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Application note

Antenna design for ST25R200 and ST25R100 devices

Introduction

This document is a design guide for magnetic loop antennas connected directly to the ST25R200. Beyond the antenna design, it
describes the antenna parameter measurement and matching, as well as the design verification.

The examples in this document are based on the ST25R200 device. The techniques and tools can be used (when applicable)
for other products of the same family, such as ST25R100.

This document is intended to be used with the ST25R antenna matching tool software (STSW-ST25R004), which supports the
calculation of the matching components and reduces the tuning iteration effort to a minimum. Along with the tool, an open-
source simulator is provided for basic system validation via simulation.

The following documents are considered as reference:

. ST25R200 datasheet (DS13658)

. ST25R100 datasheet (DS14139)

. ISO/IEC 14443 and ISO/IEC 10373-6:2011, from www.iso.org
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1 List of acronyms and notational conventions

1.1 Acronyms

Table 1. List of acronyms

RFO1,2 Antenna driver output pins

RFI1,2 Receiver input pins

Tx Transmit signal (from RFO to antenna)

Rx Receive signal (from antenna to RFI)

Lemc1,2 Inductor of the EMC filter

Cemci12 Capacitor of the EMC filter

Cs1,2 Series capacitor of the matching network

Cp Parallel capacitor of the matching network

Rq Parallel resistor used for the Q factor adjustment (calculated)

LANT Antenna inductance (measured)

CaANT Parasitic antenna parallel capacitance (calculated)

RpaNT Total antenna parallel resistance (calculated)

fwork NFC operating frequency (13.56 MHz)

fres Antenna self-resonance frequency (measured)

Rspc Antenna series resistance (measured)

Rp@afres Antenna parallel resistance at self-resonance (measured)

K Skin effect correction factor (calculated)

Rp@work Antenna parallel resistance at operating frequency (calculated)

Rppc Antenna parallel resistance converted from measured series resistance (calculated)

Rt Parallel resistance for target Q factor (calculated)

Q Antenna Q factor (calculated)

1.2 Representation of numbers

The following conventions and notations apply in this document unless otherwise stated:

. Binary numbers are represented by strings of 0 and 1 digits, shown with the most significant bit (MSB) on

the left, the least significant bit (LSB) on the right, and “Ob” added at the beginning. Example: 0b11110101.

. Hexadecimal numbers are represented by using numbers 0 to 9 and characters A to F, and adding “Ox” at

the beginning. The most significant byte (MSB) is shown on the left and the least significant byte (LSB) on
the right. Example: OxF5.

. Decimal numbers are represented without any trailing character. Example: 245.
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2 Hardware and software requirements

To use the ST25R antenna matching tool, perform antenna measurements and verify the design, the following
resources are required:

. Network analyzer

. Oscilloscope (capable of pulse triggering)
. SMA cable

. ISO 10373-6 calibration coil 1

. Software/Firmware to control the ST25R200 (for example, ST25R200 STEVAL demo)

. Windows® 0S
. ST25R antenna matching tool
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3 Antenna interface stage

Figure 1 shows the minimum configuration for driving an antenna through a differential matching network, and
Figure 2 the circuit schematic.

From the device antenna driver output pins RFO1 and RFO2, the Tx signal goes through the EMC filter into the
matching network and to the antenna. The Rx signal coming from the antenna is led through the capacitive
voltage divider back into the receiver input pins RFI1 and RFI2. The antenna interface stage can be set up as
single ended or as differential topology, this document focuses on the latter configuration.

Figure 1. Antenna interface stage (differential matching network)
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Figure 2. Antenna circuit (including EMI filter, matching)
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3.1 Reader mode and output power

During the NFC/RFID reader design process several different requirements must be considered, a key one is the
output power.

Different methods, such as inductive wake-up, can be used to reduce the power consumption of the complete
system. Besides using this power saving functions or reducing the power consumption by optimizing the polling
cycle, the key criterion is the power consumption during field on.

There are three steps to adjust the power consumption:

1. Impedance matching

2. Antenna driver output resistance (register 0x03)

3. Chip internal regulator voltage

The impedance matching is the most important factor to determine the power consumption. When designing the
matching circuitry and defining the target matching impedance, pay attention to Figure 4. It shows that with a
higher target matching impedance less power is transferred forward to the antenna, and therefore the power
consumption of the whole reader unit is reduced.

