
Introduction

The STM32CubeU0 MCU Package is delivered with a rich set of examples running on STMicroelectronics boards. The
examples are organized by boards. They are provided with preconfigured projects for the main supported toolchains (refer to
Figure 1. STM32CubeU0 firmware components).

Figure 1. STM32CubeU0 firmware components

D
T7

36
68

V1

Middleware level Utilities

Application-level demonstrations

HAL and LL APIs

User
application

Discovery boards

USBX

Hardware abstraction layer APIs (HAL)Board Support Package (BSP) Low-layer APIs (LL)

Utilities

Touch library

STM32 Nucleo boards Dedicated boards

MCUbootmbed-cryptoFileX /
LevelXThreadX OpenBootloader

CMSIS

Introduction to STM32Cube MCU Package examples for STM32U0 MCUs

AN6063

Application note

AN6063 - Rev 1 - February 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/stm32cubeu0?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

1 Reference documents

The following items make up a reference set for the examples presented in this application note:

• The latest release of the STM32CubeU0 MCU Package for the 32-bit microcontrollers in the STM32U0
series based on the Arm® Cortex®-M0+ processor.

• Getting started with STM32CubeU0 for STM32U0 series ()
• Description of STM32U0 HAL and low-layer drivers ()

Note: Arm and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN6063
Reference documents

AN6063 - Rev 1 page 2/26

https://www.st.com/en/product/stm32cubeu0?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

2 STM32CubeU0 examples

The examples are classified depending on the STM32Cube level that they apply to. They are named as follows:
• Examples

These examples use only the HAL and BSP drivers (middleware not used). Their objective is to
demonstrate the product or peripheral features and usage. They are organized per peripheral (one folder
per peripheral, such as TIM). Their complexity level ranges from the basic usage of a given peripheral,
such as PWM generation using a timer, to the integration of several peripherals, such as how to use DAC
for a signal generation with synchronization from TIM6 and DMA. The usage of the board resources is
reduced to the strict minimum.

• Examples_LL
These examples use only the LL drivers (HAL drivers and middleware components not used). They offer an
optimum implementation of typical use cases of the peripheral features and configuration sequences. The
examples are organized per peripheral (one folder for each peripheral, such as TIM) and are principally
deployed on Nucleo boards.

• Examples_MIX
These examples use only HAL, BSP, and LL drivers (Middleware components are not used). They aim at
demonstrating how to use both HAL and LL APIs in the same application in order to combine the
advantages of both APIs:
– HAL offers high-level function-oriented APIs with high portability level by hiding product/IPs

complexity for end-users.
– LL provides low-level APIs at the register level with better optimization.
The examples are organized per peripheral (one folder for each peripheral, such as TIM) and are
exclusively deployed on Nucleo boards.

• Applications
The applications demonstrate product performance and how to use the available middleware stacks. They
are organized either by middleware (one folder per middleware, such as Azure® RTOS ThreadX) or
product feature that requires high-level firmware bricks (such as LPBAM). The integration of applications
that use several middleware stacks is also supported.

• Demonstrations
The demonstrations aim at integrating and running the maximum number of peripherals and middleware
stacks to showcase the product features and performance.

• Template project
The template project is provided to enable the user to quickly build a firmware application using HAL and
BSP drivers on a given board.

• Template_LL project
The template LL projects are provided to enable the user to quickly build a firmware application using LL
drivers on a given board.

The examples are located under STM32Cube_FW_U0_VX.Y.Z\Projects\.

The examples in the default product configuration with the Arm® TrustZone® disabled have the same structure:
• *\Inc folder, containing all header files
• *\Src folder, containing the sources code
• *\EWARM, *\MDK-ARM, and *\STM32CubeIDE folders, containing the preconfigured project for each

toolchain
• *\README.md and *\readme.html file, describing the example behavior and the environment required

to run the example

AN6063
STM32CubeU0 examples

AN6063 - Rev 1 page 3/26

The examples with the Arm® TrustZone® enabled are suffixed with "_TrustZone" (except TFM applications) and
have the same structure:
• *\Secure\Inc folder, containing all secure project header files
• *\Secure\Src and *\Secure_nsclib\ folders, containing all secure project sources code
• *\NonSecure\Inc folder, containing all nonsecure project header files
• *\NonSecure\Src folder, containing all nonsecure project sources code
• *\EWARM, *\MDK-ARM, and *\STM32CubeIDE folders, containing the preconfigured project for each

toolchain
• *\README.md and *\readme.html files, describing the example behavior and the environment required

to run the example
To run the example, proceed as follows:
1. Open the example using your preferred toolchain.
2. Rebuild all files and load the image into target memory.
3. Run the example by following the *\README.md and *\readme.html instructions.

Note: Refer to “Development toolchains and compilers” and “Supported devices and evaluation boards” sections of the
firmware package release notes to know more about the software/hardware environment used for the MCU
Package development and validation. The correct operation of the provided examples is not guaranteed in other
environments, for example, when using different compilers or board versions.
The examples can be tailored to run on any compatible hardware: simply update the BSP drivers for your board,
provided it has the same hardware functions (LED, LCD, pushbuttons, and others). The BSP is based on a
modular architecture that can be easily ported to any hardware by implementing low-level routines.
Table 1 contains the list of examples provided with the STM32CubeU0 MCU Package.

In this table, the label means that the projects are created using STM32CubeMX, the STM32Cube
initialization code generator. Those projects can be opened with this tool to modify the projects themselves. The
other projects are manually created to demonstrate the product features. In this table, the label TrustZone®

means that the projects are created for devices with Arm® TrustZone® enabled. Read the project *\README.md
and *\readme.html files for user option bytes configuration.

AN6063
STM32CubeU0 examples

AN6063 - Rev 1 page 4/26

Table 1. STM32CubeU0 firmware examples

STM32CubeMX-generated examples are highlighted with the icon .

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Templates_ROT
- -

This project provides a OEMiROT boot path application template. The boot is
performed through the OEMiROT boot path after the authenticity and integrity
checks of the project firmware and project data image.

- X -

Total number of templates_rot: 1 0 1 0

Templates_
Board

- -
This project provides a reference template for the NUCLEO-U083RC board,
based on the STM32Cube HAL API and the BSP drivers that can be used to
build any firmware application.

