

AIS1200DS

MEMS single-axis satellite acceleration sensor with DSI 2.02 interface

Preliminary data

Features

- 6.5 to 30 V single-supply operation
- -20 V reverse battery survivability
- 10-bit data output DSI 2.02 compliant
- Embedded voltage regulator
- Customizable daisy-chain address
- Embedded self-test
- Automotive AEC-Q100 qualified
- ECOPACK[®] compliant
- Extended temperature range: -40 °C to +125 °C

Applications

- Airbag DSI systems
- Vibration/impact monitoring

Description

The AIS1200DS is a satellite acceleration sensor with a single-axis sensing element and an IC interface capable of providing acceleration information to external applications through a 225 kbps DSI 2.02 interface.

The sensing element is manufactured using a dedicated process developed by ST to produce inertial sensors and actuators in silicon.

The IC interface is manufactured using a BCD SOI process that allows a high level of integration and specific control of parasitic currents.

The AIS1200DS acquisition chain is composed of a C/V converter, a full-differential charge amplifier, a 1st-order LPF @ 1.6 KHz, a 3rd-order LP Bessel filter @ 360 Hz and a second charge amplifier to adapt the dynamic range to SAR A/D converter input.

The differential capacitance of the sensor is proportional to the proof mass displacement; thus, by sensing the differential capacitance, the position of the sensor is determined. Since the mass position is known and the position is related to the input acceleration, the input acceleration can be easily deduced.

The device is available in a 300 mils plastic SOIC package with reverse frame forming for EMC enhancement, and has an operating temperature range from -40 $^{\circ}$ C to +125 $^{\circ}$ C.

Table 1. Device summary

Order code	<i>g</i> -range	Operating temperature range [° C]	Package	Packing
AIS1200DS	200 <i>g</i>	-40 to +125	SO16W	Tubes
AIS1200DSTR	200 <i>g</i>	-40 to +125	SO16W	Tape and reel

October 2010

Doc ID 18130 Rev 1

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

Contents

1	Block diagram and pin description
	1.1 Block diagram 3
	1.2 SO16W pin description 3
2	Mechanical and electrical specifications
	2.1 Mechanical characteristics 5
	2.2 Electrical characteristics 6
	2.3 Control timing
3	Absolute maximum ratings 9
	3.1 Factory calibration
4	Application hints
5	Package information 12
6	Revision history
501	te Produce.
002	

1 Block diagram and pin description

1.1 Block diagram

Figure 1. AIS1200DS block diagram

1.2 SO16W pin information

	Pin#	Name	Function
	1	REGOUT	Internal regulator output
	2 to 10	NC	Leave unconnected
	11	Reserved	Connect to RTNIN
	12	RTNOUT	Low side bus - slave side
	13	RTNIN	Low bus - master side
	14	BUSOUT	Hi side bus - slaves side
	15	BUSIN	Hi side bus - master side
	16	HCAP	Autarchy power supply
005018	ie Pro	ducits	obsolete

Table 2.Pin description

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

Table 3. Mechanical characteristics: $V_{HCAP} \Rightarrow 6.5V$ to $V_{HCAP} \Rightarrow 30V$, $T_L \Rightarrow -40^{\circ}C$ to $T_H \approx 125^{\circ}C$, unless otherwise noted

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
FS	Full-scale range (including errors)			±235		g	
So	Sensitivity			0.49		<i>g</i> /LSb	
TCSo	Sensitivity change vs	$T_A = 25^{\circ}C$	-5		5	5.	
1030	temperature	$T_L \ll T_A \ll T_H$	TBD		TBD	/6	
Off	Zero- <i>g</i> level offset ⁽¹⁾	$T_A = 25^{\circ}C$	488	512	536	I Sh	
		$T_L \ll T_A \ll T_H$	TBD	512	TBD	230	
NL	Non linearity ⁽²⁾	Best fit straight line	X	±0.3		% FS	
F ₀	MEMS resonant frequency	10	No.	19.6		KHz	
DELTA _{DEF}	Deflection (Self-test - offset, $T_A = 25^{\circ}C$)	SOIL		30		g	
DEF	Deflection range	$T_A = 25^{\circ}C$	-10		10	%	
		T _L <= T _A <= T _H	TBD		TBD	%	
T _{OP}	Operating temperature range	6	-40		+125	°C	

