

Flyback transformer

more than you expect

Technical ACADEMY Author: Alain Lafuente

alain.lafuente@we-online.com

Transformer Design: General sequence

Design of a Custom Flyback transformer

Basic Principles

The Flyback Converter

CCM

- The primary current never drops to zero during all operating conditions
- Primary Inductance value is relatively bigger.
- Two states per switching cycle:
 - The ON state: Transistor is ON and Diode is OFF
 - The OFF state: Transistor is OFF and Diode is ON

- Right hand plane zero
- Core losses are lower
- Flux swing is smaller
- Improved EMC properties
- Worst case at low Vin

- Switch closed (Transistor ON):
 - Primary winding current rises from Ip_min to Ip_max in t_{on} = DT

$$\Delta I_p = \frac{Vin \times DT}{L_p}$$

$$I_{p_max} = \frac{Vout \times Iout}{\eta \times D \times Vin} + \frac{\Delta I_p}{2}$$

- Switch opened (Transistor OFF):
 - Secondary winding current falls from Is_max to Is_min in $t_{off} = (1-D)T$.

$$\Delta I_s = \Delta I_p \times \frac{N_p}{N_s}$$

$$\Delta I_s = \Delta I_p \times \frac{N_p}{N_s} \qquad I_{s_max} = I_{p_max} \times \frac{N_p}{N_s}$$

- Critical inductance value (L_{critical}):
 - At Boundary of CCM/DCM
 - Minimum inductance to obtain a continuous conduction mode at minimum output power

$$L_{Critical} > \frac{V_{out}^{2}}{2P_{out_min} \cdot f_{switch}} \times \frac{1}{\left(\frac{N_{s}}{N_{p}} + \frac{V_{out}}{V_{in_max}}\right)^{2}}$$

Turns Ratio:

$$\frac{N_s}{N_p} = \frac{V_{out}}{\sqrt{V_{in_min} \times V_{in_max}}}$$

CCM Design Equations:

$$VCR = \frac{Vout}{Vin} = N \times \frac{D}{1-D}$$
; $where: N = \frac{N_s}{N_P}$ VCR = Voltage Conversion Ratio

$$\Delta I_p = \frac{Vin \times DT}{L_p}$$

$$V_D = Vout + (Vin \times \frac{N_s}{N_p})$$

$$V_T = Vin + (Vout \times \frac{N_p}{N_s})$$

$$V_T = Vin + (Vout \times \frac{N_p}{N_c})$$

$$I_{p_max} = \frac{Vout \times Iout}{n \times D \times Vin} + \frac{\Delta I_p}{2}$$

$$Iin = \frac{Vout \times Iout}{\eta \times Vin} = \frac{N \times D \times Iout}{(1 - D) \times \eta}$$

 $L_p = \frac{V_{out}^2}{2 P_{out} \cdot f_{switch}} \times \frac{1}{\left(\frac{N_s}{N_p} + \frac{V_{out}}{V_{in \text{ max}}}\right)^2}$

The Flyback Converter

DCM

- The primary current drops to zero.
- Primary Inductance value is relatively smaller.
 Capacitance may need to be larger.
- Three states per switching cycle:
 - The ON state: Transistor is ON and Diode is OFF
 - The OFF state: Transistor is OFF and Diode is ON
 - The IDLE state: Both Transistor and Diode are OFF
- MOSFET turn on at zero current
- Worst case at low Vin

- Switch closed (Transistor ON):
 - Primary winding current rises from zero to I_{p_max} in t_{on} = DT

$$I_{p_max} = \Delta I_p = \frac{Vin \times DT}{L_p}$$

$$D = \frac{\sqrt{2 \times P_{in} \times L_p \times f}}{V_{in}}$$

www.we-online.com

- Switch opened (Transistor OFF):
 - Secondary winding current falls from I_{s_max} to zero in $t_{off} = D_2T$.

$$I_{s_max} = I_{p_max} \times \frac{N_p}{N_s}$$

$$D2 = \frac{\sqrt{2 \times P_{out} \times N^2 \times L_p \times f}}{V_{out}}$$

$$N = \frac{N_s}{N_p}$$

- **Idle State (Transistor & Diode OFF):**
 - Only Capacitor delivers energy to load during D₃T

- Inductance value (L_{DCM}):
 - Maximum inductance to obtain a discontinuous conduction mode at maximum output power

$$L_{DCM} < \frac{V_{out}^{2}}{2P_{out_max} \cdot f_{switch}} \times \frac{1}{\left(\frac{N_{s}}{N_{p}} + \frac{V_{out}}{V_{in_min}}\right)^{2}}$$

Comparison Discontinuous / Continuous Flyback

Continuous Flyback	Discontinuous Flyback
Still current on diode when "switching" off => needs a ultrafast switching diode	Current on diode already Zero when "switching" off
No ringing on MOSFET	Ringing at MOSFET when current becomes Zero
Duty cycle is well defined	Duty cycle is not defined because of dead time
Peak currents are variable	Fixed peak current
	Secondary triangle is fix
Low peak current	High peak current
Low ripple current	High ripple current
High inductance	Low inductance

