# life.augmented

## STFI16N60M6

## N-channel 600 V, 0.26 Ω typ., 12 A MDmesh<sup>™</sup> M6 Power MOSFET in I<sup>2</sup>PAKFP package

Datasheet - preliminary data



| Order code  | VDS   | R <sub>DS(on)</sub> max. | lь   |
|-------------|-------|--------------------------|------|
| STFI16N60M6 | 600 V | 0.32 Ω                   | 12 A |
|             |       |                          |      |

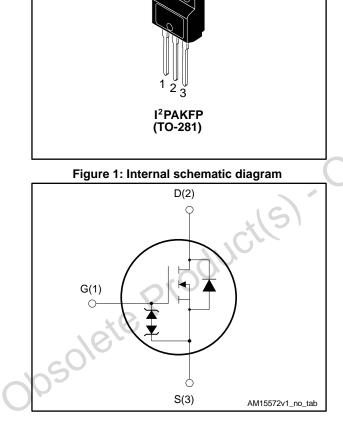
- Fully insulated and low profile package with increased creepage path from pin to heatsink plate
- Reduced switching losses
- Lower R<sub>DS(on)</sub> x area vs previous generation
- Low gate input resistance
- C100% avalanche tested
- Zener-protected

## **Applications**

- Switching applications
- LLC converters
- Boost PFC converters

## Description

The new MDmesh<sup>™</sup> M6 technology incorporates the most recent advancements to the well-known and consolidated MDmesh family of SJ MOSFETs. STMicroelectronics builds on the previous generation of MDmesh devices through its new M6 technology, which combines excellent R<sub>DS(on)</sub> \* area improvement with one of the most effective switching behaviors available, as well as a user-friendly experience for maximum endapplication efficiency.


Table 1: Device summary

| Order code  | Marking | Package              | Packing |
|-------------|---------|----------------------|---------|
| STFI16N60M6 | 16N60M6 | I <sup>2</sup> PAKFP | Tube    |

March 2017

DocID030463 Rev 1

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.



### Contents

## Contents

| 1     | Electrical ratings                           | 3 |
|-------|----------------------------------------------|---|
| 2     | Electrical characteristics                   | 1 |
|       | 2.1 Electrical characteristics (curves)      | 3 |
| 3     | Test circuits                                | 3 |
| 4     | Package information                          | ) |
|       | 4.1 I <sup>2</sup> PAKFP package information | 9 |
| 5     | Revision history                             |   |
| 0,0,5 | 4.1 PPAKFP package information               |   |



#### 1 **Electrical ratings**

Table 2: Absolute maximum ratings

| Symbol               | Parameter                                                                                           | Value                | Unit |
|----------------------|-----------------------------------------------------------------------------------------------------|----------------------|------|
| Vgs                  | Gate-source voltage                                                                                 | ±25                  | V    |
| ID                   | Drain current (continuous) at T <sub>c</sub> = 25 °C                                                | 12 <sup>(1)</sup>    | А    |
| ID                   | Drain current (continuous) at T <sub>c</sub> = 100 °C                                               | 7.6 <sup>(1)</sup>   | А    |
| ldм                  | Drain current (pulsed)                                                                              | 32 <sup>(1)(2)</sup> | А    |
| P <sub>TOT</sub>     | Total dissipation at $T_c = 25 \text{ °C}$                                                          | 25                   | W    |
| dv/dt <sup>(3)</sup> | Peak diode recovery voltage slope                                                                   | 15                   | V/ns |
| dv/dt (4)            | MOSFET dv/dt ruggedness                                                                             | 50 <b>S</b>          | v/ns |
| V <sub>ISO</sub>     | Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C) | 2.5                  | kV   |
| T <sub>stg</sub>     | Storage temperature range                                                                           | -55 to 150           | °C   |
| Tj                   | Operating junction temperature range                                                                | -55 10 150           | C    |
| (-)                  | by maximum junction temperature.<br>dth limited by safe operating area.                             |                      |      |

#### Notes:

 $^{(3)}\text{I}_{\text{SD}} \leq$  12 A, di/dt  $\leq$  400 A/µs; VDS(peak) < V(BR)DSS, VDD = 400 V

