

Migrating from STM32L0 to STM32U0 MCUs

Introduction

For designers of STM32 microcontroller applications, being able to replace one microcontroller type with another from the same product family easily is an important asset. Migrating an application to a different microcontroller is often needed when product requirements grow, putting extra demands on memory size, or increasing the number of I/Os. The cost reduction objectives may also be an argument to switch to smaller components and shrink the PCB area.

This application note analyzes the steps required to migrate an existing design from the STM32L0 series to the STM32U0 series. Three aspects need to be considered for the migration: hardware, peripherals, and firmware.

This document lists the full set of features available for the STM32L0 series and the equivalent features on the STM32U0 series (some products may have fewer features depending on their part number).

To benefit fully from this application note, the user must be familiar with the STM32 microcontroller documentation available on www.st.com, with a particular focus on the documents listed below:

- STM32L0 series datasheets
- STM32U0 series datasheets:
 - STM32U031x4/6/8: Ultra-low-power Arm[®] Cortex[®]-M0+ 32-bit MCU, up to 64-Kbyte flash memory, 12-Kbyte SRAM (DS14581)
 - STM32U031x4/6/8: Ultra-low-power Arm[®] Cortex[®]-M0+ 32-bit MCU, up to 64-Kbyte flash memory, 12-Kbyte SRAM (DS14548)
 - STM32U083xC: Ultra-low-power Arm[®] Cortex[®]-M0+ 32-bit MCU, 256-Kbyte flash memory, 40- Kbyte SRAM, USB, LCD, AES (DS14463)
- STM32L0 series reference manuals:
 - Ultra-low-power STM32L0x1 advanced Arm®-based 32-bit MCUs (RM0377)
 - Ultra-low-power STM32L0x2 advanced Arm®-based 32-bit MCUs (RM0376)
 - Ultra-low-power STM32L0x3 advanced Arm[®]-based 32-bit MCUs (RM0367)
- STM32U0 reference manual: STM32U0 series advanced Arm[®]-based 32-bit MCUs (RM0503)

1 STM32U0 series overview

The STM32U0 series devices are a perfect fit in terms of ultra-low power, performance, memory size, and peripherals at a cost-effective price.

In particular, STM32U0 series devices offer higher frequency and performance operations than STM32L0 series devices. The STM32U0 series features an Arm[®] Cortex[®]-M0+ processor at 56 MHz, versus a Cortex[®]-M0+ processor at 32 MHz featured on the STM32L0 series. STM32U0 devices also feature optimized flash memory access through the adaptive real-time memory accelerator (ART accelerator).

STM32U0 series MCUs increase the low-power efficiency in dynamic mode (µA/MHz), and reach a very low level of static power consumption on the various available low-power modes.

The detailed list of available features and packages for each product is available in the respective datasheets. STM32U0 series devices include a larger set of peripherals with advanced features compared to the STM32L0 series, such as:

- Touch sensing controller (TSC)
- Low-power universal asynchronous receiver transmitter (LPUART)
- Infrared interface (IRTIM)
- Low-power timer (LPTIM)
- Voltage reference buffer (VREFBUF)
- DMA request multiplexer (DMAMUX)
- Clock recovery system (CRS) for USB
- SRAM1 size is different on the various STM32U0 devices:
 - 32 Kbytes for STM32U0x3
 - 8 Kbytes for STM32U0x1
- Additional SRAM2 with data preservation in Standby mode:
 - 8 Kbytes for STM32U0x3
 - 4 Kbytes for STM32U0x1
- Optimized power consumption and an enriched set of low-power modes

This migration guide covers only the migration from the STM32L0 series to the STM32U0 series, and as a consequence any new features present on the STM32U0 series but not already present on the STM32L0 series are not covered by this document. Refer to the STM32U0 reference manuals and datasheets for an exhaustive picture.

Table 1. STM32U0 memory availability

Part number	Flash memory size	SRAM1	SRAM2	Feature level
STM32U031x4	16 Kbytes			
STM32U031x6	32 Kbytes	8 Kbytes	4 Kbytes	-
STM32U031x8	64 Kbytes			
STM32U073x8				With LCD + USB
STM32U083x8	64 Kbytes			STM32U073 + AES cryptography
STM32U073xB				With LCD + USB
STM32U083xB	128 Kbytes	32 Kbytes	8 Kbytes	STM32U073 + AES cryptography
STM32U073xC				With LCD + USB
STM32U083xC	256 Kbytes			STM32U073 with crypto

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

AN6091 - Rev 2 page 2/46

2 STM32L0 series overview

The exclusive combination of an Arm[®] Cortex[®]-M0+ core (max speed 32 MHz) and STM32 ultra-low-power features makes the STM32L0 series the best fit for applications operating on battery or supplied by energy harvesting and the world's lowest power consumption MCU at 125°C.

The STM32L0 series offer dynamic voltage scaling, an ultra-low-power clock oscillator, an LCD interface, comparators, DAC, and hardware encryption. Autonomous peripherals (including USART, I2C, and touch sense controller) reduce the load of the Arm[®] Cortex[®]-M0+ core, leading to fewer CPU wakeups and decreasing the processing time and power consumption.

The STM32L0 series devices are available with up to 192 Kbytes of flash memory, 20 Kbytes of RAM, and up to 6 Kbytes of embedded EEPROM (no emulation needed) in 14- to 100-pin packages.

Three feature levels (Table 2) and four categories (Table 3) cover a wide range of customer needs. Table 4 summarizes the memory availability of the STM32L0 series devices.

Feature level

Additional features

Crystal-less USB 2.0 FS (BCD, LPM-compliant)

16 capacitive touch keys
True random number generator (TRNG)

Crystal-less USB 2.0 FS
16 capacitive touch keys
True random number generator (TRNG)

LCD driver (8x48)

Table 2. STM32L0 series feature levels

Table 3. STM32L0 series product category overview

Type ⁽¹⁾	Part number
Category 1	STM32L01xxx, STM32L02xxx
Category 2	STM32L03xxx, STM32L04xxx
Category 3	STM32L05xxx, STM32L06xxx
Category 5	STM32L07xxx, STM32L08xxx

^{1.} Category X devices are referred to as "Cat. X" devices within this document.

Table 4. STM32L0 memory availability and feature levels

Category	Part number	Flash memory size (Kbytes)	EEPROM size (Kbytes) ⁽¹⁾	RAM size (Kbytes)	Feature level
4	STM32L01xxx	8/16	0.5	2	1
'	STM32L02xxx	6/10	0.5	2	1 + AES
2	STM32L03xxx	16/32	1	8	1, 2
2	STM32L04xxx		1		1
3	STM32L05xxx	32/64	2	8	1, 2, 3
3	STM32L06xxx		2	0	2, 3 + AES
5	STM32L07xxx	16/128/192	3/6	20	1, 2, 3
5	STM32L08xxx	10/120/192			1, 2, 3 + AES

^{1.} Not available for all part numbers.

AN6091 - Rev 2 page 3/46

3 Hardware migration

3.1 Package availability

Some packages are available for both the STM32U0 and STM32L0 series, as illustrated by Table 5 and Table 6. The other packages available for the STM32L0 series are not available on the STM32U0 series. The STM32U0 series also brings new packages that are not available on the STM32L0 series.

Note that the WLCSP packages are not equivalent and have different die sizes for each product.

The table below lists the available packages for the STM32U0 series.

Table 5. Available packages for the STM32U0 series

Package	STM32L0 series ⁽¹⁾	STM32U083xx	STM32U073xx	STM32U031xx	Size (mm x mm)
TSSOP20	X	-	-	X	6.5 x 4.4
UFQFPN32	X	X	X	X	5 x 5
UFQFPN48	X	X	X	X	7 x 7
LQFP48	X	X	X	X	7 x 7
LQFP64	X	X	X	X	10 x 10
LQFP80	-	X	X	-	12 x 12
UFBGA64	X	X	X	X	5 x 5
UFBGA81	-	X	X	-	5 x 5
WLCSP27	-	-	-	X	2.55 x 2.34
WLCSP42	-	X	X	-	2.82 x 2.93

^{1.} This column with a gray background represents the STM32L0 series to provide a comparison between both series.

AN6091 - Rev 2 page 4/46

The table below lists the available packages for the STM32L0 series.

Table 6. Available packages for the STM32L0 series

		STM32L0 series				
Package	STM32U0 series ⁽¹⁾	Cat. 1 devices	Cat. 2 devices	Cat. 3 devices	Cat. 5 devices	
	011110200 001100	STM32L01xxx, STM32L02xxx	STM32L03xxx, STM32L04xxx	STM32L05xxx, STM32L06xxx	STM32L07xxx, STM32L08xxx	
TSSOP14	-	X	-	-	-	
TSSOP20	X	X	X	-	-	
UFQFPN20	-	X	-	-	-	
UFQFPN28	-	X	X	-	-	
UFQFPN32	X	X	X	X	X	
LQFP32	-	X	X	X	X	
LQFP48	X	-	X	X	X	
LQFP64	X	-	-	X	X	
LQFP100	-	-	-	-	X	
TFBGA64	X	-	-	X	X	
UFBGA64	X	-	-	-	X	
UFBGA100	-	-	-	-	X	
WLCSP25	-	X	X	-	-	
WLCSP36	-	-	-	X	-	
WLCSP49	-	-	-	-	X	

^{1.} This column with a gray background represents the STM32U0 series to provide a comparison between both series.

3.2 Pin compatibility

The STM32U0 and STM32L0 series share a high level of pin compatibility. Most peripherals share the same pins in both series, rendering the transition from an STM32L0 device to an STM32U0 device very straightforward on most available packages, like UFBGA64, LQFP64/48/32, and UFQFPN48. The UFQFPN32 package requires a minor PCB redesign as STM32U0 does not have an exposed pad connected to VSS. STM32L0 Cat. 5 devices also need a PCB redesign, as the original pinout was already incompatible with the other devices in the same family. The TSSOP20 package brings better flexibility in the availability of GPIO and alternate functions, however it is not directly replacable either.

Due to the shared use of system pins as GPIOs, STM32U0 offers two additional GPIOs on the same package. There are a few additional exceptions to take into consideration. The STM32U0 series TSC group assignment is different from that of the STM32L0 series, so applications using TSC require a PCB redesign. The STM32U0 ADC channels are connected to the same pins as for the STM32L0 series, but with different channel numbers. Refer to the product datasheet for more details.

3.2.1 Pinout differences between STM32L0 and STM32U0 TSSOP packages

The pinout of the STM32U0 TSSOP20 package provides multiple bondings of the GPIO to offer an extended mix of alternate functions for user application as opposed to a fixed selection. Consequentially, it is different from the STM32L0 TSSOP20 pinout.

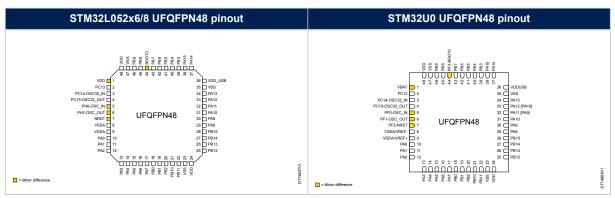
AN6091 - Rev 2 page 5/46

Table 7. Pinout comparison of STM32L0 and STM32U0 TSSOP20 packages

STM32L0 series	STM32U0 series		
P89-80010 ☐ 1	PBBPBB		

3.2.2 Pinout differences between STM32L0 and STM32U0 QFP packages

The table below shows the pinout differences in QFP packages for the STM32L0 and STM32U0 series.


Table 8. Pinout differences between STM32L0 and STM32U0 QFP packages

STM32L0 series					STM32	U0 series	
UFQFPN32 ⁽¹)/LQFP32	UFQFPN48/ LQFP48	LQFP64	Pinout	UFQFPN32/ LQFP32	UFQFPN48/ LQFP48	LQFP64	Pinout
-	1	1	VLCD	-	1	1	VBAT
4	7	7	NRST	4	7	7	PF2-NRST ⁽²⁾
5	9	13	VDDA	5	9	13	VDDA/VREF+
-	36	48	VDD	-	36	48	VDDUSB ⁽³⁾
31	44	60	воото	31	44	60	PF3-BOOT0 ⁽²⁾

- The pinout of STM32L0 Cat. 5 UFQFPN32 devices is not compatible with other STM32L0 devices. Refer to Table 11 for more details.
- 2. System pins can also be used as GPIO.
- 3. The VDDUSB pin can be connected externally to VDD.

