
Introduction

SR5E1x 32-bit Arm® Cortex®-M7 microcontrollers embed direct memory access controllers (DMA) and a DMA request
multiplexer (DMAMUX) used to provide high-speed data transfer between peripherals and memory and between memory and
memory. This keeps CPU resources free for other operations. Data can be quickly moved by DMA upon a peripheral request or
a software trigger without any CPU load.

This application note gives an overview and describes the features of the DMA and DMAMUX in the SR5E1x 32-bit Arm®

Cortex®-M7 microcontrollers.

For further information on DMA and DMAMUX in SR5E1x devices, refer to the product reference manuals available on
www.st.com.

This document applies to the SR5E1x 32-bit Arm® Cortex®-M7 microcontrollers.

SR5 E1 line - DMA controller and DMA request multiplexer

AN5972

Application note

AN5972 - Rev 1 - June 2023
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/

1 DMA and DMAMUX architecture overview

The SR5E1x includes two direct memory access (DMA) instances (DMA_1 and DMA_2) and a DMA request
multiplexer (DMAMUX_1). The Figure 1 shows the whole DMA DMAMUX architecture.

Figure 1. DMA and DMAMUX architecture

DMA lockstep

DMAMUX lockstep DMA_1
8 channelsDMAMUX_1

Sources

Triggers

IRQ request (one per channel)

AHB Register Access

Master port 1 (data transfer)

Master port 2 (data transfer)

DMA lockstep

DMA_2
8 channels

IRQ request (one per channel)

AHB Register Access

Master port 1 (data transfer)

Master port 2 (data transfer)

Channel 8

Channel 15

Channel 0

Channel 7

Each DMA instance has the following features:
• 8 input streams
• Double buffer mode for each stream
• 4-words FIFO per stream
Each DMA instance has a replica that can be enabled in lockstep in order to reach a high level of safety. The
enabling of the replica is done at startup via the global system configuration DCF record (LS_DMA).
The unique DMA request multiplexer (DMAMUX_1) has 16 output channels:
• DMAMUX_1 channels 0 to 7 are connected to DMA_1 channels 0 to 7
• DMAMUX_1 channels 8 to 15 are connected to DMA_2 channels 0 to 7
The DMAMUX_1 has a replica that can be enabled in lockstep at startup via the global system configuration DCF
record (LS_DMA).
In the following chapters details of the DMAMUX and DMA features and their functionalities are given.

AN5972
DMA and DMAMUX architecture overview

AN5972 - Rev 1 page 2/21

2 DMAMUX description

A peripheral indicates a request for DMA transfer by setting its DMA request signal. The DMA request is pending
until it is served by the DMA controller that generates a DMA acknowledge signal, and the corresponding DMA
request signal is deasserted.
The DMAMUX request multiplexer enables routing a DMA request line between the peripherals and the DMA
controllers of the product. The routing function is ensured by a programmable multichannel DMA request line
multiplexer. Each channel selects a unique DMA request line, unconditionally or synchronously with events from
its DMAMUX synchronization inputs. The DMAMUX may also be used as a DMA request generator from
programmable events on its input trigger signals.
As shown in the Figure 2, each DMA request line is connected in parallel to all the channels of the DMAMUX
request multiplexer line. A DMA request multiplexer line is sourced either from the peripherals (dmamux_reqx
signal) or from the DMAMUX request generator (dmamux_req_genx signal). The DMAMUX request line
multiplexer Channel x selects the DMA request line number as configured by the DMAREQ_ID field in the
DMAMUX_CxCR register.
The SR5E1x includes one DMA request multiplexer (DMAMUX_1) with 16 output channels:
• DMAMUX_1 channels 0 to 7 are connected to DMA_1 channels 0 to 7
• DMAMUX_1 channels 8 to 15 are connected to DMA_2 channels 0 to 7

Figure 2. DMAMUX request multiplexer and request generator overview

.

.

.

iP1

Trigger inputs

iP2

iPp

DMA requests from
Peripherals

Request multiplexer
DMAMUX

Channel 15

……….

Channel 8

Channel 7

……….

dmamux_reqx

dm
am

ux
_r

eq
_g

en
x

Synchronization inputs

Request
generator

Channel 1

..

Channel 4

Sync and
Count Events

Request

Channel 0

DMA requests
(16)

….