Pick a Core – AP Product

Making the conversion of current density from A/m² to cmils/A and units into CGS for convenience we get

$$AP = \frac{506.7 \cdot P_{in} \cdot J_{cmils/A}}{K \cdot f \cdot \Delta B} \text{cm}^4$$

$$AP = WaAc$$

Typical value for K is 0.3-0.4 and for $J_{cmils/A}$ is 300-600

AP EFD15= 0,019

AP EF16= 0,043

AP EFD20= 0,087

Wa = Window Area in cm²

 $Ac = Core Area in cm^2$

- standards:
 - e.g. EN (IEC)60950, (IT-equipment) EN (IEC)61558 Part 2-16 (transformer general)
- standards define
 - → Clearance distance
 - → Creepage distance (depends on pollution degree)
 - → Distance through insulation
- standards define
 - → electrical breakdown voltage
- There are differences between the standards!

- Defining the Insulation Level requires:
 - Grade of Insulation (Functional, Basic, Supplementary, Reinforced)
 - Working Voltage
 - Pollution Degree
- This information is application dependent.
- It is <u>not driven</u> by the transformer.
- It's impact on the transformer construction & price can be significant.

Working Voltage

Highest voltage to which the insulation or the component under consideration is, or can be, subjected to when the equipment is operating under conditions of normal use.

Pollution Degrees

- Degree 1 Assemblies which are sealed so as to exclude dust and moisture.
- Degree 2 Office and laboratory areas are considered pollution degree 2 environments
- Degree 3 Conductive pollution or dry nonconductive pollution that becomes conductive when condensation occurs. To be found in industrial environment or construction sites.

Creepage Distance

Shortest distance through air along the surface of an insulation material between two conductive parts

Clearance Distance

Shortest distance in air between two conductive parts

Clearance and creepage distance

→ if distance is less than 1mm than creepage = clearance

- Clearance
 - → distance in air (conductor to conductor)
- Creepage
 - → distance along surface (conductor to conductor)

Isolation test voltage

Isolation test voltages according to EN61558

	Isolation test voltage [V _{RMS}]		
Operating voltage [V _{RMS}]	Basic insulation	Reinforced insulation	
50	250	500	
150	1400	2800	
300	2100	4200	
400	2200	4500	
1000	2750	5500	

→ It is not enough to mention ONLY a test voltage as safety requirement

Creepage distances for different working voltages

Example: Pollution degree 2 according to IEC61558-2-16

	Creepage distance pollution degree 2 [mm]					
	Basic insulation		Reinforced insulation			
Working voltage (RMS)	CTI>600	400 <cti<600< td=""><td>CTI<400</td><td>CTI>600</td><td>400<cti<600< td=""><td>CTI<400</td></cti<600<></td></cti<600<>	CTI<400	CTI>600	400 <cti<600< td=""><td>CTI<400</td></cti<600<>	CTI<400
100	0,8	1,1	1,5	1,1	1,5	2,2
150	0,9	1,2	1,8	1,7	2,2	3,3
300	1,7	2,3	3,3	3,3	4,7	6,6
400	2,2	3,1	4,4	4,4	6,4	8,8
600	3,3	4,7	6,6	6,6	9,5	13,2
1000	6,1	2,4	11,0	11,0	15,4	22,0

→ the creepage distance cannot be less than clearance distance

- Comparative Tracking Index (CTI)
 - → CTI of raw material effects the creepage distance
 - → CTI value is a measure of the resistance to surface tracking that a particular material exhibits under specific test conditions
 - → the smaller the CTI for that material, the bigger the creepage distance required

How to Achieve Creepage Distances

Use extended rail bobbin and / or margin tape to increase distance from SEC

pins to PRI winding

Triple Insulated Wire on SEC to insulate windings

AP product Vs Creepage- Warning

WE-UOST example

It is recommended that the temperature of the component does not exceed +125°C under worst case conditions

Storage Temperature (in original packaging)	-20 °C up to +60 °C	
Operating Temperature	-40 °C up to +125 °C	

Test conditions of Electrical Properties: +20°C, 33% RH if not specified differently

Designed to comply with the following requirements as defined by IEC61558-2-16; Reinforced insulation for a working voltage of 375 V_{RMS}

a: 7,14 mm min

b: 0,5 mm allowed of wires burnt back

=> Creepage distance minimum 6,6 mm

Manufacturing

Why do we do design for Manufacturing?

To increase reliability

Adapt the design to use proven and repeatable processes

To reduce cost

- Use automated processes where possible
- Reduce scrap

To reduce lead time

- Higher throughput using standard processes
- Reduce rework
- Use standard components

The Transformer Manufacturing Process

Considerations:

- Winding
- Termination
- Soldering

Winding

Considerations:

- Pinout
- Layering
- Dragbacks

Pinout – Wires crossing

Wire crossings can cause both mechanical and dielectric stress

This is the ideal pin assignment

Wire Dragbacks

- Dragbacks can be damaged by winding pressure from subsequent layers
 - Start tape before dragback (higher labour)
- 90° dragbacks increase labor and may need extra tape
- Spiral dragbacks can cause core fit issues

Potential core fit issue here

Layering

Adjust wire diameter and number of strands to fill layers

The coil on the right uses a two-bi winding to achieve the same DC resistance, but better layering.