The last point to adjust the output power is the supply voltage of the driver stage. The Vpp rr driver supply can
be automatically set to Vpp minus the regulator dropout voltage. This is the optimal value for operation and noise
rejection. It is also possible to manually overwrite the regulator setting and set Vpp pr to a value specified in the
datasheet.

The Smith chart in Figure 3 shows a capacitive matching example with the 13.56 MHz point at 14.92 Q - 3.3 Q.
The characteristics and positioning of the impedance circle is a key element in achieving specific signal
transients, which are detailed in the various chapters. Refer to Section 8: Design verification and device limit
checks to verify the correct signal behavior for the device.
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Antenna interface stage

3.2 EMC filter

The EMC filter is implemented as a single stage low-pass filter consisting of a serial inductor and a parallel
capacitor. The purpose of the EMC filter is to filter out higher harmonics caused by the rectangular output signal of
the push-pull driver. The filter cutoff frequency should be between 17 and 22 MHz.

To optimize the EMC behavior of the reader board, some considerations must be made:
. Filter coils:

- Self-resonance frequency of the inductance: it can boost unwanted emissions in the investigated
frequency range.

- Equivalent serial resistance: influences the system Q factor of the reader, and can lower the
conducted output power. EMC inductors with a higher ESR (>1 Q) can only be used for mid and low
power matchings. The ESR is put in series to the RFO output resistance. Therefore, higher ESR
lower system Q factor and more power is lost in the EMC inductors.

- The rated current of the chosen filter coils must be higher than the current in the matching network.

. Antenna design
- The electrical length must be kept short to avoid additional self-resonances that boost unwanted
emissions.
3.3 Matching network

The matching network in L topology follows the EMC filter and consists of one series and two parallel capacitors,
in differential topology.

The purpose of the matching network is to match the antenna to a desired impedance value so that, depending
on the application, either a maximum power transfer from the ST25R200 to the antenna or a certain current
consumption is achieved.

Figure 2 shows the antenna interface stage.

3.4 Capacitive voltage divider

As the voltage on the antenna can be high, a capacitive voltage divider is needed in the receive path at the
antenna terminals to limit the signal level going back to the RFI pins. This voltage divider is connected to the
antenna and consists of two capacitors.

In Figure 2 the capacitor pairs RFI_1/RFI_2 and RFI_3/RFI_4 form the capacitive voltage divider.

The voltage at the receive pins must not exceed 3 Vpp. In HF reader mode and NFC transmit mode, the
recommended signal level is 2.5 Vpp.

3.5 Antenna

The antenna of the HF reader is a magnetic loop antenna, typically implemented as a printed coil. Flex PCB, wire-
wound antennas, or metal casings are other possible approaches.

Factors like size, number of tracks, track, and gap width determine the electrical parameters: inductance, series
and parallel resistance, self-resonance frequency, and, most important of all, the Q factor.

The antenna must be designed with a Q factor higher than the target system Q factor. This is because the
antenna Q factor can only be decreased by damping resistors afterwards, and not increased anymore.
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4 Step by step procedure for antenna matching and finetuning

Figure 5. Step by step antenna matching guide
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Antenna design

5.1

ANG6065 - Rev 4

Boundary conditions and simulation model

The design of a proximity reader system requires a knowledge of the end user application. This includes the
environmental conditions when placing the reader or type of cards to be used.

Some basic boundary conditions need to be considered in advance, among them:
. Target reading distance

. Tag / card type

. Output power

. EMC regulations

. Industrial design

. Antenna placement

. Environmental influences

. Supported NFC technologies and standards, and data rates.

The design of an antenna must fit the industrial design of the application, not always there is a large degree of
freedom on where to place the magnetic loop. The best case of an antenna placement is far away from
electronics or other components like batteries, displays, or large ground planes that harm the effective radiated
RF field.

As guidelines for the antenna design three antennas of different (but no specific) sizes have been simulated. All of

them have a constant number of tracks (two) with a copper thickness of 35 ym on an FR4 plate, with a thickness
of 1.5 mm.
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Figure 6 shows the EM - simulation model with the biggest size. The simulations have been carried out in the
frequency domain.

Figure 6. Simulation model of the coil antenna

To find the dependency of the antenna Q factor and of its other parameters upon the geometry, the trace width
and the gap width between traces, as well as the antenna size, have been varied in the simulation.

