organization .3

3 I2C write optimization .4
4 I2C_WRITE GPO interrupt. .7
Revision history .8

AN5779
Contents

AN5779 - Rev 1 page 9/12

List of tables
Table 1. Applicable products . 1
Table 2. EEPROM user memory as seen from RF interface . 3
Table 3. EEPROM user memory as seen from I2C interface. 3
Table 4. Example of not optimized way of programming less than a row of data . 4
Table 5. Example of optimized way of programming less than a row of data. 4
Table 6. Example of not optimized programming of several bytes on multiple rows . 5
Table 7. Example of optimized programming of several bytes on multiple rows. 5
Table 8. Document revision history . 8

AN5779
List of tables

AN5779 - Rev 1 page 10/12

List of figures

Figure 1. I2C write command and programming cycle time. 2
Figure 2. Short I2C write versus long I2C sequential write . 6
Figure 3. GPO I2C_WRITE interrupt versus I2C polling . 7

AN5779
List of figures

AN5779 - Rev 1 page 11/12

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

AN5779

AN5779 - Rev 1 page 12/12

http://www.st.com/trademarks

	 Introduction
	1 I2C programming cycle time
	2 Memory organization
	3 I2C write optimization
	4 I2C_WRITE GPO interrupt
	 Revision history

