
Introduction

The ST1VAFE3BX is a biosensor embedding a vertical analog front-end (vAFE) channel to detect biopotential signals and a
high-performance 3-axis digital accelerometer for motion tracking. The device also embeds an analog hub (AH) sensing
functionality that is able to connect an analog input and convert it to a digital signal for embedded processing.

This document provides information on the finite state machine feature available in the ST1VAFE3BX. The finite state machine
processing capability allows moving some algorithms from the application processor to the MEMS sensor, enabling consistent
reduction of power consumption.

The finite state machine processing capability is obtained through logic connections. A state machine is a mathematical
abstraction composed of a finite number of states and transitions between them. The states definition and how they are
connected implement the desired logic for pattern recognition.

The ST1VAFE3BX can be configured to run up to eight finite state machines simultaneously and independently. The finite state
machines are stored in the device and generate results in the dedicated output registers.

The results of the finite state machine can be read from the application processor at any time. Furthermore, there is the
possibility to generate an interrupt when the desired pattern is detected.

ST1VAFE3BX: finite state machine

AN6207

Application note

AN6207 - Rev 1 - October 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/st1vafe3bx?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6207

1 Finite state machine (FSM)

1.1 Finite state machine definition
A finite state machine (FSM) is a mathematical abstraction used to design logic connections. It is a behavioral
model composed of a finite number of states and transitions between states, similar to a flowchart in which it is
possible to inspect the way logic runs when certain conditions are met. The state machine begins with a start
state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state
(called stop state). The current state is determined by the past states of the system. The following figure depicts
the flow of a generic state machine.

Figure 1. Generic state machine

START STATE

STATE #1
Condition 1 satisfied?

STATE #2
Condition 2 satisfied?

STATE #3
Condition 3 satisfied?

STOP STATE

Yes

Yes

Yes

Yes

No

No

No

AN6207
Finite state machine (FSM)

AN6207 - Rev 1 page 2/63

1.2 Finite state machine in the ST1VAFE3BX
The ST1VAFE3BX is a biosensor embedding a vAFE channel to detect biopotential signals and a 3-axis digital
accelerometer. It also embeds an analog hub (AH) sensing functionality that is able to connect an analog input
and convert it to a digital signal for embedded processing. These data can be used as the input of up to eight
programs in the embedded finite state machine (refer to the following figure).

Figure 2. State machine in the ST1VAFE3BX

ACC [LSB]
DEVICE FSM FSM output

AH / vAFE [LSB]

SIGNAL
CONDITIONING

The FSM structure is highly modular: it is possible to easily write up to eight programs, each one able to
recognize a specific pattern.
All eight finite state machines are independent: each one has its dedicated memory area and it is independently
executed. An interrupt is generated when the end state is reached or when some specific command is performed.
Typically, the interrupt is generated when a specific pattern is recognized.

AN6207
Finite state machine (FSM)

AN6207 - Rev 1 page 3/63

2 Signal conditioning block

The signal conditioning block is shown in the following figure and it is used as the interface between incoming
sensor data and the FSM block. This block is needed to convert the output sensor data (represented in [LSB]) to
the following unit conventions by default:
• Accelerometer data in [g]
• AH or vAFE data in [mV]

Figure 3. Signal conditioning block

ACC [LSB]

AH or vAFE [LSB]
SENSITIVITIES NORM

SIGNAL CONDITIONING

ACC v [g]

AH or vAFE [mV] vv

This block applies the sensitivity to [LSB] input data, and then converts these data to half-precision floating-point
(HFP) format before passing them to the FSM block. Both the accelerometer and AH / vAFE data conversion
factor are automatically handled by the device. Internally, the data are first converted to HFP format, then the
proper sensitivity is applied. The AH / vAFE channel is managed as a 3-axis sensor providing only one value of
data as X-axis data.
The gain of the AH / vAFE channel is equal to 1311 LSB/mV, corresponding to a sensitivity equal to ~0.780 µV/
LSB. The half-precison floating-point representation of this value (1266h) is written in the
AH_BIO_SENSITIVITY_L (B6h) and AH_BIO_SENSITIVITY_H (B7h) embedded advanced features registers as
the default sensitivity of the AH / vAFE channel. It is possible to modify the applied sensitivity by writing the
desired value in these registers. This can be useful when an external sensor is connected to the analog hub
interface.
In addition to the conversion to HFP format, the signal conditioning block computes the norm of the input data,
defined as follows: V = x2+ y2+ z2
The norm of the input data can be used in the state machine programs, in order to guarantee a high level of
program customization for the user.

AN6207
Signal conditioning block

AN6207 - Rev 1 page 4/63

3 FSM block

Output data signals coming from the signal conditioning block are sent to the FSM block that is detailed in the
following figure. The FSM block is mainly composed of:
• A general FSM configuration block: it affects all programs and includes some registers that have to be

properly initialized in order to configure and customize the entire FSM block.
• A maximum of eight configurable programs: each program processes input data and generates an output.

Figure 4. FSM block

ACC v [g]

CONFIGURATION

FSM

PROGRAM8 output

PROGRAM1
PROGRAM2 output

PROGRAM1 output

PROGRAM2

PROGRAM8

vAH or vAFE [mV]v

FSM configuration and program blocks are described in the following sections.

AN6207
FSM block

AN6207 - Rev 1 page 5/63

3.1 Configuration block
The configuration block is composed of a set of registers involved in the FSM configuration (FSM ODR, interrupts,
configuration of the programs, and so forth).
The embedded function registers can be used to properly configure the FSM: these registers are accessible when
the FUNC_CFG_EN bit of the FUNC_CFG_ACCESS (3Fh) register is set to 1.
The ST1VAFE3BX device is provided with an extended number of registers inside the embedded function register
set, called embedded advanced features registers, that are divided in pages. A specific read / write procedure
must be followed to access the embedded features registers. Registers involved in this specific procedure are the
following:
• PAGE_SEL (02h): it selects the desired page.
• PAGE_ADDRESS (08h): it selects the desired register address in the selected page.
• PAGE_VALUE (09h): it sets the value to be written in the selected register (only in write operation).
• PAGE_RW (17h): it is used to select the read / write operation.
The script below shows the generic procedure to write a YYh value in the register having address XXh inside the
page number Z of the embedded features registers set:

1. Write 80h to register 3Fh // Enable embedded function registers access

2. Write 40h to register 17h // PAGE_RW (17h) = 40h: enable write operation

3. Write Z1h to register 02h // PAGE_SEL (02h) = Z1h: select embedded advanced features registers page Z

4. Write XXh to register 08h // PAGE_ADDRESS (08h) = XXh: XXh is the address of the register to be configured

5. Write YYh to register 09h // PAGE_VALUE (09h) = YYh: YYh is the value to be written

6. Write 01h to register 02h // PAGE_SEL (02h) = 01h: select embedded advanced features registers page 0. This is
needed for the correct operation of the device.

7. Write 00h to register 17h // PAGE_RW (17h) = 00h: disable read / write operation

8. Write 00h to register 3Fh // Disable embedded function registers access

Note: After a write transaction, the PAGE_ADDRESS (08h) register is automatically incremented.
Program configurations must be written in the embedded advanced features registers, starting from the register
address indicated by the FSM_START_ADD_L (58h) and FSM_START_ADD_H (59h) registers. All programs
have to be written in consecutive registers, including two important aspects:
• Both the PAGE_SEL (02h) register and PAGE_ADDRESS (08h) register have to be properly updated when

moving from one page to another (that is, when passing from page 02h, address FFh to page 03h, address
00h). The ST1VAFE3BX device provides four pages that can be addressed through the PAGE_SEL (02h)
register. To address the last page, PAGE_SEL (02h) has to be set to 31h.

• Program SIZE byte must be an even number. If it is odd, an additional STOP state has to be added at the
end of the instruction section.

Once the program configurations have been written, the FSM programs are executed at the rate configured
through the FSM_ODR_[2:0] bits of the FSM_ODR (39h) embedded function register. If the configured FSM
execution rate is greater than the configured device ODR, the FSM programs are actually executed at the rate of
the accelerometer ODR. This implies that if the device is configured in power-down mode, the FSM programs are
not executed.
The FSM_ODR_[2:0] bit mapping changes whether the device is set in the AH / vAFE only state or not. If the
device is not set in the AH / vAFE only state, the finite state machine ODR can be configured from 12.5 Hz to 800
Hz. If the device is set in the AH / vAFE only state, the finite state machine ODR can be configured from 50 Hz to
1600 Hz.
For a detailed example of how to configure the entire FSM, refer to Section 9: FSM configuration example.

AN6207
FSM block

AN6207 - Rev 1 page 6/63

3.1.1 Registers
All the FSM-related registers given in the following table are accessible from the primary SPI/I²C/MIPI I3C® interface only.

Table 1. Registers

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

MD1_CFG 1Fh - 0 - - - - - INT_EMB_FUNC

AH_BIO_CFG1 30h 0 0 0 AH_BIO_ZIN_
DIS_AH2_BIO2

AH_BIO_ZIN_
DIS_AH1_BIO1 0 0 0

AH_BIO_CFG2 31h 0 AH_BIO_MODE1 AH_BIO_MODE0 AH_BIO_
C_ZIN_1

AH_BIO_
C_ZIN_0

AH_BIO_
GAIN_1

AH_BIO_
GAIN_0 AH_BIO_EN

AH_BIO_CFG3 32h 0 0 - - 0 0 0 AH_BIO_ACTIVE

EMB_FUNC_STATUS_
MAINPAGE 34h IS_FSM_LC 0 - - - 0 0 0

FSM_STATUS_
MAINPAGE 35h IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

FUNC_CFG_ACCESS 3Fh EMB_FUNC_
REG_ACCESS 0 0 0 0 0 0 FSM_WR_

CTRL_EN

A
N

6207 - R
ev 1

page 7/63

A
N

6207
FSM

 block

3.1.2 Embedded functions registers
The table given below provides a list of the FSM-related registers for the embedded functions available in the device and the corresponding addresses.
Embedded functions registers are accessible when the EMB_FUNC_REG_ACCESS bit is set to 1 in the FUNC_CFG_ACCESS (3Fh) register.

Table 2. Embedded functions registers

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PAGE_SEL 02h PAGE_SEL3 PAGE_SEL2 PAGE_SEL1 PAGE_SEL0 0 0 0 1

EMB_FUNC_EN_B 05h 0 0 0 - 0 0 0 FSM_EN

PAGE_ADDRESS 08h PAGE_ADDR7 PAGE_ADDR6 PAGE_ADDR5 PAGE_ADDR4 PAGE_ADDR3 PAGE_ADDR2 PAGE_ADDR1 PAGE_ADDR0

PAGE_VALUE 09h PAGE_VALUE7 PAGE_VALUE6 PAGE_VALUE5 PAGE_VALUE4 PAGE_VALUE3 PAGE_VALUE2 PAGE_VALUE1 PAGE_VALUE0

EMB_FUNC_INT 0Ah INT_FSM_LC 0 - - - 0 0 0

FSM_INT 0Bh INT_FSM8 INT_FSM7 INT_FSM6 INT_FSM5 INT_FSM4 INT_FSM3 INT_FSM2 INT_FSM1

EMB_FUNC_STATUS 12h IS_FSM_LC 0 - - - 0 0 0

FSM_STATUS 13h IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

PAGE_RW 17h EMB_FUNC_
LIR PAGE_WRITE PAGE_READ 0 0 0 0 0

EMB_FUNC_FIFO_EN 18h 0 0 0 0 FSM_FIFO_EN - - -

FSM_ENABLE 1Ah FSM8_EN FSM7_EN FSM6_EN FSM5_EN FSM4_EN FSM3_EN FSM2_EN FSM1_EN

FSM_LONG_
COUNTER_L 1Ch FSM_LC_7 FSM_LC_6 FSM_LC_5 FSM_LC_4 FSM_LC_3 FSM_LC_2 FSM_LC_1 FSM_LC_0

FSM_LONG_
COUNTER_H 1Dh FSM_LC_15 FSM_LC_14 FSM_LC_13 FSM_LC_12 FSM_LC_11 FSM_LC_10 FSM_LC_9 FSM_LC_8

FSM_OUTS1 20h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS2 21h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS3 22h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS4 23h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS5 24h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS6 25h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS7 26h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS8 27h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

EMB_FUNC_INIT_B 2Dh 0 0 0 - 0 0 0 FSM_INIT

FSM_ODR 39h 0 1 FSM_ODR_2 FSM_ODR_1 FSM_ODR_0 0 0 0

A
N

6207 - R
ev 1

page 8/63

A
N

6207
FSM

 block

3.1.3 Embedded advanced features pages
The table given below provides a list of the FSM-related registers for the embedded advanced features page 0. These registers are accessible when
PAGE_SEL[3:0] are set to 0000 in the PAGE_SEL (02h) register.

Note: The content of these registers is loaded when the embedded functions are enabled by setting the EMB_FUNC_EN bit to 1 in the CTRL4 (13h) register.
The embedded functions must be enabled in order for these registers to become accessible.