 $^{(4)}$  V<sub>DS</sub>  $\leq$  480 V

#### Table 3: Thermal data

| Symbol                | Parameter                           | Value | Unit |
|-----------------------|-------------------------------------|-------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case    | 5     | °C/W |
| R <sub>thj</sub> -amb | Thermal resistance junction-ambient | 62.5  | C/VV |

#### **Table 4: Avalanche characteristics**

|      | R <sub>thj-cas</sub> | e Thermal resistance junction-case                                                                    | 5                     | 00    | C/W  |
|------|----------------------|-------------------------------------------------------------------------------------------------------|-----------------------|-------|------|
|      | R <sub>thj-am</sub>  | Thermal resistance junction-ambient                                                                   | 62.5                  |       | ۷۷/۷ |
|      |                      |                                                                                                       |                       |       |      |
|      | .0.                  | Table 4: Avalanche characteristics                                                                    |                       |       |      |
| 10   | Symbol               | Parameter                                                                                             |                       | Value | Unit |
| c ON | I <sub>AR</sub>      | Avalanche current, repetitive or not repetitive (pulse width limited b                                | y T <sub>jmax</sub> ) | 2.5   | А    |
| 05   | Eas                  | Single pulse avalanche energy (starting $T_{j}$ = 25 °C, $I_{D}$ = $I_{AR};$ $V_{DD}$ = $\frac{1}{2}$ | 50 V)                 | 110   | mJ   |
| 05   |                      |                                                                                                       |                       |       |      |



#### 2 **Electrical characteristics**

(Tc = 25 °C unless otherwise specified)

| Symbol                           | Parameter                             | Test conditions                                             | Min. | Тур. | Max. | Unit |
|----------------------------------|---------------------------------------|-------------------------------------------------------------|------|------|------|------|
| V <sub>(BR)DSS</sub>             | Drain-source breakdown<br>voltage     | $V_{GS} = 0 V, I_D = 1 mA$                                  | 600  |      |      | V    |
|                                  | Zara nata valtana drain               | $V_{GS} = 0 V, V_{DS} = 600 V$                              |      |      | 1    |      |
| IDSS                             | Zero gate voltage drain<br>current    | $V_{GS} = 0 V, V_{DS} = 600 V,$<br>$T_{C} = 125 °C (1)$     |      |      | 100  | μA   |
| I <sub>GSS</sub>                 | Gate-body leakage current             | $V_{DS} = 0 V, V_{GS} = \pm 25 V$                           |      |      | ±5   | μA   |
| $V_{GS(th)}$                     | Gate threshold voltage                | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = 250 µA | 3.25 | 4    | 4.75 | V    |
| R <sub>DS(on)</sub>              | Static drain-source on-<br>resistance | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 6 A                | 2    | 0.26 | 0.32 | Ω    |
| Notes:<br><sup>(1)</sup> Defined | by design, not subject to production  | on test.                                                    | 0-   | ,    |      |      |
|                                  |                                       | Table 6: Dynamic                                            |      |      |      |      |

## . ..

#### Notes:

|                         |                               | Table 0. Dynamic                                                               |      |      |      |      |
|-------------------------|-------------------------------|--------------------------------------------------------------------------------|------|------|------|------|
| Symbol                  | Parameter                     | Test conditions                                                                | Min. | Тур. | Max. | Unit |
| Ciss                    | Input capacitance             | $() \forall$                                                                   | -    | 575  | -    |      |
| Coss                    | Output capacitance            | V <sub>GS</sub> = 100 V, f = 1 MHz,                                            | -    | 33   | -    | pF   |
| Crss                    | Reverse transfer S            | V <sub>GS</sub> = 0 V                                                          | -    | 3    | -    | Pi   |
| Coss eq. <sup>(1)</sup> | Equivalent output capacitance | $V_{\text{DS}}=0 \text{ to } 480 \text{ V}, \text{ V}_{\text{GS}}=0 \text{ V}$ | -    | 104  | -    | pF   |
| Rg                      | Intrinsic gate resistance     | f = 1 MHz open drain                                                           | -    | 5.2  | -    | Ω    |
| Qg                      | Total gate charge             | $V_{DD} = 480 V, I_D = 12 A,$                                                  | -    | 16.7 | -    |      |
| Q <sub>gs</sub>         | Gate-source charge            | V <sub>GS</sub> = 0 to 10 V (see Figure 15:<br>"Test circuit for gate charge   | -    | 3.5  | -    | nC   |
| Q <sub>gd</sub>         | Gate-drain charge             | behavior")                                                                     | -    | 9.4  | -    |      |