5.2 Simulation results

The main antenna electrical parameters, as a function of antenna size, trace and gap width, are shown in Figure 7
to Figure 11. Table 2 summarizes their behavior.

The Q factor also depends upon the antenna size, but the relation is more complex and a more detailed analysis
is needed. Additional antenna parameters like inductance, series DC resistance, parallel resistance, and self-
resonance frequency influence the Q factor.

The Q factor of a parallel resonance circuit is:
Q = RpanT / (2 T fecarrier L)

Where:

. RpanT is the total parallel resistance. See Section 6.3 for details
. L is the antenna inductance

. fearrier is the carrier frequency

The resonance frequency depends on the electrical length of the antenna. The shorter the electrical length, the
higher this frequency.
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Figure 7. Antenna Q factor vs. antenna size, trace, and gap width
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Figure 8. Inductance vs. antenna size, trace, and gap width
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Figure 9. Series DC resistance vs. antenna size, trace, and gap width
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Figure 10. Parallel resistance vs. antenna size, trace, and gap width
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Figure 11. Resonance frequency vs. antenna size, trace, and gap width
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Note:
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Table 2. Behavior of antenna parameters vs. geometrical parameters

Increase trace width
Q factor - Increases
Increase gap width

Larger antenna

Inductance Decrease trace width Increases Decreases
Decrease gap width
Larger antenna

Series DC resistance Decrease trace width Increases Decreases
Decrease gap width

Decrease trace width
Parallel resistance Increases Increases
Increase gap width

Smaller antenna
Resonance frequency : Increases Increases
Increase gap width

The separated view of each antenna parameter is a theoretical one to understand the basic behavior. In reality,
all parameters are linked together, for example, if the inductance is increased by a larger antenna (lower Q), the
electrical length increases, which in turn lowers the resonance frequency (Q increases) and the series DC
resistance increases (lowering Q).

The inductance of magnetic loop antennas is defined by the electrical length of the conductor. The longer and
thinner the way the signal has to travel (more electrical length) the higher the inductance of the coil. On the other
hand, the wider and shorter a transmission line is the more capacitive its behavior. Changing the inductance of a
loop antenna may thus be realized by altering the thickness of the turns, the gap width, or the size of the antenna.

A value to be targeted in loop antenna design for NFC reader applications is in the 200 to 1500 nH range.
Depending on the application, higher inductance values can be chosen and are supported by the chip.

In direct relation to the change of the inductance stands the series resistance of the loop antenna, which
increases with longer and thinner turns. The antenna self-resonance frequency shows the tendency to increase
with larger gap widths between the antenna tracks and also with decreasing size of the antenna.

As mentioned in Section 5 the antenna has to be designed with a Q factor higher than the one needed for the
application. The reason is that the Q factor can be decreased by a damping resistor connected at the antenna
pins, but it cannot be increased anymore, except with a redesign of the antenna.
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6 Antenna parameters

Every antenna is composed of inductance, resistance, and capacitance. These values and the self-resonance
frequency of the antenna must be determined first to calculate the antenna equivalent circuit and its Q factor, and
then determine the matching components.

6.1 Network analyzer preparation
To measure the antenna parameters, a network or an impedance analyzer is used and set up according to the
procedure detailed below:
1. Set the measurement mode of the analyzer to S11 reflection measurement
2. Use the Smith chart format (R + jX) to display the impedance curve
3. Set the start frequency at 1 MHz and the stop frequency at 300 MHz
Note: Some of the antenna parameters are measured at 1 MHz, far off the self-resonance frequency of the

antenna to minimize the skin effects measured at higher frequencies. The stop frequency must be higher
than the first self-resonance frequency (usually between 50 and 250 MHz) of the reader antenna.

4. Set the network analyzer resolution (number of points) to the maximum to ensure accurate measurements

5. Connect a short SMA cable (<50 cm) to the RF port of the network analyzer and start the calibration using
OPEN, SHORT, and LOAD from a calibration kit or autocalibration. If no calibration kit is available, a
workaround with a 50 Q resistance as load, as well as an open and short connection on the cable can be
used. With the calibration the SMA cable length is accounted for.

6. To connect the SMA cable to the antenna to be measured, a probe connection from pins (one pin soldered to
the signal connection of an SMA connector, the other one soldered to one of its ground connections) must be
made.