- Choose pinout that promotes good layering
 - Same rail pinout for even number of layers
 - Cross bobbin pinout for odd number of layers

Soldering

- A large single strand is more difficult to solder than multiple lighter strands
 - Large strands: more heat, more time more insulation damage
- Avoid using heavy or litz windings on same bobbin rail with fine wire windings
 - Ideally windings on same bobbin rail should be within 3 gauges
- Sometimes it makes sense to use heavier wire than necessary for soldering e.g. matching aux wire size to primary, even if current density doesn't require it (also reduces BOM)
 - May need two soldering operations if wire mismatch is unavoidable

Solder Terminations

Large wire terminations on TH parts can cause height issues

Large Wire Wraps – this is where part will actually contact PCB

Bobbin Standoff – this surface should contact PCB

Example Eval board VIPer013XS

Example Transfo 750317396

Fly-back Converter

The values of all input fields can be changed.

The proposed values for L_1 and for the turns ratio N_1/N_2 are chosen such that the converter works at the border between continuous and discontinuous mode for the average input voltage and with a duty cycle of 50%.

Tip: The higher N_2 , the lower the maximum transistor voltage V_{dx} during its blocking phase.

Tip: The lowest size of the transformer is achieved if the converter works at the border between continuous and discontinuous mode for

Tip: The highest voltage V_{ds} occurs when $V_{in}=V_{in\ max}$.

By Dr. Heinz Schmidt-Walter, Holger Wenzel, Thomas Zänker, Richard Morgan and Johnalan Kegan.

39

To Summarize....

Design For Manufacturing:

The practice of considering the manufacturing process during the design stage

To increase reliability

To reduce cost and lead time

Involve us as early as possible in design phase!

Selection of a standard flyback transformer

Calculation Idea

4) Turns ratio:

1)
$$\frac{N_1}{N_2} \leq \frac{V_{DS max} - V_{in}}{V_{out}} =$$

$$2) \qquad \frac{N_1}{N_2} \ge \frac{V_{in}}{V_{D max} - V_{out}}$$

2) Duty Cycle:

$$DC = \frac{t_{on}}{T} = \frac{\frac{N_1}{N_2} V_{out}}{V_{in} + \frac{N_1}{N_2} V_{out}}$$

3) Inductance:

$$L = \frac{V_{out} \cdot (1 - DC)}{(\frac{N_2}{N_1})^2 \cdot \Delta I \cdot f}$$

Example with UOST serie

Fly-back Converter

The values of all input fields can be changed.

The proposed values for L_1 and for the turns ratio N_1/N_2 are chosen such that the converter works at the border between continuous and discontinuous mode for the average input voltage and with a duty cycle of 50%.

Tip: The higher N_2 , the lower the maximum transistor voltage V_{dx} during its blocking phase.

Tip: The lowest size of the transformer is achieved if the converter works at the border between continuous and discontinuous mode for

Tip: The highest voltage V_{dk} occurs when $V_{in}=V_{in\ max}$.

By Dr. Heinz Schmidt-Walter, Holger Wenzel, Thomas Zänker, Richard Morgan and Johnalan Kegan.

43

DO NOT FORGET EMC

What noise I'm facing

Signal on Vds

WÜRTH ELEKTRONIK

- 1 voltage falls during turn on.
- 2 Parasitic oscillation due to current spike (on time).
- 3 voltages rises during off time.
- 4 Clamping voltage snubber.
- 5 Parasitic oscillation after clamping (due to leakage inductance of transformer and Mosfet capacitance).
- 6 parasitic oscillation after flyback phase (due to Mosfet capacitance and primary inductance of transformer.

Input filter ideas

Example of attenuation

4

Input filter ideas

Example of attenuation

Input filter ideas

CMB+CMB NiZn +R damping

Design your EMC filter

Design kit

54

www.we-online.com

Snubber

Snubber design

Snubber design: First pass selection

$$V_{clamp} = V_{dssmax} - safety margin$$

$$V_{\text{snub}} = V_{clamp} - Vin$$

Energy stored into inductor

$$\mathbf{W}_{1} = \frac{1}{2} . L_{l} . I_{peak}^{2}$$

Average power transfered to snubber

$$P = W_1.f_{sw}$$

So choose R =
$$\frac{V_{\text{snub}}^2}{P}$$
 and then RC = $\frac{1}{3}T_{on}$

Diode and Switch Snubbers

- Dampens Ringing From
 - Parasitic PCB Inductance
 - Rectifier Reverse Recovery
 - Output Rectifier Capacitance
- Capacitor across Diode Reduces Frequency
- Resistor to Critically Dampens Ringing
 - Power Dissipated in Resistor

Output Filter

- Ripple Voltage Determines Capacitance
- ESR Usually Plays a Larger Role
- Often Shown as Single Stage but...
- Two stage can Save Cost by Using Smaller Components
- Second stage often Drum Core Inductor and Ceramic Capacitor

THE END

THANK YOU!