Events

re
qu

es
t m

ul
tip

le
xe

r l
in

e

AN5972
DMAMUX description

AN5972 - Rev 1 page 3/21

2.1 DMAMUX features
The Figure 3 below shows a detailed DMAMUX block diagram.

Figure 3. DMAMUX block diagram

MSv39745V1

DMAMUX_C0CR

Channel 0

0 Channel
select Ctrl

Channel 1

Channel m

DMAMUX Request multiplexer

p

n+3
n+2

n+p+2

1

0

n

2
1

n+1

Control registers

1

DMAMUX_CmCR

DMAMUX_RGC0CR

DMAMUX_RGC1CR

DMAMUX_RGCnCR
Channel n

Channel 1

Channel 0

Sync

Request generator

AHB slave
interface

32-bit AHB bus

dmamux_hclk

Interrupt
interface

Interrupt:
dmamux_ovr_it

Synchronization inputs:
dmamux_syncx

Trigger inputs:
dmamux_trgx

DMA requests
to DMA controllers:
dmamux_req_outx

DMA channels
events:
dmamux_evtx

DMA requests
from peripherals:
dmamux_req_inx

01s

01s

0
1
m

0
1
m

01t

dm
am

ux
_r

eq
_g

en
x

dm
am

ux
_r

eq
x

The DMAMUX is mainly composed of two components, the request multiplexer and the request generator.
The request multiplexer includes a synchronization unit per channel, with inputs/outputs as follows:
• Inputs:

– dmamux_reqx: DMA request from a peripheral (dmamux_req_inx) and from the request generator
(dmamux_req_genx)

– dmamux_syncx: optional synchronization event
• Outputs:

– dmamux_req_outx: DMA request dmamux_reqx forwarded from the input to the output (to DMA
controller)

– dmamux_evtx: optional generated event that may be used to trigger/synchronize other DMAMUX
channels

The request generator allows DMA request generation on interrupt signals or events, with input/output as follows:
• Input: dmamux_trgx, trigger event inputs to the request generator subblock
• Output: dmamux_req_genx, DMA request from the request generator subblock to the DMAMUX request

multiplexer channels
Thanks to the request generator block, user software can trigger DMA transfers based on signals from peripherals
that do not implement the DMA requests.

AN5972
DMAMUX features

AN5972 - Rev 1 page 4/21

2.2 Request routing and synchronization

2.2.1 Unconditional request forwarding
In order to perform peripheral-to-memory or memory-to-peripheral transfers, the DMA controller channel requires
each time a peripheral DMA request line. Each time a request occurs, the DMA channel transfers data from/to the
peripheral. The DMAMUX request multiplexer channel allows the selection/routing of the peripheral DMA request
line to the DMA channel.
When the multiplexer is set, it ensures the actual routing of the DMA request line. The connection of the
peripheral DMA request to the multiplexer channel output is selected through the programmed ID in the
DMAREQ_ID bits of the channel control register (DMAMUX_CxCR).
After the configuration of a DMAMUX channel, the corresponding DMA controller channel can be configured on its
turn. Two different DMAMUX channels cannot be configured to select the same peripheral DMA request line as
source unless the application ensures that these channels are not requested to be served at the same time.
In the unconditional forwarding, the selected dmamux_reqx signal is sent to the dmamux_req_outx output as
soon as the dmamux_reqx is available.

Figure 4. DMA request line multiplexer channel–unconditional forwarding and event generation

MSv41975V1

DMA request counter

dmamux_evtx

23

DMA request counter reaches zero
Event is generated on the output

DMA request counter auto-reloads with NBREQ value

Example with: DMAMUX_CCRx configured with: NBREQ=3, SE=0, EGE=1

1 0 3 2 1 0 3 2 1 0

SE

EGE

Selected DMA request line transferred to the output

Selected
dmamux_reqx

dmamux_req_outx

Not pending

DMA request pending

2.2.2 Synchronized request forwarding
In addition to unconditional request forwarding, the synchronization unit allows the software to implement
conditional request forwarding. The routing is effectively done only when a defined condition is detected. The
DMA transfers can be synchronized with internal or external signals.
For example, the user software can use the synchronization unit to initiate or adjust data transmission throughput.
DMA request can be forwarded in one of the following ways:
• Each time an edge is detected on a GPIO pin (EXTI)
• In response to a periodic event from a timer
• In response to an asynchronous event from a peripheral
• In response to an event from another request router (request chaining)
On top of DMA request conditioning, the synchronization unit allows the generation of events that may be used by
other DMAMUX subblocks (such as the request generator or another DMAMUX request multiplexer channel).

