
July 2007 Rev 1 1/50

UM0438
User manual

Variable-Length Encoding (VLE) extension
programming interface manual

Introduction
This user manual defines a programming model for use with the variable-length encoding
(VLE) instruction set extension. Three types of programming interfaces are described
herein:

■ An application binary interface (ABI) defining low-level coding conventions

■ An assembly language interface

■ A simplified mnemonic assembly language interface

www.st.com

http://www.st.com

Contents UM0438

2/50

Contents

Preface . 7

About this book . 7

Audience. 7

Organization . 7

Suggested reading . 7

Related documentation . 8

General information . 8

Conventions . 8

Terminology conventions . 9

Acronyms and abbreviations. 9

1 Overview . 11

1.1 Application Binary Interface (ABI) . 11

1.2 Assembly language interface . 11

1.3 Simplified mnemonics assembly language interface 11

2 Application Binary Interface (ABI) . 12

2.1 Instruction and data representation . 12

2.2 Executable and Linking Format (ELF) object files 12

2.2.1 VLE information section . 13

2.2.2 VLE identification . 14

2.2.3 Relocation types . 15

3 Instruction set . 20

Appendix A Simplified mnemonics for VLE instructions 22

A.1 Overview . 22

A.2 Subtract simplified mnemonics . 22

A.2.1 Subtract immediate. 22

A.2.2 Subtract . 23

A.3 Rotate and shift simplified mnemonics . 23

A.3.1 Operations on words. 24

A.4 Branch instruction simplified mnemonics . 24

UM0438 Contents

3/50

A.4.1 Key facts about simplified branch mnemonics . 26

A.4.2 Eliminating the BO32 and BO16 operands. 26

A.4.3 The BI32 and BI16 operand—CR Bit and field representations 27

A.4.4 BI32 and BI16 operand instruction encoding . 28

A.5 Simplified mnemonics that incorporate the BO32 and BO16 operands . . 31

A.5.1 Examples that eliminate the BO32 and BO16 operands 31

A.5.2 Simplified mnemonics that incorporate CR conditions (eliminates
BO32 and BO16 and replaces BI32 with crS)33

A.5.3 Branch simplified mnemonics that incorporate CR conditions: examples .
35

A.5.4 Branch simplified mnemonics that incorporate CR conditions: listings. . 35

A.6 Compare word simplified mnemonics . 36

A.7 Trap instructions simplified mnemonics. 37

A.8 Simplified mnemonics for accessing SPRs . 39

A.9 Recommended simplified mnemonics. 40

A.9.1 No-Op(nop) . 40

A.9.2 Load Address (la) . 40

A.9.3 Move Register (mr). 40

A.9.4 Complement Register (not) . 40

A.9.5 Move to Condition Register (mtcr) . 40

A.10 EIS-Specific simplified mnemonics . 41

A.10.1 Integer Select (isel) . 41

A.11 Comprehensive list of simplified mnemonics . 41

Appendix B Glossary . 45
A. 45

B. 45

C. 45

D. 45

E. 45

G . 46

I . 46

L . 46

M . 46

N. 46

O . 47

R. 47

Contents UM0438

4/50

S. 47

T. 48

U. 48

W . 48

4 Revision history . 49

UM0438 List of tables

5/50

List of tables

Table 1. Terminology conventions . 9
Table 2. Acronyms and abbreviated terms . 9
Table 3. Typical Elf note section format . 13
Table 4. VLE identifier . 13
Table 5. VLE relocation fields . 15
Table 6. VLE relocation field descriptions. 16
Table 7. Notation conventions . 16
Table 8. VLE relocation types. 17
Table 9. Relocation types with special semantics . 19
Table 10. Subtract immediate simplified mnemonics . 23
Table 11. Subtract simplified mnemonics . 23
Table 12. Word rotate and shift simplified mnemonics . 24
Table 13. Branch instructions . 25
Table 14. BO32 and BO16 operand encodings . 27
Table 15. CR0 and CR1 fields as updated by integer and floating-point instructions. 29
Table 16. BI32 and BI16 operand settings for CR fields for branch comparisons 29
Table 17. CR field identification symbols . 30
Table 18. Branch simplified mnemonics . 31
Table 19. Branch instructions . 31
Table 20. Simplified mnemonics for e_bc and se_bc without LR update . 32
Table 21. Simplified mnemonics for e_bcl with LR update . 32
Table 22. Standard coding for branch conditions . 33
Table 23. Branch instructions and simplified mnemonics that incorporate CR conditions 34
Table 24. Simplified mnemonics with comparison conditions. 34
Table 25. Simplified mnemonics for e_bc and se_bc without comparison conditions

or LR updating35
Table 26. Simplified mnemonics for e_bcl with comparison conditions and LR updating 36
Table 27. Word compare simplified mnemonics . 36
Table 28. Standard codes for trap instructions . 37
Table 29. Trap simplified mnemonics . 38
Table 30. TO operand Bit Encoding . 38
Table 31. Additional simplified mnemonics for Accessing SPRGs . 39
Table 32. Simplified mnemonics . 41
Table 33. Document revision history . 49

List of figures UM0438

6/50

List of figures

Figure 1. Branch conditional (e_bc, se_bc) instruction formats . 25
Figure 2. BI32 and BI16 fields . 28

UM0438 Preface

7/50

Preface

About this book
The primary objective of this manual is to help programmers provide software that is
compatible across the family of processors using variable-length encoding (VLE) extension.

Individual VLE technology implementations are beyond the scope of this manual. Each
processor is unique in its implementation of the VLE extension.

The information in this book is subject to change without notice. As with any technical
documentation, it is the reader’s responsibility to ensure they are using the most recent
version of the documentation. For more information, contact your sales representative.

Audience
This manual is for system software and application programmers who want to develop
products using the VLE extension. An understanding of operating systems, microprocessor
system design, the basic principles of RISC processing, and the VLE instruction set is
assumed.

Organization
Following is a summary of the major sections of this manual:

● Section 1: Overview provides a general understanding of what the programming model
defines in the VLE extension.

● Section 2: Application Binary Interface (ABI) describes the VLE extensions for the
PowerPC™ e500 Application Binary Interface (e500 ABI) to support VLE technology.

● Section 3: Instruction set provides an overview of the VLE instruction set architecture.
For a detailed description of each instruction, including assembly language syntax,
refer to the VLE section of the EREF.

