r TN1439
’l life.augmented

Technical note

SR5 E1 line: getting started with the HRTIM

Introduction

This technical note introduces the high-resolution timer (HRTIM) main features and gives the background knowledge to start
quickly the programming of HRTIM.

The HRTIM is a hi-resolution and complex waveform builder, able to generate up to 12 signals. It handles a large variety of input
signals for control, synchronization, on protection purposes.

Thanks to its modular architecture it is possible to address several conversion topologies and multiple parallel converters, with
the possibility to reconfigure them during runtime.

Even though, this peripheral may appear complex, mostly because of the large control register set, this technical note shows
how the HRTIM programming is actually simple.

To complement the extensive description provided in reference manuals, this document includes some quick-start examples.
The HRTIM module is available in the products listed in Table 1. Applicable products.

Table 1. Applicable products
Microcontrollers SR5E1E3, SR5E1E7 ()

1. The SR5 E1 line microcontroller is built on Arm® architecture technology, with two Arm Cortex® -M7 cores, and two instances of high-
resolution timer (HRTIM).

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

TN1439 - Rev 2 - February 2023 www.st.com

For further information contact your local STMicroelectronics sales office.

‘_ TN1439
’l Overview

1 Overview

This section details the basic information needed before starting, so that the user can focus on the HRTIM
programming.

Section Appendix B Reference documents lists the documents related to the HRTIM and to the peripherals used
in this document. A preliminary reading of the HRTIM section in the product reference manual is recommended.

1.1 Hardware set-up

The best option to start (and go on) experimenting with the HRTIM on the SR5E1x device is the evaluation board
SR5E1-EVBE7000P. It is a stand-alone unit allowing access to the CPU, access to the /O pins as well as to any
board peripherals.

An oscilloscope, with a sampling rate above 1 GS/s at least, is mandatory.

1.2 MCU and HRTIM set-up

1.21 System clock initialization
To provide the high-resolution, the HRTIM must be fed directly from the high frequency output of the PLL.

The clock period is divided by 32 by the DLL to provide high-resolution, as if the HRTIM clock frequency were
multiplied by 32. The table below summarizes the allowed frequency ranges for the SR5 E1 Line products.

Table 2. Operating range of HRTIM input frequency

Input frequency (MHz) HRTIM frequency (GHz) Resolution (ps)
e | e mm“mm

SR5E1x 306.7 6.400 9.814.4 1020 156(?)

1. 102 ps, @306.7 MHz
2. 156 ps, @200 MHz

Note: The HRTIM input clock is directly derived by CPU clock branch of SR5E1x that is the system clock frequency,
SYS_CLK.

The actual enabling of the peripheral clock is managed by the HRTIMERXx enable bit of the RCC_ AHBTHENR
register (for more details refer to the reset and clock control (RCC) chapter in the reference manual of the
device, Section Appendix B Reference documents).

Note: When the peripheral clock is not active, the peripheral registers read or write accesses are not supported.

1.3 HRTIM initialization
This section details step by step how the HRTIM is initialized.

1.31 HRTIM clock initialization

Once the MCU is up and running, the HRTIM must be clocked before being programmed. This is done by means
of the RCC (reset and clock control) peripheral, in two steps:

1. selection of the high-speed PLL output for the HRTIM in RCC_CFGR register
2. clock enable for the registers mapped on the RCC_ AHB1HENR register.

1.4 HRTIM DLL initialization

The HRTIM delay-locked loop (DLL) provides fine-grained timings and divides the high-frequency clock period in
32 evenly spaced steps.

TN1439 - Rev 2 page 2/24

‘_ TN1439
,l HRTIM I/Os initialization

This DLL must be calibrated at least once before the high-resolution can be used. During the HRTIM operation,
if voltage or temperature conditions have changed, the software can relaunch the calibration. This procedure
permits to compensate for potential voltage and temperature drifts.

It is also possible to enable periodic calibration by hardware. The programming of the HRTIM_DLLCR register
gives the calibration rates as described in the following table.

Table 3. HRTIM DLL calibration rate for fyrTy=300 MHz

CALRTE

x4 1048576*tHRﬂM 131072*tHRﬂM 16384*tHRﬂM 2048*tHRﬂM
X

(3.495 ms) (437 ps) (55 ps) (6.8 ps)
Note: The high-resolution can be used once the DLLRDY flag has been set.

Here the example code is provided:

/* DLL calibration: periodic calibration enabled; period set to 6.8us */

HRTIM1->sCommonRegs.DLLCR = HRTIM CALIBRATIONRATE 6 8| HRTIM DLLCR_CALEN;
/* Check DLL end of calibration flag */
while (HRTIM1->sCommonRegs.ISR & HRTIM IT DLLRDY == RESET);

Note: This code causes the execution to stall if the DLL does not lock. This can happen in case that the HSE oscillator
is not properly configured. The SW that performs the calibration can handle the stall with a timeout verification
and redirects in an error handler if necessary.

It is recommended to have the periodic calibration enabled, with the lowest calibration period (2048 x tyrTIM) @S
default condition.

1.5 HRTIM 1/Os initialization

The HRTIM inputs and outputs are mapped on standard I/O ports and must be programmed as any other 1/0
peripheral.

For the SR5 E1 Line products, the HRTIM alternate functions are available:

. on AF3 and AF8 alternate functions by configuring the AFRL (for AF3) and AFRH (for AF8) registers.

The HRTIM 1/Os initialization must be done in two phases.
. The HRTIM inputs are initialized first, before the HRTIM registers.

. The HRTIM outputs must be initialized after the HRTIM control registers programming and once the
counters are enabled. This is to ensure that the outputs states are correctly defined inside the HRTIM
before passing the control from the GPIO circuitry to the HRTIM.

1.6 HRTIM functionality check

Once the whole initialization is completed, it is possible to verify that the HRTIM is ready to go with the simple
code below.

This example code enables the HRTIM timer D output 1 (TD1) and toggles it by software.

TN1439 - Rev 2 page 3/24

‘_ TN1439
,’ Other peripherals initialization

/* Enable HRTIM clock*/

_HRTIM1 CLK_ENABLE () ;

/* DLL calibration: periodic calibration enabled, period set to 6.8us *

/ HRTIM1->sCommonRegs.DLLCR = HRTIM CALIBRATIONRATE 6 8|HRTIM DLLCR_ CALEN;
/* Check DLL end of calibration flag */

while (HRTIM1->sCommonRegs.ISR & HRTIM IT DLLRDY == RESET);
HRTIM1->sCommonRegs.OENR = HRTIM OENR TDI1OEN; /* Enable TDl output */
GPIO_HRTIM outputs Config(); /* Initialize HRTIM outputs */

while (1)

{

/* Set and reset TD1l by software */
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .SETx1R
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .RSTx1R
}

HRTIM SET1R SST;
HRTIM RST1R SRT;

For the remaining part of this document, the clock and DLL initialization part are not repeated.

1.7 Other peripherals initialization

The HRTIM interacts with many of the MCU peripherals, as listed below. It is not mandatory to have all of them
initialized to have the HRTIM operating.

1.71 Nested vectored interrupt controller (NVIC)

The HRTIM interrupts requests are grouped in eight interrupts vectors. All faults are grouped within a distinct
vector that can be set with a very high priority. Refer to the SR5E1x vector table in the reference manual of the
device, Section Appendix B Reference documents.

1.7.2 DMA controller

Most of interrupt requests can be used as DMA requests and are grouped on DMA channels (one per timing
unit, including the master timer). Refer to the DMAMUX mapping section in the reference manual of the device,
Section Appendix B Reference documents.

1.7.3 Comparators

The built-in comparators can be used to condition analog signals: they must be initialized before the output is
routed to the HRTIM.

The initialization includes the analog inputs programming, clock enable and polarity.

Refer to HRTIMx (x = 1,2) external events mapping and associated features table in the reference manual of the
device, Section Appendix B Reference documents.

1.7.4 ADCs

The HRTIM can trigger any of the ADCs. They must be initialized to receive external triggers, on their regular
and/or injected sequencers.

Another possible use of the ADCs consists in using the analog watchdog to trigger external events on the
HRTIM (for output set/reset or counter reset purposes). Refer to HRTIMx (x = 1,2) external events mapping and
associated features table in the reference manual of the device, Section Appendix B Reference documents.

1.7.5 DACs

The DACs are used to define the comparator thresholds. They can be updated synchronously with HRTIM
operation by means of HRTIM DAC triggers. Refer to the HRTIMx (x = 1,2) DAC triggers connections table in the
reference manual of the device, Section Appendix B Reference documents.

1.7.6 TIMs

The TIMx timers can trigger external events on the HRTIM (for output set/reset or counter reset purposes). Refer
to HRTIMx (x = 1,2) external events mapping and associated features table in the reference manual of the device,
Section Appendix B Reference documents.

TN1439 - Rev 2 page 4/24

‘_ TN1439
,’ HRTIM functionality check

1.8 HRTIM functionality check

Once the whole initialization is completed, it is possible to verify that the HRTIM is ready to go with the simple
code below.
This example code enables the HRTIM timer D output 1 (TD1) and toggles it by software.

/* Enable HRTIM clock*/

_HRTIM1 CLK ENABLE();

/* DLL calibration: periodic calibration enabled, period set to 6.8us *
/ HRTIM1->sCommonRegs.DLLCR = HRTIM_CALIBRATIONRATE_6_8|HRTIM_DLLCR_CALEN;
/* Check DLL end of calibration flag */

while (HRTIM1->sCommonRegs.ISR & HRTIM IT DLLRDY == RESET) ;
HRTIM1->sCommonRegs.OENR = HRTIM_OENR_TDIOEN; /* Enable TD1 output */
GPIO_HRTIM outputs Config(); /* Initialize HRTIM outputs */

while (1)

{

/* Set and reset TDl by software */

HRTIM1->sTimerxRegs [HRTIM_TIMERINDEX_TIMER_D] .SETx1R = HRTIM_SETlR_SST;
HRTIM1->sTimerxRegs [HRTIM_TIMERINDEX_TIMER_D] .RSTx1R = HRTIM_RSTlR_SRT;

}

For the remaining part of this document, the clock and DLL initialization part are not repeated.

TN1439 - Rev 2 page 5/24

‘_ TN1439
’l HRTIM basic operating principles

2 HRTIM basic operating principles

Despite an apparent complexity, due to the number of features and its modular architecture, the HRTIM is
basically made up of seven 16-bit autoload counters with four compare registers each.

. The master timer provides synchronization signals to the 6 timer units and no output.

. The timing units (timer A to timer F) work either independently or coupled with the other timers including the
master timer. Each timer unit contains the control for two outputs.

2.1 Period and compare programming (example for 300 MHz input clock)

The high-resolution programming is made completely transparent, to have the look-and-feel of a timer clocked by
a 9.6 GHz clock (300 MHz x 32). The timings (period and compare) can be directly written into a unique 16-bit
register with high-resolution accuracy. A counting period is simply programmed using the formula:

PER = Tcounting/Thigh —res
For instance, a 5 ps period is obtained, for fyrTim = 300 MHz, by setting the period register (HRTIM_MPER or
HRTIM_PERXR, x = A to F) to 5 ys / 104 ps = 48000d (BB80h).

Note: If the result exceeds the 16-bit range, the high-resolution can be adjusted by multiples of 104 ps, so as to have
the period value within the 16-bit range.

2.2 Set / reset crossbar

Each timing unit (timer A to timer F) holds the control of two outputs via a set / reset crossbar. Up to 32 events
that can be selected among the event sources listed in the following table.

Table 4. Set/reset event sources

. Period: PER
Timer_x unit (x=A..F) . Compare: CMP1, CMP2, CMP3, CMP4 6
. Update: UPDATE

. Period: MSTPER
Master timer . Compare: MSTCMP1, MSTCMP2, MSTCMP3, MSTCMP4 6
. HRTIM synchronization: RESYN

Timer_y unit (y=A..F) TIMEVNTX, x=1,..,9 9
External events EXTEVNT x, x=1,..,10 10
Software trigger SST 1

Compared to usual frozen PWM modes where the output is set at the beginning of the counting period and reset
on a given compare match, the crossbar offers much more flexibility in defining how an output is set or reset. It
gives the possibility to have any of timer events setting or resetting an output.

2.3 Output stage

The waveform generated by the set / reset crossbar is finally passed through an output stage for “post-
processing” such as:

. generating complementary signal with a dead-time
. adding high-frequency modulation

. modifying the signal polarity

. shutting down the output for protection purpose.

With these few features in mind, it is now possible to elaborate the first elemental PWM signals.

TN1439 - Rev 2 page 6/24

m TN1439

Single PWM generation

3 Single PWM generation

This session focuses on:

. timer continuous mode

. simplest crossbar configuration

. output stage enable.

This example shows how very simply it is possible to achieve the PWM signals with the HRTIM by programming a
limited number of HRTIM registers.

Let us consider a 200 kHz PWM signal with 50% duty cycle to be generated on output 1 of timer D, HRTIM_CHD1
output, as exemplified in the following figure.

Figure 1. Basic PWM generation

HRTIM_PERXR

v

N

HRTIM_CMP1xR

COW
Compare 1 —————
Set Reset
HRTIM k
_CHD1
output

MS35613V2

The timer D must be configured in continuous (free-running) mode. The PWM period is programmed in the period
register HRTIM_PERDR using the formula:

PER = fyrck / fpwm = (300 MHz x 32) / 200 kHz = 48000d (0xBB80).
The 50% duty cycle is obtained by multiplying the period by the duty cycle:
PER x DC = 0.5 x 48000d = 24000d (0x5DCO0).

The waveform is elaborated in the set/reset crossbar with the registers HRTIM_SETx1R (PER bit set) and
HRTIM_RSTx1R (CMP1 bit set).

Finally, the output is enabled with the HRTIM_OENR register.

The sequence just described gives an overview of the timer features involved in a simple PWM generation. The
configuration is schematized in the following figure.

Figure 2. HRTIM configuration for generating basic PWM signals

Continuous mode Output stage
+
Counter ¢ Period % —) PER —)i-) SetTA1 Outt gy ;
$CMP1—)|-) Reset TAT 4 HRTIM
: CMP2—) PE_ o _CHx1
FAULT output
I cmP3—)| — oo/

|
CMP4 —p T
_______ ! POLx
Compare 1 Update—)p| Set/ reset
crossbar RUN (OEN bit set)

Here the example code is provided:

TN1439 - Rev 2 page 7/24

MS35617V1

TN1439

Single PWM generation

TN1439 - Rev 2

/* TIMD counter operating in continuous mode */
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .TIMxCR = HRTIM TIMCR CONT;

/* Set period to 200kHz and duty cycle (CMP1l) to 50% */
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D].PERxR = 0x0000BB80;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D].CMP1xR = 0x00005DCO;

/* TD1l output set on TIMD period and reset on TIMD CMPl event*/
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D].SETx1R = HRTIM SET1R PER;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .RSTx1R = HRTIM RST1R CMP1;

HRTIM1->sMasterRegs.MCR= HRTIM MCR TDCEN;/* Start Timer D */
HRTIM1->sCommonRegs.OENR = HRTIM OENR TDI1OEN; /* Enable TDl1 output */
GPIO HRTIM outputs Config(); /* Initialize HRTIM GPIO outputs */

page 8/24

‘_ TN1439
’l Generating multiple PWMs

4 Generating multiple PWMs

This section focuses on:

. multiple timing unit usage

. register preload.

The HRTIM is able to generate up to 12 PWM signals with six independent frequencies (or seven frequencies
when the master timer is used, see Section 5 Generating PWM with other timing units and the master timer).
In the example below, four PWM signals with two different time-bases are generated.

The Timer D generates two phase-shifted 200 kHz with 25% duty cycle on HRTIM_CHD1 and HRTIM_CHD?2,
with the following conditions:

. HRTIM_CHD1: set on TD Period, reset on TD CMP1

. HRTIM_CHD2: set on TD CMP2, reset on TD Period.

The Timer A generates two phase-shifted 40kHz PWMs with 25% duty cycle on HRTIM_CHA1 and
HRTIM_CHAZ2, with the following conditions:

. HRTIM_CHAA1: set on TA Period, reset on TA CMP1

. HRTIM_CHAZ2: set on TA CMP2, reset on TA CMP3

The Timer A period is below the minimum frequency available at the highest resolution, clocked by a 9.6 GHz
clock (300 MHz x 32), as shown in the table below.

Therefore, to get a 40 kHz switching frequency with a 300 MHz input clock, the frequency prescaler must be set
to 4, clocking the HRTIM at 2.4 GHz clock (300 MHz x 8).

The frequency of 40 kHz is obtained by setting PER register to:
° PER = fyrck / fpwm = (300 MHz * 8) / 40 kHz = 60000d (OXEAGO).

Table 5. Timer resolution / minimum PWM frequency for fyrtim = 300 MHz

CKPSC[2:0] Prescaling ratio fHRCK equivalent Resolution Minimum PWM
frequency frequency

300 x 32 MHz = 9.6

" 104 ps 146.6 kHz
300 x 16 MHz = 4.8
001 2 o 208 ps 73.26 kHz
010 4 300 x 8 MHz = 2.4 GHz 416 ps 36.63 kHz
011 8 300 x4 MHz = 1.2 GHz 833 ps 18.31 kHz
100 16 300 x 2 MHz = 600 166 ns 9.16 kHz
MHz
101 32 300 MHz 333 ns 4.58 kHz
10 64 300 / 2 MHz = 150 MHz 6.66 ns 2.29 kHz
11 128 300/ 4 MHz = 75 MHz 13.33 ns 1.14 KHz

In this example the duty cycle is not updated.

However, a practical use case it is to access shadow registers by enabling the register preload mechanism (refer
to device Reference Manual, for the whole list of HRTIM preloadable registers).

By enabling the feature by the PREEN bit in HRTIM_MCR and selecting the repetition event, this event will trigger
the transfer of the preload registers at the beginning of each period.

Note: A delay can be noticed at the PWM start-up between HRTIM_CHA1/HRTIM_CHAZ2 and HRTIM_CHD1/
HRTIM_CHDZ2 waveforms. This delay is normal since the first update event (causing compare registers to take
their programmed value) occurs only after the first counting period is elapsed. To remove this delay, it is possible
to force a register update by software (using TASWU and TDSWU bits in HRTIM control register 2) to have all
active compare registers contents updated at once.

TN1439 - Rev 2 page 9/24

‘_ TN1439
,’ Generating multiple PWMs

Figure 3. Generation of multiple PWM signals

/] /]
Timer D
counter

HRTIM
_CHD1
output

HRTIM]]]]]
_CHD2
output

Timer A
counter

HRTIM
_CHA1
output

HRTIM
_CHA2
output

MS35614V2

TN1439 - Rev 2 page 10/24

Lys

TN1439

Generating multiple PWMs

TN1439 - Rev 2

Here the example code is provided:

#define 200KHz PERIOD 480000U
#define 40KHz PERTOD 600000U

/*Timer D initialization*/

/* TIMD counter operating in continuous mode, preload enabled on REP event */
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .TIMxCR = HRTIM TIMCR CONT + HRTIM TIMCR PREEN
+ HRTIM TIMCR TREPU;

/* Set period to 200kHz, CMP1l to 25% and CMP2 to 75% of period */
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .PERxR = 200KHz PERIOD;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .CMP1xR = _200KHZ_PERIOD/4;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .CMP2xR = (3*_200KHZ_PERIOD)/4;

/* TD1l output set on TIMD period and reset on TIMD CMPl event*/
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D].SETx1R = HRTIM SET1R PER;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .RSTx1R = HRTIM RST1R CMP1;
/* TD2 output set on TIMD CMP2 and reset on TIMD period event*/
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .SETx2R = HRTIM SET2R CMP2;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .RSTx2R = HRTIM RST2R PER;

/*Timer A initialization*/

/* TIMA counter operating in continuous mode with prescaler = 010b (div. by 4)*/
/* Preload enabled on REP event*/
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER A].TIMxCR =

HRTIM TIMCR CONT + HRTIM TIMCR PREEN + HRTIM TIMCR TREPU + HRTIM TIMCR CK PSC 4;

/* Set period to 40kHz and duty cycles to 25% */
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER A].PERxR = 40KHz PERIOD;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER A].CMP1xR = 40KHz PERIOD/4;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER A].CMP2xR = 40KHz PERIOD/2;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER A].CMP3xR= (3* 40KHz PERIOD)/4;
/* TAl output set on TIMA period and reset on TIMA CMPl event*/
HRTIMl—>sTimeeregs[HRTIM_TIMERINDEX_TIMER_A].SETle = HRTIM_SETlR_PER;
HRTIMl—>sTimeeregs[HRTIM_TIMERINDEX_TIMER_A].RSTle = HRTIM_RSTlR_CMPl;
/* TA2 output set on TIMA CMP2 and reset on TIMA period event*/
HRTIMl—>sTimeeregs[HRTIM_TIMERINDEX_TIMER_A].SETXZR = HRTIM_SET2R_CMP2;
HRTIMl—>sTimeeregs[HRTIM_TIMERINDEX_TIMER_A].RSTXZR = HRTIM_RST2R_CMP3;

/* Enable TAl, TA2, TD1l and TD2 outputs */
HRTIM1->sCommonRegs.OENR = HRTIM OENR TA1OEN + HRTIM OENR TA20EN +
HRTIM OENR TD1OEN + HRTIM OENR TD20EN;

GPIO_HRTIM outputs_Config(); /* Initialize HRTIM GPIO outputs */

/* Start Timer A and Timer D */
HRTIM1->sMasterRegs.MCR = HRTIM MCR TACEN + HRTIM MCR TDCEN;

page 11/24

‘_ TN1439
,l Generating PWM with other timing units and the master timer

5 Generating PWM with other timing units and the master timer

This section focuses on the generation of signals on outputs not related to a given timer.

This example shows that thanks to the set/reset crossbar, it is possible to have PWM signals (or other waveforms)
generated on a given output with any other available timer.

This is interesting in the following cases:

. to generate a seventh PWM independent frequency with the master timer, as in the example below.

. to work-around pin-out constraints (typically on small pin-count package), for instance using Timer F to
generate waveforms even if HRTIM_CHF1 and HRTIM_CHF2 outputs of HRTIM2 are not available.

Note: It is mandatory to have the same prescaling factors for all timers sharing resources (for instance master timer
and Timer A must have identical CKPSC[2:0] values if master timer is controlling HRTIM_CHx1 or HRTIM_CHx2
outputs of Timer x).

In the example below, two PWM signals with slightly different switching frequencies are generated on
HRTIM_CHD1 and HRTIM_CHD2 outputs, with the following conditions:

. HRTIM_CHD1: set on TD Period, reset on TD CMP1
. HRTIM_CHD2: set on master Period, reset on master CMP1.

The frequencies are set to slightly different values to ease visualization on oscilloscope to demonstrate that the
signals are completely asynchronous.

Figure 4. PWM generation with the master timer

Master
Timer
counter

Timer D / /
counter CMP1 / / / /
B AR AR

g4 4 A 4 g4 g4 g4 g4
HRTIM i\ i\ AN N AN AN Vi AN
eo [P T T L
output
HRTIM . - / - .
_CHD2
output - -

MS35615V1

The code here below is provided as example.

/*Master Timer initialization*/
/* Master counter operating in continuous mode, Preload enabled on REP event*/
HRTIM1->sMasterRegs.MCR = HRTIM MCR CONT + HRTIM MCR PREEN +

HRTIM MCR_MREPU;

/* Set period to 200kHz and duty cycle to 50% */
HRTIM1->sMasterRegs.MPER = 200KHz Plus PERIOD;
HRTIM1->sMasterRegs.MCMP1R = 200KHz Plus PERIOD/2;

TN1439 - Rev 2 page 12/24

TN1439

Generating PWM with other timing units and the master timer

TN1439 - Rev 2

/*Timer D initialization*/

/* TIMD counter operating in continuous mode, preload enabled on REP event */

HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .TIMxXCR = HRTIM TIMCR CONT +
HRTIM TIMCR PREEN +HRTIM TIMCR TREPU;

/* Set period to 200kHz and duty cycle (CMPl) to 50%*/
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .PERxR = 200KHz PERIOD;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D].CMP1xR = 200KHz PERIOD/4;

/* TD1l output set on TIMD period and reset on TIMD CMPl event*/
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D].SETx1R = HRTIM SET1R PER;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .RSTx1R = HRTIM RST1R CMP1;

/* TD2 output set on TIMD CMP2 and reset on TIMD period event*/
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .SETx2R = HRTIM SET2R MSTPER;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .RSTx2R = HRTIM RST2R MSTCMPI1;

/* Enable TD1 and TD2 outputs */
HRTIM1->sCommonRegs.OENR = HRTIM OENR TD1OEN +HRTIM OENR TDZ2OEN;
GPIO HRTIM outputs Config(); /* Initialize HRTIM GPIO outputs */

/* Start Master Timer and Timer D */
HRTIM1->sMasterRegs.MCR |= HRTIM_MCR_MCEN SIS HRTIM_MCR_TDCEN;

page 13/24

TN1439

Arbitrary waveform generation

Arbitrary waveform generation

TN1439 - Rev 2

This section focuses on waveforms with multiple set/reset/toggle requests per period.

This example shows how waveforms other than PWMs can be easily generated thanks to the 32 concurrent
set/reset sources of the crossbar.

In the example below, two arbitrary waveforms are generated on HRTIM_CHD1 and HRTIM_CHD2 outputs, with
the following conditions:

. HRTIM_CHD1: toggle on TD period, toggle on TD CMP1, toggle on TD CMP2
. HRTIM_CHD2: set on TD period and TD CMP3, reset on TD CMP2 and TD CMP3.

Figure 5. Arbitrary waveform generation

Timer D /

counter — — — — —

HRTIM
_CHD1
output — | _—

HRTIM
_CHD2
output — | L

MS35616V2

The code here-below is provided as example.

/*Timer D initialization*/

/* TIMD counter operating in continuous mode, preload enabled on REP event */
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .TIMxXCR = HRTIM TIMCR CONT

+ HRTIM TIMCR PREEN + HRTIM TIMCR TREPU;

/* Set period to 200kHz and edge timings */
HRTIMl—>STimerXRegs[HRTIM_TIMERINDEX_TIMER_D].PERXR = _200KHZ_PERIOD;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .CMP1xR = 200KHz PERIOD/4;
HRTIMl—>sTimerXRegS[HRTIM_TIMERINDEX_TIMER_D].CMPZXR =
(3*_200KHz_PERIOD)/8;
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .CMP3xR = 200KHz PERIOD/2;

/* TD1 toggles on TIMD period, CMP1l and CMP2 event*/

HRTIM1->sTimerxRegs [ERTIM TIMERINDEX TIMER D] .SETx1R = HRTIM SET1R PER+
HRTIM SET1R CMP1l + HRTIM SET1R CMP2;

HRTIM1->sTimerxRegs [ERTIM TIMERINDEX TIMER D] .RSTx1R = HRTIM RST1R PER+
HRTIM RST1R CMP1l + HRTIM RST1R CMP2;

/* TD2 output set on TIMD PER and CMP2 and reset on TIMD CMP1l and CMP3 event*/
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .SETx2R = HRTIM SET2R PER+

HRTIM SET2R CMP2
HRTIM1->sTimerxRegs [HRTIM TIMERINDEX TIMER D] .RSTx2R = HRTIM RST2R CMP1+

HRTIM RST2R CMP3;

page 14/24

‘_ TN1439
,’ Arbitrary waveform generation

/* Enable TD1 and TD2 outputs */
HRTIM1->sCommonRegs.OENR = HRTIM OENR TD1OEN +HRTIM OENR TD2OEN;
GPIO HRTIM outputs Config(); /* Initialize HRTIM GPIO outputs */

/* Start Timer D */
HRTIM1->sMasterRegs.MCR = HRTIM MCR TDCEN;

TN1439 - Rev 2 page 15/24

‘_ TN1439
,l HRTIM main features

Appendix A HRTIM main features

A1 Features

This section highlights the main features and the usage of the HRTIM. For further details refer to the reference
manual, Section Appendix B Reference documents.

A.2 Timing units (timer A,.., F)

Each HRTIM module has 12 outputs, to cover interleaved topologies, such as:

. triple-interleaved half-bridge LLC (3 x 4 outputs required, two at primary for half-bridge control and two at
secondary for synchronous rectification),

. dual interleaved full-bridge LLC (2 x 6 outputs) and
. dual phase-shifted full bridge converters (2 x 6 outputs).

A3 Dual channel DAC triggers

This feature, coupled with the high-speed DAC, can be used to generate a sawtooth wave synchronized with the
PWM signals. As indicated by the Arrow Electronics in Section Appendix B Reference documents, the PWM
output is reset every time the comparator input (in blue) reaches the threshold (in green).

This technique is known as slope compensation and is necessary to ensure the stability of peak current-mode
converters.

Figure 6. Peak current-mode control with slope compensation

DAC output
(comparator threshold)

Inductor current
(comparator input)

PWM output | L L |

MS52045V1

A4 External event counter
The HRTIM features event-driven filtering: an external event must occur a given number of times before being
considered valid. This is typically for implementing valley skipping mode for flyback converters.

A.5 Fault features

The FAULT events can be filtered out with a programmable blanking window. Each channel also has a fault
counter, so that a fault is active only if it has occurred during a given number of PWM periods.

A.6 Push-pull

The push-pull mode primarily aims at driving converters using push-pull topologies.
The push-pull mode with dead time insertion and in single-shot operating mode is possible.

A7 Classical PWM mode

This mode gives the possibility to work without any shadow register and preloading mechanism, to force the
state of an output as soon as the compare register is written by the software. This makes it possible to have
early turn-off or late turn-on and can slightly improve the phase margin of converters. By default, the preload
mechanism is disabled.

TN1439 - Rev 2 page 16/24

‘_ TN1439
,’ Up-down mode

A.8 Up-down mode

This counter operating mode is commonly used for motor control applications. It offers benefits for power
converters as well. It simplifies the ADC sampling, when, as shown in the following figure, a constant sampling
frequency and sampling at the middle of the pulse are needed.

Figure 7. Comparison of up-only and up-down modes

Up/Down mode

PWM output | : | : | | : |

ADC trigger 4 4 4
(counter roll-over) p »¢ R
T T
CMP2 NIAN
cMP1 |-

Up mode :
PWM output | | : :
ADC trigger 4 4 4
(from CMP2) b)

T1 T2

MS52046V1

A.9 ADC post-scaler

For high switching-frequency application, it is possible to reduce the ADC triggering rate with the ADC post-scaler.
Each ADC trigger can be individually adjusted down to 1 out of 32 PWM periods.

A10 Null duty cycle mode

It is possible to force a null duty cycle by writing a null value in the Compare1 and/or Compare3 register.

A1 Swap mode

It is possible to swap two outputs in a single register access, without having to reprogram the output crossbars. All
control bits are located in the same register to swap multiple PWM pairs simultaneously.

TN1439 - Rev 2 page 17/24

‘_ TN1439
,l Reference documents

Appendix B Reference documents

SR5 E1 line of Stellar electrification MCUs — 32-bit Arm® Cortex®-M7 automotive MCU 2x cores,

DS13808 300 MHz, 2 MB Flash, rich analog, 104 ps 24 ch high-resolution timer, HSM, ASIL-D

RM0483 SR5E1x 32-bit Arm® Cortex®-M7 architecture microcontroller for electrical vehicle applications

TN1439 - Rev 2 page 18/24

m TN1439

Revision history

Table 6. Document revision history

T S

10-Jan-2023 1 Initial release.
02-Feb-2023 2 Confidentiality level changed from ST Restricted to ST Public.

TN1439 - Rev 2 page 19/24

‘_ TN1439
,’ Contents

Contents
1 0 7= T 2
1.1 Hardware set-Upo o 2
1.2 MCU and HRTIM set-Up.o e e e e 2
1.21 System clock initialization 2
1.3 HRTIM initialization 2
1.3.1 HRTIM clock initialization 2
1.4 HRTIM DLL initialization. e e e e e 2
1.5 HRTIM I/Os initialization. e 3
1.6 HRTIM functionality check 3
1.7 Other peripherals initialization 4
1.71 Nested vectored interrupt controller (NVIC). 4
1.7.2 DMA controller 4
1.7.3 ComMPaArators . . . o 4
1.7.4 AD S oo 4
1.7.5 DACS . . 4
1.7.6 TIMIS 4
1.8 HRTIM functionality check e e 5
2 HRTIM basic operating prinCiples ..ottt e i eaernnrnnrnnnns 6
2.1 Period and compare programming (example for 300 MHz inputclock) 6
2.2 Set/reset Crossbar. 6
2.3 OutpuUt Stage ... e 6
3 Single PWMgenerationcoiiiiiiiiiiiiiiii i iieanssreanasrnnnnsssnnnnnnnns 7
4 Generating multiple PWMS.ottt nnaanaas 9
5 Generating PWM with other timing units and the master timer..................... 12
6 Arbitrary waveform generation. i e 14
Appendix A HRTIMmainfeatures............cciiiiiiiiiiiiiii i it iaea s rnnnnnnnns 16
AA1 Features 16
A2 Timingunits (timer A,.., F) ..o 16
A.3 Dualchannel DAC triggers.ot e e 16
A4 External event CoUuNter 16

TN1439 - Rev 2 page 20/24

‘_ TN1439
,’ Contents

A5 Faultfeatures. 16
A6 PUSh-pUIl L. 16
A7 Classical PWM MOdeo e 16
A8 Up-down mode e 17
A9 ADC post-SCaler 17
A10 Nullduty cycle mode. e 17
AT SWaAP MO . .ottt 17
Appendix B Referencedocuments ...t iiiii it iaaaa s 18
ReVISION NiStOry o i i it it eea s teaaa s nanassnnnarannnnns 19

TN1439 - Rev 2 page 21/24

‘,_l TN1439

List of tables

List of tables

Table 1. Applicable products 1
Table 2. Operating range of HRTIM input frequency e e 2
Table 3. HRTIM DLL calibration rate for fyurTiv=300 MHz 3
Table 4. Set/reset eVENt SOUICES 6
Table 5. Timer resolution / minimum PWM frequency for furriy =300 MHz 9
Table 6. Documentrevision history 19

TN1439 - Rev 2 page 22/24

‘,_l TN1439

List of figures

List of figures

Figure 1. Basic PWM generation 7
Figure 2. HRTIM configuration for generating basic PWM signals 7
Figure 3. Generation of multiple PWM signals 10
Figure 4. PWM generation with the master timer. 12
Figure 5. Arbitrary waveform generation 14
Figure 6. Peak current-mode control with slope compensation 16
Figure 7. Comparison of up-only and up-down MOodes. 17

TN1439 - Rev 2 page 23/24

‘,_l TN1439

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics — All rights reserved

TN1439 - Rev 2 page 24/24

http://www.st.com/trademarks

	Introduction
	1 Overview
	1.1 Hardware set-up
	1.2 MCU and HRTIM set-up
	1.2.1 System clock initialization

	1.3 HRTIM initialization
	1.3.1 HRTIM clock initialization

	1.4 HRTIM DLL initialization
	1.5 HRTIM I/Os initialization
	1.6 HRTIM functionality check
	1.7 Other peripherals initialization
	1.7.1 Nested vectored interrupt controller (NVIC)
	1.7.2 DMA controller
	1.7.3 Comparators
	1.7.4 ADCs
	1.7.5 DACs
	1.7.6 TIMs

	1.8 HRTIM functionality check

	2 HRTIM basic operating principles
	2.1 Period and compare programming (example for 300 MHz input clock)
	2.2 Set / reset crossbar
	2.3 Output stage

	3 Single PWM generation
	4 Generating multiple PWMs
	5 Generating PWM with other timing units and the master timer
	6 Arbitrary waveform generation
	Appendix A HRTIM main features
	A.1 Features
	A.2 Timing units (timer A,.., F)
	A.3 Dual channel DAC triggers
	A.4 External event counter
	A.5 Fault features
	A.6 Push-pull
	A.7 Classical PWM mode
	A.8 Up-down mode
	A.9 ADC post-scaler
	A.10 Null duty cycle mode
	A.11 Swap mode

	Appendix B Reference documents
	Revision history