7. The added pins can be taken into account for calibration with the auto port extension function of the VNA.

6.2 Parameter measurement
1. The impedance curve from 1 to 300 MHz is displayed in the Smith chart (see Figure 12)

2. Seta marker to 1 MHz and read the series inductance and the DC series resistance values (in Figure 12 they
are displayed in the upper part of the network analyzer screen):

- LANT =926 nH
- Rspc = 394 mQ

3. Set another marker to the real axis of the Smith chart, where the inductive and the capacitive parts of the
impedance cancel each other. At this point, the parallel resistance and the self-resonance frequency of the
antenna are measured:

- RP@fres =1.55kQ
—  fres = 62.67 MHz
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Antenna parameter measurement at 1 MHz and SRF (62.67 MHz)

E50618 Network Analyzel
1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr State Resize

Marker

v Marker 1

W Marker 2

Marker 4

More Markers |

Ref Marker

Clear Marker
Menu

Marker ->
Ref Marker

Ref Marker Mode
OFF

Return

[1 Start 1 MHz TFBW 30 kHz Stop 150 MHz EER ) |
T1MQ20dB/R1MQ20dB| OC LF OFF | Hold 2017-05-04 01:31 |

The antenna parameters have now been measured, and the equivalent circuit can be determined, as described in
Section 6.3.

Antenna equivalent circuit

Using the antenna inductance measured at 1 MHz, the parasitic capacitance at self-resonance-frequency can be
calculated as follows:

Cant = 1/ (WP * L) =1/ (2T * fie)? * Lantl = 1/ [(2TT * 62.7 MH2)? * 926 nH] = 6.96 pF

The measured value of the parallel resistance has to be converted from the self-resonance to the operating

frequency (fwork = 13.56 MHz). The reason for this conversion is the correction for the frequency-dependent
change due to the skin effect. To convert the parallel resistance at the self-resonance frequency, a correction
factor has to be calculated:

_ |fe _ [62.7MHz
Vfex  V13.56MHz

The parallel resistance at the operating frequency is calculated as
Rp@m,ork =K~ Rp@fres =2156"155KkQ=333kQ

K =2.15
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All antenna components are now known, so the equivalent circuit can be determined (see Figure 13).

Figure 13. Antenna equivalent circuit
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The equivalent circuit can be simplified by recalculating the series resistance into a parallel resistance (see
Figure 14) at the operating frequency, with the formula:
oLar Ry

2 Vi
_Repc _ o _ (@27 fy Laa) (2-71356MHz 926nH) _
RSDC

oLant Repe 394mg
The total resistance for the antenna equivalent circuit can be represented by a parallel resistance consisting only
of the DC series resistance (recalculated into a parallel one), and the parallel resistance converted to the
operating frequency.

Adding the two parallel resistances leads to the total parallel resistance:

_ Rppe. 'Re@woe ~ 15.9Q-3.33kQ —276KO

R, +Reamox  15.9kQ +3.33kQ

15.9kQ

Q=

RPANT

Figure 14. Antenna equivalent circuit (final)
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The values for the final and simplified antenna equivalent resonance circuit are:

. RpaNT = 2.76 kKQ

. CANT = 6.96 pF

. LanT = 926 nH

The maximum achievable Q factor for this antenna can now be calculated:

Q =RpanT/ (W * LanT) =2.76 KQ / (2 1 * 13.56 MHZ * 926 nH) = 34.8

This Q factor is valid for the freely oscillating unconnected antenna.

The Q factor has a direct influence on the rise and fall times of the modulated signal.
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Figure 15 and Table 3 show the definition of rise and fall times for a Type-A signal modulated with 100% ASK and
a data rate of 106 Kbit/s (fyork / 128), while Figure 16 is an example of their dependence on the Q factor.

Figure 15. Definition of timing parameters for Type-A with 106 Kbit/s
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Table 3. Timing parameters for Type-A with 106 Kbit/s
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Figure 16. Timing parameters vs. Q factor
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For each protocol (Type-A, Type-B) and data rate, a maximum allowable Q factor can be determined, it must not
be exceeded to get a modulated signal compliant with ISO waveforms.