● Appendix A: Simplified mnemonics for VLE instructions describes simplified
mnemonics, which are provided for easier coding of assembly language programs
using VLE technology.

Suggested reading
This section lists background reading for this manual as well as general information on the
VLE extension and PowerPC architecture.

Preface UM0438

8/50

Related documentation
STMicroelectronics processor documentation is organized in the following types of
documents:

● RM0004: A Programmer ‘s Reference Manual for Book E processor —A higher-level
view of the programming model as it is defined by Book E

● User’s manuals—Provide details on individual implementations and are for use with the
Programming Environments Manual for 32-Bit Implementations of the PowerPC™
Architecture

● Datasheet—Specific data regarding bus timing, signal behavior, and AC, DC, and
thermal characteristics, as well as other design considerations.

● Application notes—Address-specific design issues useful to programmers and
engineers working with STMicroelectronics processors.

Additional literature is released as new processors become available.

General information
The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street,
Sixth Floor, San Francisco, CA, provides useful information on the PowerPC architecture
and computer architecture in general:

● The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, by International Business Machines, Inc.

● For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html.

● Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy
and David A. Patterson

● Computer Organization and Design: The Hardware/Software Interface, Second Edition,
David A. Patterson and John L. Hennessy

Conventions
This document uses the following notational conventions:
cleared/set When a bit takes the value zero, it is said to be cleared; when it

takes a value of one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics.

Internal signals are set in italics, for example, qual BG.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific
bits, fields, or ranges appear in brackets. For example, MSR[LE]
refers to the little-endian mode enable bit in the machine state
register.

UM0438 Preface

9/50

x In some contexts, such as signal encodings, an unitalicized x
indicates a don’t care.

x An italicized x indicates an alphanumeric variable.

n An italicized n indicates an numeric variable.

¬ NOT logical operator

& AND logical operator

| OR logical operator

Terminology conventions
Table 1 lists certain terms used in this manual that differ from the architecture terminology
conventions.

Acronyms and abbreviations
Table 2 contains acronyms and abbreviations that are used in this document.

Table 1. Terminology conventions

Architecture specification This manual

Change bit Changed bit

Extended mnemonics Simplified mnemonics

Out of order memory accesses Speculative memory accesses

Privileged mode (or privileged state) Supervisor level

Problem mode (or problem state) User level

Reference bit Referenced bit

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Table 2. Acronyms and abbreviated terms

Term Meaning

CR Condition register

CTR Count register

DCR Data control register

DTLB Data translation lookaside buffer

EA Effective address

ECC Error checking and correction

FPR Floating-point register

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

Preface UM0438

10/50

ITLB Instruction translation lookaside buffer

L2 Secondary cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

PTE Page table entry

RISC Reduced instruction set computing

RTL Register transfer language

SIMM Signed immediate value

SPR Special-purpose register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VLE Variable-length encoding

XER
Register used primarily for indicating conditions such as carries and overflows for
integer operations

Table 2. Acronyms and abbreviated terms (continued)

Term Meaning

UM0438 Overview

11/50

1 Overview

This document defines a programming model for use with the variable-length encoding
(VLE) instruction set extension. Three types of programming interfaces are described
herein:

● An application binary interface (ABI) defining low-level coding conventions

● An assembly language interface

● A simplified mnemonic assembly language interface

1.1 Application Binary Interface (ABI)
The VLE programming model extends the existing PowerPC™ ABIs. This extension is
independent of the endian mode with regard to data; however, VLE instructions are
supported only in big-endian mode. The ABI reviews instruction and data representations
for memory management and distinguishes between PowerPC Book E and VLE
instructions. The ABI also discusses VLE section identification and relocation types used by
the executable and linking format (ELF).

Note: Use this chapter in conjunction with the PowerPC e500 Application Binary Interface (e500
ABI). Except for the sections discussed in this chapter, the VLE ABI follows the e500 ABI
standard. For information on register usage and availability, function calling sequence,
parameter passing, stack frames, and other topics, refer to the e500 ABI.

1.2 Assembly language interface
The assembly language interface provides an overview of the VLE instructions. The
description of each instruction along with the instruction mnemonic and operands can be
found in the VLE section of the EREF.

1.3 Simplified mnemonics assembly language interface
Simplified mnemonics are provided for easier coding of assembly language programs. They
are defined for the most frequently used forms of branch conditional, compare, trap, rotate
and shift, and certain other instructions defined by the VLE extension. Some assemblers
may define additional simplified mnemonics not listed in this document; however, all
assemblers should support the VLE simplified mnemonics listed in Appendix A.

Application Binary Interface (ABI) UM0438

12/50

2 Application Binary Interface (ABI)

Note: The ABI extensions described herein for VLE applications are still under review by the
PowerPC ABI industry working group and may be subject to change. Any modifications will
be highlighted in revisions of this document.

This chapter specifies VLE extensions to the PowerPC e500 Application Binary Interface
(e500 ABI) that defines both a big-endian and a little-endian ABI. This VLE ABI extension is
independent of the endian mode with regards to data; however, VLE instructions are
supported only in big-endian mode.

Note: This chapter should be used in conjunction with the PowerPC e500 Application Binary
Interface (e500 ABI). Except for the sections discussed in this chapter, the VLE ABI follows
the e500 ABI standard. For information on topics not covered in this section, including
function calling sequence, register usage and availability, stack frame layout, parameter
passing, and other topics, please refer to the e500 ABI.

2.1 Instruction and data representation
The VLE extension includes additional operations with an alternate instruction encoding to
enable reduced code footprint. This alternate encoding set is selected on an instruction
page basis. A single page attribute bit selects between standard PowerPC Book E
instruction encodings and the VLE instructions for the particular page of memory. This page
attribute is an extension to the existing PowerPC Book E page attributes. Pages can be
freely intermixed, allowing for a mixture of code with both types of encodings.

Instruction encodings in pages marked as using VLE are either 16 or 32 bits long and are
aligned on 16-bit boundaries. Therefore, all instruction pages marked as VLE must use big-
endian byte ordering.

The programmer’s model uses the same register set when executing either instruction
encoding, although certain registers are not accessible to VLE instructions using the 16-bit
formats, and not all fields of the condition register (CR) are used by condition setting or
conditional branch instructions when executing from a VLE instruction page. In addition,
immediate fields and displacements differ in size and use, due to the more restrictive
encodings imposed by VLE instructions.

