
ESDAxxWY

Datasheet

Automotive dual-line unidirectional ESD protection in SOT323

SOT 323-3L (Jedec SC-70)

Features

- AEC-Q101 qualified and PPAP capable
- Dual-line unidirectional ESD and EOS protection
- Very low leakage current at V_{RM} (I_R < 50 nA)
- Up to 290 W peak pulse power (8/20 μs)
- High ESD protection level: up to 30 kV
- Fast turn-on and low clamping voltage
- Operating T_j max: 175 °C
- SOT 323-3L package
- ECOPACK2 RoHS compliant component
- Complies with the following standards:
 - J-STD-020 MSL level 1 and UL94, V0
 - IPC7531 footprint and JEDEC registered package
 - ISO 10605 C = 150 pF, R = 330 Ω:
 - ±30 kV (air and contact discharge)
 - ISO 10605 C = 330 pF, R = 330 Ω:
 - ±30 kV (air and contact discharge)
 - ISO 7637-3:
 - Pulse 3a : -150 V; pulse 3b : +150 V
 - Pulse 2a: +/- 85 V

Product status link
ESDA14WY, ESDA18WY

Application

Low speed and DC automotive applications where electrostatic discharges and other transients must be suppressed such as:

- MCUs and integrated circuits (SBC, DSP) low speed data lines and power lines
- MOSFET gate protection
- Switches and buttons
- Audio lines
- I2C, SPI communication bus

Description

ESDAxxWY series, automotive unidirectional transient voltage suppressor (TVS), has been designed for use in harsh environments to protect sensitive electronics from damage or latch-up due to electrical overstress (EOS), lightning surge and ESD without ageing effect and performance drifts.

It can therefore advantageously replace MOV (metal oxide varistor) or MLV (multilayer varistor) as well as zener diodes, which are optimized for voltage regulation. It is the right choice for high reliability and quality systems.

In addition, this product is available in a small popular SOT323-3L (Jedec SC-70) with 2.1 mm x 2.0 mm package, ideal for space constrained applications.

1 Characteristics

1.1 Pin configuration and function

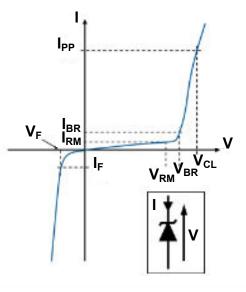
Table 1. ESDAxxWY series pin description

Pin #	Туре	Description
1	I/O1	ESD protection cathode 1
2	I/O2	ESD protection cathode 2
3	GND	Common anode

Figure 1. ESDAxxWY series pinout (top view)

1.2 Absolute maximum ratings

Table 2. Absolute maximum ratings (T_{amb} = 25 °C)


Symbol		Parameter		Value	Unit		
			±30				
Veep	Electrostatic discharge	Air discharge		±30	- kV		
VESD	V _{ESD} Electrostatic discharge	ISO 10605 - C = 330 pF, R = 330 Ω: Contact discharge Air discharge		±30 ±30	V		
P _{PP}		the power IEC 61000-4-5 (2 Ω) – t _p = 8/20 µs	ESDA14WY	250	W		
грр	Peak pulse power		ESDA18WY	290			
		IEC 61000-4-5 (2 Ω) – t _p = 8/20 μs	ESDA14WY	13	•		
IPP	I _{PP} Peak pulse current	$12001000-4-3(232) = l_p = 0/20 \ \mu s$	ESDA18WY	11	- A		
Тј	Operating junction tempe	-55 to +175					
T _{stg}	Storage temperature rang	-65 to +175	°C				
TL	Maximum lead temperatu	Maximum lead temperature for soldering during 10 s					

1.3 Electrical characteristics

57/

Figure 2. Electrical characteristics - parameter definitions

V _{RM} I _{RM}	Maximum stand-off voltage Maximum leakage current at V_{RM}
V _{BR}	Breakdown voltage at I _{BR}
I _{BR}	Breakdown current
V _{CL}	Clamping voltage at IPP
I _{PP}	Peak pulse current
V _F	Forward voltage drop at I_F
I _F	Forward current
R _D	Dynamic resistanœ
αΤ	Voltage temperature coefficient

Table 3. Electrical characteristics - parameter values (T_{amb} = 25 °C, unless otherwise specified)

					8 / 20 μs ⁽¹⁾⁽²⁾		TLP 100 ns				V _F at				
Туре	I _{RM} at V _{RM}			V _{BR} a	at I _{BR}		V _{CL} ⁽⁴⁾	I _{PP}	R _D	V _{CL} at 16 A	(λ.	αT ⁽¹⁾⁽³⁾	ļ	:
	Max.		Min.	Тур.	Max.		Max.	Max.	Тур.	Тур.	Тур.	Max.	Max.	Max.	
	μA	v	v	v	v	mA	v	Α	Ω	v	pF	pF	10 ⁻⁴ / °C	v	mA
ESDA14WY	0.05	12	14.2	15.4	16.8	1	23	13	0.41	17.5	125	150	8.7	1.2	200
ESDA18WY	0.05	16	18	19.3	20.5	1	27.7	11	0.61	21.7	95	120	8.7	1.2	200

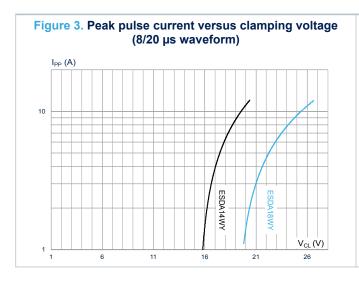
1. Specified by design – not tested in production.