Table 3. Embedded advanced features registers - page 0

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_LC_TIMEOUT_L 54h FSM_LC_
TIMEOUT7

FSM_LC_
TIMEOUT6

FSM_LC_
TIMEOUT5

FSM_LC_
TIMEOUT4

FSM_LC_
TIMEOUT3

FSM_LC_
TIMEOUT2

FSM_LC_
TIMEOUT1

FSM_LC_
TIMEOUT0

FSM_LC_TIMEOUT_H 55h FSM_LC_
TIMEOUT15

FSM_LC_
TIMEOUT14

FSM_LC_
TIMEOUT13

FSM_LC_
TIMEOUT12

FSM_LC_
TIMEOUT11

FSM_LC_
TIMEOUT10

FSM_LC_
TIMEOUT9

FSM_LC_
TIMEOUT8

FSM_PROGRAMS 56h FSM_N_PROG7 FSM_N_PROG6 FSM_N_PROG5 FSM_N_PROG4 FSM_N_PROG3 FSM_N_PROG2 FSM_N_PROG1 FSM_N_PROG0

FSM_START_ADD_L 58h FSM_START7 FSM_START6 FSM_START5 FSM_START4 FSM_START3 FSM_START2 FSM_START1 FSM_START0

FSM_START_ADD_H 59h FSM_START15 FSM_START714 FSM_START13 FSM_START12 FSM_START11 FSM_START10 FSM_START9 FSM_START8

AH_BIO_SENSITIVITY_L B6h AH_BIO_S_7 AH_BIO_S_6 AH_BIO_S_5 AH_BIO_S_4 AH_BIO_S_3 AH_BIO_S_2 AH_BIO_S_1 AH_BIO_S_0

AH_BIO_SENSITIVITY_H B7h AH_BIO_S_15 AH_BIO_S_14 AH_BIO_S_13 AH_BIO_S_12 AH_BIO_S_11 AH_BIO_S_10 AH_BIO_S_9 AH_BIO_S_8

A
N

6207 - R
ev 1

page 9/63

A
N

6207
FSM

 block

3.2 Program block
Output data coming from the signal conditioning block are sent to the FSM block, composed of eight program
blocks. Each program block, as shown in the following figure, consists of:
• An input selector block, which selects the desired input data signal that is processed by the program
• A code block, composed of the data and the instructions that are executed

Figure 5. Program block

ACC v [g]

AH or vAFE [mV] v

INPUT
SELECTOR

PROGRAMx

PROGRAMx input PROGRAMx output

X = 1..8

CODE
SINMUX

MACHINE LEARNING CORE FILTERS/FEATURES

LONG COUNTER

v

3.2.1 Input selector block
The input selector block allows the selection of the input data signal between the following physical sensor data
signals or internally calculated data signals:
• ST1VAFE3BX accelerometer data, with precomputed norm (V)
• ST1VAFE3BX AH or vAFE data
• Long counter value
• Internally filtered data and computed features, by properly configuring the machine learning core
The norm (V) is internally computed with the following formula:V = x2+ y2+ z2
The machine learning core allows configuring the device to compute features (like average, variance, peak-to-
peak, energy, and so forth) or filters (like high pass, band pass, IIR1 and IIR2) applied to internal / external sensor
data. For more details about the machine learning core capabilities, refer to application note AN6208.
The following figure shows the inputs of the finite state machine block in the accelerometer digital chain.

Figure 6. FSM inputs (accelerometer)

SPI
I2C

MIPI I3C

FSM / MLC

FIFO

ADC

Digital
LP filter

Analog
antialiasing
LP filter

ODR[3:0]
BW[1:0]

LPF1

Slope
filter

®

AN6207
FSM block

AN6207 - Rev 1 page 10/63

The signal bandwidth of the accelerometer depends on the device configuration. For additional information, refer
to AN6160 available at www.st.com. The program block executes the configured program (code block) by
processing the selected input signal and generating the corresponding program output signals, according to the
purpose of the program.

Note: The SINMUX command can be used by the user inside the program instructions section to dynamically switch
the desired input signal for the program block. Refer to SINMUX (23h) for additional and detailed information
about the SINMUX command.

AN6207
FSM block

AN6207 - Rev 1 page 11/63

http://www.st.com

3.2.2 Code block
The FSM programx code block contains the state machine program. The structure of a single program is shown in
the following figure; it is composed of:
• A data section, composed of a fixed part (same size for all the FSMs), and a variable part (specific size for

each FSM)
• An instructions section, composed of conditions and commands
Each program can generate an interruptx signal and modify the corresponding FSM_OUTSx register value,
according to processed sample sets coming from the inputx signal.

Figure 7. FSM programx code structure

Interruptx

FSM_OUTSx

CODE

X = 1..8

FIXED DATA SECTION

VARIABLE DATA SECTION
PROGRAMx input

SINMUX
INSTRUCTIONS SECTION

All FSM programs are stored consecutively in a set of reserved embedded advanced features registers, as shown
in the following figure. The maximum allowed size for each program is 256 bytes.

Note: FSMs (according to all the embedded functions) have to be reconfigured each time the device is powered on or
each time the EMB_FUNC_EN bit of the CTRL4 (13h) register is reset since the embedded functions domain is
powered off and the embedded registers content is lost.

AN6207
FSM block

AN6207 - Rev 1 page 12/63

Figure 8. FSM programx memory area

Interrupt1

FSM_OUTS1

FSM Program1 Code
FIXED DATA SECTION

VARIABLE DATA SECTION
PROGRAM1 input

SINMUX
INSTRUCTIONS SECTION

Interrupt2

FSM_OUTS2

FSM Program2 Code
FIXED DATA SECTION

VARIABLE DATA SECTION

Interrupt8

FSM_OUTS8

FSM Program8 Code
FIXED DATA SECTION

VARIABLE DATA SECTION

PROGRAM2 input

SINMUX
INSTRUCTIONS SECTION

PROGRAM8 input

SINMUX
INSTRUCTIONS SECTION

AN6207
FSM block

AN6207 - Rev 1 page 13/63

4 FSM interrupt status and signal

The FSM supports generating two different interrupt signals: the FSM program interrupt signal and the FSM long
counter interrupt signal.
The FSM program interrupt signal is generated when the end state is reached (STOP command) or when some
specific command is performed (OUTC / CONT / CONTREL commands). When an FSM program interrupt is
generated, the corresponding temporary mask value is transmitted to its corresponding FSM_OUTS embedded
function register.
The FSM long counter interrupt signal is generated when the long counter value, stored in the
FSM_LONG_COUNTER_L (1Ch) and FSM_LONG_COUNTER_H (1Dh) embedded function registers, reaches
the configured long counter timeout value stored in the FSM_LC_TIMEOUT_L (54h) and FSM_LC_TIMEOUT_H
(55h) embedded advanced features registers (page 0).
The FSM interrupt status can be checked by reading the dedicated register:
• FSM_STATUS_MAINPAGE (35h) register or FSM_STATUS (13h) embedded function register for the FSM

interrupt status
• EMB_FUNC_STATUS_MAINPAGE (34h) register or EMB_FUNC_STATUS (12h) embedded function

register for the long counter interrupt status
The FSM interrupt signal can be driven to the INT interrupt pin by setting the dedicated bit:
• INT_FSM[1:8] bit of the FSM_INT embedded function register to 1
• INT_FSM_LC bit of the EMB_FUNC_INT embedded function register to 1

Note: In both of the above cases it is mandatory to also enable routing the embedded functions events to the INT
interrupt pin by setting the INT_EMB_FUNC bit of the MD1_CFG register.
The behavior of the interrupt signal is pulsed by default. The duration of the pulse is 1/ODR.

Note: The minimum pulse duration is 1/1600 Hz (~625 µs).
Latched mode can be enabled by setting the EMB_FUNC_LIR bit of the PAGE_RW (17h) embedded functions
register to 1. In this case, the interrupt signal and the status bit are reset when reading:
• FSM_STATUS_MAINPAGE (35h) register or FSM_STATUS (13h) embedded function register for the FSM

interrupt
• EMB_FUNC_STATUS_MAINPAGE (34h) register or EMB_FUNC_STATUS (12h) embedded function

register for the long counter interrupt

AN6207
FSM interrupt status and signal

AN6207 - Rev 1 page 14/63

5 Long counter

The long counter is a 15-bit temporary counter resource available to the user. It is possible to increment,
decrement, or reset its value, stored in the FSM_LONG_COUNTER_L (1Ch) and FSM_LONG_COUNTER_H
(1Dh) registers, by using the INCR, DECR, or RESET command, respectively. The minimum (and default) long
counter value is 0, while the maximum long counter value is the configured timeout value stored in the
FSM_LC_TIMEOUT_L (54h) and FSM_LC_TIMEOUT_H (55h) embedded advanced features registers.
When the long counter value is equal to the configured long counter timeout value, the IS_FSM_LC status bit of
the EMB_FUNC_STATUS_MAINPAGE (34h) register and EMB_FUNC_STATUS (12h) embedded function
register is set to 1.
Details about the FSM long counter interrupt are available in Section 4: FSM interrupt status and signal.
This resource is common to all programs and does not need additional allocated resources in the [Variable Data
Section].
If any of the programs makes use of the long counter through the commands described above, the FIFO must be
enabled in continuous mode. Refer to application note AN6160 for more details on the FIFO buffer.

Note: When FSM_LC_TIMEOUT is equal to 0, the long counter feature is disabled.

Note: The FSM_LC_TIMEOUT value must be set lower than 215 in 15-bit unsigned format.

AN6207
Long counter

AN6207 - Rev 1 page 15/63

6 Fixed Data Section

The [Fixed Data Section] stores information about the [Variable Data Section] and the [Instructions Section]. It
is composed of six bytes and it is located at the beginning of each program. The following figure shows the
structure of the [Fixed Data Section].

Figure 9. [Fixed Data Section]

NAME 7 6 5 4 3 2 1 0
0 CONFIG A NR_THRESH(1:0) NR_MASK(1:0) NR_LTIMER(1:0) NR_TIMER(1:0)

1 CONFIG B DES EXT_SINMUX 0 PAS DECTREE STOPDONE 0 JMP
2 SIZE PROGRAM SIZE(7:0)
3 SETTINGS MASKSEL(1:0) SIGNED R_TAM THRS3SEL IN_SEL(2:0)
4 RESET POINTER RESET POINTER(7:0)
5 PROGRAM POINTER PROGRAM POINTER(7:0)

Note: Green colored bits have to be set according to program purposes, while red bits have to be set to 0 when the
program is loaded into the embedded advanced features registers page (they are automatically configured by
the FSM logic).
The first two bytes store the amount of resources used by the program, while other bytes are used by the device
to store the program status.
• With CONFIG_A it is possible to declare:

– Up to three thresholds (NR_THRESH bits)
– Up to three masks (NR_MASK bits)
– Up to two long (16 bits) timers (NR_LTIMER bits)
– Up to two short (8 bits) timers (NR_TIMER bits)

• With CONFIG_B it is possible to declare:
– A decimation factor for incoming ODR (DES bit)
– An extended sinmux capability, used to select as FSM input, the long counter value or the value of a

filter/feature computed by the machine learning core (EXT_SINMUX bit)
– Usage of previous axis signs that have to be computed and stored (PAS bit)
– Usage of a decision tree interface (DECTREE bit)

• The SIZE parameter stores the length in bytes of the whole program (sum of [Fixed Data Section] size,
[Variable Data Section] size and Instruction section size). The SIZE byte must always be an even number.
If the size of the program is odd, an additional STOP state has to be added at the bottom of the Instruction
section.

• The SETTINGS parameter stores the current program status (selected mask, selected threshold, input
signal, and so forth).

• The RESET POINTER (RP) and PROGRAM POINTER (PP) store respectively the reset pointer relative
address (jump address when a RESET condition is true) and the program pointer relative address (address
of the instruction under execution during the current sample time). Address 00h is referred to CONFIG_A
byte.

Note: When PP is equal to 0, the device automatically runs the start routine (refer to Section 10: Start routine for
additional information) in order to properly initialize the internal variables and parameters of the state machine.
This is mandatory for a correct operation of the device.

AN6207
Fixed Data Section

AN6207 - Rev 1 page 16/63

7 Variable Data Section

The [Variable Data Section] is located below the corresponding [Fixed Data Section] of a program, and its size
depends on the amount of resources defined in the [Fixed Data Section].
Each resource enumerated in the [Fixed Data Section] is then allocated in the [Variable Data Section], with
proper size and at the proper position. The following figure shows the structure of the [Variable Data Section].

Figure 10. [Variable Data Section]

NAME 7 6 5 4 3 2 1 0
6

THRESH1 THRESH1(15:0)
7
8

THRESH2 THRESH2(15:0)
9
10

THRESH3 THRESH3(15:0)
11
12

EXT_SINMUX
13
14 MASKA MASKA(7:0)
15 TMASKA TMASKA(7:0)
16 MASKB MASKB(7:0)
17 TMASKB TMASKB(7:0)
18 MASKC MASKC(7:0)
19 TMASKC TMASKC(7:0)

2

20
TC TC(15:0) or TC(7:0)

21
22 TIMER1 TIMER1(15:0)
23
24

TIMER2 TIMER2(15:0)
25
26 TIMER3 TIMER3(7:0)
7 TIMER4 TIMER4(7:0)

28 DEST DEST(7:0)
29 DESC DESC(7:0)
30 PAS SCTC MSKIT MSKITEQ SIGN_X SIGN_Y SIGN_Z SIGN_V
31 DECTREE 0 DTSEL(1:0) DTRES(3:0)

SINMUX_ADDR_B
IN_SEL(3) THRXYZ1 NEXT_ODR 0

SINMUX_ADDR_A
SINMUX_ADDR_C

0
0

As shown in the table above, the maximum size of the [Variable Data Section] is 26 bytes. If the program
requires fewer resources, the size allocated for the [Variable Data Section] is lower. Bytes from 0 to 5, not shown
in the table above, are allocated for the CONFIG A, CONFIG B, SIZE, SETTINGS, RP, and PP bytes of the [Fixed
Data Section].

Note: The usage of the resources declared in the [Fixed Data Section] starts always from the lowest resource
number. For example if the user defines NR_THRESH = 10 in the [Fixed Data Section] (two thresholds
defined), the available thresholds that can be used in the program are THRESH1 and THRESH2, while
THRESH3 is not available and the bytes corresponding to THRESH3 are not allocated (all the resources below
THRESH2 are shifted up).

AN6207
Variable Data Section

AN6207 - Rev 1 page 17/63

7.1 Thresholds
Threshold resources are used to check and validate values assumed by the selected input signal (through the
SINMUX command) and axis (through MASKS) in comparison conditions.
The unit of measurement of the threshold is that of the selected signal:
• If the ST1VAFE3BX accelerometer signal is selected, the unit of the threshold is [g].
• If the ST1VAFE3BX AH or vAFE signal is selected and the sensitivity written in the

AH_BIO_SENSITIVITY_L (B6h) and AH_BIO_SENSITIVITY_L (B7h) embedded advanced features
registers is configured at the default value, the unit is [mV]. Otherwise, if the sensitivity is configured at a
different value, the unit depends on the applied conversion factor.