Table 9 below gives an example of the pinout differences between STM32L0 and STM32U0 UFQFPN48 packages.

Table 9. Example of pinout differences between STM32L0 and STM32U0 UFQFPN48 packages

AN6091 - Rev 2 page 6/46

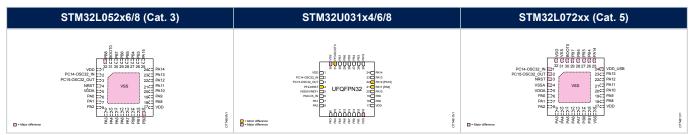

The UFQFPN packages used on STM32U0 devices does not support VSS on the exposed pad. On UFQFPN32, VSS is bonded to pins 16 and 32, and pins PB2 and PB8 are therefore not present on this package for the STM32U0 series.

Table 10. Additional pinout differences between STM32L0 UFQFPN packages with exposed pad and STM32U0 UFQPN packages

STM32L0			STM32U0		
UFQFPN32(1)	UFQFPN48	Pinout	UFQFPN32	UFQFPN48	Pinout
0	0	VSS	-	-	No exposed pad
16	X	PB2	16	X	VSS
32	X	PB8	32	X	VSS

Table 11 below gives an example of the pinout differences between STM32L0 and STM32U0 UFQFPN32 packages.

Table 11. Example of pinout differences between STM32L0 and STM32U0 UFQFPN32 packages

3.2.3 Ballout differences between STM32L0 and STM32U0 BGA packages

Table 12 below shows the ballout differences in BGA packages for the STM32L0 and STM32U0 series.

Table 12. Ballout differences between STM32L0 and STM32U0 BGA packages

STM32L	STM32L0 series		0 series
TFBGA64/UFBGA64	Ballout	UFBGA64	Ballout
B2	VDD	B2	VBAT
G1	VREF+	G1	PC3
E5	VDD	E5	VDDUSB ⁽¹⁾
H1	VDDA	H1	VDDA/VREF+
B4	BOOT0	B4	PF3-BOOT0 ⁽²⁾
E1	NRST	E1	PF2-NRST ⁽²⁾
E6 ⁽³⁾	VDDIO2	E6	VDD

- 1. The VDDUSB pin can be connected externally to VDD.
- 2. System pins can also be used as GPIO.
- 3. The STM32U0 series does not support independent VDDIO2.

AN6091 - Rev 2 page 7/46

Table 13 below gives an example of the pinout differences between STM32L0 and STM32U0 UFBGA64 packages.

Table 13. Example of ballout differences between STM32L0 and STM32U0 UFBGA64 packages

	STM32L072xx		STM32U073xx
	1 2 3 4 5 6 7 8	_	1 2 3 4 5 6 7 8
A	#CIR- bscs2 (PCI3) (PBB) (PBA) (PBI3) (PAI5) (PAI4) (PAI3)	А	9614 9622 (PC13) (P89) (P84) (P83) (P815) (P814) (P813)
В	PCTD (VDD) (PBB) (BOOTR) (PD2) (PC11) (PC10) (PA12)	В	96T35 05622 OUP (P01) (P01) (P010) (PA12)
с	(PES) (PSS) (PB7) (PB5) (PC12) (PA10) (PA9) (PA11)	с	(VSS) (P87) (P85) (PC12) (P810) (P89) (PA11)
D	(SCC) (VD) (PB6) (VSS) (VSS) (VSS) (PA8) (PC9)	D	OSC (VDD) (PB6) (VSS) (VSS) (VSS) (PA8) (PG)
E	(NIST) (PCI) (PCO) (VOD) (VOD) (NOD) (RCT) (PCS)	E	PCI
F	(VSSA) (PC2) (PA2) (PA5) (PB0) (PC6) (PB15) (PB14)	F	(VSSN) (WEE) (PC2) (PA2) (PA5) (PB0) (PC6) (PB15) (PB14)
G	(NEE) (PAO) (PA3) (PA6) (PB1) (PB2) (PB10) (PB13)	G	(PGS) (PAG) (PAG) (PAG) (PBI) (PBI) (PBI) (PBI3)
н	(VODA) (PAI) (PAA) (PA7) (PCA) (PCS) (PBII) (PBIZ)	н	
	07748	= Minor difference = Major difference	(PAI) (PAI) (PAI) (PAI) (PAI) (PAII) (PAII)

3.3 Recommendations for board migration

The VLCD pin in the STM32U0 series is now multiplexed on the PC3 GPIO through alternate function programming. The PC3 GPIO is located at pin 13 on LQFP80, pin 11 on LQFP64, and pin G1 on BGA64/BGA81.

This implies that any other function in the STM32U0 devices PC3 pins cannot be used on PC3 when the LCD is used by the application. It also implies that the related STM32L0 series PC3 alternate functions, if they are used by the application, must be mapped to other STM32U0 series pins.

The V_{BAT} or V_{DD} supply (if no specific V_{BAT} power is used), must now be connected to the following pins, used as VDD on STM32L0:

- Pin 1 (LQFP64/LQFP48/UFQFPN48)
- Pin B1 (BGA81)
- Pin B2 (BGA64)

On the BGA64 package, the G1 ball used for the VREF+ signal in the STM32L0 series is used as the PC3 GPIO (multiplexed with VLCD) in the STM32U0 series, and the VREF+ signal is bonded with VDDA on the H1 ball.

The boot pins are different in both families. The BOOT0 is multiplexed with the PF3 GPIO on the STM32U0. Refer to Section 4: Boot mode selection for details. Those changes do not impact the board design.

The NRST pin is multiplexed with the PF2 pin, referred to as PF2-NRST.

Note: The GPIOF port replaces the GPIOH port.

Note: New packages (LQFP80, and UFBGA81) have been introduced for the STM32U0 series.

Note: Multiple GPIOs are bonded together to the same pin on TSSOP20.

The NRST pin is shared with GPIO in the STM32U0 series. Selection is available through the device option bytes, where the user could select legacy behavior, input only mode, or GPIO mode. This configuration is loaded from the option bytes after each power on, so the external circuitry must let the NRST pin cross VIH level after power on or exit from deep low-power modes.

AN6091 - Rev 2 page 8/46

4 Boot mode selection

Both the STM32L0 and STM32U0 series offer three different boot modes: boot from the main flash memory, boot from SRAM, or boot from the system memory. However, the way to select the boot mode differs between the products:

- On STM32L0 devices, the boot mode is selected using the nBOOT1 option bit with the BOOT0 pin. On Cat. 1 devices, the nBOOT0 and nBOOT_SEL option bits are available in the FLASH_OPTR register.
- On STM32U0 devices, the boot mode is selected using the nBOOT1 option bit with the BOOT0 pin or the nBOOT0 option bit, depending on the value of the nBOOT_SEL option bit in the FLASH_OPTR register. Additionally, the BOOT_LOCK bit is available to increase application security. It forces the main flash memory as a boot memory area, and requires support in the firmware to connect the debug interface when the RDP level is not 0.

The tables below show the different configurations available for selecting the boot mode for STM32U0 and STM32L0 devices.

	Salasted heat area			
nBOOT1 bit	BOOT0 pin	nBOOT_SEL bit ⁽¹⁾	nBOOT0_bit ⁽¹⁾	Selected boot area
X	0	0	X	Main flash memory
1	1	0	X	System memory
0	1	0	X	Embedded SRAM
X	X	1	1	Main flash memory
1	X	1	0	System memory
0	X	1	0	Embedded SRAM

Table 14. Boot modes for STM32L0

Table 15. Boot modes for STM32U0 devices

Boot mode configuration					Selected boot area
BOOT_LOCK bit	nBOOT1 bit	BOOT0 pin	nBOOT_SEL bit	nBOOT0_bit	Selected boot area
0	X	0	0	X	Main flash memory
0	1	1	0	X	System memory
0	0	1	0	X	Embedded SRAM
0	Х	X	1	1	Main flash memory
0	1	X	1	0	System memory
0	0	X	1	0	Embedded SRAM
1	Х	X	X	X	Main flash memory forced

AN6091 - Rev 2 page 9/46

^{1.} Grayed options are available on Cat. 1 devices only.

4.1 Embedded bootloader

The embedded bootloader is located in the system memory, programmed by STMicroelectronics during production. This bootloader is used to reprogram the flash memory using one of the serial interfaces listed in the table below (where X = supported).

Table 16. Bootloader interfaces on the STM32L0 and STM32U0 series

		STM32			32L0 series		
Periphera I	Pin	STM32L01xx STM32L02xx	STM32L03xx STM32L04xx	STM32L05xx STM32L06xx	STM32L071xx STM32L081xx	STM32L072xx STM32L082xx STM32L073xx STM32L083xx	STM32U0 series
DFU	USB_DM (PA11) USB_DP (PA12)	-	-	-	-	Х	Х
USART1	USART1_TX (PA9) USART1_RX (PA10)	-	-	X	Х	Х	Х
USART2	USART2_TX (PD5) USART2_RX (PD6)	Х	Х	Х	Х	Х	-
USART2	USART2_TX (PA2) USART2_RX (PA3)	-	-	-	-	-	Х
USART3	USART3_TX (PC10) USART3_RX (PC11)	-	-	-	-	-	Х
I2C1	I2C1_SCL (PB6) I2C1_SDA (PB7)	-	-	-	Х	-	Х
I2C2	I2C2_SCL (PB10) I2C2_SDA (PB11)	-	-	-	Х	-	Х
I2C3	I2C3_SCL (PB3) I2C3_SDA (PB4)	-	-	-	Х	-	Х
SPI1	SPI1_NSS (PA4) SPI1_SCK (PA5) SPI1_MISO (PA6) SPI1_MOSI (PA7)	х	х	x	x	-	Х
SPI2	SPI2_NSS (PB12) SPI2_SCK (PB13) SPI2_MISO (PB14) SPI2_MOSI (PB15)	-	-	×	×	-	Х

Refer to the application note *STM32 microcontroller system memory boot mode* (AN2606) for more details on the bootloader.

For smaller packages, it is important to check the pin and peripheral availability.

AN6091 - Rev 2 page 10/46

5 Low-power modes

By default, the microcontroller is in Run mode after a system or a power reset. Several low-power modes are available to save power when the CPU does not need to be kept running, for example when waiting for an external event. It is up to the user to select the mode that gives the best compromise between low-power consumption, a short startup time, and available wake-up sources.

STM32L0 series and STM32U0 series share the same main low-power modes (Low-power run, Stop, Sleep, Low-power sleep, and Standby) with voltage ranges specific to each series. Additionnally, the STM32U0 series offer three stop modes (Stop 0 and Stop 1 with USB capabilities, and Stop 2) and a new shutdown mode.

Details on the low-power mode configuration in each series can be found in the device reference manual. The consumption figures are given in the device datasheets.

5.1 Low-power modes in the STM32L0 series

Low-power modes

The STM32L0 series devices have the following five low-power modes:

- Low-power run mode: regulator in low-power mode, limited clock frequency, limited number of peripherals running
- Sleep mode: CPU stopped, peripherals kept running
- **Low-power sleep** mode: CPU stopped, limited clock frequency, limited number of peripherals running, regulator in low-power mode, flash memory stopped
- **Stop** mode: SRAM and all registers content are retained. All clocks in the V_{CORE} domain are stopped, the PLL, MSI, HSI16, and HSE are disabled. LSI and LSE can be kept running
- Standby mode: V_{CORE} domain powered off.

Dynamic voltage scaling

The ultra-low-power STM32L0 series devices support the dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply. There are three power consumption ranges:

- Range 1 (V_{Core} = 1.8 V), with the CPU running at up to 32 MHz
- Range 2 (V_{Core} = 1.5 V), with a maximum CPU frequency of 16 MHz
- Range 3 (V_{Core} = 1.2 V), with a maximum CPU frequency limited to 4.2 MHz

The global power consumption is reduced by using clock-gating on unused peripherals.

AN6091 - Rev 2 page 11/46

Table 17 presents a summary of the STM32L0 series low-power modes.