Other than the requirement of big-endian byte ordering for instruction pages, and the
additional page attribute to identify whether the instruction page corresponds to a VLE
section of code, VLE uses the identical storage model, interrupts and exceptions, timer
facilities, debug facilities, and special-purpose registers (SPRs) defined throughout Book E.

2.2 Executable and Linking Format (ELF) object files
Both VLE and Book E instructions can coexist in the same ELF binary separated into
different ELF sections allowing easy identification for defining memory management page
tables for run-time environments. Because implementations supporting VLE use an
extension to the existing PowerPC Book E page attributes, providing a single additional
page attribute to select between VLE and Book E encodings, memory pages of VLE and
Book E instructions can be freely intermixed. Binding of VLE and Book E memory pages to
different memory bounds requires separation of VLE and Book E encodings into different
ELF sections.

UM0438 Application Binary Interface (ABI)

13/50

The VLE encodings also require additional relocation types, which allow the linker to resolve
immediate and branch displacement fields in the instruction encoding once a symbol or
label address is known (at link time). The VLE encodings require additional relocation types
to resolve fields not present in the PowerPC Book E encodings.

2.2.1 VLE information section

The e500 ABI defines an information section named .PPC.EMB.apuinfo having type
SHT_NOTE and attributes of 0, which matches the format of a typical ELF note section as
shown in Table 3. The information section allows disassemblers and debuggers to interpret
the instructions properly within the binary and can be used by operating systems to provide
emulation or error checking of the VLE extension revisions.

Table 3. Typical Elf note section format

For the .PPC.EMB.apuinfo section, the name is APUinfo the type is 2 (as type 1 is already
reserved), and the data contains a series of words providing information about the APU or
extension, one per word. The information contains two unsigned half words: the upper half
contains the unique identifier, and the lower half contains the revision number. The VLE
identifier is shown in Table 4.

length of name (in bytes)

length of data (in bytes)

type

name (null-terminated, padded to 4-byte alignment)

data

Table 4. VLE identifier

Identifier (16 Bits) APU/Extension

0x0104 VLE

Example - Object file a.o
0 0x00000008 # 8 bytes in

"APUinfo\0"

4 0x0000000C # 12 bytes (3 words)
of APU information

8 0x00000002 # NOTE type 2

12 0x41505569 # ASCII for "APUi"

16 0x6e666f00 # ASCII for "nfo\0"

20 0x00010001 # APU #1, revision 1

24 0x01040001 # VLE, revision 1

28 0x00040001 # APU #4, revision 1

Application Binary Interface (ABI) UM0438

14/50

Linkers merge all .PPC.EMB.apuinfo sections in individual object files into one, with merging
of per-APU information. For example, after linking file a.o and b.o, the merged
.PPC.EMB.apuinfo is as shown in example below.

Note that it is assumed that a later revision of any APU or extension is compatible with an
earlier one, but not vice versa. Thus, the resultant .PPC.EMB.apuinfo section requires APU
#1 revision 2 or greater to work, and does not work on APU #1 revision 1. If a revision
breaks backwards compatibility, it must be given a new unique identifier.

A linker may optionally warn when different objects require different revisions, because
moving the revision up may make the executable no longer work on processors with the
older revision. In this example, the linker could emit a warning like “Warning: bumping APU
#1 revision number to 2, required by b.o.”

2.2.2 VLE identification

The executable and linking format (ELF) allows processor-specific section header and
program header flag attributes to be defined. The following section header and program
header flag attribute definitions are used to mark ELF sections containing VLE instruction
encodings.

Example - Object file b.o
0 0x00000008 # 8 bytes in

"APUinfo\0"

4 0x00000008 # 8 bytes (2 words)
of APU information

8 0x00000002 # NOTE type 2

12 0x41505569 # ASCII for "APUi"

16 0x6e666f00 # ASCII for "nfo\0"

20 0x00010002 # APU #1, revision 2

24 0x00040001 # APU #4, revision 1

Example - PPC.EMB.apuinfo

0 0x00000008 # 8 bytes in
"APUinfo\0"

4 0x0000000C # 12 bytes (3 words)
of APU information

8 0x00000002 # NOTE type 2

12 0x41505569 # ASCII for "APUi"

16 0x6e666f00 # ASCII for "nfo\0"

20 0x00010002 # APU #1, revision 2

24 0x01040001 # VLE, revision 1

28 0x00040001 # APU #4, revision 1

UM0438 Application Binary Interface (ABI)

15/50

#define SHF_PPC_VLE 0x10000000 /* section header flag */
#define PF_PPC_VLE 0x10000000 /* program header flag */

The SHF_PPC_VLE flag marks ELF sections containing VLE instructions. Similarly, the
PF_PPC_VLE flag is used by ELF program headers to mark program sections containing
VLE instructions. If either the SHF_PPC_VLE flag or the PF_PPC_VLE flag is set, then
instructions in those marked sections are interpreted as VLE instructions; Book E
instructions reside in sections that do not have these flags set.

ELF sections setting the SHF_PPC_VLE flag that contain VLE instructions should also use
the SHF_ALLOC and SHF_EXECINSTR bits as necessary. Setting the SHF_PPC_VLE bit
does not automatically imply a section that is marked as allocate (SHF_ALLOC) or
executable (SHF_EXECINSTR). The linker keeps sections marked as VLE
(SHF_PPC_VLE) in separate output sections that do not contain Book E instructions.

Similarly, ELF program headers setting the PF_PPC_VLE flag should use the PF_X, PF_W,
and PF_R flags to indicate executable, writable, or readable attributes. It is considered an
error for a program header with PF_PPC_VLE set to contain sections that do not have
SHF_PPC_VLE set.

A program loader or debugger can then scan the section headers or program headers to
detect VLE sections in case anything special is required for section processing or
downloading.

2.2.3 Relocation types

Relocation entries describe how to alter the instruction relocation fields once symbols or
labels are defined at link time. The VLE instruction set requires relocation types beyond
those described in the PowerPC e500 Application Binary Interface (e500 ABI). Table 5
shows additional relocation fields used by the VLE instruction set.

