
Introduction

This document applies to the SR5E1x 32-bit Arm® Cortex®-M7 microcontrollers with CORDIC accelerator unit.
The CORDIC accelerator provides hardware support of certain mathematical functions (mainly trigonometric ones) commonly
used in motor control, metering, signal processing. It speeds up the calculation of these functions compared to a software
implementation, making it possible the use of a lower operating frequency, or freeing up processor cycles in order to perform
other tasks.
This application note describes the main features of the CORDIC accelerator on SR5E1x microcontrollers. The document
also describes the capabilities and limitations of the CORDIC accelerator and evaluates the speed of execution for certain
calculations typically needed in electric motor control compared with the equivalent table implementation.
The code used in this application note is included in the SR5E1x motor control software package and running on the motor
control board (please refer to STMicroelectronics local representative for reference hardware and software).

Getting started with the CORDIC accelerator using Stellar E

AN5888

Application note

AN5888 - Rev 1 - February 2023
For further information contact your local STMicroelectronics sales office.

www.st.com

1 CORDIC introduction

The CORDIC (coordinate rotation digital computer), also known as the algorithm of Volder, is a low-cost
successive approximation algorithm for evaluating trigonometric and hyperbolic functions.
In trigonometric (or circular) mode, the sine and cosine of an angle θ are determined by rotating the vector [1, 0]
through decreasing angles atan(2-n) (n = 0, 1, 2,...) until the cumulative sum of the rotation angles equals the
input angle. The x and y cartesian components of the rotated vector then correspond respectively to the cosine
and sine of θ. This is illustrated in the Figure 1 for an angle θ.

Figure 1. CORDIC circular mode operation

V1

V2

V3
y (sinθ)

x (cosθ)

1

2

3

[1, 0]θ

More formally, every iteration calculates a rotation which is done by multiplying vector vi = (xi, yi) with rotation
matrix Ri: vi + 1 = Rivi
The rotation matrix is given by: Ri = cos γi −sin γisin γi cos γi
Using the following two identities:

cos γi = 11 + tan2 γi
sin γi = tan γi1 + tan2 γi

we have: xi + 1yi + 1 = 11 + tan2 γi 1 −tan γitan γi 1 xiyi
Restricting the angles in order that tan γi = ± 2−i , the multiplication with the tangent can be replaced dividing
by a power of two, which is efficiently done in digital computer hardware using a bit-shift operation.
The expression becomes: xi + 1yi + 1 = Ki 1 −σi2−iσi2−i 1 xiyi (1)

AN5888
CORDIC introduction

AN5888 - Rev 1 page 2/14

where: Ki = 11 + 2−2i
and σi is used to determine the direction of the rotation: if the angle γi is positive, then σi is +1, otherwise it is −1.

All Ki value can be ignored in an iterative process and applied K(n) at the end of the n iterations:K n = ∏i = 0n − 1Ki = ∏i = 0n − 1 11 + 2−2i
The previous Equation 1 shows that the CORDIC algorithm is suited to an hardware implementation since
there are no multiplications involved (applying K(n) at the end of iterations). Only add and shift operations are
performed.
Inversely, the angle of a vector [x, y] is determined by rotating [x, y] through successively decreasing angles to
obtain the unit vector [1, 0]. The cumulative sum of the rotation angles gives the angle of the original vector,
corresponding to the atan (y/x).
The CORDIC algorithm can also be used for calculating hyperbolic functions (sinh, cosh, atanh) by replacing the
circular rotations with hyperbolic angles atanh(2-j) (with j = 1, 2, 3...), see Figure 2.
Other functions can be derived from the basic functions described above.
The natural logarithm is a special case of the inverse hyperbolic tangent, obtained from the identity:ln x = 2tanℎ−1 x + 1x − 1
The square root function is also a special case of the inverse hyperbolic tangent. When calculating the atanh the
CORDIC also calculates √(cosh2 t - sinh2 t). So, the square root is obtained from:x = x + 14 2 − x − 14 2
Additional functions are calculated from the above using the following appropriate identities:tanh x = sinh xcosh xex = sinh x + cosh xlog 2x = log 2e ln x = 1.442695041 ln xlog 10x = log 10e ln x = 0.434294482 ln x