-

Total number of templates_board: 2 0 1 1

Templates
- Starter project This project provides a reference template that can be used to build any

firmware application. X X X

Total number of templates: 3 1 1 1

Demonstration
- Demo

The STM32Cube demonstration platform comes on top of the STM32Cube
as a firmware package that offers a full set of software components based on
a modular architecture. All modules can be reused separately in standalone
applications.

X - -

Total number of demonstrations: 1 1 0 0

Templates_LL
- Starter project This project provides a reference template, through the LL API, which can be

used to build any firmware application. X X X

Total number of templates_ll: 3 1 1 1

Examples

- BSP How to use the different BSP drivers of the board. X - -

ADC

ADC_AnalogWatchdog
How to use an ADC peripheral with an ADC analog watchdog to monitor a
channel and detect when the corresponding conversion data is outside the
window thresholds.

- -

ADC_ContinuousConversion_TriggerSW How to use an ADC peripheral to perform continuous ADC conversions on a
channel, from a software start. - -

ADC_MultiChannelSingleConversion How to use an ADC peripheral to convert several channels. ADC conversions
are performed successively in a scan sequence. - -

ADC_Oversampling How to use an ADC peripheral with oversampling. - -

ADC_SingleConversion_TriggerSW_IT How to use an ADC to convert a single channel at each software start. The
conversion is performed using the interrupt programming model. -

A
N

6063 - R
ev 1

page 5/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples

ADC

ADC_SingleConversion_TriggerTimer_DMA
How to use an ADC peripheral to perform a single ADC channel conversion
at each trigger event from a timer. The converted data is transferred by DMA
into a table located in RAM.

-

ADC_TemperatureSensor
How to use an ADC peripheral to perform a single ADC conversion on the
internal temperature sensor and calculate the temperature in degrees
Celsius.

- -

COMP

COMP_CompareGpioVsDacInt_OutputGpio How to configure the comparator peripheral to compare the external voltage
applied on a specific pin with a sawtooth signal generated by a DAC. - -

COMP_CompareGpioVsVrefInt_IT How to use a comparator peripheral to compare a voltage level applied on a
GPIO pin to the internal voltage reference (VREFINT), in interrupt mode. -

COMP_CompareGpioVsVrefInt_IT_
SystemStopMode

How to use a comparator peripheral to compare a voltage level applied on a
GPIO pin to the the internal voltage reference (VREFINT), in interrupt mode
and during Stop mode.

- -

COMP_CompareGpioVsVrefInt_OutputGpio
How to use a comparator peripheral to compare a voltage level applied on a
GPIO pin to the internal voltage reference (VREFINT) with the comparator
output connected to a GPIO pin.

- -

COMP_CompareGpioVsVrefInt_Window_IT

How to use a pair of comparator peripherals to compare a voltage level
applied on a GPIO pin to two thresholds, the internal voltage reference
(VREFINT) and a fraction of the internal voltage reference (VREFINT/2), in
interrupt mode.

- -

COMP_OutputBlanking
How to use the comparator-peripheral output blanking feature. The output
blanking feature is used in motor control to prevent the tripping of the current
regulation upon short current spikes at the beginning of the PWM period.

- -

CORTEX

CORTEXM_MPU
How to configure the MPU attributes of different MPU regions, then a memory
area as privileged read-only, and attempt to perform read and write
operations in different modes.

- -

CORTEXM_ModePrivilege How to modify the thread mode privilege access and stack. The thread mode
is entered on reset or when returning from an exception. - -

CORTEXM_ProcessStack How to modify the thread mode stack. The thread mode is entered on reset
or when returning from an exception - -

CORTEXM_SysTick How to use the default SysTick configuration with a 1 ms timebase to toggle
LEDs. -

CRC

CRC_Bytes_Stream_7bit_CRC

How to configure the CRC using the HAL API. The CRC (cyclic redundancy
check) calculation unit computes 7-bit CRC codes derived from buffers of 8-
bit data (bytes). The user-defined generating polynomial is manually set to
0x65, that is X7 + X6 + X5 + X2 + 1, as used in the Train Communication
Network IEC 60870-5.

- -

CRC_Data_Reversing_16bit_CRC

How to configure the CRC using the HAL API. The CRC (cyclic redundancy
check) calculation unit computes a 16-bit CRC code derived from a buffer of
32-bit data (words). Input and output data reversal features are enabled. The
user-defined generating polynomial is manually set to 0x1021, that is,
X16 + X12 + X5 + 1, which is the CRC-CCITT generating polynomial.

- -

A
N

6063 - R
ev 1

page 6/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples

CRC

CRC_Example
How to configure the CRC using the HAL API. The CRC (cyclic redundancy
check) calculation unit computes the CRC code of a given buffer of 32-bit
data words, using a fixed generator polynomial (0x4C11DB7).

CRC_UserDefinedPolynomial
How to configure the CRC using the HAL API. The CRC (cyclic redundancy
check) calculation unit computes the 8-bit CRC code for a given buffer of 32-
bit data words, based on a user-defined generating polynomial.

- -

CRYP

CRYP_AESModes How to use the CRYP peripheral to encrypt and decrypt data using the AES
in chaining mode (ECB, CBC, CTR). -

CRYP_AES_GCM How to use the CRYP peripheral to encrypt and decrypt data using AES in
Galois/Counter mode (GCM). - -

CRYP_GCM_GMAC_CCM_Modes

How to use the CRYP AES peripheral to encrypt and decrypt data as well as
compute an authentication tag using the AES-based GCM algorithm with a
128-bit long key, compute an authentication tag using the AES-based GMAC
algorithm with a 256-bit long key, encrypt data as well as compute an
authentication tag using the AES-based CCM algorithm with a 256-bit long
key.

- -

CRYP_GCM_GMAC_CCM_Suspension

How to use the CRYP AES peripheral to suspend then resume the AES GCM
and GMAC CCM processing of a message to carry out the encryption,
decryption or authentication tag computation of a higher-priority message
(CCM).

- -

DAC

DAC_SignalsGeneration How to use the DAC peripheral to generate several signals using the DMA
controller and the DAC internal wave generator.

DAC_SimpleConversion How to use the DAC peripheral to do a simple conversion. - -

DMA DMA_FLASHToRAM How to use a DMA to transfer a word data buffer from flash memory to an
embedded SRAM, through the HAL API.

FLASH

FLASH_ChangeOptionBytes How to configure and modify the option bytes of the flash memory controller. - X -

FLASH_EraseProgram

How to configure and use the FLASH HAL API to erase and program the
internal flash memory. At the beginning of the main program, the HAL_Init()
function is called to reset all the peripherals, initialize the flash interface and
the SysTick.

