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DT0064  
Design tip 

Noise analysis and identification in MEMS sensors, 

Allan, Time, Hadamard, Overlapping, Modified, Total variance  
 By Andrea Vitali 

 

Main components 

LSM6DS3H iNEMO inertial module: 3D accelerometer and 3D gyroscope 

LSM6DSM/LSM6DSL  iNEMO inertial module: 3D accelerometer and 3D gyroscope 

STEVAL-STLKT01V1 SensorTile development kit 

Purpose and benefits 

This design tip explains how to analyze and identify noise in MEMS sensors. Allan and 

Hadamard variance are explained, together with their variations (Overlapping, Modified and 

Total). Theoretical variance #1 (Theo1) is also mentioned. 

Benefits: 

 How to characterize MEMS sensors by means of Allan and other variances 

The signal and the noise 

The basic assumption is that the signal of interest is constant and flat during the 

measurement. The sensor output however is the sum of the signal of interest and the 

noise. Roughly speaking, the noise should average to zero in the long term. 

Many samples are taken during the measurement. Analysis and identification of noise can 

help in determining how many samples can be averaged to minimize the variance of the 

sensor output. 

The problem with the standard variance is that it is not well behaved for increasing length 

of the data run. To solve this problem, the Allan variance was developed. The Allan 

variance σ2 is computed as the average of the squared difference between consecutive 

“samples” (2-sample variance). “Samples” are computed by averaging over m-samples in 

an time interval τ = m*Ts, where Ts=1/Fs is the sampling interval, and Fs is sampling 

frequency. 

Allan variance and more 

The Allan deviation σ(τ) is the square root of the Allan variance σ2(τ). The slope of the log-

log plot depends on the noise type. It is the slope which enables noise type identification. 

See the table below. 
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Allan variance (non-overlapping AVAR, overlapping OAVAR, modified MAVAR) and 

Hadamard variance (non-overlapping HVAR and overlapping OHVAR) can be computed 

using a chain of digital filters:  

 M(m) a moving average over m-samples, 

 D1(m) first difference between sample nth and sample (n+m+1)th,  

 m:1 downsampling by selection of 1 sample out of m 

Transients must not appear in the output. The variance is computed by squaring and 

averaging the output samples. The deviation is the square root of the variance. The 

confidence of the deviation can be estimated as the deviation itself divided by square root 

of the number of averaged output samples. 

Figure 1. Left: ratio of var/AVAR; Right: block diagram of processing chain 

 

Some important notes: 

 Overlapping Allan (OAVAR) and overlapping Hadamard variance (OHVAR) have 

better confidence and should be used up to m = 10% of data run length. 

 Time variance (TVAR) is a scaled version of Modified Allan variance (MAVAR), the 

scaling factor is τ2/3. It is optimal for white phase noise (this means: derivative of 

white Gaussian noise, which is known as white frequency noise). 

 Allan Total, Modified Total and Hadamard Total variance have better confidence up 

to m = 30-50% of data run length. Total variance is computed by extending the 

data run length by reflection on both sides. The number of sample to be reflected is 

2m for Allan, 3m for Modified Allan and Hadamard. 

 Theoretical #1 variance (Theo1) has better confidence up to m = 75% of data run 

length. For all other variances, the stride time is the same as the averaging time 

used to compute the “samples”, var(τ=m*Ts). For Theo1, stride time is m*Ts minus 

averaging time; the averaging time goes from m/2 down to 1; stride time goes from 

m/2 up to m-1; the average stride time is 0.75*m*Ts: Theo1(τ=0.75*m*Ts). Theo1 

is biased, Theo1BR (bias removed) is unbiased, Theo1H is Allan for m<10% and is 

Theo1BR for m>10%. 
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MatLab code to compute variance 

This is the reference MatLab code to compute the aforementioned variance as a chain of 

digital filters. 

