life.augmented

STO46N60M6

N-channel 600 V, 68 mΩ typ., 32 A MDmesh™ M6 Power MOSFET in a TO-LL HV package

Datasheet - target specification

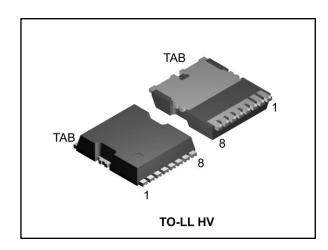
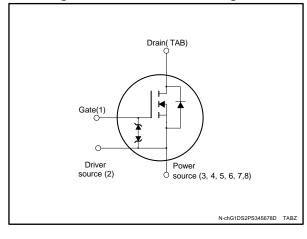



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STO46N60M6	600 V	80 mΩ	32 A

- Reduced switching losses
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected
- High creepage package
- Excellent switching performance thanks to the extra driving source pin

Applications

Switching applications

Description

Table 1: Device summary

Order code	Marking	Package	Packing
STO46N60M6	46N60M6	TO-LL HV	Tape and reel

5

Con	tents		51046N6UN6
Co	ntents		
1	Electric	al ratings	3
2	Electric	al characteristics	4
3	Test cir	cuits	6
4	Packag	e information	7
	4.1	TO-LL HV package information	8

Revision history11

STO46N60M6 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	±25	V
I _D	Drain current (continuous) at T _C = 25 °C	32	Α
I _D	Drain current (continuous) at T _C = 100 °C	20	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	TBD	Α
Ртот	Total dissipation at T _C = 25 °C	192	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	FF to 1F0	°C
Tj	Operating junction temperature range		°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.65	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	46	

Notes:

 $^{(1)}\!When$ mounted on FR-4 board of inch², 2oz Cu

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	TBD	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	TBD	mJ

⁽¹⁾ Pulse width limited by safe operating area

 $^{^{(2)}}$ I_{SD} ≤ 32 A, di/dt ≤ 400 A/ μ s, V_{DS(peak)} < V(BR)DSS, V_{DD} = 400 V

 $^{^{(3)}}$ VDS ≤ 480 V

2 Electrical characteristics

T_C = 25 °C unless otherwise specified.

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _G S = 0 V, I _D = 1 mA	600			V
	Zaro goto voltago droin	V _{GS} = 0 V, V _{DS} = 600 V			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_C = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 16 A		68	80	mΩ

Notes:

Table 6: Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
Ciss	Input capacitance		1	2300	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	1	150	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2	-	pF
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V	-	TBD	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	1.5	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 32 \text{ A},$	-	57	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	TBD	-	nC
Q _{gd}	Gate-drain charge	(see Figure 3: "Gate charge test circuit")	-	TBD	-	nC

Notes:

Table 7: Switching times

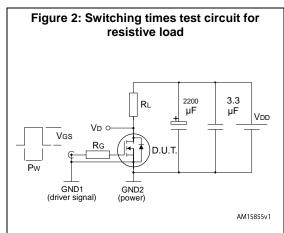
Table 7. Ownering times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 16 \text{ A},$	-	TBD	-	ns
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	TBD	-	ns
t _{d(off)}	Turn-off-delay time	(see Figure 2: "Switching times test circuit for resistive load"	-	TBD	-	ns
t _f	Fall time	and Figure 7: "Switching time waveform")	-	TBD	-	ns

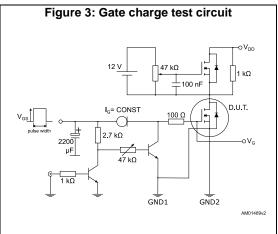
⁽¹⁾ Defined by design, not subject to production test.

 $^{^{(1)}}$ C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS}increases from 0 to 80 % V_{DS}s.