1. Zero-g level offset (10-bit representation).

2. Verified in characterization, not 100% tested production.

2.2 Electrical characteristics

 T_A => -40°C to TH <= 125 °C, unless otherwise noted.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{HCAP}	Supply voltage		6.5		30	V
RNG	OUTPUT range 10bit	Normal	32		992	LSb
FLT _{LOW}	Error code	Low margin	0		32	LSb
FLT _{HIGH}	Error code	High margin	992		1023	LSb
V _{HLVD}	V _{HCAP} undervoltage detection		6.1		6.5	V
V _{HLVR}	V _{HCAP} recovery threshold		6.3		6.6	V
V _{HLVH}	V _{HCAP} detection hysteresis		15	07	200	mV
Ι _Q	HCAP quiescent current	V _{HCAP} = 25 V	220		7	mA
V _{BUS}	BUSIN, BUSOUT, RTNOUT	~ C.	-20		30	V
V _{REGOUT}	REGOUT output voltage	1010		3.3		V
V _{RLVD}	V _{REGOUT} undervoltage detection	c010	2.9		3.1	V
V _{RLVR}	V _{REGOUT} recovery threshold	003	3		3.2	V
V _{RLVH}	V _{REGOUT} detection hysteresis	0.	5		120	mV
REG _{Line}	REGOUT static line regulation	V _{HCAP} = 6.5 V to 30 V			11	mV
REG _{Load}	REGOUT static load regulation	I _{Load} = 0 to 30 mA			11	mV
DREG _{Line}	Dynamic line regulation	C_{REG} = 47 nF, V_{HCAP} = 5 V/µs			15	mV
DREG _{Load}	Dynamic load regulation	C_{REG} = 47 nF, I _{Load} = 2 mA/µs			30	mV
C _{REG}	Capacitor on REGOUT ⁽²⁾		47		2600	nF
ESR	C _{REG} series resistance ⁽²⁾				700	mΩ
R _{FW}	Rectifier forward resistance				2.4	Ω
R _{LEAK}	Rectifier leakage current				100	μA
03	Rectifier voltage drop	V _{BUSIN} =7 V÷26 V; I _{BUSIN} =-15 mA			0.7	V
DROP	(V _{BUSIN} - V _{HCAP)}	V _{BUSIN} =7 V÷26 V; I _{BUSIN} =-100 mA			0.9	V
I _{BIAS}	BUSIN bias current	V _{BUSIN} =8 V; V _{HCAP} =9 V			100	μA
V _{THL}	BUSIN logic threshold low			3		V
V _{THH}	BUSIN logic threshold high			6		V
V _{HYS}	BUSIN hysteresis signal		30		90	mV
V _{HYF}	BUSIN hysteresis frame		100		300	mV
I _{RES}	BUSIN response current	V _{BUSIN} =1.0V		11		mA
SW _{RES}	BUS switches resistance				3.5	Ω

Table 4. Electrical characteristics ⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
DELTA _{DEF}	Deflection (self-test - offset, T _A = 25°C)	200 g range		61		LSb
DEF	Deflection range	$T_A = 25^{\circ}C$	-10		10	%
		$T_L \ll T_A \ll T_H$	TBD		TBD	%
T _{OP}	Operating temperature range		-40		+125	°C

Electrical characteristics ⁽¹⁾ (continued) Table 4.

1. All voltage levels are referred to RTNIN voltage.

obsolete Product(s)- Obsolete Product(s) 2. Verified by characterization, not guaranteed by production testing.