Table 17. STM32L0 series low-power modes

Mode	Reg.	СРИ	Flash memory ⁽	SRAM	Clocks	Peripherals ⁽²⁾	Consumpti on (µA/ MHz)	Wake-up time (µs)
	Range 1						200	
Run	Range 2	On	On	On	Any	All peripherals available	160	N/A
	Range 3						130	
Low- power run	LPR	On	On	On	MSI 131 kHz max	No USB, no ADC, no TSC Other peripherals available	200	3
	Range 1							0.36
Sleep	Range 2	Off	On	On	On Any	All peripherals available	Down to 30	
	Range 3							
Low- power sleep	LPR	Off	On	On	MSI 131 kHz max	No USB, no ADC, no TSC Other peripherals available	200	3.2
Stop	LPR	Off	Off	On	LSI/LSE	RTC available	-	3.5
Standby	OFF	Down	Off	Off	LSI/LSE	RTC and IWDG available	-	50

^{1.} The flash memory can be put in power-down and its clock can be gated off when executing from SRAM.

Wake-up sources

The STM32L0 series devices can get out of the low-power modes on the following events:

- Sleep mode:
 - Any peripheral interrupt/wake-up event
- Stop modes:
 - Any EXTI line event
 - BOR, PVD, COMP, RTC, USB, IWDG, U(S)ART, LPUART, I2C, LPTIM
- Standby mode:
 - WKUP pins rising or falling edge
 - RTC alarm
 - RTC wake-up
 - RTC tamper event
 - RTC timestamp event
 - External reset in NRST pin
 - IWDG reset

AN6091 - Rev 2 page 12/46

^{2.} Can be clock-gated when unused.

5.2 Low-power modes in the STM32U0 series

Low-power modes

The STM32U0 series devices offer more flexibility to reduce the global consumption, in addition to the low-power modes from the STM32L0 series devices. It offers the following new modes:

- Stop 0, Stop 1, and Stop 2 modes: SRAMs and all register content are retained. All clocks in the V_{CORE} domain are stopped; PLL, MSI, HSI16, and HSE are disabled. LSI and LSE can be kept running
- Shutdown mode: the V_{CORE} domain is powered off. All clocks in the V_{CORE} domain are stopped; PLL, MSI, HSI16, LSI, and HSE are disabled. LSE can be kept running

In the main Run mode, the power consumption can be reduced by one of the following means:

- Slowing down the system clocks
- Gating the clocks to the APB and AHB peripherals when they are unused

Low-power run and Sleep modes support a frequency up to 2 MHz, instead of 0.13 kHz on STM32L0.

Dynamic voltage scaling

The main regulator (MR) has two voltage ranges for dynamic voltage scaling (R1 and R2) used in the Run and Sleep modes:

- Range 1 (V_{Core} = 1.2 V), with the CPU running at up to 56 MHz
- Range 2 (V_{Core} = 1.0 V), with a maximum CPU frequency of 18 MHz. All peripheral clocks are also limited to 18 MHz

Compared to STM32L0, the V_{Core} supply is lower, allowing for higher speed at the same time and bringing better product consumption.

The low-power regulator (LPR) is for the Low-power run, Low-power sleep, Stop 1, and Stop 2 modes, as well as for the RAM retention in Standby mode.

Table 18 presents a summary of the STM32U0 series low-power modes. The consumption figures are given for the STM32U031xx devices as an indication. For the power consumption figures of other devices, refer to the dedicated datasheets.

AN6091 - Rev 2 page 13/46

Table 18. STM32U0 series low-power modes

Mode	Reg.	СРИ	Flash memory (1)	SRAM	Clocks	Peripherals ⁽²⁾	Consumptio n	Wake-up time (µs)	
Dun	Range 1	On	02	On	Α	All peripherals available	68 (uA/MHz)	NI/A	
Run	Range 2	On	On	On	Any	All except USB, RNG	61 (uA/MHz)	N/A	
Low- power run	LPR	On	On	On	Any except PLL	All except USB, RNG	65 (uA/MHz)	Range 1: 4 µs to range 2: 64 µs	
Cloop	Range 1	Off	On	On	Any	All peripherals available	24 (uA/MHz)	6 avalos	
Sleep	Range 2	Oii	On	OII	Any	All except USB, RNG	26 (uA/MHz)	6 cycles	
Low- power sleep	LPR	Off	On	On	Any except PLL	All except USB, RNG	28 (uA/MHz)	6 cycles	
Stop 0	MR	Off	Off	On	LSI/LSE	LCD, RTC, I/Os, BOR, PVD, PVM, COMPs, IWDG, LPUART, USB, UART, I2C	100 uA	NC	
Stop 1	LPR	Off	Off	On	LSI/LSE	LCD, RTC, I/Os, BOR, PVD, PVM, COMPs, IWDG, LPUART, USB, UART, I2C	2.0 uA without RTC 2.2 uA with RTC	4 μs in SRAM 6 μs in flash memory	
Stop 2	LPR	Off	Off	On	LSI/LSE	LCD, RTC, I/Os, BOR, PVD, PVM, COMPs, IWDG, LPUART, USB, UART, I2C	515 nA without RTC 630 nA with RTC	5 μs in SRAM 7 μs in flash memory	
Standby	LPR	Off	Off	SRAM2 On	LSI/LSE	BOR, RTC, IWDG All other peripherals are powered off	121 nA without RTC 249 nA with RTC	14	
Standby	Off	Oli	Oii	Off		LSI/LSE	LSI/LSE	I/O configuration can be floating, pull- up, or pull-down	32.5 nA without RTC 160 nA with RTC
Shutdow n	Off	Off	Off	Off	LSE	RTC All other peripherals are powered off I/O configuration can be floating, pull- up, or pull-down	16 nA without RTC 195 nA with RTC	256	

^{1.} The flash memory can be put in power-down and its clock can be gated off when executing from SRAM.

AN6091 - Rev 2 page 14/46

All peripherals can be active or clock-gated to save power consumption. Values are provided with all clock-gated peripherals.

^{3.} Typical current at V_{DD}=1.8 V, 25°C. The consumption values are provided when running from the SRAM, flash memory off: 48 MHz in range 1; 16 MHz in range 2; 2 MHz in Low-power run/Low-power sleep modes. The values differ for different products, refer to the dedicated product datasheets for the exact values.

Wake-up sources

The STM32U0 series devices can get out of the low-power modes on the following events:

- Sleep mode:
 - Any peripheral interrupt/wake-up event
- Stop modes:
 - Any EXTI line event
 - BOR, PVD, PVM, COMP, RTC, USB, IWDG, U(S)ART, LPUART, I2C, SWP, LPTIM, LCD
- Standby mode:
 - WKUP pins rising or falling edge
 - RTC event
 - External reset in NRST pin
 - IWDG reset
- Shutdown mode:
 - WKUP pins rising or falling edge
 - RTC event
 - External reset in NRST pin

5.3 Consumption and performance overview

Table 19 shows the comparison of power consumption between STM32L0 and STM32U0 devices for the main dynamic and static modes. The table represents the typical values for given devices at room temperature.

Note:

On STM32L0 devices, consumption rises very slowly over the temperature, whereas on STM32U0 devices it increases significantly for the highest temperature range. Refer to the relevant device datasheet for the complete figures.

Table 19. Power consumtion comparison between STM32L0 and STM32U0 devices

Mode	STM32L08x/ STM32L07x	STM32L06x/ STM32L05x	STM32L04x/ STM32L03x	STM32L02x/ STM32L01x	STM32L08x/ 7x	STM32L03x	Unit
Run - while 1	93	88	76	76	52	52	uA/MHz
Run - CoreMark (Range 1)	216	197	161	153	78	78	uA/MHz
Run - CoreMark (Range 3/2) ⁽¹⁾	164	146	114	110	70	70	uA/MHz
Sleep (Range 3/2) ⁽¹⁾	33	33	27	27	28	26	uA/MHz
LP Run	202	168	141	137	80	80	uA/MHz
Stop 0	NA	NA	NA	NA	105	105	uA
Stop 1	NA	NA	NA	NA	3.3	2.1	uA
Stop 2	0.430	0.410	0.380	0.340	0.750	0.560	uA
Standby	0.290	0.290	0.255	0.230	0.075	0.068	uA
Shutdown	NA	NA	NA	NA	0.053	0.050	uA

^{1.} The lowest range has been used: Range 3 for STM32L0xx and Range 2 for STM32U0xx, with the highest frequency allowed for the given range.

AN6091 - Rev 2 page 15/46

Table 20 shows a comparison of ULPMark scores, demonstrating better energy efficiency of STM32U0 in typical application use cases. For more information about ULPMark, go to https://www.eembc.org/ulpmark.

Table 20. ULPMark score comparison between STM32L0 and STM32U0 devices

ULPMark	STM32L06x/5x	STM32L02x/1x	STM32U08x/7x	STM32U03x
ULPMark-CP	207	244	407	430
ULPMark-PP	95	83	143	167
ULPMark-CM	-	-	19.7	20.3

AN6091 - Rev 2 page 16/46

Peripheral migration

6.1 STM32 product cross-compatibility

STM32 MCUs embed a set of peripherals that can be classified in three groups:

- The first group is for the peripherals that are common to all products. Those peripherals have the same structure, registers, and control bits. There is no need to perform any firmware changes to keep the same functionality at the application level after migration. Peripheral features and behavior remain the same across devices.
- The second group is for the peripherals that present minor differences from one product to another (usually due to the support of new features). Migrating from one product to another is very easy and does not require any significant new development effort.
- The third group is for peripherals that have been considerably modified from one product to another (new architecture or new features, for instance). For this group of peripherals, the migration requires a new development at application level.

The table below gives a general overview of this classification. The software compatibility mentioned in the table refers only to the register description for low-level drivers.

The STM32Cube hardware abstraction layer (HAL) is compatible between the STM32L0 series and the STM32U0 series.

Table 21. Peripheral compatibility analysis between STM32L0 series and STM32U0 series

	Number of instances in STM32			Compatibility with STM32U0 series			
Peripheral	STM32L0	STM32U07 3xx/83xx	STM32U03 1xx	Software	Pinout	Comments	
SPI	2	3	2			I2S is no longer supported by	
I2S (full duplex)	2	(0	Par	rtial	 SPI on the STM32U0 series. Some alternate functions are not mapped on the same GPIO for SPI1. 	
FIREWALL	1	(0	N	A	-	
WWDG	1		1				
IWDG	1		1	Full		-	
DBGMCU	1		1		NA		
CRC	1		1			Additional features on the STM32U0 series.	
EXTI	1		1			-	
USB FS	1	1	0	Partial	Full	Additional features on the STM32U0 series.	
DMA	1	2	1	i aillai	NA	Significant flexibility due to DMAMUX extension. DMA mapping request may differ (see Section 6.3: Direct memory access controller (DMA)).	
TIM	-	-	-			STM32U0 brings one 32-bit	
Basic	2	2	2			timer.Some pins are not mapped on	
General Purpose	4	4	4	Full Partial	the same GPIO.		
Advanced	0	1	1		Timer instance names may differ.		
Low-power	1	3	2			Internal connections may differ.	
IRTIM	0	1	1				
PWR	1		1	Partial	NA	_	
RCC	1		1	Partial	14/4		

AN6091 - Rev 2 page 17/46

	Number	of instances	in STM32	Compatibility with STM32U0 series			
Peripheral	STM32L0	STM32U07 3xx/83xx	STM32U03 1xx	Software	Pinout	Comments	
USART UART LPUART	Up to 4 0 1	4 0 3	4 0 2	Partial		 Additional features on the STM32U0 series. Additional LPUART on the STM32U0 series. 	
I2C	Up to 4	4	3	None	Full	Additional features on the STM32U0 series.	
DAC channels	2		1	Partial		 Additional features on the STM32U0 series. Software compatible except for output buffer management. 	
ADC	1		1	None	Partial	 Additional features on the STM32U0 series. Different channels are mapped on the same GPIO. 	
RTC	1		1	Partial	Full	 Additional features on the STM32U0 series. Can be powered by V_{BAT} on the STM32U0 series. 	
FLASH	1		1	None	NA	New peripheral.	
EEPROM	1	()	None	INA	Emulated - refer to AN4894.	
GPIO	Up to 115 IOs	Up to 69 IOs	Up to 53 IOs			 Additional GPIO thanks to sharing with system pins. A few changes, mentioned in Section 3: Hardware migration. 	
LCD controller	1	1	0	Full Partial		 VLCD muxed on PC3 GPIO. SEG21 mapped on a different GPIO. Integrated voltage output buffers for higher LCD driving capability 	
СОМР	2	2	1	None		Some pins are mapped on different GPIOs.	
SYSCFG	1		1	Partial		-	
AES	1	1 (on STM32U08 3xx only)	0	Full	NA	-	
ОРАМР	0	1	1	None		-	

6.2 Memory mapping

The peripheral address mapping has been changed in the STM32U0 series compared to the STM32L0 series. The table below provides the peripheral address mapping differences between the STM32L0 and STM32U0 series.