Table 5. VLE relocation fields

Relocation
field name

low21
0 1

0

1

1

3

1

— low21

split20
0 5 6 1

0

1

1

1

5

1

6

1

7

2

0

2

1

3

1

011100 — split204:8 0 split200:3 split209:19

split16a
0 1

0

1

1

1

5

1

6

2

0

2

1

3

1

— split16a0:4 — split16a5:15

split16d
0 5 6 1

0

1

1

2

0

2

1

3

1

— split16d0:4 — split16d5:15

bdh24
0 6 7 3

0

3

1

— bdh24 —

Application Binary Interface (ABI) UM0438

16/50

Table 6 describes the additional relocation fields required by VLE instructions.

Note: Relocation entry types applied to VLE sections use half-word alignment boundaries,
because the VLE instruction architecture mixes 16- and 32-bit encodings within a VLE
section. Book E instruction encodings in non-VLE sections use e500 ABI alignment
specifications.

Calculations in Table 8 assume the actions are transforming a relocatable file into either an
executable or a shared object file. Conceptually, the link editor merges one or more
relocatable files to form the output. It determines how to combine and locate the input files,
updates the symbol values, and then performs relocations. Relocations applied to
executable or shared object files are similar and accomplish the same result. The notations
used in Table 8 are described in Table 7.

bdh15
0 1

5

1

6

3

0

3

1

— bdh15 —

bdh8
0 7 8 1

5

— bdh8

Table 5. VLE relocation fields (continued)

Table 6. VLE relocation field descriptions

Field Descriptions

low21 21-bit field occupying the lsbs of a word (bits 11–31).

split20

20-bit field with the 4 msbs occupying bits 17–20, the next 5 bits occupying bits 11–15, and the remaining
11 bits occupying bits 21–31. In addition, bits 0–5 in the destination word are encoded with the binary
value 011100, bit 16 is encoded with the binary value 0.
This relocation field specifies the opcode for the VLE e_li instruction, allowing the linker to force the
encoding of the e_li instruction, potentially changing the user’s specified instruction. This functionality
supports small data area relocation types. (R_PPC_VLE_SDA21 and R_PPC_VLE_SDA21_LO).

split16a
16-bit field with the 5 msbs occupying bits 11–15 (the rA field) and the remaining 11 bits occupying bits
21–31.

split16d
16-bit field with the 5 msbs occupying bits 6–10 (the rD field) and the remaining 11 bits occupying bits 21–
31.

bdh24 24-bit field occupying bits 7–30 used to resolve branch displacements to half-word boundaries.

bdh15 15-bit field occupying bits 16–30 used to resolve branch displacements to half-word boundaries.

bdh8 8-bit field occupying bits 8–15 of a half-word. This field is used by a 16-bit branch instruction.

Table 7. Notation conventions

Field Descriptions

A Represents the addend used to compute the value of the relocatable field.

P
Represents the place (section offset or address) of the storage unit being relocated
(computed using r_offset).

S Represents the value of the symbol whose index resides in the relocation entry.

UM0438 Application Binary Interface (ABI)

17/50

Relocation entries apply to half words or words. In either case, the r_offset value designates
the offset or virtual address of the first byte of the affected storage unit. The relocation type
specifies which bits to change and how to calculate their values. Processors that implement
the PowerPC architecture use only the Elf32_Rela relocation entries with explicit addends.
For relocation entries, the r_addend member serves as the relocation addend. In all cases,
the offset, addend, and the computed result use the byte order specified in the ELF header.

The following general rules apply to the interpretation of the relocation types in Table 8.

● + and – denote 32-bit modulus addition and subtraction.

● || denotes concatenation of bits or bit fields.

● >> denotes arithmetic right-shifting (shifting with sign copying) of the value of the left
operand by the number of bits given by the right operand.

● For relocation types associated with branch displacements, in which the name of the
relocation type contains 8, the upper 24 bits of the computed value before shifting must
all be the same (either all zeros or all ones—that is, sign-extended displacement). For
relocation types in which the name contains 15, the upper 17 bits of the computed
value before shifting must all be the same. For relocation types in which the name
contains 24, the upper 7 bits of the computed value before shifting must all be the
same. For relocation types whose names contain 8, 15, or 24, the low 1-bit of the
computed value before shifting must be zero (half-word boundary).

● #hi(value) and #lo(value) denote the 16 msbs and lsbs of the indicated value. That is,
#lo(x)=(x & 0xFFFF) and #hi(x)=((x>>16) & 0xFFFF).

● The high-adjusted value, #ha(value), compensates for #lo() being treated as a signed
number: #ha(x)=(((x >> 16) + ((x & 0x8000) ? 1 : 0)) & 0xFFFF).

● _SDA_BASE_ is a symbol defined by the link editor whose value in shared objects is
the same as _GLOBAL_OFFSET_TABLE_, and in executable programs is an address
within the small data area. Similarly, _SDA2_BASE_ is a symbol defined by the link
editor whose value in executable programs is an address within the small data 2 area.

Note that the relocation types in Table 8 apply only to VLE sections. Sections containing
Book E instructions should use the PowerPC e500 Application Binary Interface.

X Represents the offset from the appropriate base (_SDA_BASE_, _SDA2_BASE_, or 0) to
where the linker placed the symbol whose index is in r_info.

Y Represents a 5-bit value for the base register for the section where the linker placed the
symbol whose index is in r_info. Acceptable values are: the value 13 for symbols in .sdata or
.sbss, the value 2 for symbols in .PPC.EMB.sdata2 or .PPC.EMB.sbss2, or the value 0 for
symbols in .PPC.EMB.sdata0 or .PPC.EMB.sbss0.

Table 8. VLE relocation types

Name Value Field Calculation

R_PPC_VLE_REL8 216 bdh8 (S + A - P) >> 1

R_PPC_VLE_REL15 217 bdh15 (S + A - P) >> 1

R_PPC_VLE_REL24 218 bdh24 (S + A - P) >> 1

R_PPC_VLE_LO16A 219 split16a #lo(S + A)

Table 7. Notation conventions (continued)

Field Descriptions

Application Binary Interface (ABI) UM0438

18/50

Relocation types with special semantics are described in Table 9.

R_PPC_VLE_LO16D 220 split16d #lo(S + A)

R_PPC_VLE_HI16A 221 split16a #hi(S + A)

R_PPC_VLE_HI16D 222 split16d #hi(S + A)

R_PPC_VLE_HA16A 223 split16a #ha(S + A)

R_PPC_VLE_HA16D 224 split16d #ha(S + A)

R_PPC_VLE_SDA21 225 low21

split20

 Y || (X + A). See Table 9.