AN5972
Request routing and synchronization

AN5972 - Rev 1 page 5/21

Figure 5. DMA request line multiplexer channel–synchronous mode and event generation

MSv41974V1

Selected DMA request line transferred to the output

DMA request counter

dmamux_evtx

dmamux_req_outx

dmamux_syncx

Selected
dmamux_reqx

Synchronization event
Input DMA request line connected to output

3 2 1 04 4

DMA request counter underrun
DMA request counter auto-reload to NBREQ

Input DMA request line disconnected from output

Example: DMAMUX_CCRx configured with: NBREQ=4, SE=1, EGE=1, SPOL=01 (rising edge)

Not pending

DMA request pendingDMA requests served

When the DMAMUX channel is configured in synchronous mode its behavior is as follows:
1. The request multiplexer input (DMA request from the peripheral) can become active but it is not forwarded

on the DMAMUX request multiplexer output until the synchronization signal is received.
2. When the sync event is received the request multiplexer connects its input and output and the pending

peripheral request, if any, is forwarded.
3. Each forwarded DMA request decrements the request multiplexer counter (user programmed value). When

the counter reaches zero and the last forwarded request is acknowledged by the DMA controller, the
connection between the DMA controller and the peripheral is disabled (not forwarded) waiting for a new
synchronization event.

4. If a new synchronization event occurs before the request counter underrun, the synchronization overrun flag
bit SOFx is set in the DMAMUX_CSR status register.

For each underrun of the counter, the request multiplexer line can generate an optional event to synchronize with
a second DMAMUX line. The same event can be used in some low-power scenarios to switch the system back to
stop mode without any CPU intervention.
Synchronization mode can be used to automatically synchronize data transfers with a timer, for example, or to
trigger the transfers on a peripheral event.
The synchronization signal (SYNC_ID), the synchronization signal polarity (SPOL) and the number of requests to
forward (NBREQ+1) are configured in the request line multiplexer channel configuration register
(DMAMUX_CxCR).

2.3 Request generation
The request generator can be considered as an intermediary between a peripheral and the DMA controllers. It
allows peripherals without DMA capability (such as RTC alarm or comparators) to generate a programmable
number of DMA requests on an event. The trigger signal (SIG_ID), the trigger polarity (GPOL) and the number of
requests minus 1 to generate (GNBREQ) are configured in the request generator configuration register
(DMAMUX_RGxCR).
Upon the trigger event reception, the corresponding generator channel starts generating DMA requests on its
output. Each time the DMAMUX generated request is served by the connected DMA controller, a built-in DMA
request counter (one counter per request generator channel) is decremented.

AN5972
Request generation

AN5972 - Rev 1 page 6/21

At its underrun, the request generator channel stops generating DMA requests and the DMA request counter is
automatically reloaded to its programmed value upon the next trigger event.

Figure 6. DMA request generation

Request generator counter

dmamux_req_gen

dmamux_trg

dmamux_req_out
Request counter auto-reload (wait for new trigger)

Generator request counter decremets after each transfer.

Active trigger event edge

23 1 0 23 1 0 3

If a new trigger event is received while the generator is managing the previous triggered DMA request sequence,
then the request trigger event overrun flag bit OFx is asserted by the hardware in the status DMAMUX_RGSR
register.

2.4 Request generation and synchronization
In order to implement autonomous transfer and control scenarios, the DMAMUX offers the possibility to combine
request generation and request synchronization feature within the same configuration.

AN5972
Request generation and synchronization

AN5972 - Rev 1 page 7/21

3 DMA description

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and
memory and between memory and memory. Data can be quickly moved by DMA without any CPU action.
SR5E1x devices embed two DMA controllers, 8 input streams each, dedicated to managing memory access
requests from one or more peripherals. Each DMA has two ports, one peripheral port and one memory port,
which can work simultaneously.
Each DMA stream is driven by one DMAMUX1 output channel (request). DMAMUX1 output request can be
individually programmed in order to select the DMA request source signal, from any of the 151 available request
input signals. Each DMA controller has an arbiter for handling the priority between DMA requests. The Figure 7
shows the DMA block diagram.

Figure 7. DMA block diagram

MSv39748V3

AH
B

m
as

te
r

dma_str0

DMA controller

Arbiter

dma_str1
dma_str2
dma_str3
dma_str4
dma_str5
dma_str6
dma_str7

Arbitrer

AHB slave
programming

interface

FI
FO

Memory port

Peripheral port

Programming port

AH
B

m
as

te
r

ST
R

EA
M

 0

ST
R

EA
M

 1

ST
R

EA
M

 2

ST
R

EA
M

 7

ST
R

EA
M

 3

ST
R

EA
M

 4

ST
R

EA
M

 5

ST
R

EA
M

 6

ST
R

EA
M

 0

ST
R

EA
M

 1

ST
R

EA
M

 2

ST
R

EA
M

 7

ST
R

EA
M

 3

ST
R

EA
M

 4

ST
R

EA
M

 5

ST
R

EA
M

 6
From

DMAMUX1 FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

FI
FO

dma_it[0:7]

dma_hclk

AH
B

dma_tcif[0:7]
To NVIC

To MDMA

3.1 DMA transfer properties
A DMA transfer is characterized by the following properties:
• DMA stream/channel
• Stream priority
• Source/destination addresses
• Transfer mode
• Transfer size
• Source/destination address incrementing or nonincrementing
• Source and destination data width
• Transfer type
• FIFO mode
• Source/destination burst size