AN6091 - Rev 2 page 18/46

Table 22. Peripheral address mapping differences between STM32L0 and STM32U0 series

Davimbanal	ST	M32L0 series		STM32U0
Peripheral	Bus	Base address	Bus	Base address
GPIOH		0x50001C00		NA
GPIOF		NA		0x50001400
GPIOE		0x50001000		0x50001000
GPIOD	IOPORT	0x50000C00		0x50000C00
GPIOC		0x50000800		0x50000800
GPIOB		0x50000400		0x50000400
GPIOA		0x50000000	AHB	0x50000000
CRC		0x40023000		0x40023000
FLASH		0x40022000		0x40022000
RCC		0x40021000		0x40021000
DMA1		0x40020000		0x40020000
DMA2	AHB	NA		0x40020400
DMAMUX		NA		0x40020800
AES		0x40026000		0x40026000
RNG		0x40025000		0x50060800
TSC		0x40024000		0x40024000
USART1		0x40013800		0x40013800
SPI1		0x40013000		0x40013000
ADC1	ADDO	0x40012400		0x40012400
EXTI	APB2	0x40010400		0x40010400
SYSCFG		0x40010000		0x40010000
COMP		0x40010000		0x40010200
OPAMP		NA		0x40007800
DAC		0x40007400		0x40007400
PWR		0x40007000		0x40007000
USB device FS SRAM		0x40006000		0x40009800
I2C3		0x40007800	APB	0x40008800
I2C2		0x40005800		0x40005800
I2C1		0x40005400		0x40005400
USART5		0x40005000		NA
USART4	APB1	0x40004C00		0x40004C00
USART3		NA		0x40004800
USART2		0x40004400		0x40004400
LPUART1		0x40004800		0x40008000
SPI2		0x40003800		0x40003800
IWDG		0x40003000		0x40003000
WWDG		0x40002C00		0x40002C00
RTC (inc. BKP registers)		0x40002800		0x40002800
LCD		0x40002400		0x40002400

AN6091 - Rev 2 page 19/46

Bardah anal	S	TM32L0 series		STM32U0
Peripheral	Bus	Base address	Bus	Base address
TIM7		0x40001400		0x40001400
TIM6		0x40001000		0x40001000
TIM5		0x40000C00		NA
TIM3	APB1	0x40000400		0x40000400
TIM2	AIDI	0x4000000		0x40000000
LPTIM1		0x40007C00		0x40007C00
TIM22		0x40011400		NA
TIM21		0x40010800		NA
TIM16			APB	0x40014400
TIM15				0x40014000
TIM1				0x40012C00
VREF				0x40010030
LPTIM2		NA		0x40009400
LPTIM3				0x40009000
LPUART3				0x40008C00
LPUART2				0x40008400
CRS				0x40006C00

The system memory mapping has been updated between the STM32L0 series and STM32U0 series. Refer to the reference manuals and datasheets for more details.

The STM32U0 series features an additional SRAM (SRAM2) of the following size:

- 8 Kbytes on STM32U073xx/83xx devices.
- 4 Kbytes on STM32U031xx devices.

SRAM2 includes the additional features listed below:

- Maximum performance through I-Code bus access without physical remap.
- Parity check option (32-bit + 4-bit parity check).
- Write protection with 1 Kbyte granularity.
- Read protection (RDP).
- Erase by system reset (option byte) or by software.
- Content preserved in Low-power run, Low-power sleep, Stop 0, Stop 1, and Stop 2 modes.
- Content can be preserved (RRS bit set in PWR CR3 register) in Standby mode (not the case for SRAM1).

Bit-banding

Both the STM32L0 and STM32U0 series support bit-banding on the lowest 1 Mbyte of the SRAM and on the peripheral memory region. However, the peripherals mapped in this bit-banding region are different for each series.

Detail of the peripherals that are accessible with bit-banding:

- STM32L0 series: all peripherals except AES and FSMC.
- STM32U0 series: all peripherals except GPIOx, ADC, AES, and RNG.

6.3 Direct memory access controller (DMA)

STM32U0 embeds DMAMUX, extending the capabilities of the regular DMA present in STM32L0 products. For the DMA in the STM32L0 series, each channel is dedicated by hardware connection to managing the memory access requests from one or more peripherals and has an arbiter for handling the priorities among the DMA requests.

AN6091 - Rev 2 page 20/46

For the STM32U0 series, each DMA request line is connected in parallel to all the channels of the DMAMUX request line multiplexer, providing a high level of flexibility.

The DMAMUX request multiplexer allows a DMA request line to be routed between the peripherals and the DMA controllers of the product. The routing function is ensured by a programmable multi-channel DMA request line multiplexer. Each channel selects a unique DMA request line, unconditionally or synchronously with events from its DMAMUX synchronization inputs. Existing application software using DMA needs to be updated to integrate this new DMAMUX feature.

The table below presents the differences between the DMA requests of the peripherals in the STM32L0 series and the peripherals in the STM32U0 series.

Table 23. DMA request differences between STM32L0 and STM32U0 series

Peripheral	DMA request	STM32L0 series	STM32U0 series
ADC	ADC1	DMA1_Channel1	DMAMUX request 5
DAC	DAC1_CH1	DMA1_Channel2	DMAMUX request 8
DAC	DAC1_CH2	DMA1_Channel4	NA
CDIA	SPI1_RX	DMA1_Channel2	DMAMUX request 36
SPI1	SPI1_TX	DMA1_Channel3	DMAMUX request 37
SPI2	SPI2_RX	DMA1_Channel4, DMA1_Channel6	DMAMUX request 38
3P12	SPI2_TX	DMA1_Channel5, DMA1_Channel7	DMAMUX request 39
CDI2	SPI3_RX	NA	DMAMUX request 40
SPI3	SPI3_TX	NA NA	DMAMUX request 41
LICADTA	USART1_RX	DMA1_Channel3, DMA1_Channel5	DMAMUX request 69
USART1	USART1_TX	DMA1_Channel2, DMA1_Channel4	DMAMUX request 70
LICADTO	USART2_RX	DMA1_Channel5, DMA1_Channel6	DMAMUX request 71
USART2	USART2_TX	DMA1_Channel4, DMA1_Channel7	DMAMUX request 72
USART3	USART3_RX	DMA1_Channel3	DMAMUX request 73
USARIS	USART3_TX	DMA1_Channel2	DMAMUX request 74
LICADT4	UART4_RX	DMA1_Channel4, DMA1_Channel6	DMAMUX request 75
USART4	UART4_TX	DMA1_Channel3, DMA1_Channel7	DMAMUX request 76
USART5	UART5_RX	DMA1_Channel2, DMA1_Channel6	NA
USARIS	UART5_TX	DMA1_Channel3, DMA1_Channel7	INA
LPUART1	LPUART1_RX	DMA1_Channel3/DMA1_Channel6	DMAMUX request 30
LPUARTI	LPUART1_TX	DMA1_Channel2/DMA1_Channel7	DMAMUX request 31
LDUADTO	LPUART2_RX		DMAMUX request 32
LPUART2	LPUART2_TX	NA	DMAMUX request 33
LPUART3	LPUART3_RX	NA NA	DMAMUX request 34
LPUARIS	LPUART3_TX		DMAMUX request 35
I2C1	I2C1_RX	DMA1_Channel3, DMA1_Channel7	DMAMUX request 9
1201	I2C1_TX	DMA1_Channel2, DMA1_Channel6	DMAMUX request 10
1202	I2C2_RX	DMA1_Channel5	DMAMUX request 11
I2C2	I2C2_TX	DMA1_Channel4	DMAMUX request 12
1203	I2C3_RX	DMA1_Channel3, DMA1_Channel5	DMAMUX request 13
I2C3	I2C3_TX	DMA1_Channel3, DMA1_Channel5	DMAMUX request 14
I2C4	I2C4_RX	NIA	DMAMUX request 15
1204	I2C4_TX	NA	DMAMUX request 16

AN6091 - Rev 2 page 21/46

Peripheral	DMA request	STM32L0 series	STM32U0 series
	TIM1_CH1		DMAMUX request 42
	TIM1_CH2		DMAMUX request 43
TIM1	TIM1_CH3	NA	DMAMUX request 44
I IIVI I	TIM1_CH4	NA NA	DMAMUX request 45
	TIM1_TRIG_UP		DMAMUX request 46
	TIM1_UP		DMAMUX request 47
	TIM2_UP	DMA1_Channel2	DMAMUX request 48
	TIM2_CH1	DMA1_Channel5	DMAMUX request 49
TIMO	TIM2_CH2	DMA1_Channel3, DMA1_Channel7	DMAMUX request 50
TIM2	TIM2_CH3	DMA1_Channel1	DMAMUX request 51
	TIMO CITA	DMA1 Channell	DMAMUX request 52
	TIM2_CH4	DMA1_Channel4	DMAMUX request 53
	TIM3_UP	DMA1_Channel3	DMAMUX request 54
	TIM3_CH1	DMA1_Channel5	DMAMUX request 55
TIMO	TIM3_TRIG	DMA1_Channel6	DMAMUX request 56
TIM3	TIM3_CH3	DMA1_Channel2	DMAMUX request 57
	TIMO CLIA	DMA4 Channell	DMAMUX request 58
	TIM3_CH4	DMA1_Channel3	DMAMUX request 59
TIM6	TIM6_UP	DMA1_Channel2	DMAMUX request 60
TIM7	TIM7_UP	DMA1_Channel4	DMAMUX request 61
	TIM15_CH1		DMAMUX request 62
TIM15	TIM15_UP		DMAMUX request 63
TIWITS	TIM15_TRIG		DMAMUX request 64
	TIM15_COM	N/A	DMANALLY required OF
	TIM16_CH1	NA	DMAMUX request 65
TIM16	TIM16_UP		DMAMUX request 66
TIM16	TIM16_CH1		DMAMUX request 67
	TIM16_UP		DMAMUX request 68
AFC	AES_OUT	DMA2_Channel2, DMA2_Channel3	DMAMUX request 7
AES	AES_IN	DMA2_Channel1, DMA2_Channel5	DMAMUX request 6

6.4 Interrupts

The table below presents the interrupt vectors on the STM32U0 series compared to the STM32L0 series.

Table 24. Interrupt vector differences between STM32L0 and STM32U0 series

Position	STM32L0 series	STM32U0 series
0	WWDG	WWDG
1	PVD	PVD/PVM
2	RTC_WKUP	TAMPER/RTC
3	FLASH	FLASH/WKUP
4	RCC_CRS	RCC/CRS

AN6091 - Rev 2 page 22/46

Position	STM32L0 series	STM32U0 series
5	EXTI[1:0]	EXTIO_1
6	EXTI[3:2]	EXT2_3
7	EXTI[15:4]	EXTI4
8	TSC	USB
9	DMA1_Channel1	DMA1_Channel1
10	DMA1_Channel1[3:2]	DMA1_Channel2_3
11	DMA1_Channel[7:4]	DMA1_Channel4_5_6_7/ DMAMUX/DMA2_Channel1_2_3_4_5
12	ADC_COMP	ADC_COMP
13	LPTIM1	TIM1_BRK_UP_TRG_COM
14	USART4/USART5	TIM1_CC
15	TIM2	TIM2
16	TIM3	TIM3
17	TIM6_DAC	TIM6/DAC/LPTIM1
18	TIM7	TIM7/LPTIM2
19	-	TIM15/LPTIM3
20	TIM21	TIM16
21	I2C3	TSC
22	TIM22	LCD
23	I2C1	I2C1
24	I2C2	12C2/12C3/12C4
25	SPI1	SPI1
26	SPI2	SPI2/SPI3
27	USART1	USART1
28	USART2	USART2/LPUART2
29	LPUART1/AES/RNG	USART3/LPUART1
30	NA	USART4/LPUART3
31	USB	AES/RNG

6.5 Reset and clock control (RCC)

The table below presents the differences related to the reset and clock controller (RCC) between the STM32L0 series and the peripherals in the STM32U0 series.