#### Table 6: Dynamic

#### Notes:

 $^{(1)}$  Coss  $_{eq.}$  is defined as a constant equivalent capacitance giving the same charging time as Coss when  $V_{\text{DS}}$ increases from 0 to 80% V<sub>DSS</sub>.

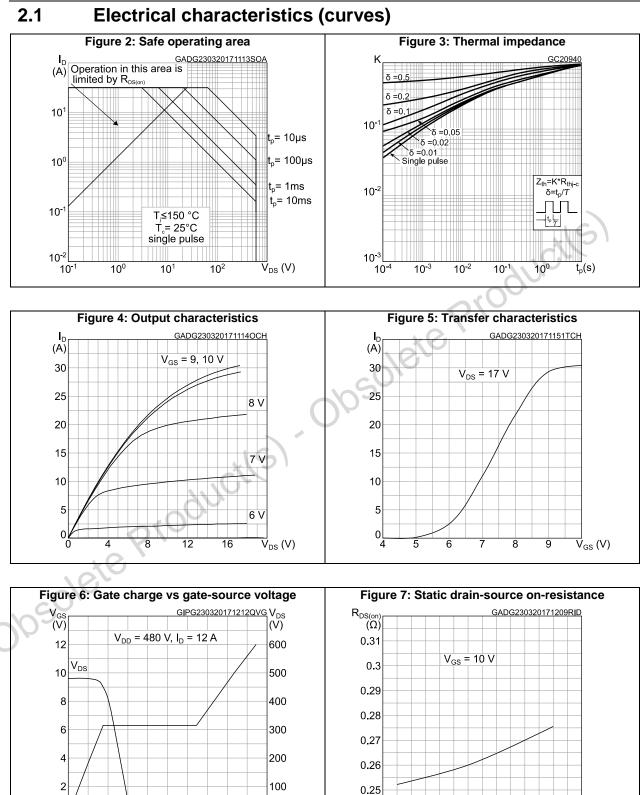
| Symbol              | Parameter           | Test conditions                                                           | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|---------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | V <sub>DD</sub> = 300 V, I <sub>D</sub> = 6 A                             | -    | 13   | -    |      |
| tr                  | Rise time           | $R_G = 4.7 \Omega$ , $V_{GS} = 10 V$ (see<br>Figure 14: "Test circuit for | -    | 7.6  | -    |      |
| t <sub>d(off)</sub> | Turn-off delay time | resistive load switching times"                                           | -    | 19.8 | -    | ns   |
| tr                  | Fall time           | and Figure 19: "Switching time waveform")                                 | -    | 6.8  | -    |      |