AN5972
DMA description

AN5972 - Rev 1 page 8/21

• Double-buffer mode
• Flow control
The following subsections provide a detailed description of each DMA transfer property.

3.1.1 DMA streams/channels
SR5E1x devices embed two DMA controllers, offering up to 16 streams in total (eight per controller), each
dedicated to managing memory access requests from one or more peripherals.
Each DMA stream is driven by one DMAMUX1 output channel (request).
Each stream can be configured to perform:
• Regular type transactions: memory-to-peripherals, peripherals-to-memory, or memory-to-memory transfers
• Double-buffer type transactions: double buffer transfers using two memory pointers for the memory (while

the DMA is reading/writing from/to a buffer, the application can write/read to/from the other buffer).
The DMA source request for a stream is made by means of the field DMAREQ_ID in the DMAMUX_CxCR
register. The Table 1 shows the assignment of input multiplexer to the possible resources to be used in the field
DMAREQ_ID.

Table 1. DMAMUX: assignment of multiplexer inputs to resources

DMA
request MUX

input
Resource

DMA
request MUX

input
Resourcer

DMA
request MUX

input
Resource

1 DMAMUX_Req GO 55 TIM8_COM 109 Reserved

2 DMAMUX_Req G1 56 TIM2_CH1 110 Reserved

3 DMAMUX_Req G2 57 TIM2_CH2 111 Reserved

4 DMAMUX_Req G3 58 TIM2_CH3 112 Cordic_read

5 ADC1 59 TIM2_CH4 113 Cordic_write

6 B-DAC1_CH1 60 TIM2_UP 114 Reserved

7 B-DAC1_CH2 61 TIM3_CH1 115 Reserved

8 TIM6_UP 62 TIM3_CH2 116 HRTIM2_MASTER (hrtim_dma1)

9 TIM?_UP 63 TIM3_CH3 117 HRTIM2_TIMA (hrtim_dma2)

10 SPl1_RX 64 TIM3_CH4 118 HRTIM2_TIMB (hrtim_dma3)

11 SPl1_TX 65 TIM3_UP 119 HRTIM2_TIMC (hrtim_dma4)

12 SPl2_RX 66 TIM3_TRIG 120 HRTIM2_TIMD (hrtim_dma5)

13 SPl2_TX 67 TIM4_CH1 121 HRTIM2_TIME (hrtim_dma6)

14 SPl3 RX 68 TIM4 CH2 122 HRTIM2_TIMF (hrtim_dma7)

15 SPI3_TX 69 TIM4_CH3 123 Reserved

16 I2C1_RX 70 TIM4_CH4 124 Reserved

17 I2C1_TX 71 TIM4_UP 125 Reserved

18 I2C2_RX 72 TIM5_CH1 126 Reserved

20 Reserved 74 TIM5 CH3 128 Reserved

21 Reserved 75 TIM5_CH4 129 Reserved

22 Reserved 76 TIM5_UP 130 CAN_SUB_1_DMU_1_TX

23 Reserved 77 TIM5_TRIG 131 CAN_SUB_1_DMU_1_TXE

24 UART1_RX 78 TIM15_CH1 132 CAN_SUB_1_DMU_1_RX0

25 UART1_TX 79 TIM15_UP 1 CAN_SUB_1_DMU_1_RX1

26 UART2_RX 80 TIM15_TRIG 34 CAN_SUB_1_DMU_2_TX

27 UART2_TX 81 TIM15_COM 35 CAN_SUB_1_DMU_2_TXE

AN5972
DMA transfer properties

AN5972 - Rev 1 page 9/21

DMA
request MUX

input
Resource

DMA
request MUX

input
Resourcer

DMA
request MUX

input
Resource

28 UART3_RX 82 TIM16_CH1 36 CAN_SUB_1_DMU_2_RX0

29 UART3_TX 83 TIM_16_UP 137 CAN_SUB_1_DMU_2_RX1

30 Reserved 84 TIM_TS_UP 138 CAN_SUB_1_DMU_3_TX

31 Reserved 85 Reserved 139 CAN_SUB_1_DMU_3_TXE

32 Reserved 86 Reserved 140 CAN_SUB_1_DMU_3_RX0

33 Reserved 87 Reserved 141 CAN_SUB_1_DMU_3_RX1

34 Reserved 88 Reserved 142 CAN_SUB_1_DMU_4_TX

35 Reserved 89 Reserved 143 CAN_SUB_1_DMU_4_TXE

36 ADC2 90 Reserved 144 CAN_SUB_1_DMU_4_RX0

37 ADC3 91 DAC1_CH1 145 CAN_SUB_1_DMU_4_RX1

38 ADC4 92 DAC1_CH2 146 CAN_SUB_1_M_CAN_1