In addition to the differences described in the table above, the following additional adaptation steps may be needed for the migration:

- Performance versus V_{CORE} ranges.
- Peripheral access configuration.
- Peripheral clock configuration.

AN6091 - Rev 2 page 23/46

Table 25. RCC differences between STM32L0 and STM32U0 series

RCC	STM32L0 series	STM32U0 series
MSI	Multi-speed internal RC oscillator Frequency ranges: 65.536 kHz, 131.072 kHz, 262.144 kHz, 524.288 kHz, 1.048 MHz, 2.097 MHz (default value) and 4.194 MHz	 MSI is a low-power oscillator with programmable frequency up to 48 MHz. It can replace the PLL as system clock (faster wake-up, lower consumption). It can be used as a USB device clock (no need for an external high-speed crystal oscillator) Multi-speed RC factory and user trimmed (100 kHz, 200 kHz, 400 kHz, 800 kHz, 1 MHz, 2 MHz, 4 MHz (default value), 8 MHz, 16 MHz, 24 MHz, 32 MHz and 48 MHz) Auto calibration from LSE
HSI16	High speed internal 16 MHz RC oscillatorFactory and user trimmed	
HSI48	High speed internal 48 MHz RC oscillatorHigh-precision clock for USB (CRS)	48 MHz RC forSTM32U0x3xx devices.Can drive USB Full Speed and RNG.
LSI	Low-speed internal clock32 Hz RC oscillatorLow-power clock	32 kHz RC. Lower consumption, higher accuracy (refer to product datasheet).
HSE	 High-speed external clock 1 to 24 MHz From external clock or external crystal/ceramic resonator 	4 to 48 MHz
LSE	Low-speed external clockLow-powerConfigurable drive/consumptionHigh accuracy 32.768kHz	 32.768 kHz Configurable drive/consumption. Available in backup domain (VBAT).
PLL	One PLL with single output PLL multiplication/division factors are different from STM32U0 series	 Main PLL for system PLL for ADC, RNG, TIM1, TIM15, and USB FS clock PLL provides 3 independent outputs The PLL sources are MSI, HSI16, and HSE
System clock source	MSI, HSI16, HSE, or PLL	MSI, HSI16, HSE, PLL, LSE, or LSI.
System clock frequency	Up to 32 MHz.2 MHz after reset using MSI.	Up to 56 MHz.4 MHz after reset using MSI.
AHB frequency	Up to 32 MHz.	Up to 56 MHz.
APB1 frequency	Up to 32 MHz.	Up to 56 MHz (APB).
APB2 frequency	Up to 32 MHz.	Up to 56 MHz (APB).
RTC clock source	LSI, LSE, or HSE clock divided by 2, 4, 8, or 16.	LSI, LSE, or HSE/32.
MCO clock source	MCO pin (PA8): SYSCLK, HSI16, HSE, PLLCLK, MSI, LSE, LSI, or HSI48. With configurable prescaler, 1, 2, 4, 8 or 16 for each output	MCO pin (multiple pins): SYSCLK, HSI16, HSE, PLLCLK, MSI, LSE, LSI, HSI48, RTCCLK, RTCWAKEUP. MCO1 and MCO2 are available. With configurable prescaler, 1, 2, 4, 8 or 16 for each output
css	CSS (clock security system).CSS on LSE.	
Internal oscillator measurement/ calibration	LSE connected to TIM21 CH1 IC: can measure HSI or MSI with respect to LSE clock high precision.	 Mainly replacing TIM21 in the STM32L0 series by TIM15/16 in the STM32U0 series. LSE connected to TIM15 or TIM16 CH1 IC: can measure HSI16 or MSI with respect to LSE clock high precision.

AN6091 - Rev 2 page 24/46

RCC	STM32L0 series	STM32U0 series
		 LSI connected to TIM16 CH1 IC: can measure LSI with respect to HSI16 or HSE clock precision. HSE/32 and MSI connected to TIM16 CH1 IC.
Interrupt	 CSS (linked to NMI IRQ). LSECSS. LSIRDY, LSERDY, HSIRDY, MSIRDY, HSERDY, PLLRDY (linked to RCC global IRQ). 	 CSS (linked to NMI IRQ). LSECSS. LSIRDY, LSERDY, HSIRDY, MSIRDY, HSERDY, and PLLRDY (linked to RCC global IRQ).

6.5.1 Performance versus V_{CORE} ranges

On the STM32L0 series, the maximum CPU clock frequency and the flash memory wait state depend on the selected V_{CORE} voltage range and the selected V_{DD} range.

The tables below present the different clock source frequencies depending on different product voltage ranges.

Table 26. Performance versus V_{CORE} ranges for STM32L0 and STM32U0 series

WS = wait state

CPU		Typical Value	ical Value Max frequency (MHz))	V _{DD} range		
performance			3 WS	2 WS	1 WS	0 WS	VDD range	
			STM32L0 s	eries				,
High	Low	1	1.8	-	-	32	16	1.71 to 3.6
Medium	Medium	2	1.5	-	-	16	8	1.65 to 3.6
Low	High	3	1.2	-	-	4.2	4.2	1.05 (0 3.0
STM32U0 series								
High	Medium	1	1.2	-	56	48	24	1.71 to 3.6
Medium	High	2	1.0	-	18	16	8	1.71 to 3.6

6.5.2 Peripheral access configuration

The address mapping of several peripherals has changed for the STM32U0 series compared to the STM32L0 series, so different registers need to be used to enable/disable or enter/exit the peripheral clock or from Reset mode (see table below).

Table 27. RCC registers used for peripheral access configuration for STM32L0 and STM32U0 series

Bus	Register STM32L0 series	Register STM32U0 series	Comments
АНВ	RCC_AHBRSTR	RCC_AHBRSTR	Used to enter/exit the AHB peripheral from reset.
	RCC_AHBENR	RCC_AHBENR	Used to enable/disable the AHB peripheral clock.
	RCC_AHBLPENR	RCC_AHBSMENR	Used to enable/disable the AHB peripheral clock in Sleep mode.
APB	RCC_APB1RSTR	RCC_APBRSTR1 RCC_APBRSTR2	Used to enter/exit the APB1 peripheral from reset.
	RCC_APB1ENR	RCC_APBENR1 RCC_APBENR2	Used to enable/disable the APB1 peripheral clock.
	RCC_APB1LPENR	RCC_APBSMENR1 RCC_APBSMENR2	Used to enable/disable the APB1 peripheral clock in Sleep mode.

AN6091 - Rev 2 page 25/46

Bus	Register STM32L0 series	Register STM32U0 series	Comments
APB2	RCC_APB2RSTR	NA	Used to enter/exit the APB2 peripheral from reset.
	RCC_APB2ENR		Used to enable/disable the APB2 peripheral clock.
	RCC_APB2LPENR		Used to enable/disable the APB2 peripheral clock in Sleep mode.

The configuration to access a given peripheral requires:

- Identifying the bus to which the peripheral is connected.
- Selecting the correct register, depending on the requested action.

For example, USART1 is connected to the APB bus. To enable the USART1 clock, the RCC_APBENR2 register needs to be configured as follows with the STM32Cube HAL driver RCC API:

```
HAL RCC USART1 CLK ENABLE();
```

To disable the USART1 clock during Sleep mode (to reduce power consumption), the RCC_APBSMENR2 register needs to be configured as follows with the STM32Cube HAL driver RCC API:

```
HAL RCC USART1 CLK SLEEP ENABLE();
```

6.5.3 Peripheral clock configuration

Some peripherals have a dedicated clock source, independent from the system clock, which is used to generate the clock required for their operations:

USB:

- On STM32L0 devices, the USB 48 MHz clock is derived from the PLL VCO clock, which must be at 96 MHz.
- On STM32U0 devices, the USB 48 MHz clock is derived from one of the following sources:
 - The main PLL VCO (PLLUSB1CLK).
 - The MSI clock.
 - The HSI48 internal oscillator.

SDIO/SDMMC:

- On STM32L0 devices, the SDIO clock (SDIOCLK) is derived from the PLL VCO clock and is equal to PLLVCO/2.
- On STM32U0 devices, SDIO/SDMMC is not present.

RTC and LCD:

The RTC and the LCD glass clocks share the same clock source (RTCCLK).

On STM32L0 devices, the RTC and LCD glass clocks are derived from one of the three following sources: LSE, LSI, or HSE divided by prescaler (/2, 4, 8, 16).

On STM32U0 devices, the RTC and the LCD glass clocks are derived from one of the three following sources: LSE clock, LSI clock, or HSE clock divided by 32. The PCLK frequency must always be greater than or equal to the RTC clock frequency.

RTC can also be set to ultra-low-power mode by enabling the LPCAL bit to further reduce consumption.

AN6091 - Rev 2 page 26/46

ADC:

- On STM32L0 devices, the ADC features two clock schemes:
 - The clock for the analog circuitry: ADCCLK. This clock is always the HSI oscillator clock. A divider by 1, 2, or 4 allows the adaptation of the clock frequency to the operating conditions of the device. This configuration is done using the ADC_CCR[ADCPRE] bits. The ADC clock also depends on the voltage range V_{CORE}. When the product voltage range 3 is selected (V_{CORE} = 1.2 V), the ADC is in low speed (ADCCLK = 4 MHz, 250 Ksps).
 - The clock for the digital interface (used for the read/write access of the register). This clock is the APB2 clock. The digital interface clock is enabled/disabled through the RCC_APB2ENR register (ADC1EN bit) and there is a bit to reset the ADC through the RCC_APB2RSTR[ADCRST] bit.
- On STM32U0 devices, the input clock of the ADCs can be selected from two different clock sources:
 - Derived (selected by software) from the system clock (SYSCLK), PLLPCLK, or HSI16. In this
 mode, a programmable divider factor can be selected (1, 2, ..., 256 according to bits
 PREC[3:0]).
 - Derived from the APB clock of the ADC bus interface, divided by a programmable factor (1, 2, or 4). In this mode, a programmable divider factor can be selected (1, 2, or 4 according to bits CKMODE[1:0]). Refer to the STM32U0 series reference manual for more details.

DAC:

On STM32U0 devices, in addition to the PCLK clock, the LSI clock is used for the sample and hold operation.

U(S)ARTS:

- On STM32L0 devices, the U(S)ART clock is the APB1 or APB2 clock, depending on which APB bus is mapped to the U(S)ART.
- On STM32U0 devices, the USART clock is derived from one of the four following sources: system clock (SYSCLK), HSI16, LSE, or APB.
 Using a source-clock independent from the system clock (like HSI16) allows an on-the-fly change of the system clock without reconfiguration of the USART peripheral baud rate prescalers.

I2Cs:

- On STM32L0 devices, the I2C clock is the APB1 clock (PCLK1).
- On STM32U0 devices, the I2C clock is derived from one of the three following sources: system clock (SYSCLK), HSI16, or APB (PCLK).
 Using a source-clock independent from the system clock (like HSI16) allows an on-the-fly change of the system clock without reconfiguration of the I²C peripheral timing register.

· I2S:

- On STM32L0 devices, the I2S clocks are derived from one of the three following sources: HSI16, HSE, or PLL.
- On STM32U0 devices, I2S is not present.

6.6 Power control (PWR)

The PWR controller for STM32U0 devices presents some differences compared to the STM32L0 series, which are summarized in the table below.

Table 28. PWR differences between STM32L0 and STM32U0 series

PWR	STM32L0	STM32U0
Power supplies	 V_{DD} = 1.8 V at power-on, 1.65 V at power-down, and 3.6 V when BOR is available. V_{DD} = 1.65 to 3.6 V when BOR is not available. V_{DD} is the external power supply for I/Os and the internal regulator. It is provided externally through VDD pins. 	 V_{DD} = 1.71 to 3.6 V: external power supply for I/Os and internal regulator. It is provided externally through VDD pins.
	 V_{CORE} = 1.2 to 1.8 V. 	 V_{CORE} = 1.0 to 1.28 V.