The calculation of the maximum allowable Q factor for Type-A with a data rate of 106 Kbit/s is based on the
bandwidth - time product, and a on a definition of the Q factor resulting in the following equation:

B*T21;Q=fyork/B — Q< fyorc® T— Q< 13.56 MHz * 3 ps = 41
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In the above calculation the time T, represented in Figure 17, is the highest possible value of the timing parameter
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Figure 17. Definition of t1 for Type-A with a data rate of 106 Kbit/s
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The Q factor for the application must be below 41 (for Type-A and 106 Kbit/s) to achieve standard-compliant rise
and fall times, hence the previously calculated Q factor is too high and has to be lowered. This is achieved by
connecting an external parallel resistor (RQ) at the antenna pins. The resistor value depends upon the targeted Q
factor (8), and is determined as follows:

=Q*w*LanT =821 *13.56 MHz * 926 nH = 631 Q
Taking the parasitic resistor RPANT from the antenna equivalent circuit into account, the effective resistor RQ to
adjust the Q factor to 20 is calculated by the formula below:
Rq = (RpanT * RT) / (RpanT - RT) = (2.76 kQ * 631 Q) / (2.76 kQ - 631 Q) =818 Q
The closest available component value is 820 Q.

The explanation of how to determine the antenna equivalent circuit and the resistor for the Q factor adjustment is
the theoretical background on which the ST25R antenna matching tool is based on.
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7 Antenna matching

The whole antenna interface stage consisting of EMC filter, matching network, RFI voltage divider and antenna
equivalent circuit together with the resistor for the Q factor adjustment is represented in Figure 18 as a differential
topology.

The EMC filter is a one stage filter made up of a series inductor and a parallel capacitor to ground. The matching
network consists of a series and a parallel capacitor, whereas just one parallel component is used in this topology.
The resistor for the Q factor adjustment is a series resistor. The antenna is shown as an equivalent circuit
consisting of a series inductor, a parallel resistor, and a parallel capacitor. The voltage divider for the receive path
is capacitive and connected directly at the antenna pins.

Figure 18. Differential matching topology
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7.1 Capacitive antenna matching and EMC cutoff frequency

Asymmetric and capacitive matchings are commonly used terms that relate to the selection of the EMI cutoff
frequency and the way the Smith chart looks like.

For ST25R200 it is strongly recommended to implement a cutoff frequency between 17 and 22 MHz, which brings
various benefits to ensure the correct operating conditions detailed on the device electrical characteristics.

With capacitive matchings, the impedance seen by the RFO drivers increases in most cases with the coupling
factor. In other words, the closer the tag, the higher the matching impedance, which in turn automatically lowers
the output power and the Tx current. This is beneficial because when the tag is close, the Tx current remains
below the maximum limit.

Furthermore, capacitive matchings greatly reduce the transients at RFO pins compared to inductive matched
loads.
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Section 8.6 and Section 8.7 describe how to verify that design implementation operates within limits.

Figure 19. Inductive and capacitive areas

The Smith chart above depicts the inductive area in red (above), and capacitive area in green (below).

The ST25R100/200 requires antenna impedance circles in the capacitive region of the Smith chart for correct
operation.

It is important to follow the instructions in Section 4 to avoid omitting important steps in the design procedure.
Table 4 shows the resulting Smith charts of four different matching examples.

The recommended RFO signal behavior as shown in Figure 38 can be achieved by keeping the resonance circle
in the capacitive area of the Smith chart, as shown in the Figure 33 and Figure 34 examples.

Figure 35 and Figure 36, two non-recommended matching examples with inductive switching characteristics.

7.2 Matching tool

The STMicroelectronics ST25R antenna matching tool is a straightforward tool to determine the matching for the
antenna once the electrical antenna parameters have been measured. The tool comes with an intuitive GUI to
guide the user through the process of finding the component values. Additionally, a program called Qucs circuit
simulator can be started directly from the GUI. The Qucs simulation tool can be used to perform AC,

S-parameter and transient simulations to verify the component values.

Qucs is integrated into the ST25R antenna matching tool installer. It is also available as a free download from
http://sourceforge.net (it is recommended to use version number 0.0.18, the one embedded into the ST25R
antenna matching tool). As for the installation path, do not use the default Windows directory, but rather a path
like C:\Tools\Qucs. To open the matching tool, download the executable (STSW-ST25R004) from www.st.com.
The main window is shown in Figure 20.