39 ADC5 93 DAC2_CH1 147 CAN_SUB_1_M_CAN_2

40 Reserved 94 DAC2_CH2 148 Reserved

41 Reserved 95
HRTIM1_MASTE

R (hrtim_dma1)
149 Reserved

42 TIM1 CH1 96
HRTIM1 TIMA

(hrtim_dma2)
150 SD ADC1

43 TIM1_CH2 97
HRTIM1_TIMB

(hrtim_dma3)
151 SD_ADC2

44 TIM1_CH3 98
HRTIM1_TIMC

(hrtim_dma4)
152 Reserved

45 TIM1 CH4 99
HRTIM1 TIMD

(hrtim_dma5)
153 Reserved

46 TIM1_UP 100
HRTIM1_TIME

(hrtim_dma6)
154 Reserved

47 TIM1_TRIG 101
HRTIM1 TIMF

(hrtim_dma7)
155 Reserved

48 TIM1 COM 102 DAC3 CH1 156 Reserved

49 TIM8 CH1 103 DAC3 CH2 157 Reserved

50 TIM8_CH2 104 DAC4_CH1 158 Reserved

51 TIM8_CH3 105 DAC4_CH2 159 Reserved

52 TIM8_CH4 106 SPl4_RX 160 Reserved

53 TIM8_UP 107 SPl4_TX

54 TIM8_TRIG 108 Reserved

Since the DMAMUX may also be used as a DMA request generator from programmable events on its input trigger
signals, the Table 2 shows the resources that can trigger a DMA requests generation by means of DMAMUX
trigger inputs. For such purpose the SIG_ID field in the register DMAMUX_RGxCR has to be configured.

AN5972
DMA transfer properties

AN5972 - Rev 1 page 10/21

Table 2. DMAMUX: assignment of trigger inputs to resources

Trigger input Resource Trigger input Resource

0 EXTI LINE0 16 DMAMUX1_ch0_event

1 EXTI LINE1 17 DMAMUX1_ch1_event

2 EXTI LINE2 18 DMAMUX1_ch2_event

3 EXTI LINE3 19 DMAMUX1_ch3_event

4 EXTI LINE4 20 Reserved

5 EXTI LINE5 21 Reserved

6 EXTI LINE6 22 Reserved

7 EXTI LINE7 23 Reserved

8 EXTI LINE8 24 Reserved

9 EXTI LINE9 25 Reserved

10 EXTILINE10 26 Reserved

11 EXTI LINE11 27 Reserved

12 EXTILINE12 28 Reserved

13 EXTILINE13 29 Reserved

14 EXTILINE14 30 Reserved

15 EXTILINE15 31 Reserved

The DMA request line can be selected by the DMAMUX channels synchronously with events from its DMAMUX
synchronization inputs, the Table 3 shows the assignment of DMA synchronization input to resources.

Table 3. DMAMUX: assignment of synchronization inputs to resources

Sync input Resource Sync input Resource

0 EXTI LINE0 16 DMAMUX1_ch0_event

1 EXTI LINE1 17 DMAMUX1_ch1_event

2 EXTI LINE2 18 DMAMUX1_ch2_event

3 EXTI LINE3 19 DMAMUX1_ch3_event

4 EXTI LINE4 20 Reserved

5 EXTI LINE5 21 Reserved

6 EXTI LINE6 22 Reserved

3.1.2 Stream priority
Each DMA port has an arbiter for handling the priority between other DMA streams. Stream priority is software-
configurable (there are four software levels) by means of the DMA_SxCR register. If two or more DMA streams
have the same software priority level, the hardware priority is used (stream 0 has priority over stream 1, etc.).

3.1.3 Source, destination, and transfer mode
A DMA transfer is defined by a source address and a destination address. Both source and destination transfers
can address peripherals and memories in the entire 4-Gbyte area, at addresses comprised between 0x0000 0000
and 0xFFFF FFFF.
DMA is capable of performing three different transfer modes: memory-to-peripheral, peripheral-to-memory, or
memory-to-memory transfers.
The direction is configured using the DIR[1:0] bits in the DMA_SxCR register.