2. Measured from pin 1 to 3 or pin 2 to pin 3, in accordance with IEC 61000-4-5 (8/20 µs current waveform).

3. To calculate V_{BR} or V_{CL} versus junction temperature, use the following formulas:

• V_{BR} at $T_J = V_{BR}$ at 25 °C x (1 + $\alpha T x (T_J - 25)$)

 V_{CL} at $T_J = V_{CL}$ at 25 °C x (1 + αT x (T_J - 25)).


4. To calculate maximum clamping voltage at other surge level, use the following formula:

• $V_{CL} max = V_{BR} max + R_D x I_{PPappli}$

Where *I*_{PPappli} is the surge current in the application.

1.4 Characteristics (curves)

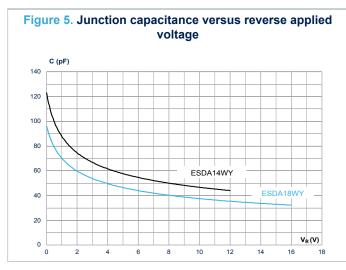
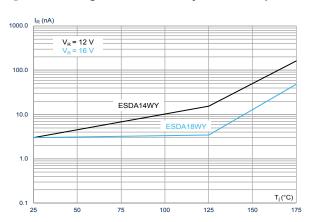



Figure 4. Peak forward current versus forward voltage drop (8/20 µs waveform)

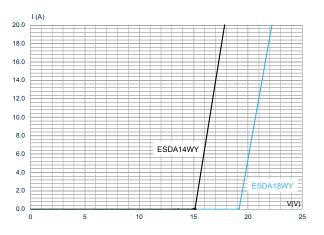
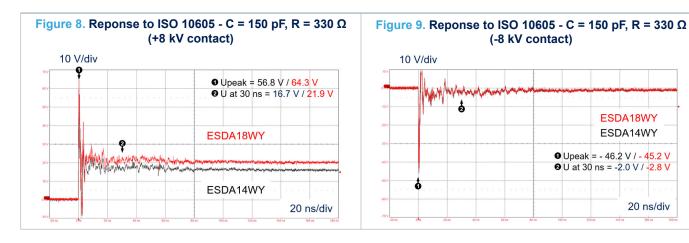
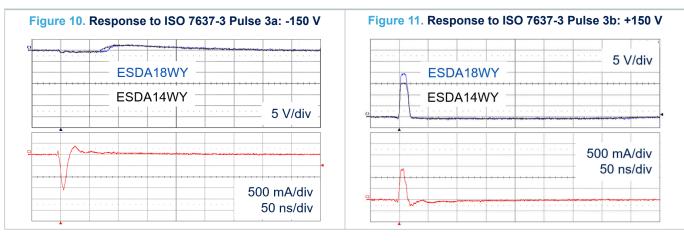
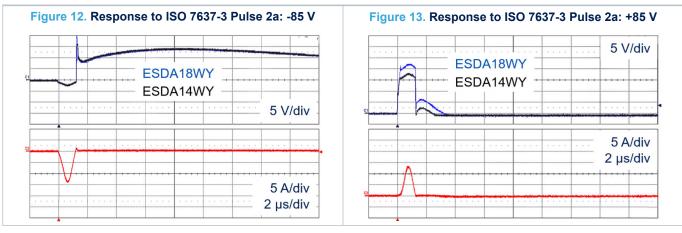
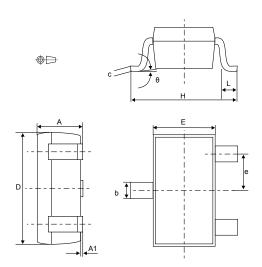