• If the long counter value is selected, the threshold is expressed in 15-bit unsigned format.
• If the MLC filtered signal or computed feature is selected, the unit of the threshold is the same as that of

the selected filtered signal or the selected computed feature.
Thresholds can be signed or unsigned. It is possible to move from signed to unsigned mode by using the
SSIGN0 / SSIGN1 commands. In signed mode, the signal and threshold keep their original sign in the
comparison. In unsigned mode, the comparison is performed between the absolute values of both signal and
threshold.
By setting the NR_THRESH[1:0] bits of CONFIG_A byte, the corresponding number of thresholds can be
configured in the [Variable Data Section], as described below:
• NR_THRESH[1:0] = 00: no thresholds are allocated in the [Variable Data Section].
• NR_THRESH[1:0] = 01: only THRESH1[15:0] is allocated in the [Variable Data Section].
• NR_THRESH[1:0] = 10: THRESH1[15:0] and THRESH2[15:0] are allocated in the [Variable Data Section].
• NR_THRESH[1:0] = 11: THRESH1[15:0], THRESH2[15:0] and THRESH3[15:0] are allocated in the

[Variable Data Section].
Involved commands:
• STHR1 / STHR2
• SELTHR1 / SELTHR3
• SSIGN0 / SSIGN1
Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1
• LNTH1 / LNTH2 / LLTH1 / LRTH1

7.2 Extended sinmux
The extended sinmux resource is mainly used to select as FSM inputs the long counter value (SINMUX with
argument 8) or a feature / filter computed by the machine learning core (SINMUX with first argument 9). In
addition, this resource is also required when there is the need for executing multiple conditions in one ODR
(THRXYZ1).
By setting the EXT_SINMUX bit of CONFIG_B byte to 1, the EXT_SINMUX bytes are allocated in the [Variable
Data Section] (the EXT_SINMUX bytes values are automatically managed by the device). This is mandatory if at
least one of the commands listed below is expected to be used in the program.
Involved commands:
• SINMUX with first argument equal to 8 (long counter selection) or 9 (MLC feature or filter selection)
• THRXYZ0, THRXYZ1
Involved conditions:
• N/A

AN6207
Variable Data Section

AN6207 - Rev 1 page 18/63

7.3 Masks / temporary masks
Mask resources are used to enable or disable mask action on the input data (X, Y, Z, V) when a condition is
performed. If a mask bit is set to 1, then the corresponding axis and sign is enabled, otherwise it is disabled. If the
input data is generated by the ST1VAFE3BX AH / vAFE interface, its data is available in the X channel of the
masks. Masks are used in threshold comparison conditions or zero-crossing detection. Masks allow inverting the
sign of the input signal by enabling the corresponding axis bit with a minus sign. Masks are composed of 8 bits (2
bits for each axis), as shown below:

+X -X +Y -Y +Z -Z +V -V

For each axis, it is possible to configure four different mask settings:
1. Positive axis bit = 0 / negative axis bit = 0, axis is disabled.
2. Positive axis bit = 0 / negative axis bit = 1, axis with opposite sign is enabled.
3. Positive axis bit = 1 / negative axis bit = 0, axis with current sign is enabled.
4. Positive axis bit = 1 / negative axis bit = 1, axis with current sign and axis with opposite sign are enabled.
When a program is enabled, the value of each mask is copied inside the related temporary mask (TM), which is
used during execution of conditions. Each time a condition is issued, the result of the condition is stored again in
the temporary mask (it affects also consecutive conditions).
Example:
• GNTH1 condition
• THRESH1 = 0.50 g
• MASKA = 12h (00010010b) → -Y and +V are enabled
• Current input accelerometer sample = [0.72 -0.45 0.77 1.15]

TM before the condition 0 0 0 1 0 0 1 0

Accelerometer sample 0.72 -0.72 -0.45 0.45 0.77 -0.77 1.15 -1.15
TM after the condition 0 0 0 0 0 0 1 0

It is possible to reset the temporary mask value to the mask value in the following conditions:
• Anytime there is a reset condition
• When executing a CONTREL command
• When executing a REL command
• After each true next condition, if an SRTAM1 command has been previously issued
By setting the NR_MASK[1:0] bits of CONFIG_A byte, the corresponding number of masks can be configured in
the [Variable Data Section], as described below:
• NR_ MASK[1:0] = 00: no masks are allocated in the [Variable Data Section].
• NR_ MASK[1:0] = 01: only MASKA[7:0]/TMASKA[7:0] are allocated in the [Variable Data Section].
• NR_ MASK[1:0] = 10: MASKA[7:0]/TMASKA[7:0] and MASKB[7:0]/TMASKB[7:0] are allocated in the

[Variable Data Section].
• NR_ MASK[1:0] = 11: MASKA[7:0]/TMASKA[7:0], MASKB[7:0]/TMASKB[7:0], and MASKC[7:0]/

TMASKC[7:0] are allocated in the [Variable Data Section].
Involved commands:
• SELMA / SELMB / SELMC
• SMA / SMB / SMC
• REL
• SRTAM0 / SRTAM1
Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1
• LNTH1 / LNTH2 / LLTH1 / LRTH1
• PZC / NZC

AN6207
Variable Data Section

AN6207 - Rev 1 page 19/63

7.4 TC and timers
Timer resources are used to manage event durations. It is possible to declare two kinds of timer resources: long
timers (16 bits) and short timers (8 bits). The time base is set by the FSM_ODR[2:0] bits of the FSM_ODR (39h)
register, including the decimation factor if used. Long timer resources are called TI1 and TI2, while short timer
resources are called TI3 and TI4. An additional internal timer counter (TC) is used as temporary counter to check
if a timer has elapsed. The TC value can be preloaded with two different modalities, selectable by using the
SCTC0 / SCTC1 commands:
• SCTC0 mode (default): when the program pointer moves to a state with a timeout condition, the TC value

is always preloaded to the corresponding timer value. In this modality, the timer duration affects one state
only.

• SCTC1 mode: when the program pointer moves to a state with a timeout condition, there are two different
scenarios depending on which timer is used in the new state:
– If the timer used in the new state is different from the timer used in the previous state, the TC value is

preloaded to the corresponding timer value. In this modality, the timer duration affects one state only
(same as SCTC0 mode).

– If the timer used in the new state is the same used in the previous state, the TC value is not
preloaded. The TC value continues to be decreased starting from its previous value. In this modality,
the timer duration could affect more states.

The TC value is decreased by 1 each time a new sample occurs. If TC reaches 0, the condition is true.
Example:
• Timer TI3 is set equal to 10 samples. Consider the following states:

– S0 - SCTC0 or SCTC1
– S1 - TI3 | GNTH1
– S2 - TI3 | LNTH2
– S3 - TI3 | GNTH1

• TI3 = 0Ah (10 samples)
Depending on S0, there are two different state machine behaviors:
• SCTC0 case: the TC byte is always preloaded (when the program pointer moves to states S1, S2, and S3)

and each condition is checked for a maximum of 10 samples. This means that all conditions can be verified
in a maximum of 30 samples.

• SCTC1 case: the TC byte is preloaded only when the program pointer moves to S1 (and is not preloaded
when it moves to S2 and S3), and all conditions have to be verified in a maximum of 10 samples.

SCTC1 modality is typically used when different conditions have to be verified in the same time window.
By setting the NR_LTIMER[1:0] bits of the CONFIG_A byte, the corresponding number of long timers can be
configured in the [Variable Data Section], as described below:
• NR_LTIMER[1:0] = 00: no long timers are allocated in the [Variable Data Section].
• NR_LTIMER[1:0] = 01: TIMER1[15:0] is allocated in the [Variable Data Section]
• NR_LTIMER(1:0) = 10: TIMER1[15:0] and TIMER2[15:0] are allocated in the [Variable Data Section].
By setting the NR_TIMER[1:0] bits of the CONFIG_A byte, the corresponding number of short timers can be
configured in the [Variable Data Section], as described below:
• NR_TIMER[1:0] = 00: no short timers are allocated in the [Variable Data Section].
• NR_TIMER[1:0] = 01: TIMER3[7:0] is allocated in the [Variable Data Section].
• NR_TIMER[1:0] = 10: TIMER3[7:0] and TIMER4[7:0] are allocated in the [Variable Data Section].
Below the size of the TC resource:
• If NR_LTIMER[1:0] = 00 and NR_TIMER[1:0] = 00, the TC resource is not allocated.
• If NR_LTIMER[1:0] = 00 and NR_TIMER[1:0] ≠ 00, the TC resource occupies one byte.
• If NR_LTIMER[1:0] ≠ 00 and NR_TIMER[1:0] = 00, the TC resource occupies two bytes.
• If NR_LTIMER[1:0] ≠ 00 and NR_TIMER[1:0] ≠ 00, theTC resource occupies two bytes.
Involved commands:
• STIMER3 / STIMER4
• SCTC0 / SCTC1

AN6207
Variable Data Section

AN6207 - Rev 1 page 20/63

Involved conditions:
• TI1 / TI2 / TI3 / TI4

7.5 Decimator
The decimator resource is used to reduce the sample rate of the data going to the finite state machine.
By setting the DES bit of the CONFIG_B byte to 1, the DEST and DESC bytes can be properly configured in the
[Variable Data Section]. The DEST value is the desired decimation factor, while the DESC value is the internal
counter (automatically managed by the device). The decimation factor is related to the FSM_ODR[2:0] bits of the
FSM_ODR (39h) register, according to the following formula:
PROGRAM_ODR = FSM_ODR / DEST
At startup:
DESC = DEST (initial decimation value)
When the sample clock occurs:
DESC = DESC - 1
When DESC is equal to 0, the current sample is used as the new input for the state machine, and the DESC
value is set to the initial decimation value again.
Involved commands:
• N/A
Involved conditions:
• N/A

Note: The minimum meaningful value for DEST is ‘2’.

7.6 Previous axis sign
The previous axis sign resource is mainly used to store the sign of the previous sample: this information is used in
zero-crossing conditions. In addition, it is also used to store other information such as the selected timer reset
method (SCTC0 or SCTC1) and the selected interrupt mask type (MSKIT, MSKITEQ, or UMSKIT).
By setting the PAS bit of the CONFIG_B byte to 1, the PAS byte is allocated in the [Variable Data Section] (the
PAS byte value is automatically managed by the device). This is mandatory if at least one of the commands or
conditions listed below is expected to be used in the program.
Involved commands:
• SCTC0 / SCTC1 / MSKIT / MSKITEQ / UMSKIT
Involved conditions:
• PZC / NZC

Note: If the SSIGN0 command is performed, NZC and PZC are used as a generic ZC condition.

AN6207
Variable Data Section

AN6207 - Rev 1 page 21/63

7.7 MLC interface
The MLC interface of the FSM includes the possibility of implementing conditions on the output of a decision tree
or on the value of a computed filter / feature. This can be very useful when a machine learning logic or a custom
filter is expected to be combined with an FSM program.
The output of a decision tree is accessible by using the CHKDT condition, which can be used to evaluate the
result of one of the four decision trees available inside the machine learning core algorithms.
By setting the DECTREE bit of CONFIG_B byte to 1, the DECTREE byte can be properly configured in the
[Variable Data Section]. The DECTREE byte contains information about the progressive number of the decision
trees to be triggered (DTSEL[1:0] bits, from 0 to 3) and the corresponding expected value (DTRES[3:0] bits, from
0 to 15).
The value of a filter / feature computed by the MLC can be selected using the extended sinmux feature.
By setting the EXT_SINMUX bit of the CONFIG_B byte to 1, the EXT_SINMUX bytes are allocated in the
[Variable Data Section] (the EXT_SINMUX bytes are automatically managed by the device). Refer to
Section 7.2: Extended sinmux and Section 8.2.21: SINMUX (23h) for more details about how to select a filter /
feature computed by the MLC.

Note: Using the SETP command allows reconfiguring dynamically the DECTREE byte inside the program flow in order
to trigger a different decision tree and its expected value. Details about the SETP command are provided in its
dedicated paragraph.

Note: Refer to application note AN6208 for more details about how to configure the MLC.
Involved commands:
• SINMUX
Involved conditions:
• CHKDT

AN6207
Variable Data Section

AN6207 - Rev 1 page 22/63

8 Instructions Section

The [Instructions Section] is defined below the [Variable Data Section] and is composed of a series of states
that implement the algorithm logic. Each state is characterized by one 8-bit operation code (opcode), and each
opcode can implement a command or a RESET/NEXT condition:
• Commands are used to perform special tasks for flow control, output, and synchronization. Some

commands may have parameters, executed as one single-step command.
• RESET/NEXT conditions are a combination of two conditions (4 bits for RESET condition and 4 bits for

NEXT condition) that are used to reset or continue the program flow.
The opcodes have a direct effect on registers and internal state machine memories. For some opcodes, additional
side effects can occur (such as update of status information).
A RESET/NEXT condition or a command, eventually followed by parameters, represents an instruction, also
called program state. They are the building blocks of the instructions section of a program.

8.1 RESET/NEXT conditions
The RESET/NEXT conditions are used to reset or continue the program flow, and are composed of one single
state.
The RESET condition is defined in the opcode MSB part while the NEXT condition is defined in the opcode LSB
part.
The RESET/NEXT conditions affect the program flow as indicated below:
• A transition to the reset pointer occurs whenever the RESET condition is true (PP = RP).
• A transition to the next state occurs whenever the RESET condition is false and the NEXT condition is true

(PP = PP + 1).
• No transitions occur when both the RESET and NEXT conditions are false.
As shown in the following figure, the RESET condition is always performed before the NEXT condition that is
evaluated only when the RESET condition is not satisfied.