Figure 2. CORDIC hyperbolic mode operation

1.0

hyperbole: x2 - y2 = 1

y(sinh t)
0.5

2 1

0.5 1.0
x(cosh t)

3

t/2

AN5888
CORDIC introduction

AN5888 - Rev 1 page 3/14

1.1 Limitations
In this paragraph are described the limitations of the functions input ranges of the CORDIC co-processor. The
CORDIC operates in fixed point signed integer format. Input and output values can be either q1.31 or q1.15.
In q1.31 format, numbers are represented by one sign bit and 31 fractional bits (binary decimal places). The
numeric range is therefore -1 (0x80000000) to 1 - 2-31 (0x7FFFFFFF).
In q1.15 format, the numeric range is -1 (0x8000) to 1 - 2-15 (0x7FFF). This format has the advantage that two
input arguments can be packed into a single 32-bit write, and two results can be fetched in one 32-bit read.
For certain functions (atan, log, sqrt) a scaling factor can be applied to extend the range of the function beyond
the maximum [-1, 1).
Following the list of mathematical functions implementable with CORDIC.
• Functions: cos(x) - sin(x) – phase(x, y) - modules(x, y)

– Input range: -1 ≤ x < 1 ; -1 ≤ y < 1;
– All input angles in the range -π to π radians are scaled multiplying by 1/π

In circular mode, the CORDIC converges for all angles in the range -π to π radians. The use of fixed point
representation means that input and output values must be in the range [-1 to 1). Input angles in radians must be
multiplied by 1/π and output angles must be multiplied by π to convert back to radians.
The modulus must be in the range [0 to 1), whether converting from polar to rectangular or rectangular to polar.
This means that phase (1.0, 1.0) gives false results since the modulus (√2) is out of range and saturates the
CORDIC engine, even if only the phase is needed.

• Functions: atan-1(x)
– Input range: -128 ≤ x < 128
– If |x| > 1, a scaling factor of 2-n with n = [0 7]
– The output of CORDIC co-processor must be multiplied by (2n)* π to obtain the angle in radians. The

maximum input value allowed is tan θ = 128, which corresponds to an angle: θ = 89.55 degrees.
For |x| > 128, a software method must be used to find atan(x)

• Functions: cosh (x) - sinh (x)
– Input range -1.118 ≤ x ≤1.118
– The input is scaled multiplying by 2-n with n = 1
– The output of CORDIC co-processor must be multiplied by 2 to obtain the correct value

In hyperbolic mode, y = cosh x being defined only for y ≥ 1, all inputs and outputs are divided by 2 to remain in the
fixed point numeric range. The CORDIC algorithm stops converging for |x| > 1.118. This implies that only values
of x in the range -1.118 to 1.118 are supported.
So, 1.118 is the effective limit for the hyperbolic sine and hyperbolic cosine of input magnitude function. If the
value is constrained to be smaller than this limit, then the CORDIC is used directly. Otherwise, the magnitude of x
must be tested and if it is above the limit, an alternative software algorithm must be used.

• Function: tanh -1 (x)
– Input range -0.806 ≤ x < 0.806
– The input is scaled multiplying by 2-n with n = 1
– The output of CORDIC co-processor must be multiplied by 2 to obtain the correct value

The magnitude of the tanh-1(x) function output is similarly limited to 1.118, hence the input magnitude is limited to
tanh 1.118 = 0.806.

