

July 2016 DT0064 Rev 1 1/6

 www.st.com

DT0064
Design tip

Noise analysis and identification in MEMS sensors,

Allan, Time, Hadamard, Overlapping, Modified, Total variance
 By Andrea Vitali

Main components

LSM6DS3H iNEMO inertial module: 3D accelerometer and 3D gyroscope

LSM6DSM/LSM6DSL iNEMO inertial module: 3D accelerometer and 3D gyroscope

STEVAL-STLKT01V1 SensorTile development kit

Purpose and benefits

This design tip explains how to analyze and identify noise in MEMS sensors. Allan and

Hadamard variance are explained, together with their variations (Overlapping, Modified and

Total). Theoretical variance #1 (Theo1) is also mentioned.

Benefits:

 How to characterize MEMS sensors by means of Allan and other variances

The signal and the noise

The basic assumption is that the signal of interest is constant and flat during the

measurement. The sensor output however is the sum of the signal of interest and the

noise. Roughly speaking, the noise should average to zero in the long term.

Many samples are taken during the measurement. Analysis and identification of noise can

help in determining how many samples can be averaged to minimize the variance of the

sensor output.

The problem with the standard variance is that it is not well behaved for increasing length

of the data run. To solve this problem, the Allan variance was developed. The Allan

variance σ2 is computed as the average of the squared difference between consecutive

“samples” (2-sample variance). “Samples” are computed by averaging over m-samples in

an time interval τ = m*Ts, where Ts=1/Fs is the sampling interval, and Fs is sampling

frequency.

Allan variance and more

The Allan deviation σ(τ) is the square root of the Allan variance σ2(τ). The slope of the log-

log plot depends on the noise type. It is the slope which enables noise type identification.

See the table below.

July 2016 DT0064 Rev 1 2/6

 www.st.com

Allan variance (non-overlapping AVAR, overlapping OAVAR, modified MAVAR) and

Hadamard variance (non-overlapping HVAR and overlapping OHVAR) can be computed

using a chain of digital filters:

 M(m) a moving average over m-samples,

 D1(m) first difference between sample nth and sample (n+m+1)th,

 m:1 downsampling by selection of 1 sample out of m

Transients must not appear in the output. The variance is computed by squaring and

averaging the output samples. The deviation is the square root of the variance. The

confidence of the deviation can be estimated as the deviation itself divided by square root

of the number of averaged output samples.

Figure 1. Left: ratio of var/AVAR; Right: block diagram of processing chain

Some important notes:

 Overlapping Allan (OAVAR) and overlapping Hadamard variance (OHVAR) have

better confidence and should be used up to m = 10% of data run length.

 Time variance (TVAR) is a scaled version of Modified Allan variance (MAVAR), the

scaling factor is τ2/3. It is optimal for white phase noise (this means: derivative of

white Gaussian noise, which is known as white frequency noise).

 Allan Total, Modified Total and Hadamard Total variance have better confidence up

to m = 30-50% of data run length. Total variance is computed by extending the

data run length by reflection on both sides. The number of sample to be reflected is

2m for Allan, 3m for Modified Allan and Hadamard.

 Theoretical #1 variance (Theo1) has better confidence up to m = 75% of data run

length. For all other variances, the stride time is the same as the averaging time

used to compute the “samples”, var(τ=m*Ts). For Theo1, stride time is m*Ts minus

averaging time; the averaging time goes from m/2 down to 1; stride time goes from

m/2 up to m-1; the average stride time is 0.75*m*Ts: Theo1(τ=0.75*m*Ts). Theo1

is biased, Theo1BR (bias removed) is unbiased, Theo1H is Allan for m<10% and is

Theo1BR for m>10%.

July 2016 DT0064 Rev 1 3/6

 www.st.com

MatLab code to compute variance

This is the reference MatLab code to compute the aforementioned variance as a chain of

digital filters.