#### Table 7: Switching times

| 4/12 |  |
|------|--|
|------|--|

insc

DocID030463 Rev 1




#### STFI16N60M6

#### Electrical characteristics

|                               | ble 8: Source drain diode                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                     | Test conditions                                                                                                                                                                                                                                                                                                              | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Тур.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Source-drain current          |                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Source-drain current (pulsed) |                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Forward on voltage            | $V_{GS} = 0 V$ , $I_{SD} = 12 A$                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reverse recovery time         | $I_{SD} = 12 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reverse recovery charge       |                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reverse recovery current      | switching and diode recovery times")                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reverse recovery time         | I <sub>SD</sub> = 12 A, di/dt = 100 A/µs,                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reverse recovery charge       |                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reverse recovery current      | inductive load switching and diode recovery times")                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| product(s)                    | .00                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ¢                             | Source-drain current<br>Source-drain current<br>(pulsed)<br>Forward on voltage<br>Reverse recovery time<br>Reverse recovery charge<br>Reverse recovery current<br>Reverse recovery time<br>Reverse recovery charge<br>Reverse recovery current<br>width is limited by safe operating a<br>est: pulse duration = 300 µs, duty | Source-drain current<br>(pulsed) Source-drain current<br>(pulsed)   Forward on voltage V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 12 A   Reverse recovery time I <sub>SD</sub> = 12 A, di/dt = 100 A/µs,<br>V <sub>DD</sub> = 60 V (see Figure 16:<br>"Test circuit for inductive load<br>switching and diode recovery<br>times")   Reverse recovery current I <sub>SD</sub> = 12 A, di/dt = 100 A/µs,<br>V <sub>DD</sub> = 60 V, T <sub>j</sub> = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times")   Reverse recovery current I <sub>SD</sub> = 12 A, di/dt = 100 A/µs,<br>V <sub>DD</sub> = 60 V, T <sub>j</sub> = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times")   width is limited by safe operating area. est: pulse duration = 300 µs, duty cycle 1.5%. | Source-drain current -   Source-drain current<br>(pulsed) -   Forward on voltage VGS = 0 V, ISD = 12 A -   Reverse recovery time ISD = 12 A, di/dt = 100 A/µs,<br>VDD = 60 V (see Figure 16:<br>"Test circuit for inductive load<br>switching and diode recovery -   Reverse recovery current ISD = 12 A, di/dt = 100 A/µs,<br>VDD = 60 V, Tj = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times") -   Reverse recovery current ISD = 12 A, di/dt = 100 A/µs,<br>VDD = 60 V, Tj = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times") -   width is limited by safe operating area.<br>est: pulse duration = 300 µs, duty cycle 1.5%. - | Source-drain current-Source-drain current<br>(pulsed)-Forward on voltage $V_{GS} = 0 V$ , $I_{SD} = 12 A$ -Reverse recovery time $I_{SD} = 12 A$ , di/dt = 100 A/µs,<br>$V_{DD} = 60 V$ (see Figure 16:<br>"Test circuit for inductive load<br>switching and diode recovery<br>times")-1.7Reverse recovery current $I_{SD} = 12 A$ , di/dt = 100 A/µs,<br>$V_{DD} = 60 V$ (see Figure 16:<br>"Test circuit for inductive load<br>switching and diode recovery<br>times")-13.8Reverse recovery time $I_{SD} = 12 A$ , di/dt = 100 A/µs,<br>$V_{DD} = 60 V$ , $T_j = 150 °C$ (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times")-310Reverse recovery current $I_{SD} = 60 V$ , $T_j = 150 °C$ (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times")-15.4 | Source-drain current - 12   Source-drain current<br>(pulsed) - 32   Forward on voltage VGS = 0 V, ISD = 12 A - 1.6   Reverse recovery time ISD = 12 A, di/dt = 100 A/µs,<br>VDD = 60 V (see Figure 16:<br>"Test circuit for inductive load<br>switching and diode recovery - 13.8   Reverse recovery current ISD = 12 A, di/dt = 100 A/µs,<br>VDD = 60 V, Tj = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times") - 13.8   Reverse recovery current ISD = 12 A, di/dt = 100 A/µs,<br>VDD = 60 V, Tj = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times") - 310   width is limited by safe operating area.<br>est: pulse duration = 300 µs, duty cycle 1.5%. - 15.4 | Source-drain current - 12 A   Source-drain current<br>(pulsed) - 32 A   Forward on voltage Vcs = 0 V, lsp = 12 A - 1.6 V   Reverse recovery time lsp = 12 A, di/dt = 100 A/µs,<br>Vpp = 60 V (see Figure 16:<br>"Test circuit for inductive load<br>switching and diode recovery<br>times") - 1.7 µC   Reverse recovery current lsp = 12 A, di/dt = 100 A/µs,<br>Vpp = 60 V, rj = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times") - 13.8 A   Reverse recovery current lsp = 12 A, di/dt = 100 A/µs,<br>Vpp = 60 V, Tj = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times") - 3.2 µC   reverse recovery current lsp = 12 A, di/dt = 100 A/µs,<br>Vpp = 60 V, Tj = 150 °C (see<br>Figure 16: "Test circuit for<br>inductive load switching and<br>diode recovery times") - 3.2 µC   width is limited by safe operating area. - 15.4 A |