2.3 Control timing

Table 5. Control timing

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{UVR}	V _{HCAP} V _{REGOUT} undervoltage mask time		3.2		7.6	μs
t _{CON}	A/D conversion time			30		μs
t _{ITR}	BUSIN, BUSOUT current transition response	1 mA to 9 mA and v.v.		6	8	mA/µs
t _{BS}	BUS init to switch closing delay				500	μs
t _{BIT}	Signal bit transition time		4.4		200	μs
t _{TO}	Signal loss time before reset	T _{MAX} out of frame	2		8	ms
t _{RSPH}	BUSIN timing to response current @ signal Hi	I _{BUS} => 7 mA@BUSIN<=V _{THL}		NUK	2.5	μs
t _{RSPL}	BUSIN timing to response current @ signal Low	I _{BUS} <= 5 mA@BUSIN<=V _{THH}	SC SC	5	2.5	μs
t _{FSI}	Interframe separation time following init	BS=1	4x t _{BIT}			μs
t _{FSR}	Interframe separation time following	BS=0	4x t _{BIT}			μs
t _{FSO}	Interframe separation time following other cmd	c01	4x t _{BIT}			μs
BW _{OUT}	Low pass filter 3-pole bessel filter	03	324	360	396	Hz
fosc	Internal oscillator frequency			12.25		MHz
D _{CH}	Logic duty cycle	Logic "1"		67		%
D _{CL}	Logic duty cycle	Logic "0"		33		%
050	lete Produlu					

3 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Тур	Max	Unit
V _{HCAP}	Supply voltage ⁽¹⁾	-0.3		50	V
V _{BUS}	BUSIN, BUSOUT, RTNOUT ⁽¹⁾	-50		50	v
V _{RECTIFIER}	HCAP-BUSIN ⁽¹⁾	-0.3		50	v
V _{REGOUT}	Voltage applied to REGOUT ⁽¹⁾		2	4.6	V
I _{PEAK}	BUS and HCAP current for a time <=1s		30	1	A
I _{MAX}	BUS and HCAP continuous current	X		500	mA
A _{MAX}	Acceleration before mechanical stop	KC	4000		g
A _{POW}	Mechanical shock device powered		TBD		g
A _{UNP}	Mechanical shock device unpowered		TBD		g
h _{DROP}	Drop shock survivability		1.2		m
	ESD protection HBM (Low voltage pins: res; TESTE		2		kV
	ESD protection HBM (Hi voltage pins: all remaining pins)		4		kV
ESD	ESD protection HBM (system level: all pins)		2		kV
	CDM		TBD		kV
	MM		TBD		kV
T _{STG}	Storage temperature range	-40		125	°C
Тј	Junction temperature range	-40		150	°C

Table 6. Absolute maximum ratings

1. Voltage referred to RTNIN.

This is a mechanical shock sensitive device, improper handling can cause permanent damages to the part

This is an ESD sensitive device, improper handling can cause permanent damages to the part

3.1 Factory calibration

The IC interface is factory-calibrated for sensitivity (So) and Zero-g level (Off).

obsolete Product(s)- Obsolete Product(s)

The trimming values are stored inside the device in a non volatile structure. Any time the device is turned on, the trimming parameters are downloaded into the registers to be employed during the normal operation. This allows the user to employ the device without further calibration.

4 Application hints

Figure 3. AIS1xxxDS electrical connection

Typical configuration where BUSOUT and RTNOUT are connected to the satellite daisychain and BUSIN RTNIN is either connected to the previous satellite or DSI master. C_{AUTH} is actually the reservoir of energy to power the internal voltage regulator and its value depends on BUS communication levels and timing.

$$C_{AUTH} = \frac{I_{Q(MAX)} \times T_{DATA(MAXcurrent)}}{V_{BUS(MAX)} - (V_{HCAP(min)} + R_{DROP(MAXcurrent)})}$$

The value of the capacitor on the voltage regulator output C_{REG} must be within the specified range to stabilize and filter the low voltage power supply circuit.

RTNIN acts as a local ground for the system (refer to Figure 3).

)bsolete

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Doc ID 18130 Rev 1

6 Revision history

Table 7.Document revision history

Date	Revision	Changes
21-Oct-2010	1	Initial release.

obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 18130 Rev 1