Table 8: Source drain diode

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		32	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				TBD	Α
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 32 \text{ A}$	1		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 32 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	1	TBD		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see <i>Figure 4: " Test circuit for</i>	1	TBD		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	ı	TBD		Α
t _{rr}	Reverse recovery time	$I_{SD} = 32 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	ı	TBD		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$ (see Figure 4: " Test circuit for	1	TBD		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	TBD		Α

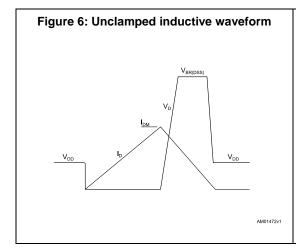

Notes:


 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle 1.5 %.

Test circuits STO46N60M6

3 Test circuits



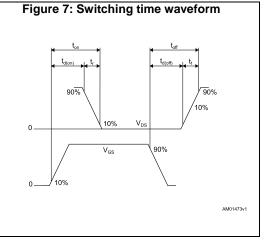

GND2

Figure 4: Test circuit for inductive load

Figure 5: Unclamped inductive load test circuit

VD QUELLE AM15858v1

AM15857v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-LL HV package information

Figure 8: TO-LL HV package outline

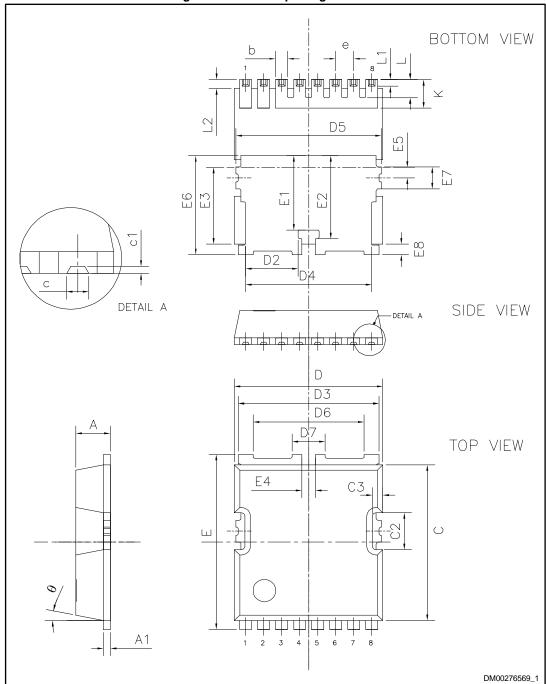
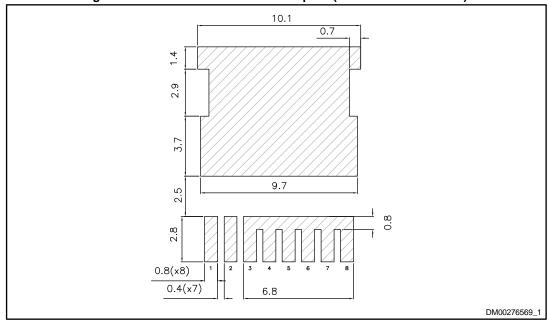



Table 9: TO-LL HV package mechanical data

	14550 0. 10 22 117 pc	mm	
Dim.	Min.	Тур.	Max.
A	2.20	2.30	2.40
A1	0.40	0.48	0.60
b		0.80	0.93
С		0.46	
c1		0.15	
С	10.28	10.38	10.48
C2	2.35	2.45	2.55
C3		0.71	
D	9.80	9.90	10.00
D2	3.30	3.50	3.70
D3	9.30	9.40	9.50
D4	8.20	8.40	8.60
D5	9.50	9.70	9.90
D6		7.40	
D7		2.20	
е		1.20	
Е	11.48	11.68	11.88
E1		4.96	
E2		5.54	
E3		5.14	
E4		0.90	
E5		0.72	
E6	6.41	6.61	6.81
E7	0.50	0.70	0.90
K	1.70	1.90	2.10
L	1.05	1.20	1.35
L1	0.25	0.35	0.45
L2	0.40	0.60	0.80
θ		11°	

Figure 9: TO-LL HV recommended footprint (dimensions are in mm)

STO46N60M6 Revision history

5 Revision history

Table 10: Document revision history

Date	Version	Changes
17-Jan-2018	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