The process consists of five steps from top to bottom:

1. Insert the measured antenna input parameters at 1 MHz and SRF
Select a precondition, or define your own condition

Define EMC filter coil inductance and DC resistance

Enter the target matching impedance and target Q factor
Calculate and simulate the computed values

o> N
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Figure 20. ST25R antenna matching tool - main window

% ST25R Antenna Matching Tool (release V3.6.10.0) - *

File  eDesignSuite  Application notes  Help

Target |ST25R100 v

Config |aifferental v ,”_{ pF
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s
EMC Inductor Ij| [nk] [ 7oF I
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Target matching Z [Ohm] 7 pF | |
Target @ factor wr [ | |

}_1 Il oF
i— B}

Note Acsivase STasRIo-as 2

Save & Simulate Circuit Start Ques

The first step is already completed in Figure 20: as described in Section 6.2, the antenna parameter have already
been entered in the input parameter fields.

In the matching inputs area, enter the desired EMC filter cutoff frequency, the target matching impedance and the
desired antenna Q factor. There are predefined example/presets, either select one of them or define your own
condition, depending on the application.

The third step is to choose a value for the inductance of the EMC filter.

The selected EMC filter frequency and inductance are dependent on each other and may have to be adapted.
The EMC filter capacitor value is calculated from these two inputs. Depending on the chosen EMC inductors, a
proper inductor DC resistance has to be entered. This value can be found in the datasheet of the inductor. The
antenna Q factor is shown after the computation in the schematic area. If the desired Q factor is higher than the
calculated antenna Q factor, a negative damping resistor value is displayed.
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Click the “calculate” button to calculate and view all component values (Figure 21).

Figure 21. ST25R antenna matching tool - calculated matching components

# ST25R Antenna Matching Tool (release V3.7.0.0) — x

File  eDesignSuite  Application notes  Help

Target |sT25R100 v
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Save & Simulate Circuit Start Qucs

Parasitic (like the ESR of the capacitors) and special component parameters are not considered.

With all values calculated the results can now be simulated: click on Simulate Circuit, a save dialog pops up
asking to save the schematic file. Carefully choose the data destination (depending on the r/w permissions), the
suggested location is $userprofile$\.qucs\PROJECT prj (PROJECT = Project Name; prj =
QUCS suffix)

If the schematic files need to be loaded to continue the simulations, Qucs can be started by pressing the “Start
Qucs” button. If the files are saved in above mentioned location, Qucs automatically finds and displays them in
the projects panel.

Simulation

If Qucs has been started via the “Simulate Circuit” button and the schematic files have been saved accordingly,
Qucs automatically loads the schematics. If this does not happen, use the file-open dialog to load the schematics.

Qucs uses a schematic file to setup the simulation and a display file for the results. The before-calculated values
are automatically inserted in a Qucs schematic template, displayed while saving.
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The component values and simulation parameters are found in the top section of the sheet, which also contains
formulas required for the display file/view. It is strongly recommended to change component values only in the
section “Component-Values” and not in the simulation model itself. Figure 22. Simulation parameters shows the
antenna parameters, very similar to the before-calculated values.

Figure 22. Simulation parameters
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The simulations are based on three different models:

1. S-parameter model (Figure 23) calculate the target matching impedance in the Smith chart. 50 Q is used as
the source impedance to compare the results with the VNA. The results are in Figure 26.

2. Transient simulation (Figure 24) checks the waveform of the OOK and calculates the RFI voltage to define the

capacitive voltage divider values. The estimated IC output driver impedance is 2 Q. The results are shown in
Figure 28.

3. AC simulation (Figure 25) calculates the reflection and transmission coefficients (S11 and S21) with the IC
output driver impedance of 2 Q. This is used to calculate the Q factor, the phase differences between RFO
and RFI and to monitor the relation between the resonance frequencies of the antenna and EMC filter stages.
The results are shown in Figure 26 and Figure 28.

Figure 23 shows the S-parameter model, while “component-values” and “antenna-trim” areas are shown in
Figure 22. The values assigned here are automatically linked to all three models.
The difference between the S-parameter and AC model is the impedance of the power source.

While measuring the impedance (S-parameter measurement) the matching network and antenna is powered by

this VNA. The impedance of the VNA is in most cases 50 Q, therefore the source impedance of the S-parameter
model has to be 50 Q.

The transient model is powered by two periodic rectangular voltage pulse sources. Every source represents one
single-ended driver stage. Define the output resistance of the driver stage, by setting ZFRO.