-

FLASH_FastProgram How to configure and use the FLASH HAL API to erase and fast program the
internal flash memory. - -

FLASH_WriteProtection How to configure and use the FLASH HAL API to enable and disable the
write protection of the internal flash memory. - -

GPIO GPIO_EXTI How to configure external interrupt lines.

A
N

6063 - R
ev 1

page 7/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples

GPIO GPIO_IOToggle How to configure and use GPIOs through the HAL API.

HAL

HAL_TimeBase_RTC_ALARM How to customize the HAL using the RTC alarm as main source of timebase,
instead of the SysTick. - -

HAL_TimeBase_RTC_WKUP How to customize the HAL using the RTC wake-up as the main source of
timebase, instead of the SysTick. - -

HAL_TimeBase_TIM How to customize the HAL using a general-purpose timer as the main source
of timebase instead of the SysTick. - -

I2C

I2C_Sensor_Private_Command_IT How to handle I2C data buffer transmission/reception between an
STM32U0xx Nucleo board and the X-NUCLEO-IKS01A3, using an interrupt. - -

I2C_TwoBoards_AdvComIT How to handle several I2C data buffer transmission/reception between a
master and a slave device, using an interrupt. - -

I2C_TwoBoards_ComDMA How to handle I2C data buffer transmission/reception between two boards,
via DMA. -

I2C_TwoBoards_ComIT How to handle I2C data buffer transmission/reception between two boards,
using an interrupt. -

I2C_TwoBoards_ComPolling How to handle I2C data buffer transmission/reception between two boards, in
polling mode. - -

I2C_TwoBoards_RestartAdvComIT How to perform multiple I2C data buffer transmission/reception between two
boards, in interrupt mode, and with a restart condition. - -

I2C_TwoBoards_RestartComIT How to handle single I2C data buffer transmission/reception between two
boards, in interrupt mode, and with restart condition. - -

I2C_WakeUpFromStop How to handle I2C data buffer transmission/reception between two boards,
using an interrupt, when the device is in Stop mode. - -

I2C_WakeUpFromStop2 How to handle I2C data buffer transmission/reception between two boards,
using an interrupt, when the device is in Stop 2 mode. - -

IWDG

IWDG_Reset How to handle the IWDG reload counter and simulate a software fault that
generates an MCU IWDG reset after a preset laps of time. - -

IWDG_WindowMode How to periodically update the IWDG reload counter, and simulate a software
fault that generates an MCU IWDG reset after a preset laps of time.

LCD LCD_Blink_Frequency How to use the embedded LCD glass controller and set the LCD blink mode
and blinking frequency. - -

A
N

6063 - R
ev 1

page 8/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples

LCD LCD_SegmentsDrive How to use the embedded LCD glass controller to drive the Pacific Display
Devices on-board LCD glass. - -

LPTIM

LPTIM_Encoder How to configure the LPTIM peripheral in encoder mode. - -

LPTIM_PWMExternalClock
How to configure and use, through the HAL LPTIM API, the LPTIM peripheral
with an external counter clock, to generate a PWM signal at the lowest power
consumption.

- -

LPTIM_PWM_LSE How to configure and use, through the HAL LPTIM API, the LPTIM peripheral
with LSE as counter clock, to generate a PWM signal, in a low-power mode. - -

LPTIM_PulseCounter How to configure and use, through the LPTIM HAL API, the LPTIM peripheral
to count pulses. - -

LPTIM_Timeout How to implement, through the HAL LPTIM API, a timeout with the LPTIM
peripheral, to wake up the system from a low-power mode. -

OPAMP

OPAMP_Calibration How to calibrate the OPAMP. - -

OPAMP_Follower How to configure the OPAMP peripheral in follower mode interconnected with
DAC and COMP. - -

OPAMP_PGA How to use the built-in PGA mode (OPAMP programmable gain). -

PWR

PWR_LPMODE_RTC How to put the system in different available low-power modes, and wake up
from these modes by using an interrupt generated by the RTC wake-up timer. - -

PWR_LPRUN How to enter and exit the Low-power run mode. - -

PWR_ModesSelection How to configure the system to measure the current consumption in different
low-power modes. - X -

PWR_PVD How to configure the programmable voltage detector by using an external
interrupt line. The external DC supply must be used to supply VDD. - -

PWR_SHUTDOWN How to enter Shutdown mode and wake up from this mode using an external
reset or a WKUP pin. - -

PWR_SLEEP How to enter Sleep mode and wake up from this mode by using an interrupt. - -

PWR_STANDBY How to enter Standby mode and wake up from this mode by using an
external reset or the WKUP pin. - -

A
N

6063 - R
ev 1

page 9/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples

PWR

PWR_STOP0 How to enter Stop 0 mode and wake up from this mode by using an interrupt. - -

PWR_STOP1 How to enter Stop 1 mode and wake up from this mode using an interrupt. - -

PWR_STOP2 How to enter Stop 2 mode and wake up from this mode by using an external
reset or a wake-up interrupt. -

PWR_STOP2_RTC How to enter Stop 2 mode and wake up from this mode by using an external
reset or the RTC wake-up timer. - X X

RCC

RCC_CRS_Synchronization_IT How to configure the clock recovery service (CRS) in interrupt mode, using
the RCC HAL API. - -

RCC_CRS_Synchronization_Polling How to configure the clock recovery system (CRS) in polling mode, using the
RCC HAL API. - -

RCC_ClockConfig How to configure the system clock (SYSCLK) and modify the clock settings in
Run mode, using the RCC HAL API. -

RCC_LSEConfig How to enable/disable the low-speed external (LSE) RC oscillator (about
32 KHz) at runtime, using the RCC HAL API. - -

RCC_LSIConfig How to enable/disable the low-speed internal (LSI) RC oscillator (about
32 KHz) at runtime, using the RCC HAL API. - -

RCC_SwitchClock How to switch off the system clock (SYSCLK) from low-frequency clock to a
high-frequency clock, using the RCC HAL API. -

RNG

RNG_Config How to configure the RNG using the HAL API. This example uses the RNG to
generate 32-bit long random numbers. -

RNG_MultiRNG How to configure the RNG using the HAL API. This example uses the RNG to
generate 32-bit long random numbers. - -

RNG_MultiRNG_IT How to configure the RNG using the HAL API. This example uses RNG
interrupts to generate 32-bit long random numbers. - -

RTC

RTC_ActiveTamper How to configure the active tamper detection with backup registers erase. - -

RTC_Alarm How to configure and generate an RTC alarm using the RTC HAL API.