Figure 11. Single state description

State n

RESET
CONDITION
SATISFIED

go to Reset Pointer

NEXT
CONDITION
SATISFIED

from State n-1

go to State n+1

YES

YES

NO

NO

By default, a single RESET/NEXT condition is executed when a new data sample is processed by the FSM, but it
is possible to execute multiple conditions on the same data sample by using the THRXYZ1/THRXYZ0 commands.
Details about how to enable this mode can be found in Section 8.2.27: THRXYZ1 (F7h) and
Section 8.2.28: THRXYZ0 (F8h).

Note: The RESET condition is always evaluated before the NEXT condition. By default, the reset pointer (RP) is set to
the first state, but it is possible to dynamically change the reset pointer (RP) by using SRP/CRP commands.

AN6207
Instructions Section

AN6207 - Rev 1 page 23/63

Since a condition is coded over four bits, a maximum of 16 different conditions can be coded: the list of available
conditions is shown in the following table. There are four types of conditions:
• Timeouts: these conditions are true when the TC counter, preloaded with a timer value, reaches zero.
• Threshold comparisons: these conditions are true when enabled inputs such as the accelerometer X, Y, Z

axis or norm are higher (or lower) than a programmed threshold.V = x2+ y2+ z2
• Zero-crossing detection: these conditions are true when an enabled input crosses the zero level.
• Decision tree output check: these conditions are true when the selected decision tree output is equal to the

desired value (see Section 7.7: MLC interface for more details).

Table 4. Conditions

OP code Mnemonic Description Note Resources needed

0h NOP No operation Execution moves to another condition N/A

1h TI1 Timer 1 (16-bit value) valid

No evaluation of data samples

TC, TIMER1

2h TI2 Timer 2 (16-bit value) valid TC, TIMER1, TIMER2

3h TI3 Timer 3 (8-bit value) valid TC, TIMER3

4h TI4 Timer 4 (8-bit value) valid TC, TIMER3, TIMER4

5h GNTH1 Any triggered axis ≥ THRESH1

Input signal, triggered with mask, compared to
threshold

THRESH1, one MASK

6h GNTH2 Any triggered axis ≥ THRESH2 THRESH1, THRESH2, one
MASK

7h LNTH1 Any triggered axis < THRESH1 THRESH1, one MASK

8h LNTH2 Any triggered axis < THRESH2 THRESH1, THRESH2, one
MASK

9h GLTH1 All triggered axes ≥ THRESH1 THRESH1, one MASK

Ah LLTH1 All triggered axes < THRESH1 THRESH1, one MASK

Bh GRTH1 Any triggered axis ≥ -THRESH1 THRESH1, one MASK

Ch LRTH1 Any triggered axis < -THRESH1 THRESH1, one MASK

Dh PZC Any triggered axis crossed zero value, with
positive slope Input signal, triggered with mask, crossing zero

value

PAS

Eh NZC Any triggered axis crossed zero value, with
negative slope PAS

Fh CHKDT Check result from a decision tree vs. expected Requires machine learning core configuration DECTREE

The last column of the table above indicates the resource needed by the conditions. These resources are
allocated inside the [Variable Data Section] and can be different between one FSM and another. For correct
FSM behavior, it is mandatory to set the amount of resources needed by each program in the [Fixed Data
Section].

Note: Having the same condition in the NEXT and RESET positions does not make sense. Consequently, opcodes
such as 11h do not implement the TI1 | TI1 condition, but implement some commands: for example, the opcode
11h implements the CONT command.
Moreover, it is not possible to perform the following conditions because they are recognized as commands:
• PZC | CHKDT opcode (0xDF) is equal to SMB opcode.
• NZC | CHKDT opcode (0xEF) is equal to MSKITEQ opcode.
• CHKDT | GNTH1 opcode (0xF5) is equal to MSKIT opcode.
• CHKDT | LNTH1 opcode (0xF7) is equal to THRXYZ1 opcode.
• CHKDT | GNTH2 opcode (0xF6) is equal to RSTLC opcode.
• CHKDT | LNTH2 opcode (0xF8) is equal to THRXYZ0 opcode.
• CHKDT | PZC opcode (0xFD) is equal to DECR opcode.
• CHKDT | NZC opcode (0xFE) is equal to SMC opcode.

AN6207
Instructions Section

AN6207 - Rev 1 page 24/63

8.1.1 NOP (0h)
Description: NOP (no operation) is used as filler for the RESET/NEXT pair for some particular conditions, which
do not need an active opposite condition.
Actions:
• If NOP is in the RESET condition, the FSM evaluates only the NEXT condition.
• If NOP is in the NEXT condition, the FSM evaluates only the RESET condition.

8.1.2 TI1 (1h)
Description: TI1 condition counts and evaluates the counter value of the TC bytes.
Action:
• When the program pointer moves to a state with a TI1 condition, TC = TIMER1.
• When a new data sample (X, Y, Z, V) is processed by the FSM, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state.
– If TC = 0, the condition is valid:

◦ If TI1 is in the RESET position, PP = RP.
◦ If TI1 is in the NEXT position, PP = PP + 1.

Note: Details about how to use timers inside the THRXYZ1 / THRXYZ0 commands can be found in
Section 8.2.27: THRXYZ1 (F7h) and Section 8.2.28: THRXYZ0 (F8h).

8.1.3 TI2 (2h)
Description: TI2 condition counts and evaluates the counter value of the TC bytes.
Action:
• When the program pointer moves to a state with a TI2 condition, TC = TIMER2.
• When a new data sample (X, Y, Z, V) is processed by the FSM, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state.
– If TC = 0, the condition is valid:

◦ If TI2 is in the RESET position, PP = RP.
◦ If TI2 is in the NEXT position, PP = PP + 1.

Note: Details about how to use timers inside the THRXYZ1 / THRXYZ0 commands can be found in
Section 8.2.27: THRXYZ1 (F7h) and Section 8.2.28: THRXYZ0 (F8h).

8.1.4 TI3 (3h)
Description: TI3 condition counts and evaluates the counter value of the TC byte.
Action:
• When the program pointer moves to a state with a TI3 condition, TC = TIMER3.
• When a new data sample (X, Y, Z, V) is processed by the FSM, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state.
– If TC = 0, the condition is valid:

◦ If TI3 is in the RESET position, PP = RP.
◦ If TI3 is in the NEXT position, PP = PP + 1.

Note: Details about how to use timers inside the THRXYZ1 / THRXYZ0 commands can be found in
Section 8.2.27: THRXYZ1 (F7h) and Section 8.2.28: THRXYZ0 (F8h).

AN6207
Instructions Section

AN6207 - Rev 1 page 25/63

8.1.5 TI4 (4h)
Description: TI4 condition counts and evaluates the counter value of the TC byte.
Action:
• When the program pointer moves to a state with a TI4 condition, TC = TIMER4.
• When a new data sample (X, Y, Z, V) is processed by the FSM, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state.
– If TC = 0, the condition is valid:

◦ If TI4 is in the RESET position, PP = RP.
◦ If TI4 is in the NEXT position, PP = PP + 1.

Note: Details about how to use timers inside the THRXYZ1 / THRXYZ0 commands can be found in
Section 8.2.27: THRXYZ1 (F7h) and Section 8.2.28: THRXYZ0 (F8h).

8.1.6 GNTH1 (5h)
Description: GNTH1 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is
greater than or equal to the threshold 1 level. The threshold used during the comparison depends on the
THRS3SEL bit in the SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X ≥ threshold || -X ≥ threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GNTH1 is valid and it is in the RESET position, PP = RP.
– If GNTH1 is valid and it is in the NEXT position, PP = PP + 1.

8.1.7 GNTH2 (6h)
Description: GNTH2 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is
greater than or equal to the threshold 2 level. The threshold used during the comparison is THRESH2.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X ≥ threshold || -X ≥ threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GNTH2 is valid and it is in the RESET position, PP = RP.
– If GNTH2 is valid and it is in the NEXT position, PP = PP + 1.

8.1.8 LNTH1 (7h)
Description: LNTH1 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is lower
than the threshold 1 level. The threshold used during the comparison depends on the THRS3SEL bit in the
SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X < threshold || -X < threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LNTH1 is valid and it is in the RESET position, PP = RP.
– If LNTH1 is valid and it is in the NEXT position, PP = PP + 1.

AN6207
Instructions Section

AN6207 - Rev 1 page 26/63

8.1.9 LNTH2 (8h)
Description: LNTH2 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is lower
than the threshold 2 level. The threshold used during the comparison is THRESH2.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X < threshold || -X < threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LNTH2 is valid and it is in the RESET position, PP = RP.
– If LNTH2 is valid and it is in the NEXT position, PP = PP + 1.

8.1.10 GLTH1 (9h)
Description: GLTH1 condition is valid if all axes of the FSM processed data sample (X, Y, Z, V) are greater than or
equal to the threshold 1 level. The threshold used during the comparison depends on the THRS3SEL bit in the
SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X ≥ threshold || -X ≥ threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GLTH1 is valid and it is in the RESET position, PP = RP.
– If GLTH1 is valid and it is in the NEXT position, PP = PP + 1.

8.1.11 LLTH1 (Ah)
Description: LLTH1 condition is valid if all axes of the FSM processed data sample (X, Y, Z, V) are lower than the
threshold 1 level. The threshold used during the comparison depends on the THRS3SEL bit in the SETTINGS
byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X < threshold || -X < threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LLTH1 is valid and it is in the RESET position, PP = RP.
– If LLTH1 is valid and it is in the NEXT position, PP = PP + 1.

AN6207
Instructions Section

AN6207 - Rev 1 page 27/63

8.1.12 GRTH1 (Bh)
Description: GRTH1 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is
greater than or equal to the reversed threshold 1 level. The threshold used during the comparison depends on the
THRS3SEL bit in the SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is -THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

-THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X ≥ threshold || -X ≥ threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GRTH1 is valid and it is in the RESET position, PP = RP.
– If GRTH1 is valid and it is in the NEXT position, PP = PP + 1.

8.1.13 LRTH1 (Ch)
Description: LRTH1 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is lower
than the reversed threshold 1 level. The threshold used during the comparison depends on the THRS3SEL bit in
the SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is -THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

-THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X < threshold || -X < threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LRTH1 is valid and it is in the RESET position, PP = RP.
– If LRTH1 is valid and it is in the NEXT position, PP = PP + 1.

8.1.14 PZC (Dh)
Description: PZC condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) crossed
the zero level, with a positive slope.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If a zero-crossing event with positive slope occurs and PZC is in the RESET position, PP = RP.
– If a zero-crossing event with positive slope occurs and PZC is in the NEXT position, PP = PP + 1.

8.1.15 NZC (Eh)
Description: NZC condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) crossed
the zero level, with a negative slope.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If a zero-crossing event with negative slope occurs and NZC is in the RESET position, PP = RP.
– If a zero-crossing event with negative slope occurs and NZC is in the NEXT position, PP = PP + 1.

AN6207
Instructions Section

AN6207 - Rev 1 page 28/63

8.1.16 CHKDT (Fh)
Description: CHKDT condition is valid if the result of the selected decision tree is the expected one. For additional
information about how to properly configure the decision tree Interface refer to Section 7.7: MLC interface.
Action:
• When a new sample set (X, Y, Z, V) occurs, then check the output of the selected decision tree; if the

output is the expected one:
– If CHKDT is in the RESET position, PP = RP.
– If CHKDT is in the NEXT position, PP = PP + 1.

AN6207
Instructions Section

AN6207 - Rev 1 page 29/63

8.2 Commands
Commands are used to modify the program behavior in terms of flow control, output, and synchronization.
Commands are immediately executed (no need for a new sample set). When a command is executed, the
program pointer is set to the next line, which is immediately evaluated.
Some commands may need parameters that must be defined (through dedicated opcodes reporting the
parameter value) just below the command opcode. Refer to the example below that shows three consecutive
opcodes used to dynamically change the value of the “THRESH1” resource when the STHR1 command is
executed:
• AAh (STHR1 command)
• CDh (1st parameter)
• 3Ch (2nd parameter)
When the program pointer reaches the AAh (STHR1 command) state, the device recognizes that this is a
command that requires two parameters: these three states are immediately executed without waiting for a new
sample set. After the command execution is completed, the THRESH1 resource value is set to 3CCDh, equal to
1.2.

Table 5. List of commands

Opcode Mnemonic Description Parameter

00h STOP Stop execution, and wait for a new start from reset pointer None

11h CONT Continues execution from reset pointer None

22h CONTREL Continues execution from reset pointer, resetting temporary mask None

33h SRP Set reset pointer to next address/state None

44h CRP Clear reset pointer to first program line None

55h SETP Set parameter in program memory
Byte 1: address

Byte 2: value

B5h SETR Set device register value (ASC)
Byte 1: address (ASC)

Byte 2: value (ASC)

66h SELMA Select MASKA and TMASKA as current mask None

77h SELMB Select MASKB and TMASKB as current mask None

88h SELMC Select MASKC and TMASKC as current mask None

99h OUTC Write the temporary mask to output registers None

AAh STHR1 Set new value to THRESH1 register
Byte 1: THRESH1 [LSB]

Byte 2: THRESH1 [MSB]

BBh STHR2 Set new value to THRESH2 register
Byte 1: THRESH2 [LSB]

Byte 2: THRESH2 [MSB]

CCh SELTHR1 Selects THRESH1 instead of THRESH3 None

DDh SELTHR3 Selects THRESH3 instead of THRESH1 None

FFh REL Reset temporary mask to default None

12h SSIGN0 Set UNSIGNED comparison mode None

13h SSIGN1 Set SIGNED comparison mode None

14h SRTAM0 Do not reset temporary mask after a next condition true None

21h SRTAM1 Reset temporary mask after a next condition true None

23h SINMUX Set input multiplexer Refer to Section 8.2.21: SINMUX (23h) for details about the
parameters that are needed.