Note: The simulated RFO transients do not reflect the real transient device behavior. This means that the verification

of the RFO peak voltage as described in chapter 7.6 and especially the RFO transients can only be determined
by a measurement.
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The AC model is used to simulate the matching network during normal operation, hence the source impedance of
the AC power source must correlate with the chip impedance. The forward reflection (S11) and forward

transmission coefficients (S21), as well as the phase and magnitude characteristics can be calculated with this

simulation. At the end, the results are displayed in a new tab. It is also possible to include further simulations, like

parameter sweep.

Figure 24. Transient simulation

Figure 23. S-parameter model
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Figure 25. AC simulation
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Results

7.3.2

The transfer functions dB [S11] and dB [S21] are calculated in Eqn4 (S-Parameter equations box in Figure 22).

This equation uses port 3 and 4 of the AC simulation model,dB [S11] represents the reflected power on the RFOx

pins.
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Figure 26 shows the forward transmission, which evidences the damping over frequency. The Smith chart
displays the nominal resistance of the matching network plus antenna over frequency. The Smith chart shows the
13.56 MHz marker (at 23.1 Q -j0.5) with the impedance curve positioned in capacitive region of the Smith chart
caused by the 20 MHz EMC cutoff frequency. The current version of the antenna matching tool, however, only
supports the calculation of matching values optimized for a true 13.56 MHz target impedance.. That means a
desired reactive part of a few -jOhms are not taken into account. It is therefore necessary to manually adjust the
series and parallel matching capacitors in Qucs to achieve an impedance circle as indicated for example in
Figure 3. The 13.56 MHz point is read at 15 Q -j3.3. The additional 3.3 Q reactance or even higher reactance
positively influences the capacitive RFO switching behavior.

Figure 26. Simulation results of the S-parameter and the AC model
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The Q factor simulation is calculated from the dB[S21] result.
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As result of the transient simulation we can have a look at the shaping of the antenna voltage and the voltage at
the RFIx pins. Eqn2 (capacitive voltage divider box in Figure 22) describes how the voltage at RFIx pins gets
biased to the level of AGD (the analog reference voltage). The input voltage must not exceed 3 VPP. In the lower
section of Figure 27 the magnitude of the antenna voltage and matching impedance as well as the phase
difference (phasediff) between RFOx and RFIx pins are displayed.

Figure 27. Simulation results of the transient and of the AC model
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Matching network behavior
Since the simulation does not always match with the reality, some fine tuning may be needed.
Figure 28 shows how the matching network behaves when some components are changed.

Note that the behavior of Rdamp is valid only for the series resistor configuration, for the parallel damping resistor
the behavior is the opposite.

When changing a component, other effects can appear. As an example, changing the serial capacitor changes
the diameter of the resonance cycle, but also shifts the resonance frequency, similarly as when changing the
parallel capacitor.
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Figure 28. Fine tuning of the matching circuit
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This section discusses the verification of the designed antenna and explains the measurement of timing
parameters, Q factor, and target matching impedance.

Measurement of PCD RF analog parameters

To ensure correct operation and interoperability of a reader system, all measurements must be performed
according to the required standard (for example, ISO 14443). As an example, to test against ISO 14443
contactless standard it is necessary to use the ISO reference PICC defined in ISO/IEC 10373-6.

Verifying the RF signaling parameters with an oscilloscope loop only gives a first indication on signal forms, but
does not produce any meaningful or comparable measurement result.

Figure 29, Figure 30, and Section 8.1 show, respectively, snapshots of Type A 106 kbit, and Type B 106 kbit/s
measurements with a reference PICC.

Figure 29. 1ISO 14443 Type A wave shape measurement
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Figure 30. 1SO 14443 Type B wave shape measurement
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8.2 Verification of the Q factor in the time domain

The resonance circuit envelope can be calculated (for falling and rising edges) with exponential functions:
Qf = 2 17 fyork [(t1 - t2) / (In 0.9 - In 0.05)]

Qr =21 fyork [t3/ (In 0.9 - In 0.05)]

The overall Q is determined averaging Qs and Q, thatis, Q = (Qs + Q;) / 2.

8.3 Verification of the Q factor in the frequency domain
The Q factor can be measured using a vector network analyzer and an ISO10373-6
Class 1-3 calibration coil. The sequence is made up of the following steps:
Calibrate the network analyzer for a frequency sweep in the 10 to 20 MHz range
S11 measurement must be displayed in log mag format.
Connect the calibration coil to the VNA.
“Short” calibration of the coil and conversion to “Z: Reflection”.
Set marker 1 and enable the bandwidth / Q factor measurement.

o0k wN -~

Place the PCD antenna on the measurement coil.