R_PPC_VLE_SDA21_LO 226 low21

split20

 Y || #lo(X + A). See Table 9.

R_PPC_VLE_SDAREL_LO16A 227 split16a #lo(X + A)

R_PPC_VLE_SDAREL_LO16D 228 split16d #lo(X + A)

R_PPC_VLE_SDAREL_HI16A 229 split16a #hi(X + A)

R_PPC_VLE_SDAREL_HI16D 230 split16d #hi(X + A)

R_PPC_VLE_SDAREL_HA16A 231 split16a #ha(X + A)

R_PPC_VLE_SDAREL_HA16D 232 split16d #ha(X + A)

Table 8. VLE relocation types (continued)

Name Value Field Calculation

UM0438 Application Binary Interface (ABI)

19/50

Note: The relocations in Table 9 are not for load and store instructions (such as, e_lwz and
e_stw), which should use the EABI relocation R_PPC_EMB_SDA21. These relocations, as
written here, only start with an e_add16i. A linker might convert the instruction to an e_li.
Although other relocations do not specify the instructions they apply to, it may be useful to
know that these relocations can apply only to one instruction.

Table 9. Relocation types with special semantics

Name Description

R_PPC_VLE_SDA21(1) The linker computes a 21-bit value with the 5 msbs having the value 13 (for GPR13), 2
(for GPR2), or 0. If the symbol whose index is in r_info is contained in .sdata or .sbss,
a linker supplies a value of 13; if the symbol is in .PPC.EMB.sdata2 or
.PPC.EMB.sbss2, the linker supplies a value of 2; if the symbol is in .PPC.EMB.sdata0
or .PPC.EMB.sbss0, the linker supplies a value of 0; otherwise, the link fails.

The 16 lsbs of this 21-bit value are set to the address of the symbol plus the relocation
entry r_addend value minus the appropriate base for the symbol section:

_SDA_BASE_ for a symbol in .sdata or .sbss
_SDA2_BASE_ for a symbol in .PPC.EMB.sdata2 or .PPC.EMB.sbss2

0 for a symbol in .PPC.EMB.sdata0 or .PPC.EMB.sbss0

If the 5 msbs of the computed 21-bit value are non-zero, the linker uses the low21
relocation field, where the 11 msbs remain unchanged and the computed 21-bit value
occupies bits 11–31.

Otherwise, the 5 msbs of the computed 21-bit value are zero, with the following
results:

The linker uses the split20 relocation field, where only bits occupying 6–10 remain
unchanged
The 5 msbs of the 21-bit value are ignored

The next msb is copied to bit 11 and to bits 17–20 as a sign-extension

The next 4 msbs are copied to bits 12–15
The 11 remaining bits are copied to bits 21–31.

In the destination word, bits 0–5 are encoded with the binary value 011100, and bit 16
is encoded with the binary value 0.

Use of the split20 relocation field forces the encoding of the VLE e_li instruction,
which may change the user's specified instruction. See Table 6.

R_PPC_VLE_SDA21_LO 1 Like R_PPC_VLE_SDA21, except that the #lo() operator obtains the 16 lsbs of the 21-
bit value. The #lo() operator is applied after the address of the symbol plus the
relocation entry r_addend value is calculated, minus the appropriate base for the
symbol’s section: _SDA_BASE_ for a symbol in .sdata or .sbss, _SDA2_BASE_ for a
symbol in .PPC.EMB.sdata2 or .PPC.EMB.sbss2, or 0 for a symbol in
.PPC.EMB.sdata0 or .PPC.EMB.sbss0. The R_PPC_VLE_SDA21 entry describes
applying the calculated 21-bit value to the destination word that uses either the low21
relocation field or the split20 relocation field. See Table 6.

1. Note that if the opcode is changed, 27 bits are changed instead of 21.

Instruction set UM0438

20/50

3 Instruction set

Note: This section provides an overview of the VLE instruction set architecture. For details on
each instruction, including assembly mnemonic and operands, refer to the VLE section of
the EREF.

The VLE extension allows PowerPC Book E implementations to support more efficient
binary representations of applications for the embedded processor spaces where code
density plays a major role in affecting overall system cost, and to a somewhat lesser extent,
performance. The intent of the VLE extension is not to define an entirely different ISA nor to
supplant the existing PowerPC ISA. Instead, it can be viewed as a supplement that is
applied conditionally to an application, or to part of an application, to improve code density.

The major objectives of the VLE extension are as follows:

● Maintain coexistence and consistency with the existing PowerPC Book E ISA and
architecture

● Maintain a common programming model and instruction operation model in the VLE
extension

● Reduce overall code size by 30 percent over existing PowerPC text segments

● Limit the increase in execution path length to under 10 percent for most important
applications

● Limit the increase in hardware complexity for implementations containing the VLE
extension

By meeting these objectives, cost-sensitive markets may significantly benefit from the use of
the VLE extension.

The VLE extension uses the same semantics as traditional Book E. Due to the limited
instruction encoding formats, VLE instructions typically support reduced immediate fields
and displacements, and not all Book E operations are encoded in the VLE extension. The
basic philosophy is to capture all useful operations, with most frequent operations given
priority. Immediate fields and displacements are provided to cover most ranges encountered
in embedded control code. Instructions are encoded in either a 16- or 32-bit format, and
these formats can be freely intermixed.

Book E floating-point registers are not accessible to VLE instructions. Book E GPRs and
SPRs are used by VLE instructions with the following limitations:

● VLE instructions using the 16-bit formats are limited to addressing GPR0–GPR7 and
GPR24–GPR31 in most instructions. Move instructions are provided to transfer register
contents between these registers and GPR8–GPR23.

● VLE instructions using the 16-bit formats are limited to addressing CR0.

● VLE instructions using the 32-bit formats are limited to addressing CR0-CR3.

VLE instruction encodings generally differ from Book E instructions, except that most
Book E instructions falling within Book E primary opcode 31 are encoded identically in 32-bit
VLE instructions. Also, they have identical semantics unless they affect or access a
resource not supported by the VLE extension. Primary opcode 4 is available to support
additional instructions using identical encodings for both Book E and VLE. Therefore, an
implementation of VLE can include additional APUs, such as the cache line locking APU,
vector or scalar single-precision floating-point APU, and SPE extension and use the exact
encodings.