RTC_Calendar How to configure the calendar using the RTC HAL API. - -

A
N

6063 - R
ev 1

page 10/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples

RTC

RTC_InternalTimeStamp Demonstration the internal timestamp feature using the RTC HAL API. - -

RTC_LSI How to use the LSI clock source autocalibration to get a precise RTC clock. - -

RTC_LowPower_STANDBY How to enter Standby mode and wake up from this mode using the RTC
alarm event. - -

RTC_LowPower_STANDBY_WUT How to periodically enter and wake up from Standby mode thanks to the RTC
wake-up timer (WUT). -

RTC_Tamper How to configure the tamper detection with backup registers erase. - -

RTC_TimeStamp How to configure the RTC HAL API to demonstrate the timestamp feature. - -

SPI

SPI_FullDuplex_ComDMA_Master Data buffer transmission/reception between two boards via SPI, using DMA in
master mode. - -

SPI_FullDuplex_ComDMA_Slave Data buffer transmission/reception between two boards via SPI, using DMA in
slave mode. - -

SPI_FullDuplex_ComIT Data buffer transmission/reception between two boards via SPI, using the
interrupt mode. - X -

SPI_FullDuplex_ComIT_Master Data buffer transmission/reception between two boards via SPI, using the
interrupt mode (master). - -

SPI_FullDuplex_ComIT_Slave Data buffer transmission/reception between two boards via SPI, using the
interrupt mode (slave). - -

SPI_FullDuplex_ComPolling_Master Data buffer transmission/reception between two boards via SPI, using the
polling mode (master). - -

SPI_FullDuplex_ComPolling_Slave Data buffer transmission/reception between two boards via SPI, using the
polling mode (slave). - -

SPI_HalfDuplex_ComIT_Master Data buffer half-duplex transmission/reception between two boards, using an
interrupt (master). - -

SPI_HalfDuplex_ComIT_Slave Data buffer half-duplex transmission/reception between two boards, using an
interrupt (slave). - -

SPI_HalfDuplex_ComPolling_Master Data buffer half-duplex transmission/reception between two boards, in polling
mode (master). - -

A
N

6063 - R
ev 1

page 11/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples

SPI SPI_HalfDuplex_ComPolling_Slave Data buffer half-duplex transmission/reception between two boards, in polling
mode (slave). - -

TIM

TIM_6Steps How to configure the TIM1 peripheral to generate 6 steps. - -

TIM_DMA How to use the DMA with timer update request to transfer data from memory
to the timer capture compare register 3 (TIMx_CCR3). - -

TIM_DMABurst How to update the timer channel 1 period and duty cycle using the timer DMA
burst feature. - -

TIM_Encoder How to configure the TIM1 peripheral in encoder mode to determinate the
rotation direction. - -

TIM_ExtTriggerSynchro How to synchronize the timer peripheral in cascade mode with an external
trigger. - -

TIM_OCToggle How to configure the timer peripheral to generate four different signals at four
different frequencies. - -

TIM_OnePulse How to use the timer peripheral to generate a single pulse when a rising edge
of an external signal is received on the timer input pin. - -

TIM_PWMInput How to use the timer peripheral to measure the frequency and duty cycle of
an external signal. - -

TIM_PWMOutput How to configure the timer peripheral in PWM (pulse width modulation) mode. - -

TIM_TimeBase How to configure the timer peripheral to generate a timebase of one second
with the corresponding interrupt request. - -

UART

LPUART_TwoBoards_ComIT LPUART transmission (transmit/receive) in interrupt mode between two
boards. -

LPUART_WakeUpFromStop How to configure an LPUART to wake up the MCU from Stop mode when a
given stimulus is received. -

UART_AutoBaudrate_Detection How to use the HAL UART API for detecting automatically the baud rate. -

UART_HyperTerminal_DMA UART transmission (transmit/receive) in DMA mode between a board and a
HyperTerminal PC application. - -

UART_HyperTerminal_IT UART transmission (transmit/receive) in interrupt mode between a board and
a HyperTerminal PC application. -

A
N

6063 - R
ev 1

page 12/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples

UART

UART_LowPower_HyperTerminal_DMA Low-power UART transmission (transmit/receive) in DMA mode between a
board and a HyperTerminal PC application. - -

UART_Printf Rerouting of the C library printf function to the UART. - -

UART_ReceptionToIdle_CircularDMA How to use the HAL UART API for reception to IDLE event in circular DMA
mode. -

UART_TwoBoards_ComDMA UART transmission (transmit/receive) in DMA mode between two boards. -

UART_TwoBoards_ComIT UART transmission (transmit/receive) in interrupt mode between two boards. - -

UART_TwoBoards_ComPolling UART transmission (transmit/receive) in polling mode between two boards. - -

UART_WakeUpFromStop How to configure a UART to wake up the MCU from Stop 1 mode when a
given stimulus is received. - -

USART

USART_SlaveMode USART-SPI communication (transmit/receive) between two boards where the
USART is configured as a slave. - -

USART_SlaveMode_DMA USART-SPI communication (transmit/receive) with DMA between two boards
where the USART is configured as a slave. - -

WWDG WWDG_Example
How to configure the HAL API to periodically update the WWDG counter and
simulate a software fault that generates an MCU WWDG reset when a
predefined time period has elapsed.

- -

Total number of examples: 159 29 103 27

Examples_LL ADC

ADC_AnalogWatchdog_Init
How to use an ADC peripheral with an ADC analog watchdog to monitor a
channel and detect when the corresponding conversion data is outside the
window thresholds.

- -

ADC_ContinuousConversion_TriggerSW_Init How to use an ADC peripheral to convert a single channel continuously, from
a software start. - -

ADC_ContinuousConversion_TriggerSW_
LowPower_Init

How to use an ADC to convert a single channel with ADC low-power features
auto wait and auto power-off. - -

ADC_Oversampling_Init How to use an ADC peripheral with oversampling. - -

ADC_SingleConversion_TriggerSW_DMA_Init
How to use an ADC peripheral to perform a single ADC conversion on a
channel at each software start. The converted data is transferred by DMA into
a table located in RAM.