Note: If the reader is plugged and powered, ensure that the TX driver is set to high-Z to avoid a high power transfer
to the VNA ports, which can damage the VNA.

Place a 2 Q resistor between the RFO pin to simulate the chip resistance during operation.
8. Press “max search” to align the marker on the resonance frequency peak of the PCD antenna.
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Figure 31 shows the results of the measurement.

Measurement of the Q factor with the network analyzer
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Measurement of the target matching impedance

The matching impedance of a reader system must be measured with the antenna placed in its final position. A
network analyzer is required and must be configured as described in Section 6.1.

The target matching impedance is measured differentially between RFO1 and RFO2. The ST25R200 must not be
powered during the measurement.
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The following Smith chart shows a good example of a capacitive matching. The 13.56 MHz resonance at around
17 Q-j6 impedance results in a driving current of about 220 mA at 5 V regulated voltage. The large reactance
value of for example -j6 Q helps in achieving the capacitive switching behavior as shown in chapter

Section 8.6: Verification of RFO peak voltage.

Target matching impedance measured with network analyzer
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Matching examples

Capacitive matching 1 Capacitive matching 2
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NFC tuning circuit calculation

The NFC tuning circuit calculator applies to ST25R readers. It provides the component values of the matching
network for a given NFC antenna.

To compute the components value of the matching network located between the NFC reader and the antenna,
simply enter the antenna electrical parameters and matching targets values, and select the topology of the
matching network.

The tool returns the complete set of component values requested to achieve the desired design targets.
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The circuit can then be exported as a Qucs file to further analyze and optimize the design.

The tuning circuit calculator currently only optimizes the matching values for the real part of the 13.56 MHz
impedance. The imaginary part can not yet be set to achieve the required capacitive behavior. This means that
the matching must be adapted in most cases.

An on-line version of the tool is available at https://eds.st.com.
Figure 37. NFC tuning circuit calculator
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Verification of RFO peak voltage
By using an oscilloscope and a high impedance probe, measure the signal on both RFO1 and RFO2 to GND_DR.
Verify the RFO peak voltage with the oscilloscope probe in unloaded and loaded cases.

The loaded condition is met when a contactless card/device is loading and detuning the antenna. The abs (max)
value or also called Vmax in some oscilloscopes must be below Vrgo (6.0 V) in order not to exceed the device's

electrical characteristics for these pins.
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Figure 38 shows an example of a lower ohmic tuning and the ST25R200 device supplied with 5.5 V. The RFO
peak signal is measured with V,ax at 5.8 V and is thus below the maximum VRgo of 6 V as defined in the

electrical characteristics of the datasheet.

RFO signal with capacitive transient behavior
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In case the RFO peak signal is larger than 6 V, countermeasures must be taken to reduce this peak value. This
can be achieved by for example reducing the supply voltage, lowering the device internal regulated voltage,
adapting the matching circuit and/or adding damping resistance.
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A bad RFO signal example causes unwanted inductive transient behaviour in the unit and must be avoided. This

is typically the outcome of matching that results in an impedance curve and a 13.56 MHz target point in the
inductive region of the Smith chart.

RFO transients showing inductive switching behavior

TKEECHY\JSJ!.(\EH i DS0-X} 3024T, MyS6310828, 07.56.2022120226: Mon Jan 08 21:44:29 2024

Stop E 2.2
‘ Too large positive transient at high side,
| peaking at >6V

Freq(1):

No negative transient at low side, +Duty(1):
minimizing the effect of a capacitive .
switching behavior Pk-Pk(1):

Coupling Impedance BW Limit Invert Probe

DC 1M 0 5

Verification of the driver current

Verify the max lypp_| po current in loaded and unloaded conditions of the antenna to not exceed the device

maximum limit. This can be accomplished by simply measuring the current into the device’s VDD path when the
RF carrier is switched on. The RF carrier can be switched on by enabling tx_en bit in operation register.
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9 Conclusion

This document describes the basic antenna design and tuning process for the ST25R200 device.

It helps the user to define the output power of the reader, specifying the components like EMC inductors used for
the matching network. It also guides through the measurements of the antenna parameters, and the computation
and simulation of the matching network.

The last section is dedicated to basic design verification steps, to ensure that the matching network is properly
defined and operates within device limitations.
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STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics — All rights reserved
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