AN5972
DMA transfer properties

AN5972 - Rev 1 page 11/21

Table 4. Source and destination address

Bits DIR[1:0] of the
DMA_SxCR register Direction Source address Destination address

00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR

01 Memory-to-peripheral DMA_SxM0AR DMA_SxPAR

10 Memory-to-memory DMA_SxPAR DMA_SxM0AR

11 reserved

When the data width (programmed in the PSIZE or MSIZE bits in the DMA_SxCR register) is a half-word or a
word, respectively, the peripheral or memory address written into the DMA_SxPAR or DMA_SxM0AR/M1AR
registers has to be aligned on a word or half-word address boundary, respectively.

3.1.4 Transfer mode
DMA can perform three different transfer modes:
• Peripheral to memory
• Memory to peripheral
• Memory to memory

3.1.5 Transfer size
The transfer size defines the volume of data to be transferred from source to destination.
The transfer size is defined by the DMA_SxNDTR register value and by the peripheral side data width. Depending
on the received request (burst or single), the transfer size value is decreased by the amount of the transferred
data.

3.1.6 Incrementing source/destination address
After each data transfer, the DMA can be configured to increment automatically the source and/or destination
address.

Figure 8. DMA source address and destination address incrementing

MSv32194V1

a

b

c

d

e

...

a

b

DMA data transfer

Source address Destination address

Incrementing destinationIncrementing source

3.1.7 Source and destination data width
Data width for source and destination can be defined as:
• Byte (8 bits)
• Half-word (16 bits)
• Word (32 bits)

3.1.8 Transfer types
There are two transfer types:

AN5972
DMA transfer properties

AN5972 - Rev 1 page 12/21

• Circular mode: the circular mode is available to handle circular buffers and continuous data flows (the
DMA_SxNDTR register is then reloaded automatically with the previously programmed value).

• Normal mode: once the DMA_SxNDTR register reaches zero, the stream is disabled (the EN bit in the
DMA_SxCR register is then equal to 0).

3.1.9 DMA FIFO mode
Each stream has an independent 4-word (4 * 32 bits) FIFO and the threshold level is software-configurable
between 1/4, 1/2, 3/4 or full. The FIFO is used to temporarily store data coming from the source before
transmitting them to the destination.
DMA FIFO can be enabled or disabled by software; when disabled, the direct mode is used. If DMA FIFO is
enabled, data packing/unpacking and/or burst mode can be used. The configured DMA FIFO threshold defines
the DMA memory port request time.
The DMA FIFOs implemented on SR5E1x devices help to:
• Reduce SRAM access and so give more time for the other masters to access the bus matrix without

additional concurrency,
• Allow software to do burst transactions that optimize the transfer bandwidth,
• Allow packing/unpacking data to adapt source and destination data width with no extra DMA access.
The structure of the FIFO differs depending on the source and destination data widths, and is described in the
Figure 9.