AN5888
Limitations

AN5888 - Rev 1 page 4/14

• Function: natural log
– Input range -0.107 ≤ x < 9.35
– The input is scaled multiplying by 2-n with n = [1 4]
– The output of CORDIC co-processor must be multiplied by 2n+1 to obtain the correct value
As previously stated, the natural log uses the identity:ln x = 2tanh−1 x + 1x − 1
Since the limit for the tanh-1(x) input magnitude is 0.806, then:x + 1x − 1 < 0.806 x < 9.35
Hence, the limit for the natural log input is 9.35. Furthermore, the input must be scaled by the appropriate
power of 2, such that (2-n)* (x+1) < 1, to avoid overflowing the fixed point numerical format.
To summarize, for natural log calculation, the allowed input of x is in the range 0.107 to 9.35 using the
following scaling:

– 0.107 ≤ x < 1 the input is scaled multiplying by 2-n with n = 1
– 1 ≤ x < 3 the input is scaled multiplying by 2-n with n = 2
– 3 ≤ x < 7 the input is scaled multiplying by 2-n with n = 3
– 7 ≤ x ≤ 9.35 the input is scaled multiplying by 2-n with n = 4

• Function: square root
– Input range 0.027 ≤ x < 2.341
– The input is scaled multiplying by 2-n with n = [0 2]
– The output of CORDIC co-processor must be multiplied by 2n to obtain the correct value

Since the limit for the tanh-1(x) function is given by:tanh t = sinh tcosh t ≤ 0.806
and the inputs to the tanh-1(x) function are sinh (t) and cosh (t), then the input to the square root function must
satisfy the expression: x − 0.25x + 0.25 = sinh tcosh t ≤ 0.806
Hence, x ≤ 2.34. Again, scaling must be applied such that (2-n)*(x+0.25) < 1 to avoid saturation.
To summarize, for square root, the allowed input of x is in the range 0.027 to 2.34 using the following scaling:

• 0.027 ≤ x < 0.75 the input is scaled multiplying by 2-n (n = 0)
• 0.75 ≤ x < 1.75 the input is scaled multiplying by 2-n (n = 1)
• 1.75 ≤ x ≤ 2.341 the input is scaled multiplying by 2-n (n = 2)

AN5888
Limitations

AN5888 - Rev 1 page 5/14

1.2 Convergence rate and precision
In circular mode, the CORDIC algorithm converges at a rate of 1 binary digit per iteration. This means that 16
iterations are required to achieve 16-bit precision. The maximum achievable precision is limited by the number
of bits in the CORDIC “engine” (the shifters and adders, as well as the table used to store the successive
rotation angles), and of course in the input and output registers. The CORDIC unit in the SR5E1x microcontrollers
supports 16-bit and 32-bit input and output data, and has an internal precision of 24 bits.
The Figure 3 shows the rate of convergence for the CORDIC in circular mode. The curve labeled “q1.15” uses
16-bit input and output data. The curve labeled “q1.31” uses 32-bit data. In both cases, the CORDIC “engine”
is 24-bit. When the maximum residual error approaches the limit for 16-bit precision (2-16 = 1.5 x 10-5), the
quantization error caused by truncating the result to 16 bits becomes dominant, and the curve flattens out, even
though the CORDIC engine continues to converge. For 32-bit data it is the quantization error of the CORDIC
engine itself, which starts to become significant after around 20 iterations. After 24 iterations, the successive
rotation angle becomes zero and no more convergence is possible. The maximum residual error in this case is
1.9 x 10-6, which corresponds to 19-bit precision.
In hyperbolic mode, a particularity of the algorithm requires that certain iterations must be performed twice in
order to converge over the whole range. In a 24-bit CORDIC, the fourth and the 14th iterations are repeated, that
is to say that the same rotation angle is applied twice in a row instead of dividing by two. This means that the
convergence is not linear, as seen in Figure 4. The error decreases more gradually at the beginning and remains
the same between iteration 14 and 15. Therefore, the CORDIC takes two more iterations to achieve the same
precision in hyperbolic mode than in circular mode.
Square root is an exception to the above. It converges approximately twice as fast as the other hyperbolic mode
functions.

Figure 3. CORDIC convergence (circular mode)

GADG151120221436CVR

0 4 8 12 16 20 24

10-1

10-2

10-3

10-4

10-5

10-6

100

Iterations

M
ax

. a
bs

ol
ut

e
er

ro
r

q1.15

q1.31

Note: Sine/cosine convergence of q1.23 fixed point CORDIC.

AN5888
Convergence rate and precision

AN5888 - Rev 1 page 6/14

Figure 4. CORDIC convergence (hyperbolic mode)

GADG151120221436CVR

0 4 8 12 16 20 24

10-1

10-2

10-3

10-4

10-5

10-6

100

Iterations

M
ax

. a
bs

ol
ut

e
er

ro
r

q1.15

q1.31

Note: Hyperbolic sine/cosine convergence of q1.23 fixed point CORDIC.

Figure 5. CORDIC convergence (square root)

0 4 8 12 16 20 24

10-1

10-2

10-3

10-4

10-5

10-6

100

Iterations

M
ax

. a
bs

ol
ut

e
er

ro
r

q1.15

q1.31

Note: Square root convergence of q1.23 fixed point CORDIC.

AN5888
Convergence rate and precision

AN5888 - Rev 1 page 7/14

2 Code examples and performance

2.1 Forward and reverse park
The performances of CORDIC are assessed for two mathematical transforms used in the field-oriented control
algorithm to run an electric motor: the forward park transformation and the reverse park transformation.
The forward park transforms the two-axis orthogonal stationary reference frame quantities into the rotating
reference frame quantities by the following equations:Id = Iα × cos θ + Iβ × sin θIq = Iβ × cos θ − Iα × sin θ
where, Id, Iq are rotating reference frame quantities, Iα, Iβ are orthogonal stationary reference frame quantities, θ
is the rotation angle.
The inverse park transforms the rotating reference frame quantities into two-axis orthogonal stationary reference
frame quantities by the following equations:Vα = Vd × cos θ − Vq × sin θVβ = Vq × cos θ + Vd × sin θ
where, Vα, Vβ are orthogonal stationary reference frame quantities, Vd, Vq are rotating reference frame quantities.
At the base of the two park transformations there is the calculation of the trigonometric functions cos(θ) and sin(θ)
and three methods have been used for their calculation: CORDIC co-processor, a sin/cos table-based calculation
and the function arm_sin_cos_q31(q31_t, q31_t*, q31_t*) available in ARM DSP 32-bit fixed point library. The
respective performances have then been compared using SR5E1x electric motor control demonstrator software
and hardware.
Below details about CORDIC coprocessor configuration and its use are given. Three steps are needed for
CORDIC use:
1. Configure the CORDIC:

WRITE_REG(CORDIC->CSR, CORDIC_CONFIG_COSINE);

/* CORDIC FUNCTION: COSINE q1.15 */
#define CORDIC_CONFIG_COSINE (LL_CORDIC_FUNCTION_COSINE | LL_CORDIC_PRECISION_4CYCLES |
 LL_CORDIC_SCALE_0 | LL_CORDIC_NBWRITE_1 | LL_CORDIC_NBREAD_1 | LL_CORD
IC_INSIZE_16BITS | LL_CORDIC_OUTSIZE_16BITS)

If only this configuration is used, this step is done once at initialization. Otherwise, it must be repeated each
time one of the above parameters changes.

2. Write the input argument(s):
In this case there is only one argument, the angle for the park transforms calculation. The other argument
is the default modulus of 1, so does not need to be written.
LL_CORDIC_WriteData(CORDIC, 0x7FFF0000 + uint32_t) hAngle);

As soon as the expected number of arguments is written, the calculation starts
3. Read the result(s):

/* Read cosine */
CosSin.CordicRdata = LL_CORDIC_ReadData(CORDIC);

The function Trig_Components MCM_Trig_Functions(int16_t hAngle), available in SR5E1x electric motor control
demonstrator software, executes the three above mentioned steps.
/**
* @brief This function returns cosine and sine functions of the angle fed in input
* @param hAngle: angle in q1.15 format
* @retval Sin(angle) and Cos(angle) in Trig_Components format
*/

__weak Trig_Components MCM_Trig_Functions(int16_t hAngle)
{
union u32toi16x2 {
uint32_t CordicRdata;
Trig_Components Components;
} CosSin;
/* Configure CORDIC */

AN5888
Code examples and performance

AN5888 - Rev 1 page 8/14

WRITE_REG(CORDIC->CSR, CORDIC_CONFIG_COSINE);
/* Write angle */
LL_CORDIC_WriteData(CORDIC, 0x7FFF0000 + (uint32_t) hAngle);
/* Read angle */
CosSin.CordicRdata = LL_CORDIC_ReadData(CORDIC);
return (CosSin.Components);
}

The following code shows an alternative implementation of the sin(θ) cos(θ) using a sin/cos table-based
calculation:
/**
 * @brief This function returns cosine and sine functions of the angle fed in
 * input
 * @param hAngle: angle in q1.15 format
 * @retval Sin(angle) and Cos(angle) in Trig_Components format
 */

Trig_Components MCM_Trig_Functions(int16_t hAngle)
{
 int32_t shindex;
 uint16_t uhindex;

 Trig_Components Local_Components;

 /* 10 bit index computation */
 shindex =((int32_t)32768 + (int32_t)hAngle);
 uhindex = (uint16_t)shindex;
 uhindex /= (uint16_t)64;

 switch ((uint16_t)(uhindex) & SIN_MASK)
 {
 case U0_90:
 Local_Components.hSin = hSin_Cos_Table[(uint8_t)(uhindex)];
 Local_Components.hCos = hSin_Cos_Table[(uint8_t)(0xFFu-(uint8_t)(uhindex))];
 break;

 case U90_180:
 Local_Components.hSin = hSin_Cos_Table[(uint8_t)(0xFFu-(uint8_t)(uhindex))];
 Local_Components.hCos = -hSin_Cos_Table[(uint8_t)(uhindex)];
 break;

 case U180_270:
 Local_Components.hSin = -hSin_Cos_Table[(uint8_t)(uhindex)];
 Local_Components.hCos = -hSin_Cos_Table[(uint8_t)(0xFFu-(uint8_t)(uhindex))];
 break;

 case U270_360:
 Local_Components.hSin = -hSin_Cos_Table[(uint8_t)(0xFFu-(uint8_t)(uhindex))];
 Local_Components.hCos = hSin_Cos_Table[(uint8_t)(uhindex)];
 break;
 default:
 break;
 }
 return (Local_Components);

AN5888
Forward and reverse park

AN5888 - Rev 1 page 9/14

Finally, we have the implementation of the sin(θ) cos(θ) calculation using the function
arm_sin_cos_q31(int32_t theta, int32_t *pSinVal, int32_t *pCosVal) of the ARM DSP 32-bit fixed point library,
calculation where hAngle is shifted of 16 bits and casted to int32_t:
/**
 * @brief This function returns cosine and sine functions of the angle fed in
 * input
 * @param hAngle: angle in q1.15 format
 * @retval Sin(angle) and Cos(angle) in Trig_Components format
 */

Trig_Components MCM_Trig_Functions(int16_t hAngle)
{

 Trig_Components Local_Components;

 int32_t hAngle32;
 int32_t *pSinVal;
 int32_t *pCosVal;
 int32_t add1, add2;
 pSinVal=&add1;
 pCosVal=&add2;

 hAngle32=(int32_t)(hAngle<<16);
 arm_sin_cos_q31(hAngle32,pSinVal,pCosVal);

 Local_Components.hSin = (int16_t) (*pSinVal>>16);
 Local_Components.hCos = (int16_t) (*pCosVal>>16);

 return (Local_Components);
}

SR5E1x electric motor control software implements the two park transformations in the following functions:
• MCM_Park(Ialphabeta, hElAngle)
• MCM_Rev_Park(Vqd, hElAngle)
The execution time of this two functions was measured for each one of the three alternative previously described
implementations of MCM_Trigger_Functions(int16_t, hAngle) and the results have been compared.