24h STIMER3 Set new value to TIMER3 register Byte 1: TI3 value

31h STIMER4 Set new value to TIMER4 register Byte 1: TI4 value

34h INCR Increase long counter +1 and check long counter timeout None

FDh DECR Decrease long counter -1 None

AN6207
Instructions Section

AN6207 - Rev 1 page 30/63

Opcode Mnemonic Description Parameter

F6h RSTLC Reset long counter None

F7h THRXYZ1 Enable execution of multiple conditions without waiting for a sample set None

F8h THRXYZ0 Disable execution of multiple conditions without waiting for a sample set None

41h JMP Jump address for two Next conditions

Byte 1: conditions

Byte 2: reset jump address

Byte 3: next jump address

43h SMA Set MASKA and TMASKA Byte 1: MASKA value

DFh SMB Set MASKB and TMASKB Byte 1: MASKB value

FEh SMC Set MASKC and TMASKC Byte 1: MASKC value

5Bh SCTC0 Clear time counter TC on next condition true None

7Ch SCTC1 Do not clear time counter TC on next condition true None

C7h UMSKIT Unmask interrupt generation when setting OUTS None

EFh MSKITEQ Mask interrupt generation when setting OUTS if OUTS does not change None

F5h MSKIT Mask interrupt generation when setting OUTS None

8.2.1 STOP (00h)
Description: STOP command halts execution and waits for host restart. This command is used to control the end
of the program.
Parameters: none
Actions:
• Outputs the resulting mask to OUTSx register
• Generates interrupt (if enabled, according to the use of MSKIT / MSKITEQ / UMSKIT commands)
• Stops itself by setting the STOPDONE bit in the CONFIG_B byte of the [Fixed Data Section] to 1. The

user should disable and enable the corresponding state machine bit in the FSM_ENABLE (1Ah) register to
restart the program. In this case, the start routine is performed. For additional information about the start
routine, refer to Section 10: Start routine.

8.2.2 CONT (11h)
Description: CONT command loops execution to the reset point. This command is used to control the end of the
program.
Parameters: none
Actions:
• Outputs the resulting mask to the OUTSx registers
• Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands)
• PP = RP

AN6207
Instructions Section

AN6207 - Rev 1 page 31/63

8.2.3 CONTREL (22h)
Description: CONTREL command loops execution to the reset point. This command is used to control the end of
the program. In addition, it resets the temporary mask value to its default value.
Parameters: none
Actions:
• Outputs the resulting mask to the OUTSx registers
• Resets temporary mask to default value
• Generates interrupt (if enabled, according to the use of MSKIT / MSKITEQ / UMSKIT commands)
• PP = RP

8.2.4 SRP (33h)
Description: SRP command sets the reset pointer to the next address/state. This command is used to modify the
starting point of the program.
Parameters: none
Actions:
• RP = PP + 1
• PP = PP + 1

8.2.5 CRP (44h)
Description: CRP command clears the reset pointer to the start position (at the beginning of the program code).
Parameters: none
Actions:
• RP = beginning of program code
• PP = PP + 1

8.2.6 SETP (55h)
Description: SETP command allows the configuration of the state machine currently used to be modified. This
command is used to modify a byte value at a desired address of the current state machine.
Parameters: two bytes

• 1st parameter: address (8 bits) of the byte to be modified. This address is relative to the current state
machine (address 00h refers to CONFIG_A byte).

• 2nd parameter: new value (8 bits) to be written in the 1st parameter address
Actions:

• Byte value addressed by 1st parameter = 2nd parameter
• PP = PP + 3

AN6207
Instructions Section

AN6207 - Rev 1 page 32/63

8.2.7 SETR (B5h)

8.2.7.1 ASC feature
Description: The SETR command is used to enable the adaptive self-configuration (ASC) feature, which allows
the device to reconfigure itself without the intervention of the master. The list of registers, which can be written by
the FSM, are listed in the tables below.

Table 6. ASC FSM main page registers

Main page register Register address (master) Register address (FSM)

CTRL1 10h 10h

CTRL2 11h 11h

CTRL3 12h 12h

CTRL4 13h 13h

CTRL5 14h 14h

FIFO_CTRL 15h 15h(1)

1. FIFO_MODE change not supported.

Table 7. ASC FSM embedded functions registers

Embedded functions register Register address (master) Register address (FSM)

EMB_FUNC_EN_A 04h 01h(1)

EMB_FUNC_EN_B 05h 02h(1)

EMB_FUNC_FIFO_EN 18h 05h(1)

FSM_ENABLE 1Ah 03h(1)

1. Access to the embedded function registers is automatically handled by the FSM.

Write access to the above device registers is mutually exclusive: the FSM_WR_CTRL_EN bit of the
FUNC_CFG_ACCESS (3Fh) register is used to give write capability of the above device registers to either the
master or the FSM. After writing this bit, the controller change occurs after 50 µs.
When accessing the embedded functions registers by setting the EMB_FUNC_REG_ACCESS bit of the
FUNC_CFG_ACCESS register to 1, the FUNC_CFG_ACCESS register (which also contains the
FSM_WR_CTRL_EN bit) cannot be read, but it can be written. In order to set the FSM_WR_CTRL_EN bit to the
desired value without running the risk of overwriting its content when entering/exiting the embedded functions
registers page, in the application code it is recommended to set it to the desired value before accessing the
embedded functions registers, while also storing said value in a byte-sized variable. Then, it is recommended to
follow these procedures to enter/exit the embedded functions registers page:
• When entering the embedded functions register page, instead of writing 80h in the FUNC_CFG_ACCESS

register, write the bitwise OR operation between 80h and the value stored in the variable in the register.
• When exiting the embedded functions register page, instead of writing 00h in the FUNC_CFG_ACCESS

register, write the value stored in the variable in the register.
Parameters: two bytes

• 1st parameter: address (8 bits) of the register whose value is to be modified, referred to as the “Register
address (FSM)” column of the above tables. If this parameter is equal to 0x00, the 2nd parameter is used
as a write bitmask for the first subsequent SETR command.

• 2nd parameter: new value (8 bits) to be written in the 1st parameter register address. If the 1st parameter is
0x00, this parameter is used as a write bitmask for the first subsequent SETR command.

Actions:

• Register value addressed by 1st parameter = 2nd parameter
• PP = PP + 3

AN6207
Instructions Section

AN6207 - Rev 1 page 33/63

Note: The default write bitmask is 0xFF, which means that all bits are written. Setting a bitmask allows changing the
value of specific bits of a register without changing the value of the other bits. For example, if the accelerometer
ODR must be changed without changing the accelerometer bandwidth and full scale, two consecutive SETR
commands must be performed as described below:
1. SETR 0x00 0xF0 (bitmask equal to 0xF0)
2. SETR 0x14 0x80 (new accelerometer ODR equal to 100 Hz)

8.2.8 SELMA (66h)
Description: SELMA command sets MASKA / TMASKA as current mask.
Parameters: none
Actions:
• MASK_A is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the [Fixed Data Section] to 00.
• PP = PP + 1

8.2.9 SELMB (77h)
Description: SELMB command sets MASKB / TMASKB as current mask.
Parameters: none
Actions:
• MASK_B is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the [Fixed Data Section] to 01.
• PP = PP + 1

8.2.10 SELMC (88h)
Description: SELMC command sets MASKC / TMASKC as current mask.
Parameters: none
Actions:
• MASK_C is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the [Fixed Data Section] to 10.
• PP = PP + 1

8.2.11 OUTC (99h)
Description: OUTC stands for output command. This command is used to update the OUTS register value to the
current temporary mask value and to generate an interrupt (if enabled).
Parameters: none
Actions:
• Updates the OUTS register of the current state machine to the selected temporary mask value
• Generates interrupt (if enabled, according to the use of the MSKIT / MSKITEQ / UMSKIT commands)
• PP = PP + 1

8.2.12 STHR1 (AAh)
Description: STHR1 command sets the THRESH1 value to a new desired value. THRESH1 is a half floating-point
(16 bits) number.
Parameters: two bytes

• 1st parameter: THRESH1 LSB value (8 bits)
• 2nd parameter: THRESH1 MSB value (8 bits)
Actions:
• Sets new value for THRESH1
• PP = PP + 3

AN6207
Instructions Section

AN6207 - Rev 1 page 34/63

8.2.13 STHR2 (BBh)
Description: STHR2 command sets the THRESH2 value to a new desired value. THRESH2 is a half floating-point
(16 bits) number.
Parameters: two bytes

• 1st parameter: THRESH2 LSB value (8 bits)
• 2nd parameter: THRESH2 MSB value (8 bits)
Actions:
• Sets new value for THRESH2
• PP = PP + 3

8.2.14 SELTHR1 (CCh)
Description: after executing the SELTHR1 command, the THRESH1 value is used instead of the THRESH3 value
when the GNTH1, LNTH1, GLTH1, LLTH1, GRTH1, LRTH1 conditions are performed.
Parameters: none
Actions:
• Selects THRESH1 instead of THRESH3. It sets the SETTINGS(THRS3SEL) bit of the [Fixed Data

Section] to 0.
• PP = PP + 1

8.2.15 SELTHR3 (DDh)
Description: after executing the SELTHR3 command, the THRESH3 value is used instead of the THRESH1 value
when the GNTH1, LNTH1, GLTH1, LLTH1, GRTH1, LRTH1 conditions are performed.
Parameters: none
Actions:
• Selects THRESH3 instead of THRESH1. It sets the SETTINGS(THRS3SEL) bit of the [Fixed Data

Section] to 1.
• PP = PP + 1

8.2.16 REL (FFh)
Description: REL command releases the temporary axis mask information.
Parameters: none
Actions:
• Resets current temporary masks to the default value
• PP = PP + 1

AN6207
Instructions Section

AN6207 - Rev 1 page 35/63

8.2.17 SSIGN0 (12h)
Description: SSIGN0 command sets the comparison mode to “unsigned”.
Parameters: none
Actions:
• Sets comparison mode to “unsigned”. It sets the SETTINGS(SIGNED) bit of the [Fixed Data Section] to 0.
• PP = PP + 1

8.2.18 SSIGN1 (13h)
Description: SSIGN1 command sets the comparison mode to “signed” (default behavior).
Parameters: none
Actions:
• Sets comparison mode to “signed”. It sets the SETTINGS(SIGNED) bit of the [Fixed Data Section] to 1.
• PP = PP + 1

8.2.19 SRTAM0 (14h)
Description: SRTAM0 command is used to preserve the temporary mask value when a NEXT condition is true
(default behavior).
Parameters: none
Actions:
• Temporary axis mask value does not change after valid NEXT condition. It sets the SETTINGS(R_TAM) bit

of the [Fixed Data Section] to 0.
• PP = PP + 1

8.2.20 SRTAM1 (21h)
Description: SRTAM1 command is used to reset the temporary mask when a NEXT condition is true.
Parameters: none
Actions:
• Temporary axis mask value is reset after valid NEXT condition. It sets the SETTINGS(R_TAM) bit of the

[Fixed Data Section] to 1.
• PP = PP + 1

8.2.21 SINMUX (23h)
Description: SINMUX command is used to change the input source for the current state machine. If the SINMUX
command is not performed, the accelerometer signal is automatically selected as the default input source.
The standard SINMUX command can be also used to select the MLC filtered data; for this purpose, the MLC filter
structure has to be configured as below:

• The first MLC filter [Fx Fy Fz Fv(2)] has to be applied to the sensor axes.

• The second MLC filter [0 0 0 Gv(3)] has to be applied to the sensor norm.

• The third MLC filter [Hx Hy Hz Hv(2)] has to be applied to the sensor axes.

• The fourth MLC filter [0 0 0 Jv(3)] has to be applied to the sensor norm.

The above requirement for the order and type (axes or norm) of the MLC filters can be overcome by using the
extended sinmux feature, which allows getting any of the MLC filtered data.

Note: In case the user just needs to apply two filters to the sensor axes (filters on the sensor norm are not needed), it
is necessary to configure also the second MLC filter on the sensor norm even if it is not used. Furthermore, in
case the user just needs to apply two filters to the sensor norm (filters on the sensor axes are not needed), it is
necessary to configure all four MLC filters as described above.
In addition, the extended sinmux feature allows using the SINMUX command to select the long counter value or
any computed MLC filter or feature.

AN6207
Instructions Section

AN6207 - Rev 1 page 36/63

Parameters: three bytes if the 1st parameter is equal to 9, otherwise one byte.

• 1st parameter: value to select input source:
0: accelerometer [ax ay az av]
1: AH / vAFE [mx 0 0 0]

3: first filtered signal from the machine learning core(1) [Fx Fy Fz Fv(2)]

4: third filtered signal from the machine learning core(1) [Hx Hy Hz Hv(2)]

5: second filtered signal norm from the machine learning core(1) [0 0 0 Gv(3)]

6: fourth filtered signal norm from the machine learning core(1) [0 0 0 Jv(3)]
8: long counter value [LCx 0 0 0]
9: any filter or feature from the machine learning core [Kx Ky Kz Kv]. The filter or the feature is selected
through the 2nd and 3rd parameters

• 2nd parameter (needed only if the 1st parameter is equal to 9): MLC filter or feature IDENTIFIER[7:0]
• 3rd parameter (needed only if the 1st parameter is equal to 9): MLC filter or feature IDENTIFIER[15:8]
Identifiers for filters and features are indicated in the configuration file generated by STMicroelectronics tools
when configuring the MLC as indicated in the figure below.

Figure 12. MLC identifiers for filters and features

Note: The processing of the AH / vAFE signal is selected by using the SINMUX 1 command. In this case, the mask
value to be used during a comparison can be 0x80 (corresponding to +X axis) or 0x40 (corresponding to -X
axis).

Note: When a filter on the axes is intended to be selected through the SINMUX 9 command, it is recommended to
configure the IDENTIFIER related to the filtered X-axis. In this case, the mask value during a comparison follows
the normal order of the axes.

Note: The mask value to be used during a long counter value comparison is 0x80 (corresponding to +X axis), and the
threshold is interpreted as an unsigned 15-bit value.

Note: The mask value to be used during a filter on the norm or a feature value comparison is 0x80 (corresponding to
+X axis) or 0x40 (corresponding to -X axis).
Actions:
• Selects input signal accordingly with set parameter. It configures the SETTINGS(IN_SEL[2:0]) bits of the

[Fixed Data Section] and the EXT_SINMUX(IN_SEL[3]) bit of the [Variable Data Section] according to
the selected input source signal.