Figure 6. Leakage current versus junction temperature

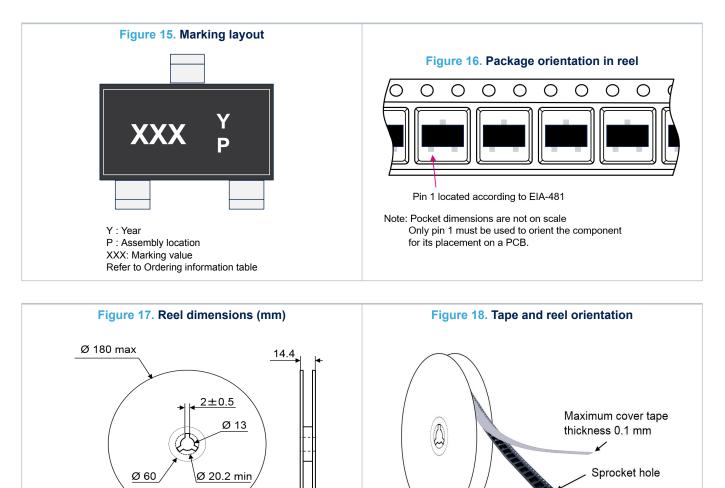

2 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

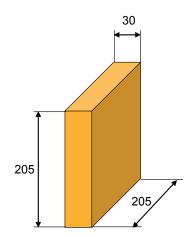
2.1 SOT323-3L package information

- Epoxy meets UL 94,V0
- Lead-free package

Figure 14. SOT323-3L package outline


Table 4. SOT323-3L package mechanical data

				Dimensions						
Ref.		Millimeters		Inches ⁽¹⁾						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А	0.80		1.10	0.031		0.043				
A1	0.00		0.10	0.000		0.003				
b	0.25		0.40	0.0098		0.0157				
с	0.10		0.26	0.003		0.0102				
D	1.80	2.00	2.20	0.070	0.078	0.086				
E	1.15	1.25	1.35	0.0452	0.0492	0.0531				
е	0.60	0.65	0.70	0.024	0.026	0.028				
Н	1.80	2.10	2.40	0.070	0.082	0.094				
L	0.10	0.20	0.30	0.004	0.008	0.012				
θ	0		30°	0		30°				


1. Values in inches are converted from mm and rounded to 3 or 4 decimal digits.

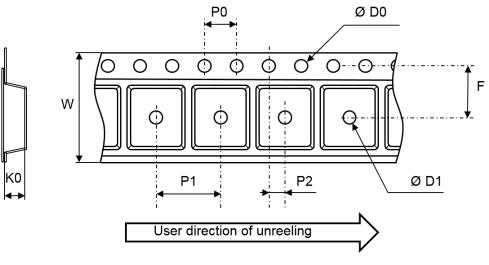
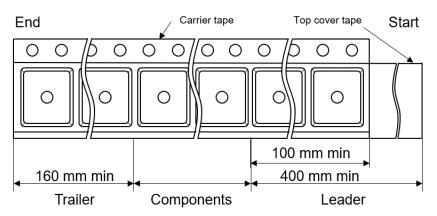

2.2 Packing and marking information

Figure 19. Inner box dimensions (mm)

Figure 20. Tape outline


Note:

Pocket dimensions are not on scale Pocket shape may vary depending on package

Table 5. Tape and reel mechanical data

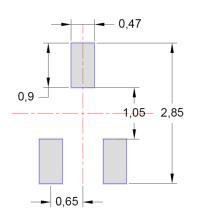
		Dimensions					
Ref.	Millimeters						
	Min.	Тур.	Max.				
D0	1.50	1.55	1.60				
D1	1.00						
F	3.45	3.50	3.55				
К0	1.12	1.22	1.32				
P0	3.90	4.00	4.10				
P1	3.90	4.00	4.10				
P2	1.95	2.00	2.05				
W	7.90	8.00	8.30				

Figure 21. Tape leader and trailer dimensions

3 Recommendations on PCB assembly

3.1 Recommended footprint

57


Figure 22. Recommended footprint in mm

3.2 Stencil opening design

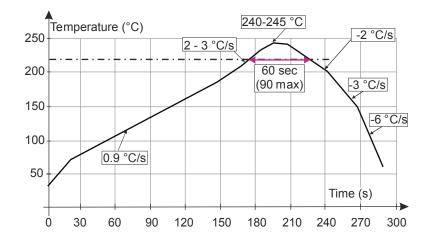
- Stencil opening thickness: 75 µm to 125 µm / 3 mils to 5 mils
- Stencil opening ratio : 90%

Figure 23. Stencil opening recommendations

3.3 Solder paste

- 1. Halide-free flux, qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste recommended.
- 3. Tack force high enough to resist component displacement during PCB movement.
- 4. Particles size 20-38 µm per IPCJ STD-005.

3.4 Placement


- 1. It is recommended to use leads recognition instead of package outline for accurate placement on footprint with adequate resolution tool.
- 2. Tolerance of $\pm 50 \ \mu m$ is recommended.
- 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 4. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.5 PCB design preference

- 1. Any via around or inside the footprint area must be closed to avoid solderpaste migration in the via.
- 2. Position and dimensions of the tracks should be well balanced. A symmetrical layout is recommended to prevent assembly troubles.

3.6 Reflow profile

Figure 24. ST ECOPACK recommended soldering reflow profile for PCB mounting

Note: Minimize air convection currents in the reflow oven to avoid component movement. O₂ rate inside the oven must be below 500 ppm. Maximum soldering profile corresponds to the latest IPC/JEDEC J-STD-020.

4 Ordering information

Y = automotive grade, AEC-Q101 qualified

Order code	Marking	Package	Weight	Base qty.	Delivery mode	
ESDA14WY	Y14 ⁽¹⁾	SOT323-3L	6.6 mg	2000	Tana and real	
ESDA18WY	Y18 ⁽¹⁾	501323-3L	6.6 mg	3000	Tape and reel	

1. The marking can be rotated by multiples of 90° to differentiate assembly locations.

Revision history

Table 6. Document revision history

Date	Revision	Changes
16-Sep-2024	1	Initial release.

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved