

LSM6DSV80X

IMU for impact intensity tracking in sports activities

Challenges for sensors in sports tracking

Loss of inertial information

Miss high acceleration events due to sensor saturation

PCB space Detecting both

Detecting both high-g and low-g accelerations normally requires two devices

Accuracy tradeoff

Low-g sensor provides high accuracy with limited range High-g sensor offers an extended range with less accuracy

Battery life

High and low accelerations detection drain more power due to double devices management

Intense impacts tracking in sports

Volleyball

Training: Measure spike force progress **Performance**: Collect ball-hand contact time and acceleration profile for guide athletic improvement

Training: Wrist rotation speed and acceleration tracking Performance: ball hitting metrics

Training: performance and motion monitoring Performance: punch metrics, concussion detection on helmet

Plyometrics / Explosive jumps

Training: stress of joints **Performance**: metrics (impulse intensity, impulse width, fall time)

7/

LSM6DSV80X, designed with sports tracking in mind

Extended full scale to detect any sport dynamic

High performance for everyday life and intense sport training

- Multiple full scales from 2g up to 80g
- ODR up to 7.68 kHz with HAODR⁽¹⁾
- Low noise and low power

At-the-edge processing

- Adaptive self-configuration (ASC)
- MLC⁽²⁾, FSM⁽³⁾
- Embedded SFLP⁽⁴⁾
- Automatic FS switch based on the context
- 1.5 KB FIFO (up to 4.5 KB with compression)

No overhead in the package size

Standard IMU footprint: 2.5 x 3.0 x 0.83 mm

(1) HAODR: High Accuracy ODR(2) MLC: Machine learning core

(3) FSM: Finite state machine(4) SFLP: Sensor fusion low power

What's inside the LSM6DSV80X?

A new sensor technology to accurately and efficiently measure both high and low acceleration levels

Consistent performance and **valuable insights** for intense impact in sports and in everyday tracking movements

Self-configure the sensor in real time without the need of the host processor Data available to FSM*, MLC* and ASC* embedded resources

*FSM = finite state machine *MLC = machine learning core *ASC = adaptive self-configuration

Which attributes for LSM6DSV80X?

Track and impact Integration **Decision making** Low-g accelerometer for wake-In a 2.5 x 3 mm package, it Al & context awareness for integrates 3 sensing capabilities: up, orientation, accuracy, step processing of sensor data at the edge (MLC & FSM) and fusion of counting Gyroscope data (Sensor Fusion Low Power) • Low-g (16g) accelerometer for 3D orientation High-g accelerometer to track High-g (80g) accelerometer shock, falls detection, highly Adaptive sensing configuration All sensing capabilities are fully intense sport activities in real time without the host synchronized processor for optimized performance and power saving

Improve sports activities by accurately and efficiently measuring both high and low acceleration levels delivering consistent performance and valuable insights

LSM6DSV80X vs general purpose IMU

LSM6DSV80X

Superior choice for wearables and tracking

- Three sensing capabilities in a single package
 - Gyroscope
 - Low-g accelerometer (16g)
 - High-g accelerometer (80g)
- Embedded processing in MEMS sensor, offloading the microcontroller
- Leverage MEMS sensor embedded ecosystem, including MLC

Suitable for wearable and sport tracker devices

General purpose IMU

Current devices

VS

- Two sensing capabilities in a single package
 - Gyroscope
 - Low-g accelerometer (32g)
- Require an external host processor to decodify the inertial measurements data
- Lower communication capability due to older standard interfaces

Suitable for standard wearable

Intense movement tracking in wearable devices

Example in tennis with LSM6DSV80X

In tennis actions like swinging a racket, the acceleration is up to 60g

Train like a pro!

LSM6DSV80X: the final device for your sport tracking

Best system optimization with processing at the edge and selfconfiguration

PCB spacing and BOM cost reduction: a single IMU that embeds two accelerometer structures (16g + 80g) and a gyroscope

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