• If the 1st parameter is equal to 9, PP + 4; otherwise, PP + 2.
(1) Filter type could be HP / LP / IIR1 / IIR2 depending on the machine learning core configuration.
(2) Fv / Hv / Kv is internally computed by the FSM starting from Fx, Fy, Fz / Hx, Hy, Hz / Kx, Ky, Kz filtered data
values provided by the MLC.
(3) Gv / Jv is provided by the MLC.

AN6207
Instructions Section

AN6207 - Rev 1 page 37/63

8.2.22 STIMER3 (24h)
Description: STIMER3 command is used to set a new value for TIMER3.
Parameters: one byte

• 1st parameter: new TIMER3 value
Actions:
• Sets new TIMER3 value
• PP = PP + 2

8.2.23 STIMER4 (31h)
Description: STIMER4 command is used to set a new value for TIMER4.
Parameters: one byte

• 1st parameter: new TIMER4 value
Actions:
• Sets new TIMER4 value
• PP = PP + 2

8.2.24 INCR (34h)
Description: INCR command is used to increase the long counter value by one. The long counter value is stored
in the FSM_LONG_COUNTER_L (1Ch) and FSM_LONG_COUNTER_H (1Dh) embedded functions registers,
and is clamped to the long counter timeout value stored into the FSM_LC_TIMEOUT_L (54h) and
FSM_LC_TIMEOUT_H (55h) embedded advanced features registers. An interrupt is generated when the long
counter value is equal to the long counter timeout value. Details about the FSM long counter interrupt are
available in Section 4: FSM interrupt status and signal.
Parameters: none
Actions:
• Increase the long counter value by one, and generate an interrupt if the long counter value is equal to the

long counter timeout value.
• PP = PP + 1

8.2.25 DECR (FDh)
Description: DECR command is used to decrease the long counter value by one. The long counter value is stored
in the FSM_LONG_COUNTER_L (1Ch) and FSM_LONG_COUNTER_H (1Dh) embedded functions registers,
and is clamped to zero.
Parameters: none
Actions:
• Decrease the long counter value by one.
• PP = PP + 1

8.2.26 RSTLC (F6h)
Description: RSTLC command is used to reset the long counter value. The long counter value is stored in the
FSM_LONG_COUNTER_L (1Ch) and FSM_LONG_COUNTER_H (1Dh) embedded functions registers.
Parameters: none
Actions:
• Reset the long counter value.
• PP = PP + 1

AN6207
Instructions Section

AN6207 - Rev 1 page 38/63

8.2.27 THRXYZ1 (F7h)
Description: THRXYZ1 command is used to enable the mode where multiple conditions are executed on the
same data sample. When this mode is enabled, the FSM executes all the conditions using the same data sample
until a THRXYZ0 command is performed. All the instructions between the THRXYZ1 and THRXYZ0 commands
can be considered as a single instruction. In this case, the commands and conditions affect the program flow as
described below:
• If the current state is a command, it is immediately executed.
• If the current state is a condition:

– If the RESET condition is true, the program pointer is set to the RP, and the THRXYZ1 bit of the
EXT_SINMUX byte of the [Variable Data Section] is set to 0 to restore the default condition
execution mode (refer to the THRXYZ0 command). The new state is executed when the next data
sample is processed.

– If the NEXT condition is true, the program pointer is set to the next state, which is immediately
executed.

– If the NEXT condition is false, the program pointer is set to the address of the THRXYZ1 command,
and the FSM evaluates again the instructions between the THRXYZ1 and the THRXYZ0 commands
when the next data sample is processed.

During the enablement of this mode, there are some considerations that must be considered.
• One timer only in SCTC1 mode can be used.
• If more than one OUTC command is issued before reaching the THRXYZ0 command, the OUTS register

will contain only the information related to the result of the last performed condition.
• The JMP and SRP commands are not supported.
• The SINMUX 0 command is not supported and must be replaced with a SINMUX 9 01D4h command,

which means setting the IDENTIFIER[7:0] parameter equal to D4h and the IDENTIFIER[15:8] parameter
equal to 01h.

Parameters: none
Actions:
• Set the THRXYZ1 bit of the EXT_SINMUX byte of the [Variable Data Section] to 1.
• PP = PP + 1

8.2.28 THRXYZ0 (F8h)
Description: THRXYZ0 command is used to restore the default mode where each condition is executed on one
data sample only. In this case, the commands and conditions affect the program flow as described below:
• If the current state is a command, it is immediately executed.
• If the current state is a condition:

– If the RESET condition is true, the program pointer is set to the RP. The new state is executed when
the next data sample is processed.

– If the NEXT condition is true, the program pointer is set to the next state. The new state is executed
when the next data sample is processed.

– If both the RESET and NEXT conditions are false, the PP is not changed. This condition is evaluated
again when the next data sample is processed.

Parameters: none
Actions:
• Set the THRXYZ1 bit of the EXT_SINMUX byte of the [Variable Data Section] to 0.
• PP = PP + 1

AN6207
Instructions Section

AN6207 - Rev 1 page 39/63

8.2.29 JMP (41h)
Description: JMP command is a special command characterized by a NEXT1 | NEXT2 condition, with two
different jump addresses.
Parameters: three bytes

• 1st parameter: NEXT1 | NEXT2 condition
• 2nd parameter: jump address if NEXT1 condition is true
• 3rd parameter: jump address if NEXT2 condition is true
The NEXT1 condition is evaluated before the NEXT2 condition. Jump addresses are relative to the current state
machine (address 00h refers to the CONFIG_A byte).
Actions:
• It sets to 1 the JMP bit in the CONFIG_B byte of the [Fixed Data Section]. Evaluates the NEXT1 | NEXT2

condition:

– If the NEXT1 condition is true, PP = 2nd parameter address.
– Else if the NEXT2 condition is true, PP = 3rd parameter address.
– Else waits for a new sample set and evaluates again the NEXT1 | NEXT2 condition.

8.2.30 SMA (43h)
Description: SMA command is used to set a new value for MASKA and TMASKA.
Parameters: one byte

• 1st parameter: new MASKA and TMASKA value
Actions:
• Set new MASKA and TMASKA value
• PP = PP + 2

8.2.31 SMB (DFh)
Description: SMB command is used to set a new value for MASKB and TMASKB.
Parameters: one byte

• 1st parameter: new MASKB and TMASKB value
Actions:
• Set new MASKB and TMASKB value
• PP = PP + 2

AN6207
Instructions Section

AN6207 - Rev 1 page 40/63

8.2.32 SMC (FEh)
Description: SMC command is used to set a new value for MASKC and TMASKC.
Parameters: one byte

• 1st parameter: new MASKC and TMASKC value
Actions:
• Set new MASKC and TMASKC value
• PP = PP + 2

8.2.33 SCTC0 (5Bh)
Description: SCTC0 command is used to reset the TC byte (time counter) when a NEXT condition is true (default
behavior).
Parameters: none
Actions:
• TC (time counter) byte value is reset after valid NEXT condition.
• PP = PP + 1

8.2.34 SCTC1 (7Ch)
Description: SCTC1 command is used to preserve the TC byte (time counter) when a NEXT condition is true.
Parameters: none
Actions:
• TC (time counter) byte value does not change after valid NEXT condition.
• PP = PP + 1

8.2.35 UMSKIT (C7h)
Description: UMSKIT command is used to unmask interrupt generation when the OUTS register value is updated
(default behavior). Refer to the OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: none
Actions:
• Unmask interrupt generation when setting the OUTS register.
• PP = PP + 1

8.2.36 MSKITEQ (EFh)
Description: MSKITEQ command is used to mask interrupt generation when the OUTS register value is updated
but its value does not change (temporary mask value is equal to current OUTS register value). Refer to the
OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: none
Actions:
• Mask interrupt generation when setting the OUTS register if OUTS does not change.
• PP = PP + 1

8.2.37 MSKIT (F5h)
Description: MSKIT command is used to mask interrupt generation when the OUTS register value is updated.
Refer to the OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: none
Actions:
• Mask interrupt generation when setting the OUTS register.
• PP = PP + 1

AN6207
Instructions Section

AN6207 - Rev 1 page 41/63

9 FSM configuration example

This section contains an example that explains all write operations that have to be done in order to configure the
ST1VAFE3BX FSM. A few steps have to be followed:
• Configure the FSM registers inside the embedded function registers set.
• Configure the FSM registers inside the embedded advanced features registers set.
• Configure the ST1VAFE3BX accelerometer sensor.
In this example, two simple programs are configured:
• PROGRAM 1: wrist tilt (around the x-axis) algorithm, routed to the INT pin
• PROGRAM 2: wake-up algorithm, routed to the INT pin
Both algorithms are intended to use accelerometer data only at a sample rate of 25 Hz.
Refer to the figure below for details about the [Program Data Section] and the [Instructions Section].

Figure 13. FSM configuration example

PAGE - ADDRESS NAME 7 6 5 4 3 2 1 0

PR
OG

RA
M

 1

2 - 00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 01 (1 short timer)
2 - 01h CONFIG B 0 0 0 0 0 0 0 0
2 - 02h SIZE 10h (16 bytes)
2 - 03h SETTINGS 00 0 0 0 00
2 - 04h RESET POINTER 00h
2 - 05h PROGRAM POINTER 00h
2 - 06h

THRESH1 B7AEh (-0.480)
2 - 07h
2 - 08h MASKA 80h (+X)
2 - 09h TMASKA 00h
2 - 0Ah TC 00h
2 - 0Bh TIMER3 10h (16 samples)
2 - 0Ch GNTH1 | TI3 53h
2 - 0Dh OUTC 99h
2 - 0Eh GNTH1 | NOP 50h
2 - 0Fh STOP 00h

PR
OG

RA
M

 2

2 - 10h CONFIG A 01 (1 threshold) 01 (1 mask) 00 00
2 - 11h CONFIG B 0 0 0 0 0 0 0 0
2 - 12h SIZE 0Ch (12 bytes)
2 - 13h SETTINGS 00 0 0 0 00
2 - 14h RESET POINTER 00h
2 - 15h PROGRAM POINTER 00h
2 - 16h

THRESH1 3C66h (1.100)
2 - 17h
2 - 18h MASKA 02h (+V)
2 - 19h TMASKA 00h
2 - 1Ah NOP | GNTH1 05h
2 - 1Bh CONTREL 22h

The FSM configuration has to be performed with the accelerometer sensor in power-down mode. Refer to the
following script for the complete device configuration:

1. Write 00h to register 14h // Set accelerometer sensor in power-down mode

2. Write 10h to register 13h // Enable the embedded functions

3. Wait 5 ms // Wait for the embedded functions to be turned on

4. Write 80h to register 3Fh // Enable access to the embedded function registers

5. Write 00h to register 04h // EMB_FUNC_EN_A = 0

AN6207
FSM configuration example

AN6207 - Rev 1 page 42/63

6. Write 00h to register 05h // EMB_FUNC_EN_B = 0

7. Write 48h to register 39h // FSM_ODR[2:0] = 001 (25 Hz)

8. Write 03h to register 1Ah // FSM_ENABLE = 03h

9. Write 00h to register 0Ah // EMB_FUNC_INT = 00h

10. Write 03h to register 0Bh // FSM_INT = 03h

11. Write 40h to register 17h // PAGE_RW: enable write operation

12. Write 01h to register 02h // PAGE_SEL = 0

13. Write 54h to register 08h // PAGE_ADDRESS = 54h

14. Write 00h to register 09h // Write 00h to register FSM_LONG_COUNTER_L

15. Write 00h to register 09h // Write 00h to register FSM_LONG_COUNTER_H

16. Write 02h to register 09h // Write 02h to register FSM_PROGRAMS

17. Write 58h to register 08h // PAGE_ADDRESS = 58h

18. Write 00h to register 09h // Write 00h to register FSM_START_ADDRESS_L

19. Write 02h to register 09h // Write 02h to register FSM_START_ADDRESS_H

20. Write 21h to register 02h // PAGE_SEL = 2

21. Write 00h to register 08h // PAGE_ADDRESS = 00h

22. Write 51h to register 09h // CONFIG_A

23. Write 00h to register 09h // CONFIG_B

24. Write 10h to register 09h // SIZE

25. Write 00h to register 09h // SETTINGS

26. Write 0Ch to register 09h // RESET POINTER

27. Write 00h to register 09h // PROGRAM POINTER

28. Write AEh to register 09h // THRESH1 LSB

29. Write B7h to register 09h // THRESH1 MSB

30. Write 80h to register 09h // MASKA

31. Write 00h to register 09h // TMASKA

32. Write 00h to register 09h // TC

33. Write 10h to register 09h // TIMER3

34. Write 53h to register 09h // GNTH1 | TI3

35. Write 99h to register 09h // OUTC

36. Write 50h to register 09h // GNTH1 | NOP

37. Write 00h to register 09h // STOP (mandatory for having even SIZE bytes)

38. Write 50h to register 09h // CONFIG_A

39. Write 00h to register 09h // CONFIG_B

40. Write 0Ch to register 09h // SIZE

41. Write 00h to register 09h // SETTINGS

42. Write 0Ah to register 09h // RESET POINTER

43. Write 00h to register 09h // PROGRAM POINTER

44. Write 66h to register 09h // THRESH1 LSB

45. Write 3Ch to register 09h // THRESH1 MSB

46. Write 02h to register 09h // MASKA

47. Write 00h to register 09h // TMASKA

48. Write 05h to register 09h // NOP | GNTH1

49. Write 22h to register 09h // CONTREL

AN6207
FSM configuration example

AN6207 - Rev 1 page 43/63

50. Write 00h to register 04h // EMB_FUNC_EN_A = 0

51. Write 01h to register 05h // EMB_FUNC_EN_B(FSM_EN) = 1

52. Write 00h to register 17h // PAGE_RW: disable write operation

53. Write 00h to register 3Fh // Disable access to the embedded function registers

54. Write 01h to register 1Fh // MD1_CFG(INT_EMB_FUNC) = 1

55. Write 62h to register 14h // CTRL4 = 62h (25 Hz, 8 g)

AN6207
FSM configuration example

AN6207 - Rev 1 page 44/63

10 Start routine

When the FSM is enabled, a start routine is automatically executed. The routine is executed if the PROGRAM
POINTER byte is set to 0 and it performs the following tasks:
• The STOPDONE and the JMP bits in the CONFIG_B byte are reset.
• The PP and RP pointers are initialized to the first line of code.
• The SETTINGS field is initialized with the default value 0x20, which means:

– MASKSEL = 00
– SIGNED = 1
– R_TAM = 0
– THRS3SEL = 0
– IN_SEL = 000

• The associated output register OUTS is cleared.
• Assign to all declared temporary masks the value of the corresponding original mask (TMASKx = MASKx).
• If timers are declared, the time counter is initialized to 0 (TC = 0).
• If decimation is declared, the decimation counter is initialized with the programmed decimation time value

(DESC = DEST).
• If the previous axis sign resource is declared, it is initialized to 0 (PAS = 0).
When the start routine is performed, the program always restarts from a known state, independently of the way it
was stopped. However, it should be noted that the default mode implies:
• MASKA selected as running mask (MASKSEL = 00)
• Signed comparison mode (SIGNED = 1)
• Do not release temporary mask after a next condition is true (R_TAM = 0)
• Threshold1 selected instead of threshold3 for comparisons (THRS3SEL = 0)
• Input multiplexer set to select accelerometer data (IN_SEL = 000)

AN6207
Start routine

AN6207 - Rev 1 page 45/63

11 Examples of state machine configurations

11.1 Toggle
Toggle is a simple state machine configuration that generates an interrupt every n sample.
The idea is to use a timer to count n samples.