 % Allan as a digital filter
 n % averaging factor, averaging n samples

 Fs % sampling frequency

 Ts=1/Ts;

 tau=n*Ts;

 %---- STDVAR and OSTDVAR

 Mn=ones(1,n)/n; % averaging filter

 dataM=filter(Mn,1,data); dataM=dataM(n:end); % filter and remove transient

 ostdvar()=var(dataM);

 stdvar()=var(dataM(1:n:end));

 %---- AVAR and OAVAR

 D1n=zeros(1,n+1); D1n(1)=+1; D1n(end)=-1; % differentiating filter

 dataMD=filter(D1n,1,dataM); dataMD=dataMD(n+1:end); % filter and remove transient

 L=length(dataMD); oavar()=0.5*sum(dataMD.^2)/(L);

 L=length(dataMD(1:n:end)); avar()=0.5*sum(dataMD(1:n:end).^2)/(L);

 %---- MAVAR

 dataMDM=filter(Mn,1,dataMD);

 dataMDM=dataMDM(n:end);

 L=length(dataMDM); mavar()=0.5*sum(dataMDM.^2)/(L);

 %---- HVAR and OHVAR

 dataMDD=filter(D1n,1,dataMD); dataMDD=dataMDD(n+1:end); % filter and remove transient

 L=length(dataMDD); ohvar()=0.5*sum(dataMDD.^2)/(L);

 L=length(dataMDD(1:n:end)); hvar()=0.5*sum(dataMDD(1:n:end).^2)/(L);

The slowest line in the above code is the moving average filter. Execution is much faster if

a running sum is maintained where the new term is added and the old term is discarded.

 % OAVAR optimized

 n2=n*n;

 acc(1)=sum(data(1:n)); % init running sum

 for i=1:N-n, acc(i+1)=acc(i)-data(i)+data(i+n); end; % running sum

 oavar()=0.5*sum((acc(1:N-2*n+1) - acc(1+n:N-n+1)).^2)/(N-2*n+1)/n2;

 % AVAR

 diffL=fix((N-2*n+1 -1)/n)+1;

 avar()=0.5*sum((acc(1:n:N-2*n+1)-acc(1+n:n:N-n+1)).^2)/(diffL)/n2;

 % STDVAR and OSTDVAR

 stdvar()=var(acc(1:n:N-n+1))/n2;

 ostdvar()=var(acc(1:N-n+1))/n2;

 % MAVAR optimized

 n4=n2*n2;

 acc2(1)=sum(acc(1:n)); % init running sum

 for i=1:N-2*n+1, acc2(i+1)=acc2(i)-acc(i)+acc(i+n); end; % running sum

 mavar()=0.5*sum((acc2(1:N-3*n+2) - acc2(1+n:N-2*n+2)).^2)/(N-3*n+2)/n4;

 % OHVAR

 ohvar()=0.5*sum(((acc(1 :N-3*n+1) - acc(1+ n:N-2*n+1)) - ...

 (acc(1+n:N-2*n+1) - acc(1+2*n:N- n+1))).^2)/(N-3*n+1)/n2;

 % HVAR

 diffL=fix((N-3*n+1 -1)/n)+1;

 hvar()=0.5*sum(((acc(1 :n:N-3*n+1) - acc(1+ n:n:N-2*n+1)) - ...

 (acc(1+n:n:N-2*n+1) - acc(1+2*n:n:N- n+1))).^2)/(diffL)/n2;

The code can be further optimized. As an example, for an optimized C-code, there is the

possibility to compute the variance in one-pass (while usually two passes are required: the

first for the mean, and the second for the actual variance).

Noise models

White gaussian (WH) noise is the first basic type of noise. By integration (cumsum) one

gets Random Walk (RW). By another integration one gets Random Run (RR). By taking

the derivative (diff) one moves from White Frequency (WHFM) to White Phase noise

(WHPM).