AN6091 - Rev 2 page 27/46

PWR	STM32L0	STM32U0
	 V_{CORE} is the power supply for the digital peripherals, SRAM, and flash memory. It is generated by an internal voltage regulator. Three V_{CORE} ranges can be selected by software depending on the V_{DD} and target frequency. 	 V_{CORE} is the power supply for the digital peripherals, SRAM, and flash memory. It is generated by an internal voltage regulator. Two V_{CORE} ranges can be selected by software depending on the target frequency.
	$\ensuremath{\text{V}_{\text{DD}}}$ and $\ensuremath{\text{V}_{\text{DDA}}}$ must be at the same voltage value.	Independent power supplies (V _{DDA} , V _{DDUSB}) allow the improvement of power consumption by running the MCU at a lower supply voltage than analog and USB.
Power supplies	 V_{SSA}, V_{DDA} = 1.8 V at power-on, 1.65 V at power-down, and 3.6 V when BOR is available. V_{SSA}, V_{DDA} = 1.65 to 3.6 V when BOR is not available. V_{DDA} is the external analog power supply for ADC, DAC, reset blocks, RC oscillators, and PLL. The minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} respectively. 	 V_{SSA}, V_{DDA} = 1.62 V (ADCs/COMPs) to 3.6 V 1.8 V (DAC/OPAMPs) to 3.6 V 2.4 V (VREFBUF) to 3.6 V V_{DDA} is the external analog power supply for the A/D and D/A converters, voltage reference buffer, operational amplifiers, and comparators. The V_{DDA} voltage level is independent from the V_{DD} voltage.
	V _{LCD} = 2.5 to 3.6 V The LCD controller can be powered either externally through the VLCD pin, or internally from an internal voltage generated by the embedded step-up converter.	V _{LCD} = 2.5 to 3.6 V. The LCD controller can be powered either externally through the VLCD pin, or internally from an internal voltage generated by the embedded step-up converter.
		 V_{DDUSB} = 3.0 to 3.6 V. V_{DDUSB} is the external independent power supply for the USB transceivers. The V_{DDUSB} voltage level is independent from the V_{DD} voltage.
Battery backup domain	NA	 V_{BAT} = 1.55 to 3.6 V: the power supply for the RTC external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present. RTC with backup registers (up to 9 bytes). LSE. PC13 to PC15 I/Os. Up to 5 tamper pins.
	Integrated POR/PDR circuitry.Programmable voltage detector (PVD).	
Power supply supervisor	Brownout reset (BOR).BOR can be disabled after power-on.	Brownout reset (BOR). BOR is always enabled, except in Shutdown mode.
	NA	 3 peripheral voltage monitoring (PVM): PVM1 for V_{DDUSB}. PVM3/PVM4 for V_{DDA} (~1.65 V/ ~2.2 V).
	Sleep	mode
Low-power modes	 Low-power run mode (up to 131 kHz.) Low-power sleep mode (up to 131 kHz.) 	 Low-power run mode (up to 2 MHz.) Low-power sleep mode (up to 2 MHz). The system clock is limited to 2 MHz, but I2C and U(S)ART/LPUART can be clocked with HSI16 at 16 MHz.

AN6091 - Rev 2 page 28/46

PWR	STM32L0	STM32U0
	Stop mode.	 Stop 0, Stop 1, and Stop 2 mode. Some additional functional peripherals (cf. wake-up source).
Low-power modes	Standby mode. (V _{CORE} domain powered off).	Standby mode (V _{CORE} domain powered off) with new features: BOR is always ON. SRAM2 content can be preserved. Pull-up or pull-down can be applied to each I/O.
	NA	Shutdown mode (V _{CORE} domain powered off and power monitoring off).
		o <u>mode</u> rrupt/wakeup event.
	 Stop mode Any EXTI line event/interrupt. BOR, PVD, COMP, RTC, USB, IWDG. 	 Stop mode Any EXTI line event/interrupt. BOR, PVD, PVM, COMP, RTC, USB, IWDG, U(S)ART, LPUART, I2C, SWP, LPTIM, LCD.
Wake-up sources	Standby mode	 Standby mode Up to 5 WKUP pins rising or falling edge. RTC event. External reset in NRST pin. IWDG reset.
	NA	Shutdown mode Up to 5 WKUP pins rising or falling edge. RTC event; External reset in NRST pin.
	Wake-up from Stop mode MSI (all ranges up to 4.1 MHz).	Wake-up from Stop mode HSI16 16 MHz or MSI (all ranges up to 48 MHz) allow a 5-µs wake-up at high speed without waiting for the PLL startup time.
Wake-up clocks	Wake-up from Standby mode	Wake-up from Standby mode
	MSI 2.097 MHz.	MSI (ranges from 1 to 8 MHz)
	NA	Wake-up from Shutdown mode MSI 4 MHz.
Configuration	NA	On STM32U0 devices, the registers are different: from 2 registers in the STM32L0 series to up to 25 registers in the STM32U0 series. 4 control registers. 2 status registers. 1 status clear register. 2 registers per GPIO port for controlling pull-up and pull-down. Most configuration bits from the STM32L0 series can be found in the STM32U0 series (but some may have a different programming mode).

AN6091 - Rev 2 page 29/46

6.7 Real-time clock (RTC)

The STM32U0 and STM32L0 series implement almost identical RTC features. The table below summarizes the differences.

Table 29. RTC differences between STM32L0 and STM32U0 series

RTC	STM32L0 series	STM32U0 series	
Features	 Coarse digital calibration (kept for compatibility only). New developments must only use smooth calibration. 	Only smooth calibration available. Ultra-low-power calibration saving further consumption is available when the LPCAL bit is set.	
	-	5 tamper pins (available in VBAT).	
	5 backup registers.	Up to 9 backup registers.	
Configuration	-	 Additional bit LPCAL for drastic reduction of RTC consumption. Backup domain reset as RTC is connected to VBAT. Modified register memory map. 	

For more information about the RTC features of the STM32U0 series, refer to the RTC section of the STM32U0 series reference manual.

6.8 System configuration controller (SYSCFG)

The STM32U0 and STM32L0 series implement almost identical SYSCFG features. The table below summarizes the differences.

Table 30. SYSCFG differences between STM32L0 and STM32U0 series

SYSCFG	STM32L0 series	STM32U0 series
SYSCFG features	 Remapping memory areas. Managing the external interrupt line connection to the GPIOs. Configuring the USB pull-up resistor. 	 Remapping memory areas. Managing the external interrupt line connection to the GPIOs. Robustness management. Configuring SRAM2 write protection and software erase. Enabling/disabling voltage booster for I/Os analog switches. Enabling/disabling I2C fast mode plus driving capability is now controlled by I2C directly. Registers in SYSCFG have been kept for legacy reasons.
Configuration	-	 Most registers from the STM32L0 series are identical in the STM32U0 series. A few bits are different and EXTI configuration may differ (number of GPIOs is different depending on the product).

AN6091 - Rev 2 page 30/46

6.9 General-purpose I/O (GPIO) interface

The GPIO peripheral of the STM32U0 series embeds identical features compared to the one present on the STM32L0 series.

Minor adaptations of the code written for the the STM32L0 series using the GPIO may be required on the STM32U0 due to:

- The mapping of specific functions on different GPIOs (see pinout differences in Section 3: Hardware migration.
- Alternate function selection differences (AFSELy[3:0] in the GPIOx AFRL and GPIOx AFRH registers).
- The additional mapping of GPIOs sharing pins with BOOT and NRST to provide more GPIOs in the same package.

The main GPIO features are:

- GPIO mapped on the AHB bus for better performance and accessibility by DMA.
- I/O pin multiplexer and mapping: the pins are connected to on-chip peripherals/modules through a multiplexer that allows only one peripheral alternate function (AF) to connect to an I/O pin at a time. In this way, no conflict can occur between peripherals sharing the same I/O pin.
- More possibilities and features for I/O configuration.

For more information on the STM32U0 series GPIO programming and usage, refer to the *I/O pin multiplexer and mapping* section in the GPIO chapter of the STM32U0 series reference manual. For a detailed description of the pinout and alternate function mapping, refer to the product datasheets.

6.10 Extended interrupt and event controller (EXTI) source selection

The external interrupt and event controller (EXTI) is very similar in the STM32U0 and STM32L0 series. The table below shows the main differences.

EXTI	STM32L0 series	STM32U0 series
Number of event/interrupt lines	Up to 24 lines	Up to 37 lines: 16 direct 22 configurable
Configuration	-	The selection of the EXTI line source is performed through the EXTIx bits in the SYSCFG_EXTICRx registers (in the STM32L0 and STM32U0 series). However, the mapping of the EXTICRx registers has been changed.

Table 31. EXTI differences between STM32L0 and STM32U0 series

6.11 Flash memory

The STM32U0 and STM32L0 series instantiate different flash memory modules, both in terms of architecture/ technology and interface. Consequently, the STM32U0 series flash memory programming procedures and registers are different from those in the STM32L0 series, and any code written for the flash memory interface in the STM32L0 series needs to be rewritten to run on STM32U0 devices.

An additional difference that might impact application porting is the opposite default memory state after erase: it is 0x00 for STM32L0, but STM32U0 returns 0xFF for erased memory.

The table below presents the differences between the flash memory interface in the STM32L0 and STM32U0 series

For more information on programming, erasing, and protection of the STM32U0 series flash memory, refer to the STM32U0 series reference manuals.

AN6091 - Rev 2 page 31/46

Table 32. Flash memory differences between STM32L0 and STM32U0 series

Flash	STM32L0 series	STM32U0 series		
	0x0800 0000 to (up to) 0x0805 FFFF	0x0800 0000 to (up to) 0x0803 FFFF		
Main/Program memory	 Up to 192 Kbytes. 1 or 2 banks. Each bank: up to 256 Kbytes. Sector size = 4 Kbytes: 32 pages of 128 bytes. Programming granularity: 32-bit. Read granularity: 64/32-bit. 	 STM32U0x3xx: Up to 256 Kbytes. 1 bank. 128 pages of 2 Kbytes. Each page: 8 rows of 256 Kbytes. STM32U031xx: Up to 64 Kbytes. 1 bank. 32 pages of 2 Kbytes. Each page: 8 rows of 256 bytes. Programming and read granularity: 72-bit (incl 8 ECC bits). 		
_	Read while write (RWW).Dual bank boot.ECC (data EEPROM only).	Read while write (RWW).		
Features	NA	ECC. Flash empty check.		
	Default memory value after erase: 0x00	Default memory value after erase: 0xFF		
Wait state	Up to 1 (depending on the supply voltage and frequency).	Up to 2 (depending on the core voltage and frequency).		
ART Accelerator™	NA	Allowing 0 wait state when executing from the cache.		
Data EEPROM memory	Up to 6 Kbytes in 1 or 2 banks.	N/A Can be emulated by software. For more details, refer to the application note How to use EEPROM emulation on STM32 MCUs (AN4894), available from http:// www.st.com.		
System memory	Up to 8 Kbytes	26 Kbytes 0x1FFF 0000 to 0x1FFF 67FF.		
One time programmable (OTP)	NA	1 Kbyte 0x1FFF 6800 to 0x1FFF 6BFF.		
Option bytes	96 factory bytes + 32 user bytes	Improved programming method with no direct access to the option byte storage area.		
Flash memory interface	0x4002 3C00 to 0x4002 3FFF.	0x4002 2000 to 0x4002 23FF.		
Trasif memory interface	-	Different from STM32L0 series.		
Erase granularity	Program memory Mass/page (256 bytes). DATA EEPROM memory: Byte/half-word/word/double-word.	Page erase (2 Kbytes), bank erase, and mass erase (all banks).		
	Level 0 no protection.RDP = 0xAA.	Level 0 no protection.RDP = 0xAA.		
Read protection (RDP)	 Level 1 memory protection. RDP ≠ (level 2 & level 0). 	 Level 1 memory protection. RDP ≠ (level 2 & level 0). 		
	• Level 2 RDP = 0xCC.	• Level 2 RDP = 0xCC.		
	-	Improved protection scheme with OEM keys allowing the secure regression of protection levels.		
Proprietary code readout protection (PCROP)	Granularity: 1 sector (4 Kbytes).	-		

AN6091 - Rev 2 page 32/46

Flash	STM32L0 series	STM32U0 series	
Write protection (WRP)	Granularity: 1 sector (4 Kbytes).	Two write protection areas:Granularity: 2 Kbytes.	
	nRST_STOP	nRST_STOP	
	nRST_STDBY nRST_STDBY		
	NA	nRST_SHDW	
	IWDG_SW	IWDG_SW	
	NA	IWDG_STOP, IWDG_STDBY	
	NA NA	WWDG_SW	
	NA	NOT_VBAT_VDD_OPT	
User option bytes		RAM_PARITY_CHECK	
		BKPSRAM_HW_ERASE_DISABLE	
		IRHEN, NRST_MODE[1:0]	
	BOR_LEV[3:0]	BOR_LEV[2:0]	
	nBFB2	BOOT_LOCK	
		nBOOT1	
	NA	nBOOT0	
		nBOOT_SEL	

6.12 Universal synchronous asynchronous receiver transmitter (U(S)ART)

The STM32U0 series implement several new features on USART compared to the STM32L0 series. The table below shows the differences.