UM0438 Instruction set

21/50

The VLE extension does not currently fully encompass 64-bit operations, although the
addition of such operations in a future version is envisioned. For future compatibility, and to
avoid confusion with Book E, register bit numbering remains the same as in traditional
Book E.

The description of each instruction is contained in the VLE section of the EREF and includes
the mnemonic and a formatted list of operands. VLE instructions have either exact or similar
semantics to Book E instructions. Where the semantics, side-effects, and binary encodings
are identical, the Book E mnemonics and formats are used. Where the semantics are
similar but the binary encodings differ, the Book E mnemonic is generally preceded with an
‘e_’. To distinguish similar instructions available in both 16- and 32-bit formats under VLE
and standard Book E instructions, VLE instructions encoded with 16 bits have an ‘se_’
prefix. VLE instructions encoded with 32 bits that have different binary encodings or
semantics than the equivalent Book E instruction have an ‘e_’ prefix. Some examples are
the following:

stw RS,D(RA) // Standard Book E instruction
e_stw RS,D(RA) // 32-bit VLE instruction
se_stw RZ,SD4(RX)// 16-bit VLE instruction

For detailed functional descriptions of each VLE instruction, along with the assembly
mnemonic and operands, refer to the VLE section of the EREF.

Simplified mnemonics for VLE instructions UM0438

22/50

Appendix A Simplified mnemonics for VLE instructions

This appendix describes simplified mnemonics for easier coding of assembly language
programs. Simplified mnemonics are defined for the most frequently used forms of branch
conditional, compare, trap, rotate and shift, and certain other instructions defined by the VLE
extension.

The simplified mnemonics for the VLE extension are similar to those defined for the
PowerPC programming environment. The result is a consistent programming view when
working with VLE instructions on PowerPC architectures. Section A.11: Comprehensive list
of simplified mnemonics provides an alphabetical listing of VLE simplified mnemonics used
by a variety of processors. Some assemblers may define additional simplified mnemonics
not included here. The simplified mnemonics listed here should be supported by all
compilers.

A.1 Overview
Simplified (or extended) mnemonics allow an assembly-language programmer to use more
intuitive mnemonics and symbols than the instructions and syntax defined by the instruction
set architecture. For example, to code the conditional call “branch to target if CR3 specifies
a greater than condition, setting the LR” without simplified mnemonics, the programmer
would write the branch conditional and link instruction e_bcl 1,13,target. The simplified
mnemonic, branch if greater than and link, e_bgtl cr3,target, incorporates the conditions.
Not only is it easier to remember the symbols than the numbers when programming, it is
also easier to interpret simplified mnemonics when reading existing code.

Simplified mnemonics are not a formal part of the architecture, but rather a recommendation
for assemblers that support the instruction set.

Simplified mnemonics for VLE instructions provide a consistent assembly-language
interface with the PowerPC architecture. Many simplified mnemonics were originally defined
in the PowerPC architecture documentation. Some assemblers created their own, and
others have been added to support extensions to the instruction set (for example, AltiVec
instructions and Book E auxiliary processing units (APUs)). Simplified mnemonics for new
architecturally defined and new implementation-specific special-purpose registers (SPRs)
are described here very generally.

A.2 Subtract simplified mnemonics
This section describes simplified mnemonics for subtract instructions.

A.2.1 Subtract immediate

The effect of a subtract immediate instruction can be achieved by negating the immediate
operand of the add immediate instructions, e_add16i, e_add2i., e_add2is, and e_addi.
Simplified mnemonics include this negation, making the intent of the computation clearer.
These are listed in Table 10.

UM0438 Simplified mnemonics for VLE instructions

23/50

A.2.2 Subtract

Subtract from instructions subtract the second operand (rA) from the third (rB). The
simplified mnemonics in Table 11 use the more common order in which the third operand is
subtracted from the second.

A.3 Rotate and shift simplified mnemonics
Rotate and shift instructions provide powerful, general ways to manipulate register contents,
but they can be difficult to understand. Simplified mnemonics are provided for the following
operations:

● Extract—Select a field of n bits starting at bit position b in the source register; left or
right justify this field in the target register; clear all other bits of the target register.

● Insert—Select a left- or right-justified field of n bits in the source register; insert this
field starting at bit position b of the target register; leave other bits of the target register
unchanged.

● Rotate—Rotate the contents of a register right or left n bits without masking.

● Shift—Shift the contents of a register right or left n bits, clearing vacated bits (logical
shift).

● Clear—Clear the leftmost or rightmost n bits of a register.

● Clear left and shift left—Clear the leftmost b bits of a register, then shift the register left
by n bits. This operation can be used to scale a (known non-negative) array index by
the width of an element.

Table 10. Subtract immediate simplified mnemonics

Simplified mnemonic Standard mnemonic

e_sub16i rD,rA,value e_add16i rD,rA,–value

e_sub2i. rA,value e_add2i. rA,–value

e_sub2is rA,value e_add2is rA,–value

e_subi rD,rA,value e_addi rD,rA,–value

e_subic rD,rA,value e_addic rD,rA,–value

e_subic. rD,rA,value e_addic. rD,rA,–value

Table 11. Subtract simplified mnemonics

Simplified mnemonic Standard mnemonic(1)

1. rD,rB,rA is not the standard order for the operands. The order of rB and rA is reversed to show the
equivalent behavior of the simplified mnemonic.

sub[o][.] rD,rA,rB subf[o][.] rD,rB,rA

subc[o][.] rD,rA,rB subfc[o][.] rD,rB,rA

Simplified mnemonics for VLE instructions UM0438

24/50

A.3.1 Operations on words

The simplified mnemonics in Table 12 do not support coding with a dot (.) suffix. In PowerPC
instructions, a dot (.) suffix causes the Rc bit to be set in the underlying instruction.
However, the following VLE instruction forms do not support this.

Examples using word mnemonics follow:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.
e_extrwi rA,rS,1,0 equivalent to e_rlwinm

rA,rS,1,31,31
2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.

e_insrwi rB,rA,1,0 equivalent to e_rlwimi rB,rA,31,0,0
3. Shift the contents of rA left 8 bits.

e_slwi rA,rA,8 equivalent to e_rlwinm rA,rA,8,0,23
4. Clear the high-order 16 bits of rS and place the result into rA.

e_clrlwi rA,rS,16 equivalent to e_rlwinm
rA,rS,0,16,31

A.4 Branch instruction simplified mnemonics
Branch conditional instructions can be coded with the operations and with a condition to be
tested as part of the instruction mnemonic rather than as numeric operands (the BO32, BI32
and BO16, BI16 operands). Table 13 shows the four general types of branch instructions.
Simplified mnemonics are defined only for branch conditional instructions that include either
the BO32, BI32 or BO16, BI16 operands; there is no need to simplify the other branch
mnemonics.