- -

A
N

6063 - R
ev 1

page 13/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples_LL

ADC

ADC_SingleConversion_TriggerSW_IT_Init How to use ADC to convert a single channel at each software start. The
conversion is performed using the interrupt programming model. - -

ADC_SingleConversion_TriggerSW_Init How to use ADC to convert a single channel at each software start. The
conversion is performed using the polling programming model. - -

ADC_SingleConversion_TriggerTimer_DMA_
Init

How to use an ADC peripheral to perform a single ADC conversion on a
channel at each trigger event from a timer. The converted data is transferred
by DMA into a table in RAM.

- -

ADC_TemperatureSensor_Init
How to use an ADC peripheral to perform a single ADC conversion on the
internal temperature sensor and calculate the temperature in degrees
Celsius.

- -

COMP

COMP_CompareGpioVsVrefInt_IT_Init How to use a comparator peripheral to compare a voltage level applied on a
GPIO pin to the internal voltage reference (VREFINT), in interrupt mode. - -

COMP_CompareGpioVsVrefInt_OutputGpio_
Init

How to use a comparator peripheral to compare a voltage level applied on a
GPIO pin to the internal voltage reference (VREFINT) with a comparator output
connected to a GPIO pin.

- -

COMP_CompareGpioVsVrefInt_Window_IT_
Init

How to use a pair of comparator peripherals to compare a voltage level
applied on a GPIO pin to two thresholds: the internal voltage reference
(VREFINT) and a fraction of the internal voltage reference (VREFINT / 2), in
interrupt mode.

- -

CORTEX CORTEX_MPU
How to configure the MPU attributes of different MPU regions, then configure
a memory area as privileged read-only, and attempt to perform read and write
operations in different modes.

- -

CRC CRC_UserDefinedPolynomial

How to configure and use the CRC calculation unit to compute an 8-bit CRC
code for a given data buffer, based on a user-defined generating polynomial.
The peripheral initialization is done using LL unitary service functions for
optimization purposes (performance and size).

- -

CRS

CRS_Synchronization_IT
How to configure the clock recovery system in interrupt mode through the
STM32U0xx CRS LL API. The peripheral initialization uses LL unitary service
functions for optimization purposes (performance and size).

- -

CRS_Synchronization_Polling
How to configure the clock recovery system in polling mode through the
STM32U0xx CRS LL API. The peripheral initialization uses LL unitary service
functions for optimization purposes (performance and size).

- -

DAC

DAC_GenerateConstantSignal_TriggerSW_Init How to use the DAC peripheral to generate a constant voltage signal. - -

DAC_GenerateConstantSignal_TriggerSW_
LP_Init

How to use the DAC peripheral to generate a constant voltage signal with the
DAC low-power feature sample-and-hold. To be effective, a capacitor must be
connected to the DAC channel output, and the sample-and-hold timings must
be tuned depending on the capacitor value. This example is based on the
STM32U0xx DAC LL API. The peripheral initialization uses LL unitary service
functions for optimization purposes (performance and size).

- -

A
N

6063 - R
ev 1

page 14/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples_LL

DAC DAC_GenerateWaveform_TriggerHW_Init

How to use the DAC peripheral to generate a voltage waveform from a digital
data stream transferred by DMA. This example is based on the STM32U0xx
DAC LL API. The peripheral initialization uses LL initialization functions to
demonstrate LL init usage.

- -

DMA DMA_CopyFromFlashToMemory_Init
How to use a DMA channel to transfer a word data buffer from flash memory
to an embedded SRAM. The peripheral initialization uses LL initialization
functions to demonstrate LL init usage.

- -

EXTI EXTI_ToggleLedOnIT_Init

How to configure the EXTI and use GPIOs to toggle the user LEDs available
on the board when a user button is pressed. This example is based on the
STM32U0xx LL API. The peripheral initialization is done using the LL
initialization function to demonstrate LL init usage.

- -

GPIO GPIO_InfiniteLedToggling_Init
How to configure and use GPIOs to toggle the on-board user LEDs every
250 ms. This example is based on the STM32U0xx LL API. The peripheral is
initialized with the LL initialization function to demonstrate LL init usage.

I2C

I2C_OneBoard_AdvCommunication_DMAAndI
T_Init

How to exchange data between an I2C master device in DMA mode and an
I2C slave device in interrupt mode. The peripheral is initialized with LL unitary
service functions to optimize for performance and size.

- -

I2C_OneBoard_Communication_DMAAndIT_
Init

How to transmit data bytes from an I2C master device using DMA mode to an
I2C slave device using interrupt mode. The peripheral is initialized with LL
unitary service functions to optimize for performance and size.

- -

I2C_OneBoard_Communication_IT_Init
How to handle the reception of one data byte from an I2C slave device by an
I2C master device. Both devices operate in interrupt mode. The peripheral is
initialized with the LL initialization function to demonstrate LL init usage.

- -

I2C_OneBoard_Communication_PollingAndIT_
Init

How to transmit data bytes from an I2C master device using polling mode to
an I2C slave device using interrupt mode. The peripheral is initialized with LL
unitary service functions to optimize for performance and size.

- -

I2C_TwoBoards_MasterRx_SlaveTx_IT_Init

How to handle the reception of one data byte from an I2C slave device by an
I2C master device. Both devices operate in interrupt mode. The peripheral is
initialized with LL unitary service functions to optimize for performance and
size.

- -

I2C_TwoBoards_MasterTx_SlaveRx_DMA_Init
How to transmit data bytes from an I2C master device using DMA mode to an
I2C slave device using DMA mode. The peripheral is initialized with LL
unitary service functions to optimize for performance and size.

- -

I2C_TwoBoards_MasterTx_SlaveRx_Init
How to transmit data bytes from an I2C master device using polling mode to
an I2C slave device using interrupt mode. The peripheral is initialized with LL
unitary service functions to optimize for performance and size.

- -

I2C_TwoBoards_WakeUpFromStop2_IT_Init

How to handle the reception of a data byte from an I2C slave device in Stop 2
mode by an I2C master device, both using interrupt mode. The peripheral is
initialized with LL unitary service functions to optimize for performance and
size.

- -

I2C_TwoBoards_WakeUpFromStop_IT_Init

How to handle the reception of a data byte from an I2C slave device in Stop0
mode by an I2C master device, both using interrupt mode. The peripheral is
initialized with LL unitary service functions to optimize for performance and
size.

- -

A
N

6063 - R
ev 1

page 15/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples_LL

LPTIM LPTIM_PulseCounter_Init

To reduce power consumption, the MCU enters Stop mode after starting
counting. Each time the counter reaches the maximum value (period/
autoreload), an interrupt is generated, the MCU is woken up from Stop mode,
and LED4 toggles.