July 2016 DT0064 Rev 1 4/6

 www.st.com

Figure 2. Noise plot, power spectral density (PSD), lag plot (xk vs xk+1)

Flicker 1/f noise, also known as pink noise, is the other basic type of noise. It is

equivalent to noise generated by solving dx(t)/dt = n1*x(t) + n2*w(t), where w(t) is white. It

can be generated by summing different white noise generators in different octaves. By

integration (cumsum), one gets Flicker Walk (FW). By taking the derivative (diff) one

moves from Flicker Frequency (FLFM) to Flicker Phase (FLPM).

Noise identification

For noise identification, one must look at the slope in sigma-tau plots (deviation, square

root of variance) and sigma2-tau plot (variance). Modified Allan or Time deviation/variance

is needed to distinguish between White PM and Flicker PM noise.

Noise type Matlab code Spectrum

fx

ADEV

σ(τ)

AVAR

σ2(τ)

MADEV

mod.σ(τ)

MAVAR

mod.σ2(τ)

TDEV

σT(τ)

TVAR

σ2
T(τ)

White PM Diff(WhiteFM) f+2 τ-1 τ-2 τ-3/2 τ-3 τ-1/2 τ-1

Flicker PM Diff(FlickerFM) f+1 τ-1 τ-2 τ-1 τ-2 τ0 τ0

White FM Randn(1) f0 τ-1/2 τ-1 τ-1/2 τ-1 τ+1/2 τ+1

Flicker FM See above f-1 τ0 τ0 τ0 τ0 τ+1 τ+2

% generator for 1/f noise (flicker, pink)

 N % length of noise vector

 sd; % standard deviation for noise generators

 n=zeros(1,N); % init noise vector

 imax=floor(log2(N)); ngen=randn(1,imax+1)*sd; % init noise gen

 ngensum=sum(ngen); % init running sum

 for i=1:N,

 % find number of trailing zeros in the counter

 tlz=0; t=i; while mod(t,2)==0, tlz=tlz+1; t=t/2; end;

 % update running sum

 ngensum=ngensum-ngen(tlz+1); % remove old value

 ngen(tlz+1)=randn(1)*sd; % update noise generator

 ngensum=ngensum+ngen(tlz+1); % add new value

 n(i)=ngensum+(rand(1)*sd); % sum + noise for high freq

 end;

July 2016 DT0064 Rev 1 5/6

 www.st.com

Random Walk Cumsum(WhiteFM) f-2 τ+1/2 τ+1 τ+1/2 τ+1 τ+3/2 τ+3

Flicker Walk Cumsum(FlickerFM) f-3 τ+1 τ+2 τ+1 τ+2

Random Run Cumsum(RandomWalk) f-4 τ+3/2 τ+3 τ+3/2 τ+3

Figure 3. Allan variance plot, σ2(τ) vs τ, for different types of noise with specific slopes.

Noise identification for Gyroscope

The gyroscope output is an angular velocity affected by white noise. Angular position is

obtained by integration. When the gyroscope is not rotating, the output is not zero as it

should be; instead it is white noise with zero mean and given standard deviation. The

integration will lead to a non-zero final angle. This is the Angular Random Walk (ARW).

Final angle error RMS = ARW*sqrt(time). Example: ARW 1deg/sqrt(s) * sqrt(1000s) =

31.6deg RMS.

Angular random walk can be found in the datasheet: ARW in deg/sqrt(s) = noise density

deg/s/sqrt(Hz). ARW can also be found in Allan plots: it is the intercept of Allan deviation

segment with slope τ-1/2 at τ=1s, or Allan variance segment with slope τ-1 at τ=1s.

July 2016 DT0064 Rev 1 6/6

 www.st.com

Support material

Related design support material

STEVAL-STLKT01V1, SensorTile development kit

Documentation

LSM6DS3H, iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

LSM6DSM, iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

LSM6DSL, iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

AN4844, Application Note, LSM6DS3H: always on 3D accelerometer and 3D gyroscope

Revision history

Date Version Changes

13-Jul-2016 1 Initial release

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements,
modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should
obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and
conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for
application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for
such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