Table 12. Word rotate and shift simplified mnemonics

Operation Simplified mnemonic Equivalent to:

Extract and left justify word immediate e_extlwi rA,rS,n,b (n > 0) e_rlwinm rA,rS,b,0,n – 1

Extract and right justify word
immediate

e_extrwi rA,rS,n,b (n > 0) e_rlwinm rA,rS,b + n,32 – n,31

Insert from left word immediate e_inslwi rA,rS,n,b (n > 0) e_rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right word immediate e_insrwi rA,rS,n,b (n > 0) e_rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left word immediate e_rotlwi rA,rS,n e_rlwinm rA,rS,n,0,31

Rotate right word immediate e_rotrwi rA,rS,n e_rlwinm rA,rS,32 – n,0,31

Shift left word immediate e_slwi rA,rS,n (n < 32) e_rlwinm rA,rS,n,0,31 – n

Shift right word immediate e_srwi rA,rS,n (n < 32) e_rlwinm rA,rS,32 – n,n,31

Clear left word immediate e_clrlwi rA,rS,n (n < 32) e_rlwinm rA,rS,0,n,31

Clear right word immediate e_clrrwi rA,rS,n (n < 32) e_rlwinm rA,rS,0,0,31 – n

Clear left and shift left word immediate e_clrlslwi rA,rS,b,n (n ≤ b ≤ 31) e_rlwinm rA,rS,n,b – n,31 – n

UM0438 Simplified mnemonics for VLE instructions

25/50

The BO32, BI32, and BO16, BI16 operands correspond to fields in the instruction opcode,
as Figure 1 shows for Branch Conditional (e_bc, e_bcl, and se_bc) instructions.

Figure 1. Branch conditional (e_bc, se_bc) instruction formats

e_bc (e_bcl)

se_bc

Both the BO32 and BO16 operands allow testing whether a CR bit causes a branch to occur
based on a true or false condition. The BO32 operand provides additional capability that
allows branch operations that involve decrementing the CTR and testing for a zero or non-
zero CTR value.

The BI32 and BI16 operands identify a CR bit to test (whether a comparison is less than or
greater than, for example). The simplified mnemonics avoid the need to memorize the
numerical values for BO32, BI32, and BO16, BI16 operands.

For example, e_bc 2,0,target is a conditional branch that, as a BO32 value of 2 (0b10)
indicates, decrements the CTR, then branches if the decremented CTR is not zero. The
operation specified by BO32 is abbreviated as d (for decrement) and nz (for not zero), which
replace the c in the original mnemonic; so the simplified mnemonic for e_bc becomes
e_bdnz. The branch does not depend on a condition in the CR, so BI32 can be eliminated,
reducing the expression to e_bdnz target.

In addition to CTR operations, the BO32 operand provides branch decisions based on true
or false conditions. For example, if a branch instruction depends on an equal condition in
CR0, the expression is e_bc 1,2,target. To specify a true condition, the BO32 value
becomes 1; the CR0 equal field is indicated by a BI32 value of 2. Incorporating the branch-
if-true condition a ‘t’ is used to replace the c in the original mnemonic, e_bt. The BI32 value
of 2 is replaced by the eq symbol. Using the simplified mnemonic and the eq operand, the
expression becomes e_bt eq,target.

This example tests CR0[EQ]; however, to test the equal condition in CR3 (CR bit 14), the
expression becomes e_bc 1,14,target. The BI32 operand of 14 indicates CR[14] (CR3[2], or

Table 13. Branch instructions

Instruction name Mnemonic Syntax

Branch e_b (e_bl)
se_b (se_bl)

target_addr
target_addr

Branch Conditional e_bc (e_bcl)
se_bc

BO32,BI32,target_addr
BO16,BI16,target_addr

Branch to Link Register se_blr (se_blrl) —

Branch to Count Register se_bctr (se_bctrl) —

0 5 6 9 10 11 12 15 16 30 31

0 1 1 1 1 0 1 0 0 0 BO32 BI32 BD15 LK

0 4 5 6 7 8 15

1 1 1 1 0 BO16 BI16 BD8

Simplified mnemonics for VLE instructions UM0438

26/50

BI32 field 0b1110). This can be expressed as the simplified mnemonic, e_bt 4 × cr3 +
eq,target.

The notation, 4 × cr3 + eq may at first seem awkward, but it eliminates computing the value
of the CR bit. It can be seen that (4 × 3) + 2 = 14. Note that although 32-bit registers in
Book E processors are numbered 32–63, only values 0–15 are valid (or possible) for BI32
operands. A Book E–compliant processor automatically translates the BI32 bit values;
specifying a BI32 value of 14 selects bit 46 on a Book E processor, or CR3[2] = CR3[EQ].

To reduce code size, VLE provides a 16-bit conditional branch instruction that uses the
BO16 and BI16 operands. For example, the 32-bit conditional branch e_bc 1,2,target can be
expressed using a 16-bit instruction format, se_bc 1,2,target. In simplified mnemonic form
this becomes se_bt eq,target. The BO16 operand only allows testing a true or false
condition, unlike the BO32 operand that also allows decrementing the CTR. The BI16
operand allows testing of only CR0, unlike the BI32 operand, which allows testing CR0–
CR3.

A.4.1 Key facts about simplified branch mnemonics

The following key points are helpful in understanding how to use simplified branch
mnemonics:

● All simplified branch mnemonics eliminate the BO32 and BO16 operands, so if any
operand is present in a branch simplified mnemonic, it is the BI32 or BI16 operand (or a
reduced form of it).

● If the CR is not involved in the branch, the BI32 and BI16 operands can be deleted.

● If the CR is involved in the branch, the BI32 and BI16 operands can be treated in the
following ways:

– It can be specified as a numeric value, just as it is in the architecturally defined
instruction, or it can be indicated with an easier to remember formula, 4 * crn +
[test bit symbol], where n indicates the CR field number. For BI16 operands only
CR0 is allowed, for BI32 CR0–CR3 is allowed.