Table 33. U(S)ART differences between STM32L0 and STM32U0 series

U(S)ART	STM32L0 series STM32U0 series		
Instances	x5 USARTx1 LPUART	x4 USARTx3 LPUART	
Baud rate	Up to 4 Mbit/s when the clock frequency is 32 MHz and oversampling is by 8	Up to 6 Mbit/s when the clock frequency is 48 MHz and oversampling is by 8	
Clock	Single clock domain	Dual clock domain allowing: UART functionality and wake-up from Stop mode Convenient baud rate programming independent from the PCLK reprogramming	
Data	Word length: programmable (8 or 9 bits) • Word length: programmable (7 bits) • Programmable data order with LSB-first shifting		
Interrupt	10 interrupt sources with flags	14 interrupt sources with flags	
Features	RS232 hardware flow control (CTS/RTS) Continuous communication using DMA Multiprocessor communication Single-wire half-duplex communication IrDA SIR ENDEC block LIN mode SPI master	cation using DMA unication	
	Smartcard mode T = 0 and T = 1 is to be implemented by software	Smartcard mode not supported	

AN6091 - Rev 2 page 33/46

U(S)ART	STM32L0 series STM32U0 series			
Features	Number of stop bits: 0.5, 1, 1.5, 2			
Features	NA	 Wake-up from Stop mode (start bit, received byte, address match) Receiver timeout interrupt (except LPUART) Auto baud rate detection (except LPUART) Driver enable Swappable Tx/Rx pin configuration LPUART does not support synchronous mode (SPI master), smartcard mode, IrDA, LIN, ModBus, receiver timeout interrupt, or auto baud rate detection 		
Configuration	NA	STM32L0 registers and associated bits are not identical in the STM32U0 series Refer to the STM32U0 series reference manual for details		

6.13 Inter-integrated circuit (I2C) interface

The STM32L0 series implement a different I2C peripheral, which allows for easier software management. The table below shows the differences.

Table 34. I2C differences between STM32L0 and STM32U0 series

I2C	STM32L0 series STM32U0 series			
Instances	x2 (I2C1, I2C2)	x3 for STM32U0x3xx.x2 for STM32U031xx.		
	 7-bit and 10-bit addressing mode. Standard mode (Sm, up to 100 KHz). Fast mode (Fm, up to 400 KHz). 			
Features	NA	 Fast mode Plus (Fm+, up to 1 MHz). Independent clock. Wakeup from stop on address match. 		
	• SMBus	NA		
Configuration	NA	Register configuration is very different in the STM32U0 series. Refer to the STM32U0 series reference manuals for details.		

6.14 Serial peripheral interface (SPI)/Inter-IC sound (I2S)

The STM32U0 and STM32L0 series implement near-identical SPI features. The table below highlights the differences.

Table 35. SPI differences between STM32L0 and STM32U0 series

SPI	STM32L0 series STM32U0 series		
Instances	SPI1 without I2S support SPI2 with I2S support 3 without I2S support		
Features	SPI + I2S	I2S is not supported by SPI on STM32U0 devices.	
Data size	Fixed, configurable to 8 or 16 bits.	Programmable from 4 to 16 bits.	
Data buffer	NA	32-bit Tx & Rx FIFOs (up to 4 data frames)	

AN6091 - Rev 2 page 34/46

SPI	STM32L0 series STM32U0 series		
Data packing	NA	Yes (8-, 16-, or 32-bit data access, programmable FIFO data thresholds)	
Mode	SPI TI mode SPI Motorola mode	SPI TI modeSPI Motorola modeNSSP mode	
Speed	16 MHz (core at 32 MHz)	24 MHz (core at 48 MHz)	
Configuration	NA	The data size and Tx/Rx flow handling are different in the STM32L0 and STM32U0 series, requiring different software sequences.	

As shown in Table 35. SPI differences between STM32L0 and STM32U0 series, no I2S is implemented on STM32U0.

6.15 Cyclic redundancy check calculation unit (CRC)

The CRC calculation unit is very similar in STM32L0 and STM32U0 devices.

The table below shows the differences.

Table 36. CRC differences between STM32L0 and STM32U0 series

CRC	STM32L0 series	STM32U0 series		
	 Single input/output 32-bit data register. CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size. General-purpose 8-bit register (can be used for temporary storage). 			
Features	 Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7. Handles 32-bit data size. 	 Fully programmable polynomial with programmable size (7, 8, 16, or 32 bits). Handles 8-, 16-, and 32-bit data sizes. Programmable CRC initial value. Input buffer to avoid bus stall during calculation. Reversibility option on I/O data. 		
Configuration	NA	Configuration registers in theSTM32L0 series are identical in the STM32U0 series. The STM32U0 series includes additional registers for new features. Refer to the reference manuals for details		

AN6091 - Rev 2 page 35/46

6.16 Advanced encryption standard hardware accelerator (AES)

The STM32U0 series implement several new AES features compared to the STM32L0 series. The table below shows the differences.

Table 37. AES differences between STM32L0 and STM32U0 series

AES	STM32L0 series	STM32U0 series		
Features	128-bit register for storing the encryption, or derivation key (4x 32-bit registers).	256-bit register for storing the encryption, decryption, or derivation key (8x 32-bit registers).		
Mode	 Electronic codebook (ECB). Cipher block chaining (CBC). Counter mode (CTR). 	 Electronic codebook (ECB). Cipher block chaining (CBC). Counter mode (CTR). Galois counter mode (GCM). Galois message authentication code mode (GMAC). Cipher message authentication code mode (CMAC). 		
Key length	128-bit	128-bit, 256-bit		
Configuration	NA	All registers and programming bits in the STM32L0 series can be found in the STM32U0 series.		

6.17 Liquid-crystal display controller (LCD)

The LCD controller on the STM32U0 series implements the same features as the one on the STM32L0 series, except for an additional internal output buffer that allows for improved contrast. It is possible to use the output buffers instead of the high-drive resistive network.

All programmable registers and associated bits in the STM32L0 series are equivalent to the ones in the STM32U0 series. However, due to the fact that the VLCD pin is implemented as an alternate function in Sthe STM32U0 series (contrary to the STM32L0 series), a specific software sequence is required to configure the LCD controller when the step-up converter is used as the power source.

Refer to the STM32L0 and STM32U0 series reference manuals for more details.

Note: LCD is not available on STM32U031xx devices.

6.18 Universal serial bus interface (USB)

The STM32L0 and STM32U0 series implement similar USB peripherals: they both contain a USB FS device interface.

STM32U0x3xx devices include a clock recovery system (CRS) as an additional feature. It provides a precise clock to the USB peripheral:

- When using USB device mode, the CRS allows crystal-less USB operation.
- When using USB host mode, the CRS allows low-frequency crystal (32.768 KHz) USB operations.

Most features supported by the STM32L0 series are also supported by STM32U0x3xx devices . The table below highlights the key differences.

Table 38. USB differences between STM32L0 and STM32U0 series

USB	STM32L0 series	STM32U0x3xx devices
	Universal Serial Bus Revision 2.0.	Universal Serial Bus Revision 2.0, including link power management (LPM) support.
Features	 FS mode: 1 bidirectional control endpoint. 7 IN endpoints.	

AN6091 - Rev 2 page 36/46

USB	STM32L0 series	STM32U0x3xx devices		
	USB internal connect/disconnect feature with an internal pull-up resistor on the USB D+ (USB_DP) line.			
Features		CRS allows crystal-less USB operation.		
	NA	Independent V_{DDUSB} power supply, allowing a lower V_{DD} while using USB.		
Mapping	APB1	APB		
Buffer memory	1024 bytes (endpoint buffers and buffer descriptors structure.)	1024 bytes of dedicated packet buffer memory SRAM.		
Low-power modes	USB suspend and resume.	USB suspend and resume.Link power management (LPM) support.		
Configuration	NA	STM32U0 registers are different.		
		Refer to the STM32U0 reference manuals for details.		

6.19 Analog-to-digital converter (ADC)

The main ADC differences between the STM32L0 and STM32U0 series are a new digital interface and architecture. The table below presents the different features.

Table 39. ADC differences between STM32L0 and STM32U0 series

ADC	STM	32L0 series	STM	STM32U0 series	
ADC type	SAR structure				
Instances	ADC1		ADC	ADC	
Maximum sampling frequency	1.14 Msps		2.5 Msps		
Number of channels	Up to 19 channels		Up to 19 channels		
Resolution	12-bit		12-bit + digital oversa	ampling up to 16-bit	
Conversion modes	Single/continuous/sca mode	an/ discontinuous/dual	Single/continuous/sca	an/discontinuous	
DMA			Yes		
			Yes		
	External event for regular group	External event for injected group	External event for regular group:	External event for injected group:	
	TIM6_TRGO	TIM6_TRGO	TIM1_TRGO2	TIM1_TRGO2	
	TIM21_CH2	TIM21_CH2	TIM1_CC4	TIM1_CC4	
External trigger	TIM2_TRGO	TIM2_TRGO	TIM2_TRGO	TIM2_TRGO	
	TIM2_CH4	TIM2_CH4	TIM3_TRGO	TIM3_TRGO	
	TIM22_TRGO	TIM22_TRGO	TIM15_TRGO	TIM15_TRGO	
	TIM2_CH3	TIM2_CH3	TIM6_TRGO	TIM6_TRGO	
	TIM3_TRGO	TIM3_TRGO	EXTI11	EXTI11	
	EXTI11	EXTI11			
Supply requirement	1.8 V to 3.6 V.		 1.62 V to 3.6 V. Independent power supply (V_{DDA}). 		
Reference voltage	External			Reference voltage for STM32U0 series external (2.0 V to V_{DDA}) or internal (2.048 V or 2.5 V).	
Electrical parameters	1.45 mA (max.), 1.0 mA (typ.).		Consumption proportional to conversion speed: 200 uA/Msps (Typ.).		

AN6091 - Rev 2 page 37/46

ADC	STM32L0 series	STM32U0 series
Input range	V _{REF-} ≤ V _I	N ≤ V _{REF+}

6.20 Digital-to-analog converter (DAC)

The STM32U0 series implement an enhanced DAC compared to the STM32L0 series. The table below shows the differences.

Table 40. DAC differences between STM32L0 and STM32U0 series

DAC	STM32L0 series	STM32U0 series
Number of channels	 1 on STM32L05xx/STM32L06xx 2 on STM32L07xx/STM32L08xx No DAC for other devices. 	1
Resolution	12	2-bit
	Left or right data alignment in 12-bit modeNoise-wave and triangular-wave generation	
Features	DAC with 2 channels for independent or simultaneous conversions	 DAC with 1 channel only Buffer offset calibration DAC1_OUTx can be disconnected from output pin Sample and hold mode for low-power operation in Stop mode
DMA	Y	'es
External trigger	TIM6_TRGO event TIM3_TRGO event TIM3_CH3 event TIM21_TRGO event TIM2_TRGO event TIM7_TRGO event EXTI line9 SWTRIG	TIM1_TRGO_CKTIM TIM2_TRGO_CKTIM TIM3_TRGO_CKTIM TIM6_TRGO_CKTIM TIM7_TRGO_CKTIM TIM15_TRGO_CKTIM LPTIM1_OUT LPTM12_OUT EXTI line9 SW TRIG
Supply requirement	1.8 V to 3.6 V.	1.8 V to 3.6 V.Independent power supply (V_{DDA}).
Reference voltage	External	Reference voltage for STM32U0 series external (1.8 V to V _{DDA}) or internal (2.048 V or 2.5 V).
Configuration	NA	Software compatible except for output buffer management.

AN6091 - Rev 2 page 38/46

6.21 Comparators (COMP)

The table below presents the differences in the COMP interface of the STM32L0 and STM32U0 series.