- -

LPUART

LPUART_WakeUpFromStop2_Init

How to configure the GPIO and LPUART peripherals to allow characters
received on LPUART_RX pin to wake up the MCU from low-power mode
(Stop 2). This example is based on the LPUART LL API. The peripheral
initialization uses the LL initialization function to demonstrate LL init usage.

- -

LPUART_WakeUpFromStop_Init

How to configure the GPIO and LPUART peripherals to allow characters
received on LPUART_RX pin to wake up the MCU from low-power mode
(Stop). This example is based on the LPUART LL API. The peripheral
initialization uses the LL initialization function to demonstrate LL init usage.

- -

OPAMP

OPAMP_Follower_Init

How to use the OPAMP peripheral in follower mode interconnected with DAC
and COMP. This example is based on the STM32U0xx OPAMP LL API. The
peripheral initialization uses LL unitary service functions for optimization
purposes (performance and size).

- -

OPAMP_PGA_Init How to use the OPAMP peripheral in PGA mode (OPAMP programmable
gain) with DAC and COMP. - -

PWR

PWR_EnterStandbyMode How to enter Standby mode and wake up from this mode by using an
external reset or a wakeup pin. - -

PWR_EnterStopMode How to enter Stop 0 mode. - -

PWR_LPRunMode_SRAM1 How to execute code in Low-power run mode from SRAM1. - -

PWR_OptimizedRunMode How to increase/decrease frequency and VCORE and enter/exit the Low-
power run mode. - -

RCC

RCC_HWAutoMSICalibration How to use the MSI clock source hardware autocalibration and LSE clock
(PLL mode) to obtain a precise MSI clock. - -

RCC_OutputSystemClockOnMCO How to configure the MCO pin (PA8) to output the system clock. - -

RCC_UseHSI_PLLasSystemClock How to modify the PLL parameters in runtime. - -

RNG

RNG_GenerateRandomNumbers
How to configure the RNG to generate 32-bit long random numbers. The
peripheral initialization uses LL unitary service functions for optimization
purposes (performance and size).

- -

RNG_GenerateRandomNumbers_IT
How to configure the RNG to generate 32-bit long random numbers using
interrupts. The peripheral initialization uses LL unitary service functions for
optimization purposes (performance and size).

- -

A
N

6063 - R
ev 1

page 16/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples_LL

RTC

RTC_Alarm_Init
How to configure the RTC LL API to configure and generate an alarm using
the RTC peripheral. The peripheral initialization uses the LL initialization
function.

- -

RTC_Calendar_Init
How to configure the LL API to set the RTC calendar. The peripheral
initialization uses LL unitary service functions for optimization purposes
(performance and size).

- -

RTC_ExitStandbyWithWakeUpTimer_Init How to periodically enter and wake up from Standby mode thanks to the RTC
wake-up timer (WUT). - -

RTC_Tamper_Init
How to configure the tamper using the RTC LL API. The peripheral
initialization uses LL unitary service functions for optimization purposes
(performance and size).

- -

RTC_TimeStamp_Init
How to configure the timestamp using the RTC LL API. The peripheral
initialization uses LL unitary service functions for optimization purposes
(performance and size).

- -

SPI

SPI_OneBoard_HalfDuplex_DMA_Init

How to configure the GPIO and SPI peripherals to transmit bytes from an SPI
master device to an SPI slave device in DMA mode. This example is based
on the STM32U0xx SPI LL API. The peripheral initialization uses the LL
initialization function to demonstrate LL init usage.

- -

SPI_OneBoard_HalfDuplex_IT_Init

How to configure the GPIO and SPI peripherals to transmit bytes from an SPI
master device to an SPI slave device in interrupt mode. This example is
based on the STM32U0xx SPI LL API. The peripheral initialization uses LL
unitary service functions for optimization purposes (performance and size).

- -

SPI_TwoBoards_FullDuplex_DMA_Master_Init

Data buffer transmission and reception via SPI using DMA mode. This
example is based on the STM32U0xx SPI LL API. The peripheral initialization
uses LL unitary service functions for optimization purposes (performance and
size).

- -

SPI_TwoBoards_FullDuplex_DMA_Slave_Init

Data buffer transmission and reception via SPI using DMA mode. This
example is based on the STM32U0xx SPI LL API. The peripheral initialization
uses LL unitary service functions for optimization purposes (performance and
size).

- -

SPI_TwoBoards_FullDuplex_IT_Master_Init

Data buffer transmission and reception via SPI using interrupt mode (master).
This example is based on the STM32U0xx SPI LL API. The peripheral
initialization uses LL unitary service functions for optimization purposes
(performance and size).

- -

SPI_TwoBoards_FullDuplex_IT_Slave_Init

Data buffer transmission and reception via SPI using interrupt mode (slave).
This example is based on the STM32U0xx SPI LL API. The peripheral
initialization uses LL unitary service functions for optimization purposes
(performance and size).

- -

TIM

TIM_BreakAndDeadtime_Init
How to configure the timer peripheral to generate three center-aligned PWM
and complementary PWM signals, insert a defined deadtime value, use the
break feature, and lock the break and dead-time configuration.

- -

TIM_DMA_Init

How to use of the DMA with a timer update request to transfer data from the
memory to the timer capture compare register 3 (TIMx_CCR3). This example
is based on the STM32U0xx TIM LL API. The peripheral initialization uses LL
unitary service functions for optimization purposes (performance and size).

- -

A
N

6063 - R
ev 1

page 17/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples_LL

TIM

TIM_InputCapture_Init

How to use the timer peripheral to measure a periodic signal frequency
provided either by an external signal generator or by another timer instance.
This example is based on the STM32U0xx TIM LL API. The peripheral
initialization uses LL unitary service functions for optimization purposes
(performance and size).

- -

TIM_OnePulse_Init

How to configure a timer to generate a positive pulse in output compare
mode with a length of tPULSE and after a delay of tDELAY. This example is
based on the STM32U0xx TIM LL API. The peripheral initialization uses the
LL initialization function to demonstrate LL Init.

- -

TIM_OutputCompare_Init

How to configure the timer peripheral to generate an output waveform in
different output compare modes. This example is based on the STM32U0xx
TIM LL API. The peripheral initialization uses LL unitary service functions for
optimization purposes (performance and size).