Figure 9. FIFO structure

Source: byte

4 words

byte lane 0

byte lane 1

byte lane 2

byte lane 3

1/4 1/2 3/4 FullEmpty

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B 11

B12

B13

B14

B15
Destination: word

Source: byte Destination: half-word

4 words

byte lane 0

byte lane 1

byte lane 2

byte lane 3

1/4 1/2 3/4 FullEmpty

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B 11

B12

B13

B14

B15

W0W1W2W3

H0

H1

H2

H3

H4

H5

H6

H7

Source: half-word Destination: word

4 words

byte lane 0

byte lane 1

byte lane 2

byte lane 3

1/4 1/2 3/4 FullEmpty

H0
W0W1W2W3

H1

H2

H3

H4

H5

H6

H7

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

H7 H6 H5 H4 H3 H2 H1 H0

H7, H6, H5, H4, H3, H2, H1, H0

W3, W2, W1, W0

W3, W2, W1, W0

Source: half-word

4-words

byte lane 0

byte lane 1

byte lane 2

byte lane 3

1/4 1/2 3/4 FullEmpty

Destination: byte

H7 H6 H5 H4 H3 H2 H1 H0

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B 11

B12

B13

B14

B15

H0

H1

H2

H3

H4

H5

H6

H7
B15 B14 B13 B12 B11 B10 B9 B8

B7 B6 B5 B4 B3 B2 B1 B0

ai15951

AN5972
DMA transfer properties

AN5972 - Rev 1 page 13/21

3.1.10 Source and destination burst size
The implemented DMA FIFOs guarantees the burst transfers.

Figure 10. DMA burst transfer

MSv34523V1

Peripheral request

SRAM
N

um
be

r o
f r

eg
is

te
rs

 to
 b

e
tra

ns
fe

rre
d

in
 b

ur
st

Burs
t D

MA tra
ns

fer

a

Peripheral

WORD 1
WORD2

WORD 3

WORD 4

DMA Stream

Stream FIFO

In response to a burst request from the peripheral, DMA reads/writes the number of data units (data unit can be a
word, a half-word, or a byte) programmed by the burst size (4x, 8x, or 16x data unit). The burst size on the DMA
peripheral port must be set according to the peripheral needs/capabilities.
Caution is required when choosing the FIFO threshold (bits FTH[1:0] of the DMA_SxFCR register) and the size of
the memory burst (MBURST[1:0] of the DMA_SxCR register): The content pointed by the FIFO threshold must
exactly match an integer number of memory burst transfers. If this is not in the case, a FIFO error (flag FEIFx of
the DMA_HISR or DMA_LISR register) is generated when the stream is enabled, then the stream is automatically
disabled. The Table 5 shows the possible combinations of memory burst size, FIFO threshold configuration and
data size.

Table 5. Possible burst configurations

MSIZE FIFO level MBURST = INCR4 MBURST = INCR8 MBURST = INCR16

Byte

1/4 1 burst of 4 bytes Forbidden

Forbidden1/2 2 bursts of 4 bytes 1 burst of 8 bytes

3/4 3 bursts of 4 bytes Forbidden

Full 4 bursts of 4 bytes 2 bursts of 8 bytes 1 burst of 16 bytes

Half-word

1/4 Forbidden

Forbidden

Forbidden

1/2 1 burst of 4 half-words

3/4 Forbidden

Full 2 bursts of 4 half-words 1 burst of 8 half-word

Word

1/4

Forbidden
Forbidden

1/2

3/4

Full 1 burst of 4 words

AN5972
DMA transfer properties

AN5972 - Rev 1 page 14/21

To ensure data coherence, each group of transfers that form a burst is indivisible: AHB transfers are locked and
the arbiter of the AHB bus matrix does not remove the DMA master’s access rights during the burst transfer
sequence.

3.1.11 Double-buffer mode
A double-buffer stream works as a regular (single-buffer) stream, with the difference that it has two memory
pointers. When the double-buffer mode is enabled, the circular mode is automatically enabled and at each end of
the transaction (DMA_SxNDTR register reach 0), the memory pointers are swapped.
This allows the software to process one memory area while the second memory area is being filled/used by the
DMA transfer.

Figure 11. Double-buffer mode

MSv32195V1

Memory location 0Memory location 1DMA_SxM0AR

DMA_SxM1AR

DMA_SxPAR

CT TC HT

Peripheral data
register

CT = 1

CT = 0

In double-buffer mode, it is possible to update the base address for the AHB memory port on-the-fly
(DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled:
• When the CT (current Target) bit in the DMA_SxCR register is equal to 0, the current DMA memory target

is memory location 0, and so the base address memory location 1 (DMA_SxM1AR) can be updated.
• When the CT bit in the DMA_SxCR register is equal to 1, the current DMA memory target is memory

location 1, and so the base address memory location 0 (DMA_SxM0AR) can be updated.

3.1.12 Flow control
The flow controller is the unit that controls the data transfer length and is responsible for stopping the DMA
transfer.
The flow controller can be either the DMA or the peripheral:
• With DMA as flow controller:

In this case, it is necessary to define the transfer size value in the DMA_SxNDTR register before enabling
the associated DMA stream. When a DMA request is served, the transfer size value decreases by the
amount of transferred data (depending on the type of request: burst or single).
When the transfer size value reaches 0, the DMA transfer is finished and the DMA stream is disabled.

• With the peripheral as flow controller:
SR5E1 has no peripheral to use the peripheral flow controller mode.

AN5972
DMA transfer properties

AN5972 - Rev 1 page 15/21

3.2 Setting up a DMA transfer
To configure DMA stream x (where x is the stream number), the following procedure should be applied:
1. If the stream is enabled, disable it by resetting the EN bit in the DMA_SxCR register, then read this bit in

order to confirm that there is no ongoing stream operation. Writing this bit to zero is not immediately effective
since it is actually written to 0 once all the current transfers are finished. When the EN bit is read as 0, this
means that the stream is ready to be configured. It is therefore necessary to wait for the EN bit to be cleared
before starting any stream configuration. All the stream dedicated bits set in the status register (DMA_LISR
and DMA_HISR) from the previous data block DMA transfer must be cleared before the stream can be
reenabled.