Table 41. COMP differences between STM32L0 and STM32U0 series

СОМР	STM32L0 series	STM32U0 series	
Туре	COMP1 COMP2 rail-to-rail	COMP1 COMP2 rail-to-rail	
Inputs	COMP1: Non inverting: 6 (PA1, PA3, PB4, PA5 (DAC2), PB6, PB7) Inverting: 4 (V _{REFINT} , PA0, DAC Channel1 (PA4), DAC Channel2 (PA5)) COMP2: Non inverting: 5 (PA3, PB4, PA5 (DAC2), PB6, PB7) Inverting: PA2, DAC Channel1 (PA4), DAC Channel2 (PA5), PB3, V _{REFINT} x 1, ½, ¼	COMP1: Non inverting: 4 (PA6, PB2, PC5, PC6) Inverting: 8 (PA0, PA1, PA4, PA5, PC4, PB1, DAC1_OUT1/2, V _{REFINT} x 1, 3/4, 1/2, 1/4) COMP2: Non inverting: 4 (PA3, PB4, PB6, PD10) Inverting: 8 (PA2, PA4, PA5, PB3, PB7, DAC1_OUT1/2, V _{REFINT} x 1, ¾, ½, ¼)	
Outputs	 Generation of input capture and OCREF clear signals for timers. Generation of wakeup interrupt or events (EXTI line). 	 Generation of break input signals for timers through GPIO alternate function. Generation of wakeup interrupt or events (EXTI line). 	
	Window comparator		
Features	NA	Output with blanking source.Programmable hysteresis.	
	Programmable speed/consumption (COMP2).	Programmable speed/consumption (COMP1/COMP2).	
Supply requirement	1.65 V to 3.6 V.	1.62 V to 3.6 V.	
Input range	V _{REF-} ≤V	V _{IN} ≤ V _{REF+}	

6.22 Operational amplifiers (OPAMP)

Contrary to the STM32L0 series, STM32U0 devices implement OPAMPs. The table below shows the available features.

Table 42. OPAMP features on series

OPAMP	STM32U0 series
Instances	1
Features	 Rail-to-rail input and output voltage range. Low input bias current. Low input offset voltage. Low-power mode. Fast wakeup time. Gain bandwidth of 1 MHz. Programmable gain amplifier (PGA).

AN6091 - Rev 2 page 39/46

Software migration

7.1 Reference documents

- The Definitive Guide to Arm[®] Cortex[®]-M0 and Cortex[®]-M0+ processors.
- STM32 Cortex[®]-M0+ MCUs programming manual (PM0223).
- Cortex®-M0+ Technical Reference Manual, available from infocenter.arm.com.

7.2 STM32 Cortex[®]-M0+ processor and core peripherals

The Cortex®-M0+ processor is an entry-level 32-bit Arm® Cortex® processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- A simple architecture that is easy to learn and program.
- Ultra-low power, energy-efficient operation.
- Excellent code density.
- Deterministic, high-performance interrupt handling.
- Upward compatibility with Cortex[®]-M processor family.
- Platform security robustness, with optional integrated memory protection unit (MPU).

The Cortex®-M0+ processor is built on a 32-bit processor core that is highly optimized for area and power, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.

The Cortex®-M0+ processor implements the ARMv6-M architecture, which is based on the 16-bit Thumb® instruction set and includes Thumb-2 technology. This provides the exceptional performance expected of a modern 32-bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

The Cortex®-M0+ processor closely integrates a configurable nested vectored interrupt controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

- Includes a non-maskable interrupt (NMI).
- Provides zero jitter interrupt option.
- Provides four interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes that include a deep-sleep function that enables the entire device to be rapidly powered down.

AN6091 - Rev 2 page 40/46

7.3 Cortex mapping overview

Except for the floating point unit, the mapping is similar on the Cortex®-M3 and Cortex®-M0+ processors. The table below summarizes the differences.

Table 43. Cortex mapping overview for STM32L0 and STM32U0 series

Cortex		STM32L0 series	STM32U0 series	
	Architecture	Cortex®-M0+		
Core	Nested vectored interrupt controller (NVIC)	39 interrupt channels	32 maskable interrupt channels	
	Extended interrupts and events controller (EXTI)	Up to 30 event/interrupt	Up to 38 event/interrupt	
	System timer 0xE000 E010 to 0xE000 E01F		0xE000 E010 to 0xE000 E01F	
	Nested vectored interrupt controller	0xE000E100 to 0xE000E4EF	0xE000E100 to 0xE000E4EF	
	System control block	0xE000 ED00 to 0xE000 ED3F	0xE000 ED00 to 0xE000 ED3F	
Mapping	Floating point unit coprocessor access control	NA		
	Memory protection unit	0xE000 ED90 to 0xE000 EDB8	0xE000 ED90 to 0xE000 EDB8	
	Nested vectored interrupt controller	0xE000 EF00 to 0xE000 EF03	0xE000 EF00 to 0xE000 EF03	
	Floating point unit	N	NA	

7.4 Security improvements

STM32U0 brings significant improvements in the security domain, like robust read-out protection (RDP) with three protections level states, password-based regression (128-bit PSWD), hardware protection feature (HDP), and more. The application note *Introduction to STM32 microcontrollers security* (AN5156) provides detailed descriptions of these features.

AN6091 - Rev 2 page 41/46

Revision history

Table 44. Document revision history

Date	Version	Changes
18-Mar-2024	1	Initial release.
22-Mar-2024	2	Updated: Section Introduction Section 1: STM32U0 series overview Section 2: STM32L0 series overview Table 6. Available packages for the STM32L0 series Section 3.2: Pin compatibility Table 7. Pinout comparison of STM32L0 and STM32U0 TSSOP20 packages Section 3.2.2: Pinout differences between STM32L0 and STM32U0 QFP packages Section 3.2.3: Ballout differences between STM32L0 and STM32U0 BGA packages Section 3.2: Recommendations for board migration Section 4: Boot mode selection Section 5.2: Low-power modes in the STM32U0 series Table 21. Peripheral compatibility analysis between STM32L0 series and STM32U0 series Section 6.3: Direct memory access controller (DMA) Section 6.5: Peripheral clock configuration Section 6.6: Power control (PWR) Table 29. RTC differences between STM32L0 and STM32U0 series Section 6.11: Flash memory Table 35. SPI differences between STM32L0 and STM32U0 series Section 6.18: Universal serial bus interface (USB) Table 39. ADC differences between STM32L0 and STM32U0 series Table 41. COMP differences between STM32L0 and STM32U0 series Table 42. OPAMP features on series Added Section 5.3: Consumption and performance overview

AN6091 - Rev 2 page 42/46

Contents

1	STM	32U0 series overview				
2	STM	STM32L0 series overview				
3	Hard	lware m	nigration	4		
	3.1	Packa	ge availability	4		
	3.2	Pin coi	mpatibility	5		
		3.2.1	Pinout differences between STM32L0 and STM32U0 TSSOP packages	5		
		3.2.2	Pinout differences between STM32L0 and STM32U0 QFP packages	6		
		3.2.3	Ballout differences between STM32L0 and STM32U0 BGA packages	7		
	3.3	Recom	nmendations for board migration	8		
4	Boot	t mode	selection			
	4.1	Embed	dded bootloader	10		
5	Low-power modes					
	5.1	Low-po	ower modes in the STM32L0 series	11		
	5.2	Low-po	ower modes in the STM32U0 series	13		
	5.3	Consu	mption and performance overview	15		
6	Peripheral migration					
	6.1	STM32	2 product cross-compatibility	17		
	6.2	Memoi	ry mapping	18		
	6.3	Direct	memory access controller (DMA)	20		
	6.4	Interrupts				
	6.5	Reset	and clock control (RCC)	23		
		6.5.1	Performance versus V _{CORE} ranges	25		
		6.5.2	Peripheral access configuration	25		
		6.5.3	Peripheral clock configuration	26		
	6.6	Power	control (PWR)	27		
	6.7	Real-ti	me clock (RTC)	30		
	6.8	Systen	n configuration controller (SYSCFG)	30		
	6.9	Genera	al-purpose I/O (GPIO) interface	31		
	6.10	Extend	ded interrupt and event controller (EXTI) source selection	31		
	6.11	Flash r	memory	31		
	6.12	Univer	sal synchronous asynchronous receiver transmitter (U(S)ART)	33		
	6.13	Inter-in	ntegrated circuit (I2C) interface	34		
	6.14	Serial	peripheral interface (SPI)/Inter-IC sound (I2S)	34		
	6.15	Cyclic	redundancy check calculation unit (CRC)	35		
		-				

	6.16	Advanced encryption standard hardware accelerator (AES)	. 36
	6.17	Liquid-crystal display controller (LCD)	. 36
	6.18	Universal serial bus interface (USB)	. 36
	6.19	Analog-to-digital converter (ADC)	. 37
	6.20	Digital-to-analog converter (DAC)	. 38
	6.21	Comparators (COMP)	. 39
	6.22	Operational amplifiers (OPAMP)	. 39
7	Softv	vare migration	.40
	7.1	Reference documents	.40
	7.2	STM32 Cortex®-M0+ processor and core peripherals	.40
	7.3	Cortex mapping overview	.41
	7.4	Security improvements	.41
Rev	ision l	nistory	
		les	

List of tables

Table 1.	STM32U0 memory availability	. 2
Table 2.	STM32L0 series feature levels	. 3
Table 3.	STM32L0 series product category overview	. 3
Table 4.	STM32L0 memory availability and feature levels	. 3
Table 5.	Available packages for the STM32U0 series	. 4
Table 6.	Available packages for the STM32L0 series	. 5
Table 7.	Pinout comparison of STM32L0 and STM32U0 TSSOP20 packages	. 6
Table 8.	Pinout differences between STM32L0 and STM32U0 QFP packages	. 6
Table 9.	Example of pinout differences between STM32L0 and STM32U0 UFQFPN48 packages	. 6
Table 10.	Additional pinout differences between STM32L0 UFQFPN packages with exposed pad and STM32U0 UFQPN	
	packages	. 7
Table 11.	Example of pinout differences between STM32L0 and STM32U0 UFQFPN32 packages	. 7
Table 12.	Ballout differences between STM32L0 and STM32U0 BGA packages	. 7
Table 13.	Example of ballout differences between STM32L0 and STM32U0 UFBGA64 packages	
Table 14.	Boot modes for STM32L0	. 9
Table 15.	Boot modes for STM32U0 devices	. 9
Table 16.	Bootloader interfaces on the STM32L0 and STM32U0 series	10
Table 17.	STM32L0 series low-power modes	
Table 18.	STM32U0 series low-power modes	
Table 19.	Power consumtion comparison between STM32L0 and STM32U0 devices	
Table 20.	ULPMark score comparison between STM32L0 and STM32U0 devices	
Table 21.	Peripheral compatibility analysis between STM32L0 series and STM32U0 series	
Table 22.	Peripheral address mapping differences between STM32L0 and STM32U0 series	19
Table 23.	DMA request differences between STM32L0 and STM32U0 series	
Table 24.	Interrupt vector differences between STM32L0 and STM32U0 series	22
Table 25.	RCC differences between STM32L0 and STM32U0 series	
Table 26.	Performance versus V _{CORE} ranges for STM32L0 and STM32U0 series	25
Table 27.	RCC registers used for peripheral access configuration for STM32L0 and STM32U0 series	25
Table 28.	PWR differences between STM32L0 and STM32U0 series	27
Table 29.	RTC differences between STM32L0 and STM32U0 series	30
Table 30.	SYSCFG differences between STM32L0 and STM32U0 series	30
Table 31.	EXTI differences between STM32L0 and STM32U0 series	31
Table 32.	Flash memory differences between STM32L0 and STM32U0 series	32
Table 33.	U(S)ART differences between STM32L0 and STM32U0 series	33
Table 34.	I2C differences between STM32L0 and STM32U0 series	34
Table 35.	SPI differences between STM32L0 and STM32U0 series	34
Table 36.	CRC differences between STM32L0 and STM32U0 series	35
Table 37.	AES differences between STM32L0 and STM32U0 series	36
Table 38.	USB differences between STM32L0 and STM32U0 series	36
Table 39.	ADC differences between STM32L0 and STM32U0 series	37
Table 40.	DAC differences between STM32L0 and STM32U0 series	38
Table 41.	COMP differences between STM32L0 and STM32U0 series	39
Table 42.	OPAMP features on series	
Table 43.	Cortex mapping overview for STM32L0 and STM32U0 series	41
Table 44.	Document revision history	42

AN6091 - Rev 2 page 45/46

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN6091 - Rev 2 page 46/46