- -

TIM_PWMOutput_Init

How to use of the timer peripheral to generate a PWM output signal and
update the PWM duty cycle. This example is based on the STM32U0xx TIM
LL API. The peripheral initialization uses the LL initialization function to
demonstrate LL Init.

- -

TIM_TimeBase_Init
How to configure the timer peripheral to generate a timebase. This example
is based on the STM32U0xx TIM LL API. The peripheral initialization uses LL
unitary service functions for optimization purposes (performance and size).

- -

USART

USART_Communication_Rx_IT_Continuous_
Init

How to configure the GPIO and USART peripherals to continuously receive
characters from a HyperTerminal (PC) in asynchronous mode and using the
interrupt mode. The peripheral initialization is done using LL unitary services
functions for optimization purposes (performance and size).

- -

USART_Communication_Rx_IT_Continuous_
VCP_Init

How to configure the GPIO and USART peripherals to continuously receive
characters from a HyperTerminal (PC) in asynchronous mode and using the
interrupt mode (VCP). The peripheral initialization is done using LL unitary
services functions for optimization purpose (performance and size).

- -

USART_Communication_Rx_IT_Init

How to configure the GPIO and USART peripherals to receive characters
from a HyperTerminal (PC) in asynchronous mode using the interrupt mode.
The peripheral initialization is done using the LL initialization function to
demonstrate LL init usage.

- -

USART_Communication_Rx_IT_VCP_Init

How to configure the GPIO and USART peripherals to receive characters
from a HyperTerminal (PC) in asynchronous mode using the interrupt mode
(VCP). The peripheral initialization is done using LL initialization function to
demonstrate LL init usage.

- -

USART_Communication_TxRx_DMA_Init

How to configure the GPIO and USART peripherals to send characters
asynchronously to/from a HyperTerminal (PC) in DMA mode. This example is
based on the STM32U0xx USART LL API. Peripheral initialization is done
using LL unitary services functions for optimization purposes (performance
and size).

- -

USART_Communication_Tx_IT_Init

How to configure the GPIO and USART peripherals to send characters
asynchronously to a HyperTerminal (PC) in interrupt mode. This example is
based on the STM32U0xx USART LL API. Peripheral initialization is done
using LL unitary services functions for optimization purposes (performance
and size).

- -

A
N

6063 - R
ev 1

page 18/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples_LL

USART

USART_Communication_Tx_IT_VCP_Init

How to configure the GPIO and USART peripherals to send characters
asynchronously to a HyperTerminal (PC) in interrupt mode (VCP). This
example is based on STM32U0xx USART LL API. The peripheral initialization
is done using LL unitary services functions for optimization purpose
(performance and size).

- -

USART_Communication_Tx_Init

How to configure the GPIO and USART peripherals to send characters
asynchronously to a HyperTerminal (PC) in polling mode. If the transfer
cannot be completed within the allocated time, a timeout allows to exit from
the sequence with a timeout error code. This example is based on the
STM32U0xx USART LL API. The peripheral initialization is done using LL
unitary services functions for optimization purposes (performance and size).

- -

USART_Communication_Tx_VCP_Init

How to configure the GPIO and USART peripherals to send characters
asynchronously to a HyperTerminal (PC) in polling mode (VCP). If the
transfer cannot be completed within the allocated time, a timeout allows to
exit from the sequence with a timeout error code. This example is based on
STM32U0xx USART LL API. The peripheral initialization is done using LL
unitary services functions for optimization purpose (performance and size).

- -

USART_HardwareFlowControl_Init

How to configure the GPIO and USART peripherals to receive characters
asynchronously from a HyperTerminal (PC) in interrupt mode with the
hardware flow control feature enabled. This example is based on the
STM32U0xx USART LL API. The peripheral initialization uses LL unitary
service functions for optimization purposes (performance and size).

- -

USART_SyncCommunication_FullDuplex_
DMA_Init

How to configure the GPIO, USART, DMA, and SPI peripherals to transmit
bytes between a USART and an SPI (in slave mode) in DMA mode. This
example is based on the STM32U0xx USART LL API. The peripheral
initialization uses LL unitary service functions for optimization purposes
(performance and size).

- -

USART_SyncCommunication_FullDuplex_IT_
Init

How to configure the GPIO, USART, DMA, and SPI peripherals to transmit
bytes between a USART and an SPI (in slave mode) in interrupt mode. This
example is based on the STM32U0xx USART LL API (the SPI uses the DMA
to receive/transmit characters sent from/received by the USART). The
peripheral initialization uses LL unitary service functions for optimization
purposes (performance and size).

- -

USART_WakeUpFromStop1_Init
How to configure the GPIO and USART2 peripherals to allow the characters
received on the USART_RX pin to wake up the MCU from low-power mode
(Stop 1).

- -

USART_WakeUpFromStop_Init How to configure the GPIO and USART2 peripherals to allow the characters
received on the USART_RX pin to wake up the MCU from low-power mode. - -

UTILS

UTILS_ConfigureSystemClock How to use the UTILS LL API to configure the system clock using PLL with
HSI as the source clock. - -

UTILS_ReadDeviceInfo How to read the UID, Device ID and Revision ID and save them into a global
information buffer. - -

WWDG WWDG_RefreshUntilUserEvent_Init

How to configure the WWDG to periodically update the counter and generate
an MCU WWDG reset when a user button is pressed. The peripheral
initialization uses the LL unitary service functions for optimization purposes
(performance and size).

- -

A
N

6063 - R
ev 1

page 19/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples_LL Total number of examples_ll: 82 1 78 3

Examples_MIX

ADC ADC_SingleConversion_TriggerSW_IT How to use ADC to convert a single channel at each software start. The
conversion is performed using the programming model: interrupt. - -

CRC CRC_PolynomialUpdate How to use the CRC peripheral through the STM32U0xx CRC HAL and LL
API. - -

DMA DMA_FLASHToRAM
How to use a DMA to transfer a word data buffer from flash memory to
embedded SRAM through the STM32U0xx DMA HAL and LL API. The LL
API is used for performance improvement.

- -

I2C I2C_OneBoard_ComSlave7_10bits_IT

How to perform I2C data buffer transmission/reception between one master
and two slaves with different address sizes (7-bit or 10-bit). This example
uses the STM32U0xx I2C HAL and LL API (LL API usage for performance
improvement) and an interrupt.

- -

OPAMP OPAMP_Calibration How to calibrate the OPAMP. - -

PWR

PWR_STANDBY_RTC
How to enter Standby mode and wake up from this mode by using an
external reset or the RTC wake-up timer through the STM32U0xx RTC and
RCC HAL, and LL API (LL API used for maximizing performance).