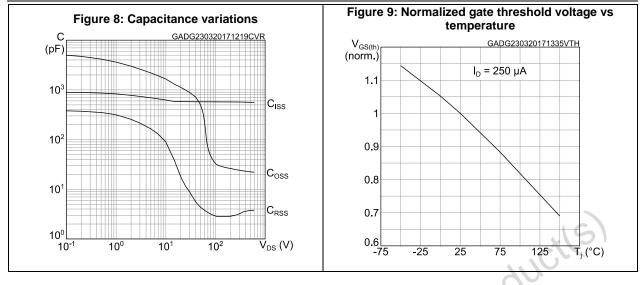


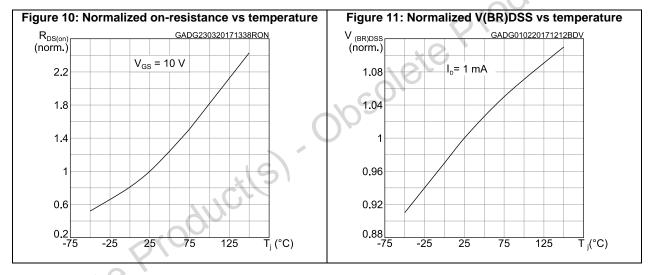
6/12

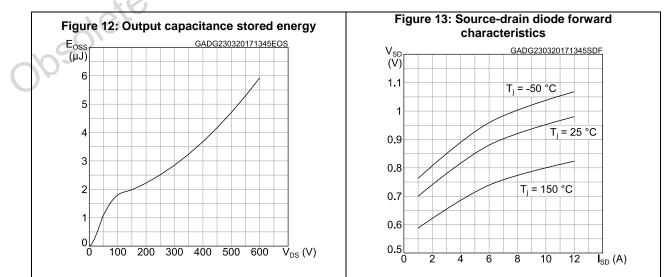
DocID030463 Rev 1

0.24

Q<sub>g</sub> (nC)