2.1.1 Execution time measuring
The user can measure the number of processor cycles required to execute the MCM_Park and MCM_Rev_Park
as difference of the DWT counter values read before the start of function and read again after the end of function
using dwt_get_ticks() function.
/* Read systick counter */
start_tick=dwt_get_ticks();
/* Write angle */
Iqd = MCM_Park(Ialphabeta, hElAngle);
/* Read systick counter */
Stop_ticks=dwt_get_ticks();
/* Calculate number of cycles elapsed */
elapsed_ticks = start_ticks-stop_ticks;

/* Read systick counter */
start_tick=dwt_get_ticks();
/* Write angle */
Valphabeta = MCM_Rev_Park(Vqd, hElAngle);
/* Read systick counter */
Stop_ticks=dwt_get_ticks();
/* Calculate number of cycles elapsed */
elapsed_ticks = start_ticks-stop_ticks;

AN5888
Forward and reverse park

AN5888 - Rev 1 page 10/14

2.1.2 Performance comparison
The following performance figures in Table 1 are obtained using SR5E1x 32-bit Arm® Cortex®-M7
microcontrollers running at 300 MHz from flash memory. The code is compiled using the GNU ARM Cross C
compiler. The optimization is set to high for speed and for size.
The average CPU cycle values are shown in the table, since on each electric motor control period the park
transformations calculation give variable results.

Table 1. Execution time vs software for reverse and forward park

Function used to calculate sine and cosine Average CPU cycles (optimized for speed)

Forward Park - CORDIC 236

Reverse Park - CORDIC 172

Forward Park - hSin_Cos_Table 198

Reverse Park - hSin_Cos_Table 127

Forward Park - arm_sin_cos_q31() 530

Reverse Park - arm_sin_cos_q31() 365

These figures demonstrate that the performance in terms of clock cycles of park transforms with CORDIC and
with hSin_Cos_Table usage are comparable, with a slight advantage of the table implementation, and both
performance are clearly better than arm_sin_cos_q31() that needs about the double of the clock cycles. The
very important advantage of the CORDIC respect to hSin_Cos_Table implementation is that it is a coprocessor
very immediate to configure with few commands lines. The wanted precision of function calculation can be easily
modified with no need to change every time a table that needs also memory space to be stored. Moreover, the
CORDIC usage also disengages the CPU that can be used for other tasks. Finally, it can be used to calculate
many other mathematical functions as well as trigonometric.
The measurements of Table 1 are summarized in Figure 6.

Figure 6. Summary of park transforms performance

236
172 198

127

530

365

0

100

200

300

400

500

600

1

Forward Park -CORDIC Reverse Park -CORDIC

Forward Park -table Reverse Park -table

Forward Park - arm_sin_cos_q31() Reverse Park - arm_sin_cos_q31()

236

AN5888
Forward and reverse park

AN5888 - Rev 1 page 11/14

Revision history

Table 2. Document revision history

Date Revision Changes

08-Feb-2023 1 Initial release.

AN5888

AN5888 - Rev 1 page 12/14

Contents

1 CORDIC introduction .2
1.1 Limitations . 4

1.2 Convergence rate and precision . 6

2 Code examples and performance .8
2.1 Forward and reverse park . 8

2.1.1 Execution time measuring . 10

2.1.2 Performance comparison . 11

Revision history .12

AN5888
Contents

AN5888 - Rev 1 page 13/14

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5888

AN5888 - Rev 1 page 14/14

http://www.st.com/trademarks

	AN5888
	Introduction
	1 CORDIC introduction
	1.1 Limitations
	1.2 Convergence rate and precision

	2 Code examples and performance
	2.1 Forward and reverse park
	2.1.1 Execution time measuring
	2.1.2 Performance comparison

	Revision history