- -

PWR_STOP1
How to enter Stop 1 mode and wake up from this mode by using an external
reset or wake-up interrupt (all the RCC function calls use RCC LL API for
minimizing footprint and maximizing performance).

- -

SPI

SPI_FullDuplex_ComPolling_Master Data buffer transmission/reception between two boards via SPI using polling
mode (master). - -

SPI_FullDuplex_ComPolling_Slave Data buffer transmission/reception between two boards via SPI using polling
mode (slave). - -

SPI_HalfDuplex_ComPollingIT_Master Data buffer transmission/reception between two boards via SPI using polling
(LL driver) and interrupt modes (HAL driver), and in master mode. - -

SPI_HalfDuplex_ComPollingIT_Slave Data buffer transmission/reception between two boards via SPI using polling
(LL driver) and interrupt modes (HAL driver), and in master mode. - -

TIM TIM_PWMInput How to use the timer peripheral to measure an external signal frequency and
duty cycle. - -

UART

UART_HyperTerminal_IT

How to use a UART to transmit data (transmit/receive) between a board and
a HyperTerminal PC application in interrupt mode. This example describes
how to use the USART peripheral through the STM32U0xx UART HAL and
LL API, the LL API being used for performance improvement.

- -

UART_HyperTerminal_TxPolling_RxIT

How to use a UART to transmit data (transmit/receive) between a board and
a HyperTerminal PC application both in polling and interrupt modes. This
example describes how to use the USART peripheral through the
STM32U0xx UART HAL and LL API, the LL API being used for performance
improvement.

- -

A
N

6063 - R
ev 1

page 20/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Examples_MIX Total number of examples_mix: 14 0 14 0

Applications

- OpenBootloader This application uses the OpenBootloader middleware to demonstrate how to
develop an IAP application and how to use it. X - -

FileX Fx_SRAM_File_Edit_Standalone

This application provides an example of FileX stack usage on the NUCLEO-
U083RC board, running in standalone mode (without ThreadX). It
demonstrates how to create a Fat File system on the internal SRAM using
FileX.

- -

ROT

OEMiROT_Appli
This project provides a OEMiROT boot path application example. The boot is
performed through OEMiROT boot path after authenticity and the integrity
checks of the project firmware and project data image.

- X -

OEMiROT_Boot
This project provides an OEMiROT example. The OEMiROT boot path
performs the authenticity and the integrity checks of the project firmware and
data images.

- X -

OEMiROT_Loader
This application is a sample code of a standalone local loader using the
Ymodem protocol. This application allows the download of a new version of
the firmware and data images.

- X -

OEMiSB_Appli
This project provides a OEMiSB boot path application example. The boot is
performed through the OEMiSB boot path after integrity checks of the project
firmware image.

- - X

OEMiSB_Boot This project provides an OEMiSB example. The OEMiSB boot path performs
the authenticity check of the project firmware image. - - X

ThreadX

Tx_CMSIS_Wrapper
This application provides an example of CMSIS RTOS adaptation layer for
Azure® RTOS ThreadX. It shows how to develop an application using the
CMSIS RTOS 2 APIs.

X - -

Tx_FreeRTOS_Wrapper
This application provides an example of Azure® RTOS ThreadX stack usage,
it shows how to develop an application using the FreeRTOS™ adaptation
layer for ThreadX.

- X -

Tx_LowPower This application provides an example of Azure® RTOS ThreadX stack usage.
It shows how to develop an application using ThreadX low power feature.

- -

Tx_Thread_Creation
This application provides an example of Azure® RTOS ThreadX stack usage.
It shows how to develop an application using the ThreadX thread
management APIs.

- -

Tx_Thread_MsgQueue
This application provides an example of Azure® RTOS ThreadX stack usage.
It shows how to develop an application using the ThreadX message queue
APIs.

- -

Tx_Thread_Sync
This application provides an example of Azure® RTOS ThreadX stack usage.
It shows how to develop an application using the ThreadX synchronization
APIs.

- -

TouchSensing TouchSensing_1touchkey How to use the TSC to perform continuous acquisitions of one channel in
interrupt mode. - -

A
N

6063 - R
ev 1

page 21/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Level Module name Project name Description STM32U0
83C-DK

NUCLEO-
U083RC

NUCLEO-
U031R8

Applications

TouchSensing TouchSensing_1touchkey_LowPower How to use of the TSC to perform continuous acquisitions of one channel in
interrupt mode. - -

USBX

Ux_Device_CDC_ACM
This application provides an example of Azure® RTOS USBX stack usage on
the STM32U083C-DK board. It shows how to develop a USB Device
communication Class CDC_ACM-based application.

- -

Ux_Device_HID
This application provides an example of Azure® RTOS USBX stack usage on
the STM32U083C-DK board. It shows how to develop a USB Device Human
Interface HID mouse-based application.

- -

Ux_Device_HID_CDC_ACM
This application provides an example of Azure® RTOS USBX stack usage on
the STM32U083C-DK board. It shows how to develop a composite USB
Device communication Class HID and CDC_ACM based application.

- -

Ux_Device_HID_Standalone
This application provides an example of Azure® RTOS USBX stack usage on
the STM32U083C-DK board. It shows how to develop a USB Device Human
Interface HID mouse based bare metal application.

- -

Total number of applications: 20 10 8 2

Total number of projects: 285 42 207 35

A
N

6063 - R
ev 1

page 22/26

A
N

6063
STM

32C
ubeU

0 exam
ples

https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/stm32u083c-dk?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u083rc?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063
https://www.st.com/en/product/nucleo-u031r8?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6063

Revision history

Table 2. Document revision history

Date Version Changes

26-Feb-2024 1 Initial release

AN6063

AN6063 - Rev 1 page 23/26

Contents

1 Reference documents .2
2 STM32CubeU0 examples .3
Revision history .23
List of tables .25

AN6063
Contents

AN6063 - Rev 1 page 24/26

List of tables
Table 1. STM32CubeU0 firmware examples . 5
Table 2. Document revision history . 23

AN6063
List of tables

AN6063 - Rev 1 page 25/26

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN6063

AN6063 - Rev 1 page 26/26

http://www.st.com/trademarks

	AN6063
	Introduction
	1 Reference documents
	2 STM32CubeU0 examples
	Revision history
	Contents
	List of tables