   % Allan as a digital filter   
  n % averaging factor, averaging n samples 

  Fs % sampling frequency 

  Ts=1/Ts; 

  tau=n*Ts; 

   

  %---- STDVAR and OSTDVAR 

  Mn=ones(1,n)/n; % averaging filter 

  dataM=filter(Mn,1,data); dataM=dataM(n:end); % filter and remove transient 

  ostdvar()=var(dataM);  

  stdvar()=var(dataM(1:n:end)); 

    

  %---- AVAR and OAVAR 

  D1n=zeros(1,n+1); D1n(1)=+1; D1n(end)=-1; % differentiating filter 

  dataMD=filter(D1n,1,dataM); dataMD=dataMD(n+1:end); % filter and remove transient 

  L=length(dataMD);           oavar()=0.5*sum(dataMD.^2)/(L);  

  L=length(dataMD(1:n:end));  avar()=0.5*sum(dataMD(1:n:end).^2)/(L); 

   

  %---- MAVAR 

  dataMDM=filter(Mn,1,dataMD); 

  dataMDM=dataMDM(n:end); 

  L=length(dataMDM);          mavar()=0.5*sum(dataMDM.^2)/(L); 

   

  %---- HVAR and OHVAR 

  dataMDD=filter(D1n,1,dataMD); dataMDD=dataMDD(n+1:end); % filter and remove transient 

  L=length(dataMDD);          ohvar()=0.5*sum(dataMDD.^2)/(L); 

  L=length(dataMDD(1:n:end)); hvar()=0.5*sum(dataMDD(1:n:end).^2)/(L);    

The slowest line in the above code is the moving average filter. Execution is much faster if 

a running sum is maintained where the new term is added and the old term is discarded. 

  % OAVAR optimized 

  n2=n*n; 

  acc(1)=sum(data(1:n)); % init running sum 

  for i=1:N-n, acc(i+1)=acc(i)-data(i)+data(i+n); end; % running sum 

  oavar()=0.5*sum( (acc(1:N-2*n+1) - acc(1+n:N-n+1)).^2 )/(N-2*n+1)/n2; 

     

  % AVAR 

  diffL=fix((N-2*n+1 -1)/n)+1; 

  avar()=0.5*sum( (acc(1:n:N-2*n+1)-acc(1+n:n:N-n+1)).^2 )/(diffL)/n2; 

     

  % STDVAR and OSTDVAR 

  stdvar()=var(acc(1:n:N-n+1))/n2; 

  ostdvar()=var(acc(1:N-n+1))/n2; 

   

  % MAVAR optimized 

  n4=n2*n2; 

  acc2(1)=sum(acc(1:n)); % init running sum 

  for i=1:N-2*n+1, acc2(i+1)=acc2(i)-acc(i)+acc(i+n); end; % running sum 

  mavar()=0.5*sum( (acc2(1:N-3*n+2) - acc2(1+n:N-2*n+2)).^2 )/(N-3*n+2)/n4; 

   

  % OHVAR 

  ohvar()=0.5*sum( ( (acc(1  :N-3*n+1) - acc(1+  n:N-2*n+1)) - ...  

                     (acc(1+n:N-2*n+1) - acc(1+2*n:N-  n+1)) ).^2 )/(N-3*n+1)/n2; 

   

  % HVAR 

  diffL=fix((N-3*n+1 -1)/n)+1; 

  hvar()=0.5*sum( ( (acc(1  :n:N-3*n+1) - acc(1+  n:n:N-2*n+1)) - ...  

                    (acc(1+n:n:N-2*n+1) - acc(1+2*n:n:N-  n+1)) ).^2 )/(diffL)/n2; 

The code can be further optimized. As an example, for an optimized C-code, there is the 

possibility to compute the variance in one-pass (while usually two passes are required: the 

first for the mean, and the second for the actual variance). 