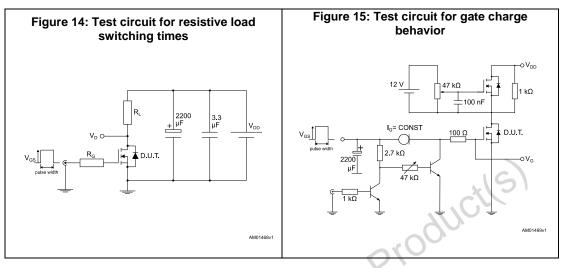


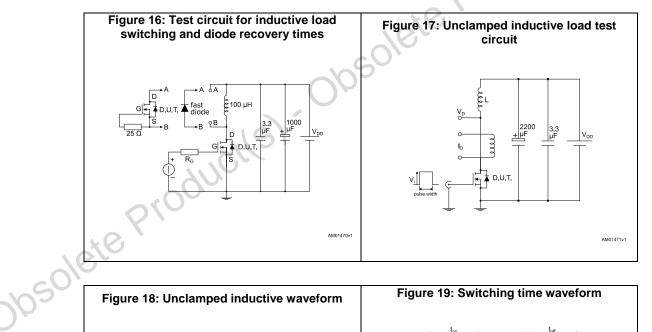


 $\overline{I}_{D}(A)$ 

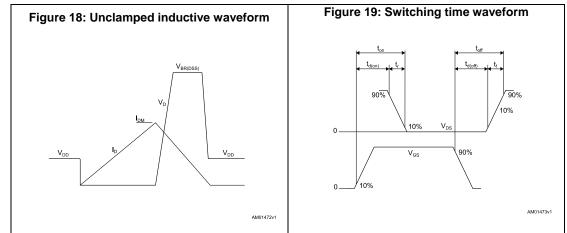

#### STFI16N60M6

57

#### **Electrical characteristics**



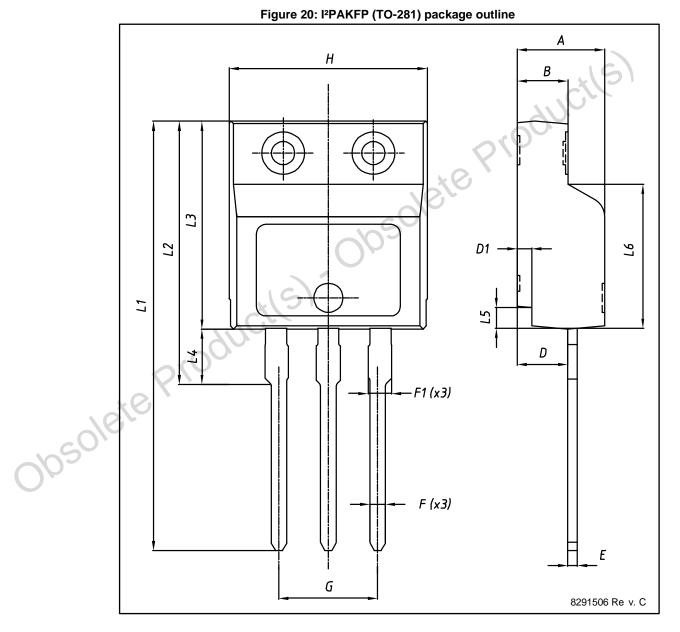

DocID030463 Rev 1

## 3 Test circuits










57

## 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.

## 4.1 I<sup>2</sup>PAKFP package information



DocID030463 Rev 1

#### Package information

#### STFI16N60M6

| Dim.   Min.   Typ.   Max.     A   4.40   4.60     B   2.50   2.70     D   2.50   2.75     D1   0.65   0.85     E   0.45   0.70     F   0.75   1.00     F1   1.20   3.20     H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70 | Dim. |      | 100 100 |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------|-----|
| A   4.40   4.60     B   2.50   2.70     D   2.50   2.75     D1   0.65   0.85     E   0.45   0.70     F1   1.00   1.20     G   4.95   5.20     H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                               |      | Min  |         | Max |
| B   2.50   2.70     D   2.50   2.75     D1   0.65   0.85     E   0.45   0.70     F   0.75   1.00     F1   1.20     G   4.95   5.20     H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                      | Δ.   |      | iyp.    |     |
| D   2.50   2.75     D1   0.65   0.85     E   0.45   0.70     F   0.75   1.00     F1   1.20     G   4.95   5.20     H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                                          |      |      |         |     |
| D1   0.65   0.85     E   0.45   0.70     F   0.75   1.00     F1   1.20   5.20     H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                                                                           |      |      |         |     |
| E   0.45   0.70     F   0.75   1.00     F1   1.20     G   4.95   5.20     H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                                                                                   |      |      |         |     |
| F   0.75   1.00     F1   1.20     G   4.95   5.20     H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                                                                                                       |      |      |         |     |
| F1   1.20     G   4.95   5.20     H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60                                                                                                                                                  |      |      |         |     |
| G4.955.20H10.0010.40L121.0023.00L213.2014.10L310.5510.85L42.703.20L50.851.25L67.507.60                                                                                                                                                                                                                                                   |      | 0.75 |         |     |
| H   10.00   10.40     L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60                                                                                                                                                                                    |      | 4.05 |         |     |
| L1   21.00   23.00     L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                                                                                                                                                                                   |      |      |         |     |
| L2   13.20   14.10     L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                                                                                                                                                                                                          |      |      |         |     |
| L3   10.55   10.85     L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                                                                                                                                                                                                                                 |      |      |         |     |
| L4   2.70   3.20     L5   0.85   1.25     L6   7.50   7.60   7.70                                                                                                                                                                                                                                                                        |      |      |         |     |
| L5   0.85   1.25     L6   7.50   7.60   7.70                                                                                                                                                                                                                                                                                             |      |      |         |     |
| L6 7.50 7.60 7.70                                                                                                                                                                                                                                                                                                                        |      |      | ×C      |     |
|                                                                                                                                                                                                                                                                                                                                          |      |      | 7.00    |     |
| olos olos olos olos olos olos olos olos                                                                                                                                                                                                                                                                                                  |      | 00   |         |     |



## 5 Revision history

| Table 10: Document revision history | Table | ent revision history |
|-------------------------------------|-------|----------------------|
|-------------------------------------|-------|----------------------|

| Date        | Revision | Changes        |
|-------------|----------|----------------|
| 23-Mar-2017 | 1        | First release. |



obsolete Product(s) - Obsolete Product(s)

#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