2. Set the peripheral port register address in the DMA_SxPAR register. The data is moved from/to this address
to/from the peripheral port after the peripheral event.

3. Set the memory address in the DMA_SxMA0R register (and in the DMA_SxMA1R register in the case of a
double-buffer mode). The data is written to or read from this memory after the peripheral event.

4. Configure the total number of data items to be transferred in the DMA_SxNDTR register. After each
peripheral event or each beat of the burst, this value is decremented.

5. Use DMAMUX1 to route a DMA request line to the DMA channel.
6. If the peripheral is intended to be the flow controller and if it supports this feature, set the PFCTRL bit in the

DMA_SxCR register.
7. Configure the stream priority using the PL[1:0] bits in the DMA_SxCR register.
8. Configure the FIFO usage (enable or disable, threshold in transmission and reception).
9. Configure the data transfer direction, peripheral and memory incremented/fixed mode, single or burst

transactions, peripheral and memory data widths, circular mode, double-buffer mode, and interrupts after
half and/or full transfer and/or errors in the DMA_SxCR register.

10. Activate the stream by setting the EN bit in the DMA_SxCR register. As soon as the stream is enabled, it can
serve any DMA request from the peripheral connected to the stream.

AN5972
Setting up a DMA transfer

AN5972 - Rev 1 page 16/21

Revision history

Table 6. Document revision history

Date Revision Changes

15-Jun-2023 1 Initial release.

AN5972

AN5972 - Rev 1 page 17/21

Contents

1 DMA and DMAMUX architecture overview .2
2 DMAMUX description .3

2.1 DMAMUX features . 4

2.2 Request routing and synchronization . 5
2.2.1 Unconditional request forwarding . 5

2.2.2 Synchronized request forwarding . 5

2.3 Request generation. 6

2.4 Request generation and synchronization . 7

3 DMA description. .8
3.1 DMA transfer properties . 8

3.1.1 DMA streams/channels . 9

3.1.2 Stream priority. 11

3.1.3 Source, destination, and transfer mode. 11

3.1.4 Transfer mode. 12

3.1.5 Transfer size . 12

3.1.6 Incrementing source/destination address . 12

3.1.7 Source and destination data width . 12

3.1.8 Transfer types . 12

3.1.9 DMA FIFO mode. 13

3.1.10 Source and destination burst size . 14

3.1.11 Double-buffer mode . 15

3.1.12 Flow control . 15

3.2 Setting up a DMA transfer . 16

Revision history .17

AN5972
Contents

AN5972 - Rev 1 page 18/21

List of tables
Table 1. DMAMUX: assignment of multiplexer inputs to resources . 9
Table 2. DMAMUX: assignment of trigger inputs to resources . 11
Table 3. DMAMUX: assignment of synchronization inputs to resources . 11
Table 4. Source and destination address. 12
Table 5. Possible burst configurations . 14
Table 6. Document revision history . 17

AN5972
List of tables

AN5972 - Rev 1 page 19/21

List of figures
Figure 1. DMA and DMAMUX architecture. 2
Figure 2. DMAMUX request multiplexer and request generator overview . 3
Figure 3. DMAMUX block diagram . 4
Figure 4. DMA request line multiplexer channel–unconditional forwarding and event generation 5
Figure 5. DMA request line multiplexer channel–synchronous mode and event generation. 6
Figure 6. DMA request generation . 7
Figure 7. DMA block diagram. 8
Figure 8. DMA source address and destination address incrementing . 12
Figure 9. FIFO structure . 13
Figure 10. DMA burst transfer . 14
Figure 11. Double-buffer mode . 15

AN5972
List of figures

AN5972 - Rev 1 page 20/21

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5972

AN5972 - Rev 1 page 21/21

http://www.st.com/trademarks

	AN5972
	1 DMA and DMAMUX architecture overview
	2 DMAMUX description
	2.1 DMAMUX features
	2.2 Request routing and synchronization
	2.2.1 Unconditional request forwarding
	2.2.2 Synchronized request forwarding

	2.3 Request generation
	2.4 Request generation and synchronization

	3 DMA description
	3.1 DMA transfer properties
	3.1.1 DMA streams/channels
	3.1.2 Stream priority
	3.1.3 Source, destination, and transfer mode
	3.1.4 Transfer mode
	3.1.5 Transfer size
	3.1.6 Incrementing source/destination address
	3.1.7 Source and destination data width
	3.1.8 Transfer types
	3.1.9 DMA FIFO mode
	3.1.10 Source and destination burst size
	3.1.11 Double-buffer mode
	3.1.12 Flow control

	3.2 Setting up a DMA transfer

	Revision history