Figure 14. Toggle state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 00 00 00 01 (1 short timer)
01h CONFIG B 0 0 0 0 0 0 0 0
02h SIZE 0Ah (10 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h TC 00h
07h TIMER3 10h (16 samples)
08h NOP | TI3 03h
09h CONTREL 22h

Instructions section description
PP = 08h: the first time this state is reached, TC = TI3. Each time a new sample set is generated, the TC byte is
decreased by one. When TC = 0, PP = PP + 1.
PP = 09h: CONTREL command is performed without needing a sample set. This generates an interrupt and
resets the program (PP = RP = 08h).
In the example, the interrupt is generated every 16 samples. TI3 can be configured in order to get the desired
toggle period, which depends on the configured FSM_ODR.

AN6207
Examples of state machine configurations

AN6207 - Rev 1 page 46/63

11.2 Adaptive self-configuration (ASC)
This example shows how to use the ASC feature to reconfigure the device based on a specific motion event.
The program below starts configuring the accelerometer in ultralow-power mode at 25 Hz. When a wake-up event
is detected, the accelerometer is configured in low-power mode at 100 Hz. If stationary for a while, the
accelerometer is set back to ultralow-power mode at 25 Hz.

Figure 15. ASC state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 01 (1 short mer)
01h CONFIG B 0 0 0 1 0 0 0 0
02h SIZE 1Ah (26 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h THRESH1 3C66h (1.100)07h
08h MASKA 02h (+V)
09h TMASKA 00h
0Ah TC 00h
0Bh TIMER3 7Dh (125 samples)
0Ch PAS 00h
0Dh MSKIT F5h
0Eh SETR B5h
0Fh 14h 14h
10h 30h 30h
11h NOP | GNTH1 05h
12h SETR B5h
13h 14h 14h
14h 80h 80h
15h SRP 33h
16h GNTH1 | TI3 53h
17h CRP 44h
18h CONTREL 22h
19h STOP 00h

Instructions section description
PP = 0Dh: MSKIT command is performed without needing a sample set. The MSKIT bit in the PAS byte is set to
1. PP = PP + 1.
PP = 0Eh: SETR command is performed without needing a sample set. The register 14h is set to 32h (the
accelerometer sensor is configured in ultralow-power mode at 25 Hz). PP = PP + 3.
PP = 11h: this condition is evaluated each time a new sample is generated. If the vector (magnitude) of the
acceleration signal is greater than THRESH1, PP = PP + 1.
PP = 12h: SETR command is performed without needing a sample set. The register 14h is set to 80h (the
accelerometer sensor is configured at 100 Hz). PP = PP + 3.
PP = 15h: SRP command is performed without needing a sample set. The RESET POINTER is set to the next
state, 16h. PP = PP + 1.
PP = 16h: this condition is evaluated each time a new sample is generated. If the vector (magnitude) of the
acceleration signal is greater than THRESH1, then PP = RP, and TC is set to TI3. If the vector (magnitude) of the
acceleration signal is lower than THRESH1 for TI3 consecutive samples, PP = PP + 1.
PP = 17h: CRP command is performed without needing a sample set. The RESET POINTER is set to its default
value, 0Dh. PP = PP + 1.
PP = 18h: CONTREL command is performed without needing a sample set. This does not generate an interrupt
due to the execution of the MSKIT command and resets the program. PP = RP = 0Dh.
In the example, the wake-up threshold is 1.1 g, and the timer is 125 samples.

AN6207
Examples of state machine configurations

AN6207 - Rev 1 page 47/63

11.3 Free-fall
This feature is used to detect when a system is dropping (for example, to protect data on the hard drive). If the
object is in free-fall, the acceleration on the X-axis, Y-axis, and Z-axis goes to zero.
To implement this function, acceleration on all axes should be less than a configured threshold, for a minimum
configured duration. When this condition is detected, an interrupt is generated.

Figure 16. Free-fall state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 01 (1 short timer)
01h CONFIG B 0 0 0 0 0 0 0 0
02h SIZE 12h (18 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h

THRESH1 34CDh (0.300)
07h
08h MASKA A8h (+X, +Y, +Z)
09h TMASKA 00h
0Ah TC 00h
0Bh TIMER3 03h (3 samples)
0Ch SSIGN0 12h
0Dh SRP 33h
0Eh GNTH1 | TI3 53h
0Fh OUTC 99h
10h GNTH1 | NOP 50h
11h STOP 00h

Instructions section description
PP = 0Ch: SSIGN0 command is performed without needing a sample set. The SIGNED bit of the SETTINGS byte
is set to 0, indicating that unsigned comparison mode was set. PP = PP + 1.
PP = 0Dh: SRP command is performed without the need of a sample set. The RESET POINTER is set to the next
state, 0Eh. PP = PP + 1.
PP = 0Eh: if the acceleration on one axis is greater than THRESH1, then PP = RP. If acceleration on all axes is
lower than THRESH1 for three consecutives samples, then the PP is increased (PP = PP + 1).
PP = 0Fh: OUTC command is performed without needing a sample set. This generates an interrupt and increases
the PP (PP = PP + 1).
PP = 10h: if acceleration on one axis is greater than THRESH1, then PP = RP. This means that the device is no
longer in free-fall, so the program has to be reset.
In the example, the free-fall threshold is set to 0.3 g and the free-fall duration is set to three samples.

Note: Free-fall duration is strictly related to FSM_ODR. For example, if FSM_ODR is set to 25 Hz, the free-fall duration
is ~120 ms (three samples at 25 Hz).

AN6207
Examples of state machine configurations

AN6207 - Rev 1 page 48/63

11.4 Decision tree interface
This example shows how to use the decision tree interface with the FSM. It is assumed that the machine learning
core is configured as below:
• Decision tree number 0 (the first one) implements an activity recognition algorithm able to detect three user

activities (classes): stationary, walking, and running.
• An output value is associated to each recognized activity:

– Stationary output is 0.
– Walking output is 1.
– Running output is 2.

• The window length for the features calculation is 2 seconds (50 samples having an ODR equal to 25 Hz)
The FSM implements a simple wakeup algorithm that is enabled after the output of the decision tree is equal to
stationary. In this case, if the device starts moving again, a wake-up interrupt is generated by the FSM.

Figure 17. Decision tree interface example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 10 (2 short timer)
01h CONFIG B 0 0 0 0 1 0 0 0
02h SIZE 12h (18 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h

THRESH1 3C33h (1.050)
07h
08h MASKA 02h (+V)
09h TMASKA 00h
0Ah TC 00h
0Bh TIMER3 02h (2 samples)
0Ch TIMER4 33h (51 samples)
0Dh DECTREE 00h (selected decision tree number 0, expected output is 0)
0Eh NOP | CHKDT 0Fh
0Fh TI3 | GNTH1 35h
10h OUTC 99h
11h TI4 | NOP 40h

Instructions section description

PP = 0Eh: check the decision tree output based on the DECTREE byte. The DECTREE byte is configured to
check the decision tree number 0 and to expect an output equal to 0 (that is, stationary). If the detected activity is
stationary, then the PP is increased (PP = PP + 1).
PP = 0Fh: if TI3 expires, then PP = RP (the program is reset and the decision tree interface is checked again). If
the vector (magnitude) of the accelerometer is greater than THRESH1, then PP is increased (PP = PP + 1).
PP = 10h: OUTC command is performed without the need of a sample set. This generates an interrupt and
increases the PP (PP = PP + 1).
PP = 11h: if TI4 expires, then PP = RP.

AN6207
Examples of state machine configurations

AN6207 - Rev 1 page 49/63

12 Finite state machine tool

The finite state machine programmability in the device is allowed through a dedicated tool, available as an
extension of MEMS Studio.

12.1 MEMS Studio
MEMS Studio is the graphical user interface for all the MEMS sensor demonstration boards available in the
STMicroelectronics portfolio. It has the possibility to interact with a motherboard based on the STM32
microcontroller (professional MEMS tool), which enables the communication between the MEMS sensor and the
PC GUI.
Details about the professional MEMS tool board can be found at STEVAL-MKI109D.
MEMS Studio is available in three software packages for the three operating systems supported.
• Linux - MEMS-Studio-Lin
• Mac OS X - MEMS-Studio-Mac
• Windows - MEMS-Studio-Win
The MEMS Studio GUI allows visualization of sensor outputs in both graphical and numerical format and allows
the user to save or generally manage data coming from the device.
MEMS Studio allows access to the MEMS sensor registers, enabling a fast prototype of register setup and easy
test of the configuration directly in the device. It is possible to save the configuration of the current registers in a
file and load a configuration from an existing file. In this way, the sensor can be reprogrammed in a few seconds.
The finite state machine tool available in MEMS Studio helps the process of register configuration by
automatically generating configuration files for the device. By clicking a few buttons, the configuration file is
available. From these configuration files, the user can create his own library of configurations for the device.
To open the tool used for programming the finite state machines, the user first needs to click on the [Advanced
Features] button that is available in the left side of MEMS Studio and then on the [FSM] button. When loaded, the
[Finite State Machine] tool window is shown as in the following figure.

Figure 18. Running the finite state machine tool

In the top part of the [Finite State Machine] tool main window, the user can select which state machine is
selected (the selection is applied in both the [Configuration] tab and [Debug] tab). It is also possible to configure
the FSM ODR and the long counter parameters. The FSM start address is automatically managed by the tool and
should not be changed by the user.

AN6207
Finite state machine tool

AN6207 - Rev 1 page 50/63

https://www.st.com/en/evaluation-tools/steval-mki109d.html
https://www.st.com/en/product/mems-studio?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6207
https://www.st.com/en/product/mems-studio?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6207
https://www.st.com/en/product/mems-studio?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN6207

The [Finite State Machine] tool is mainly composed of three tabs, which are detailed in dedicated sections:
• [Configuration] tab (the one selected by default)
• [Testing] tab
• [Debug] tab

12.1.1 Configuration tab
The [Configuration] tab of the [Finite State Machine] tool allows the user to implement the program logic. The
UI is able to abstract the FSM program structure: for this reason, four group boxes are shown:
1. [Status Data]
2. [Fixed Data]
3. [Variable Data]
4. [Instructions Section]

Figure 19. [Finite State Machine] tool - [Configuration] tab

In the top part of the [Instructions Section] tab, the user can manage the device configuration using dedicated
buttons:
• [Load state machine from file]: it is used to load a .json file representing a single state machine in the

selected state machine number.
• [Save state machine as]: it is used to save the selected state machine to a .json file that can be loaded in

a second time using the [Load state machine from file] button.
• [Load all state machines from file]: it is used to load a .json file representing a set of state machines.
• [Save all state machine as]: it is used to save all the configured state machines to a .json file that can be

loaded in a second time using the [Load all state machines from file] button.
• [Open device configuration from file]: it is used to load a .json or .ucf file representing a configuration of

the selected device, and to perform the corresponding write transactions in the registers.
• [Save device configuration as]: it is used to save the current device configuration to a .json, .h or .ucf file

that can be loaded in a second time using the [Open device configuration from file] button.
• [Reset state machine]: it is used to clear the selected state machine.
• [Reset all state machines]: it is used to clear all the state machines.
• [Read FSM configuration from sensor]: it is used to read the device registers related to the FSM, and to

graphically populate the UI based on the current FSM configuration and programs.
• [Write FSM configuration to sensor]: it is used to write the entire FSM configuration in the device (it

includes FSM ODR, long counter parameters, interrupt status, and programs).

AN6207
Finite state machine tool

AN6207 - Rev 1 page 51/63

12.1.1.1 Status Data
The [Status Data] group box is available in the top right corner of the [Configuration] tab.

Figure 20. [Configuration] tab - [Status Data]

The [Status Data] group box allows the user to enable/disable the state machine and to route the interrupt status
to the interrupt pins. In detail:
The [Enabled] checkbox is used to enable/disable the state machine. It is automatically set if the program
contains at least one instruction and it is automatically reset if the program does not contain any instruction.
The [INT1] checkbox is used to enable routing the state machine interrupt to the INT1 pin.
The [INT2] checkbox is used to enable routing the state machine interrupt to the INT2 pin.
If the device supports only one interrupt pin, MEMS Studio allows the user to route the state machine interrupt
only to that pin.