Noise models 

White gaussian (WH) noise is the first basic type of noise. By integration (cumsum) one 

gets Random Walk (RW). By another integration one gets Random Run (RR). By taking 

the derivative (diff) one moves from White Frequency (WHFM) to White Phase noise 

(WHPM). 
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Figure 2. Noise plot, power spectral density (PSD), lag plot (xk vs xk+1) 

 

Flicker 1/f noise, also known as pink noise, is the other basic type of noise. It is 

equivalent to noise generated by solving dx(t)/dt = n1*x(t) + n2*w(t), where w(t) is white. It 

can be generated by summing different white noise generators in different octaves. By 

integration (cumsum), one gets Flicker Walk (FW). By taking the derivative (diff) one 

moves from Flicker Frequency (FLFM) to Flicker Phase (FLPM). 

   

 

Noise identification 

For noise identification, one must look at the slope in sigma-tau plots (deviation, square 

root of variance) and sigma2-tau plot (variance). Modified Allan or Time deviation/variance 

is needed to distinguish between White PM and Flicker PM noise. 

Noise type Matlab code Spectrum 

fx 

ADEV 

σ(τ) 

AVAR 

σ2(τ) 

MADEV  

mod.σ(τ) 

MAVAR 

mod.σ2(τ) 

TDEV 

σT(τ) 

TVAR 

σ2
T(τ) 

White PM Diff(WhiteFM) f+2 τ-1 τ-2 τ-3/2 τ-3 τ-1/2 τ-1 

Flicker PM Diff(FlickerFM) f+1 τ-1 τ-2 τ-1 τ-2 τ0 τ0 

White FM Randn(1) f0 τ-1/2 τ-1 τ-1/2 τ-1 τ+1/2 τ+1 

Flicker FM See above f-1 τ0 τ0 τ0 τ0 τ+1 τ+2 

% generator for 1/f noise (flicker, pink) 

  N % length of noise vector 

  sd; % standard deviation for noise generators 

  n=zeros(1,N); % init noise vector 

  imax=floor(log2(N)); ngen=randn(1,imax+1)*sd; % init noise gen 

  ngensum=sum(ngen); % init running sum   

  for i=1:N, 

    % find number of trailing zeros in the counter   

    tlz=0; t=i; while mod(t,2)==0, tlz=tlz+1; t=t/2; end;  

    

    % update running sum 

    ngensum=ngensum-ngen(tlz+1); % remove old value 

    ngen(tlz+1)=randn(1)*sd; % update noise generator 

    ngensum=ngensum+ngen(tlz+1); % add new value 

    n(i)=ngensum+(rand(1)*sd); % sum + noise for high freq 

  end; 
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Random Walk Cumsum(WhiteFM) f-2 τ+1/2 τ+1 τ+1/2 τ+1 τ+3/2 τ+3 

Flicker Walk Cumsum(FlickerFM) f-3 τ+1 τ+2 τ+1 τ+2   

Random Run Cumsum(RandomWalk) f-4 τ+3/2 τ+3 τ+3/2 τ+3   

Figure 3. Allan variance plot, σ2(τ) vs τ, for different types of noise with specific slopes. 

 

Noise identification for Gyroscope 

The gyroscope output is an angular velocity affected by white noise. Angular position is 

obtained by integration. When the gyroscope is not rotating, the output is not zero as it 

should be; instead it is white noise with zero mean and given standard deviation. The 

integration will lead to a non-zero final angle. This is the Angular Random Walk (ARW). 

Final angle error RMS = ARW*sqrt(time). Example: ARW 1deg/sqrt(s) * sqrt(1000s) = 

31.6deg RMS. 

 

Angular random walk can be found in the datasheet: ARW in deg/sqrt(s) = noise density 

deg/s/sqrt(Hz). ARW can also be found in Allan plots: it is the intercept of Allan deviation 

segment with slope τ-1/2 at τ=1s, or Allan variance segment with slope τ-1 at τ=1s. 
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Support material 

Related design support material 

STEVAL-STLKT01V1, SensorTile development kit 

Documentation 

LSM6DS3H, iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope 

LSM6DSM, iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope 

LSM6DSL, iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope 

AN4844, Application Note, LSM6DS3H: always on 3D accelerometer and 3D gyroscope 

Revision history 

Date Version Changes 

13-Jul-2016 1 Initial release 
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