12.1.1.2 Fixed Data
The [Fixed Data] group box is available on the right side of the [Configuration] tab.

Figure 21. [Configuration] tab - [Fixed Data]

The [Fixed Data] group box allows the user to manually enable the resources that cannot be automatically
enabled by analyzing the [Instructions Section]. All the other bits and bytes of the [Fixed Data] section are
automatically managed by the tool based on the resources that are used in the [Instructions Section].

12.1.1.3 Variable Data
The [Variable Data] group box is available on the right side of the [Configuration] tab.

Figure 22. [Configuration] tab – [Variable Data]

The [Variable Data] group box simplifies the resource allocation process: all the needed resources are
automatically shown or hidden in the [Variable Data] group box depending on the instructions that compose the
[Instructions Section]. The user has just to set the values of the shown resources.

AN6207
Finite state machine tool

AN6207 - Rev 1 page 52/63

12.1.1.4 Instructions Section
The [Instructions Section] group box is available in the center of the [Configuration] tab.

Figure 23. [Configuration] tab – [Instructions Section]

The [Instructions Section] group box helps the user to build the algorithm logic. The [Variable Data] group box
is dynamically updated depending on resources used in the [Instructions Section] group box. In the
[Instructions Section] group box, more actions can be taken:
1. Customize an existing state. The single state is composed of:

– State number Sx
– State relative hexadecimal address (address 0x00 corresponds to the CONFIG_A byte in the [Fixed

Data] section)
– State type: the user can customize the state type (command or condition) through the CMD / RNC drop-

down list as described below:
◦ [RNC]: the state is a RESET/NEXT condition. In this case, two additional drop-down lists are

shown. The left one is related to the RESET condition while the right one is related to the NEXT
condition.

◦ [CMD]: the state is a command. In this case, one additional drop-down list is shown. Commands
having one or more parameters (automatically displayed by the tool) require the user to manually
configure the parameter values.

– [+] button is used to insert a new state just before the current one.
– [-] button is used to remove the current state.

2. Add a new state at the end of the state machine. This button is always positioned at the bottom of the state
machine states.

3. Analyze the program flow thanks to the graphical representation of the program.

AN6207
Finite state machine tool

AN6207 - Rev 1 page 53/63

12.1.2 Testing tab
The [Testing] tab of the [Finite State Machine] tool allows the user to check the functionality of the configured
programs at runtime. The UI is composed of two parts as shown in Figure 24.
1. Signal plots: depending on the connected device, the UI shows plots of the data of the enabled sensors and of

the enabled interrupt signals.
2. [State Machine Interrupts] status: in this group box, two columns of information are shown:

– A graphic LED is linked to the corresponding state machine interrupt source bit. By default, the LED is
off. When the corresponding source bit is set to 1, the LED is turned on for a while.

– The FSM_OUTSx register value and the long counter register value can be manually read by clicking on
the corresponding [Read] button.

Figure 24. [Finite State Machine] tool - [Testing] tab

AN6207
Finite state machine tool

AN6207 - Rev 1 page 54/63

12.1.3 Debug tab
The [Debug] tab can be used to inject data into the device in order to check the functionality of the configured
programs.
The MEMS Studio [Save to File] tab, shown in the following figure, allows the user to collect log files properly
formatted for the data injection procedure: these log files must contain [LSB] data only.

Figure 25. MEMS Studio – [Save to File] tab

AN6207
Finite state machine tool

AN6207 - Rev 1 page 55/63

The [Debug] tab window is shown in the following figure.

Figure 26. [Finite State Machine] tool – [Debug] tab

The [Debug] tab is mainly composed of three UI parts:
1. State machine flows: the state machine is graphically shown here. When the debug mode is enabled, the

current state is highlighted and it is dynamically updated based on the injected sample and program behavior.
The UI allows the user to set one or more breakpoints directly on the chart to stop the injection process in
case the program pointer reaches one of those states.

2. Debug commands: by default, the debug mode is off. When a log file is loaded, the debug mode is
automatically turned on, and the user can start to inject data into the device in order to verify the program
functionalities.

3. Output results: after injecting a sample into the device, a new line is added to the table. Table columns
represent the state machine parameters and resources, while table rows are related to the injected sample.
Finally, it is possible to export the table results in a text file format.

AN6207
Finite state machine tool

AN6207 - Rev 1 page 56/63

Revision history

Table 8. Document revision history

Date Version Changes

25-Oct-2024 1 Initial release

AN6207

AN6207 - Rev 1 page 57/63

Contents

1 Finite state machine (FSM). .2
1.1 Finite state machine definition . 2

1.2 Finite state machine in the ST1VAFE3BX . 3

2 Signal conditioning block. .4
3 FSM block .5

3.1 Configuration block . 6
3.1.1 Registers. 7

3.1.2 Embedded functions registers. 8

3.1.3 Embedded advanced features pages . 9

3.2 Program block . 10
3.2.1 Input selector block . 10

3.2.2 Code block . 12

4 FSM interrupt status and signal .14
5 Long counter .15
6 Fixed Data Section. .16
7 Variable Data Section .17

7.1 Thresholds . 18

7.2 Extended sinmux. 18

7.3 Masks / temporary masks . 19

7.4 TC and timers . 20

7.5 Decimator. 21

7.6 Previous axis sign . 21

7.7 MLC interface . 22

8 Instructions Section .23
8.1 RESET/NEXT conditions . 23

8.1.1 NOP (0h). 25

8.1.2 TI1 (1h) . 25

8.1.3 TI2 (2h) . 25

8.1.4 TI3 (3h) . 25

8.1.5 TI4 (4h) . 26

8.1.6 GNTH1 (5h) . 26

8.1.7 GNTH2 (6h) . 26

8.1.8 LNTH1 (7h) . 26

8.1.9 LNTH2 (8h) . 27

8.1.10 GLTH1 (9h) . 27

AN6207
Contents

AN6207 - Rev 1 page 58/63

8.1.11 LLTH1 (Ah) . 27

8.1.12 GRTH1 (Bh) . 28

8.1.13 LRTH1 (Ch). 28

8.1.14 PZC (Dh). 28

8.1.15 NZC (Eh). 28

8.1.16 CHKDT (Fh) . 29

8.2 Commands. 30
8.2.1 STOP (00h). 31

8.2.2 CONT (11h). 31

8.2.3 CONTREL (22h) . 32

8.2.4 SRP (33h) . 32

8.2.5 CRP (44h). 32

8.2.6 SETP (55h) . 32

8.2.7 SETR (B5h) . 33

8.2.8 SELMA (66h) . 34

8.2.9 SELMB (77h) . 34

8.2.10 SELMC (88h) . 34

8.2.11 OUTC (99h) . 34

8.2.12 STHR1 (AAh) . 34

8.2.13 STHR2 (BBh) . 35

8.2.14 SELTHR1 (CCh) . 35

8.2.15 SELTHR3 (DDh) . 35

8.2.16 REL (FFh) . 35

8.2.17 SSIGN0 (12h) . 36

8.2.18 SSIGN1 (13h) . 36

8.2.19 SRTAM0 (14h) . 36

8.2.20 SRTAM1 (21h) . 36

8.2.21 SINMUX (23h). 36

8.2.22 STIMER3 (24h) . 38

8.2.23 STIMER4 (31h) . 38

8.2.24 INCR (34h) . 38

8.2.25 DECR (FDh) . 38

8.2.26 RSTLC (F6h). 38

8.2.27 THRXYZ1 (F7h) . 39

8.2.28 THRXYZ0 (F8h) . 39

8.2.29 JMP (41h) . 40

8.2.30 SMA (43h). 40

8.2.31 SMB (DFh) . 40

AN6207
Contents

AN6207 - Rev 1 page 59/63

8.2.32 SMC (FEh) . 41

8.2.33 SCTC0 (5Bh) . 41

8.2.34 SCTC1 (7Ch) . 41

8.2.35 UMSKIT (C7h) . 41

8.2.36 MSKITEQ (EFh) . 41

8.2.37 MSKIT (F5h) . 41

9 FSM configuration example .42
10 Start routine .45
11 Examples of state machine configurations .46

11.1 Toggle . 46

11.2 Adaptive self-configuration (ASC) . 47

11.3 Free-fall . 48

11.4 Decision tree interface . 49

12 Finite state machine tool. .50
12.1 MEMS Studio. 50

12.1.1 Configuration tab. 51

12.1.2 Testing tab . 54

12.1.3 Debug tab . 55

Revision history .57
List of tables .61
List of figures. .62

AN6207
Contents

AN6207 - Rev 1 page 60/63

List of tables
Table 1. Registers . 7
Table 2. Embedded functions registers . 8
Table 3. Embedded advanced features registers - page 0 . 9
Table 4. Conditions . 24
Table 5. List of commands. 30
Table 6. ASC FSM main page registers. 33
Table 7. ASC FSM embedded functions registers . 33
Table 8. Document revision history . 57

AN6207
List of tables

AN6207 - Rev 1 page 61/63

List of figures
Figure 1. Generic state machine. 2
Figure 2. State machine in the ST1VAFE3BX. 3
Figure 3. Signal conditioning block . 4
Figure 4. FSM block . 5
Figure 5. Program block . 10
Figure 6. FSM inputs (accelerometer) . 10
Figure 7. FSM programx code structure. 12
Figure 8. FSM programx memory area . 13
Figure 9. [Fixed Data Section] . 16
Figure 10. [Variable Data Section] . 17
Figure 11. Single state description . 23
Figure 12. MLC identifiers for filters and features . 37
Figure 13. FSM configuration example . 42
Figure 14. Toggle state machine example . 46
Figure 15. ASC state machine example . 47
Figure 16. Free-fall state machine example . 48
Figure 17. Decision tree interface example . 49
Figure 18. Running the finite state machine tool . 50
Figure 19. [Finite State Machine] tool - [Configuration] tab . 51
Figure 20. [Configuration] tab - [Status Data]. 52
Figure 21. [Configuration] tab - [Fixed Data] . 52
Figure 22. [Configuration] tab – [Variable Data] . 52
Figure 23. [Configuration] tab – [Instructions Section] . 53
Figure 24. [Finite State Machine] tool - [Testing] tab . 54
Figure 25. MEMS Studio – [Save to File] tab. 55
Figure 26. [Finite State Machine] tool – [Debug] tab . 56

AN6207
List of figures

AN6207 - Rev 1 page 62/63

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN6207

AN6207 - Rev 1 page 63/63

http://www.st.com/trademarks

	AN6207
	1 Finite state machine (FSM)
	1.1 Finite state machine definition
	1.2 Finite state machine in the ST1VAFE3BX

	2 Signal conditioning block
	3 FSM block
	3.1 Configuration block
	3.1.1 Registers
	3.1.2 Embedded functions registers
	3.1.3 Embedded advanced features pages

	3.2 Program block
	3.2.1 Input selector block
	3.2.2 Code block

	4 FSM interrupt status and signal
	5 Long counter
	6 Fixed Data Section
	7 Variable Data Section
	7.1 Thresholds
	7.2 Extended sinmux
	7.3 Masks / temporary masks
	7.4 TC and timers
	7.5 Decimator
	7.6 Previous axis sign
	7.7 MLC interface

	8 Instructions Section
	8.1 RESET/NEXT conditions
	8.1.1 NOP (0h)
	8.1.2 TI1 (1h)
	8.1.3 TI2 (2h)
	8.1.4 TI3 (3h)
	8.1.5 TI4 (4h)
	8.1.6 GNTH1 (5h)
	8.1.7 GNTH2 (6h)
	8.1.8 LNTH1 (7h)
	8.1.9 LNTH2 (8h)
	8.1.10 GLTH1 (9h)
	8.1.11 LLTH1 (Ah)
	8.1.12 GRTH1 (Bh)
	8.1.13 LRTH1 (Ch)
	8.1.14 PZC (Dh)
	8.1.15 NZC (Eh)
	8.1.16 CHKDT (Fh)

	8.2 Commands
	8.2.1 STOP (00h)
	8.2.2 CONT (11h)
	8.2.3 CONTREL (22h)
	8.2.4 SRP (33h)
	8.2.5 CRP (44h)
	8.2.6 SETP (55h)
	8.2.7 SETR (B5h)
	8.2.7.1 ASC feature

	8.2.8 SELMA (66h)
	8.2.9 SELMB (77h)
	8.2.10 SELMC (88h)
	8.2.11 OUTC (99h)
	8.2.12 STHR1 (AAh)
	8.2.13 STHR2 (BBh)
	8.2.14 SELTHR1 (CCh)
	8.2.15 SELTHR3 (DDh)
	8.2.16 REL (FFh)
	8.2.17 SSIGN0 (12h)
	8.2.18 SSIGN1 (13h)
	8.2.19 SRTAM0 (14h)
	8.2.20 SRTAM1 (21h)
	8.2.21 SINMUX (23h)
	8.2.22 STIMER3 (24h)
	8.2.23 STIMER4 (31h)
	8.2.24 INCR (34h)
	8.2.25 DECR (FDh)
	8.2.26 RSTLC (F6h)
	8.2.27 THRXYZ1 (F7h)
	8.2.28 THRXYZ0 (F8h)
	8.2.29 JMP (41h)
	8.2.30 SMA (43h)
	8.2.31 SMB (DFh)
	8.2.32 SMC (FEh)
	8.2.33 SCTC0 (5Bh)
	8.2.34 SCTC1 (7Ch)
	8.2.35 UMSKIT (C7h)
	8.2.36 MSKITEQ (EFh)
	8.2.37 MSKIT (F5h)

	9 FSM configuration example
	10 Start routine
	11 Examples of state machine configurations
	11.1 Toggle
	11.2 Adaptive self-configuration (ASC)
	11.3 Free-fall
	11.4 Decision tree interface

	12 Finite state machine tool
	12.1 MEMS Studio
	12.1.1 Configuration tab
	12.1.1.1 Status Data
	12.1.1.2 Fixed Data
	12.1.1.3 Variable Data
	12.1.1.4 Instructions Section

	12.1.2 Testing tab
	12.1.3 Debug tab

	Revision history
	Contents
	List of tables
	List of figures