– The condition of the test bit (eq, lt, gt, and so) can be incorporated into the
mnemonic, leaving the need for an operand that defines only the CR field.

- If the test bit is in CR0, no operand is needed.

- If the test bit is in CR1–CR3, the BI32 operand can be replaced with a crS
operand (that is, cr1, cr2, or cr3). The BI16 operand cannot be used for test bits
that are not in CR0.

A.4.2 Eliminating the BO32 and BO16 operands

The 2-bit BO32 field, shown in Figure 1, encodes the following operations in 32-bit
conditional branch instructions:

● Decrement count register (CTR)

– And test if result is equal to zero

– And test if result is not equal to zero

● Test condition register (CR)

– Test condition true

– Test condition false

UM0438 Simplified mnemonics for VLE instructions

27/50

The 1-bit BO16 field, shown in Figure 1, encodes the following operations in 16-bit
conditional branch instructions:

● Test condition register (CR)

– Test condition true

– Test condition false

As shown in Table 14, the ‘c’ in the standard mnemonic is replaced with the operations
otherwise specified in the BO32 or BO16 field, (d for decrement, z for zero, nz for non-zero,
t for true, and f for false).

A.4.3 The BI32 and BI16 operand—CR Bit and field representations

With standard branch mnemonics, the BI32 and BI16 operands are used to test a CR bit, as
shown in the example in Section A.4: Branch instruction simplified mnemonics.

With simplified mnemonics, the BI32 and BI16 operands are handled differently depending
on whether the simplified mnemonic incorporates a CR condition to test, as follows:

● Some branch simplified mnemonics incorporate only the BO32 or BO16 operand.
These simplified mnemonics can use the architecturally defined BI32 or BI16 operand
to specify the CR bit, as follows:

– The BI32 or BI16 operands can be presented exactly as it is with standard
mnemonics—as a decimal number, 0–15 for the BI32 operand, and 0–3 for the
BI16 operand.

– Symbols can be used to replace the decimal operand, as shown in the example in
Section A.4: Branch instruction simplified mnemonics where e_bt 4 * cr3 +
eq,target could be used instead of e_bt 14,target. This is described in Section :
Specifying a CR Bit

The simplified mnemonics in Section A.5: Simplified mnemonics that incorporate the BO32
and BO16 operands use one of these two methods to specify a CR bit.

● Additional simplified mnemonics incorporate CR conditions that would otherwise be
specified by the BI32 or BI16 operand, so the BI32 or BI16 operand is replaced by the
crS operand to specify the CR field. See Section A.4.4: BI32 and BI16 operand
instruction encoding

Table 14. BO32 and BO16 operand encodings

BO32
Field

BO16
Field

Value
(Decimal)

Description Symbol

00 0 0 Branch if the condition is FALSE.(1) f

01 1 1 Branch if the condition is TRUE.1 t

10(2) — 2 Decrement the CTR, then branch if the decremented CTR ≠ 0. dnz(3)

112 — 3 Decrement the CTR, then branch if the decremented CTR = 0. dz3

1. Instructions for which BO32 or BO16 are 0 (branch if condition true) or 1 (branch if condition false) do not depend on the
CTR value and alternately can be coded by incorporating the condition specified by the BI32 or BI16 fields. See
Section A.5.2: Simplified mnemonics that incorporate CR conditions (eliminates BO32 and BO16 and replaces BI32 with
crS)

2. Simplified mnemonics for branch instructions that do not test CR bits (BO32 = 2 or 3) should specify only a target.
Otherwise a programming error may occur.

3. Notice that these instructions do not use the branch in condition true or false operations, so simplified mnemonics for these
should not specify a BI32 operand.

Simplified mnemonics for VLE instructions UM0438

28/50

These mnemonics are described in Section A.5.2: Simplified mnemonics that incorporate
CR conditions (eliminates BO32 and BO16 and replaces BI32 with crS)

A.4.4 BI32 and BI16 operand instruction encoding

The entire 4-bit BI32 and 2-bit BI16 fields, shown in Figure 2, represent the bit number for
the CR bit to be tested. For standard branch mnemonics and for branch simplified
mnemonics that do not incorporate a CR condition, the BI32 operand provides all 4 bits and
the BI16 operand provides all 2 bits.

For simplified branch mnemonics described in Section A.5.2: Simplified mnemonics that
incorporate CR conditions (eliminates BO32 and BO16 and replaces BI32 with crS) the BI32
or BI16 operand is replaced by a crS operand. To understand this, it is useful to view the
BI32 operand as composed of two parts. As Figure 2 shows, BI32[0–1] indicates the CR
field and BI32[2–3] represents the condition to test. The 2-bit BI16 operand only has one
part, BI16[0–1] represents the condition within CR0 to test.

Figure 2. BI32 and BI16 fields

Integer record-form instructions update CR0 and floating-point record-form instructions
update CR1, as described in Table 15.

0 1 2 3

BI32[0–1] specifies CR field, CR0–CR3. BI32[2–3] and BI16[0–1] specifies one
of the 4 bits in a CR field. (LT, GT, EQ,
SO)

Simplified mnemonics based on
CR conditions but not CTR values

—branch if true : BO32=1 or
BO16=1

—branch if false: BO32=0 or
BO16=0

Specified by a
separate, reduced

BI32 operand (crS)

Incorporated into the
simplified mnemonic.

Standard branch mnemonics and
simplified mnemonics based on

CTR values

The BI32 operand specifies the entire 4-bit field
and the BI16 operand specifies a 2-bit field. If
CR0 is used, the bit can be identified by LT, GT,
EQ, or SO. For BI32, if CR1–CR3 are used, the
form 4 * crS + LT|GT|EQ|SO can be used.

BI32 Opcode Field

0 1

BI16 Opcode Field

UM0438 Simplified mnemonics for VLE instructions

29/50

Specifying a CR Bit

Note that the AIM version of the PowerPC architecture numbers CR bits 0–31 and Book E
numbers them 32–63. However, no adjustment is necessary to the code; in Book E devices,
32 is automatically added to the BI32 and BI16 values, as shown in Table 15 and Table 16.

Some simplified mnemonics incorporate only the BO32 or BO16 fields (as described
Section A.4.2: Eliminating the BO32 and BO16 operands). If one of these simplified
mnemonics is used and the CR must be accessed, the BI32 or BI16 operand can be
specified either as a numeric value or by using the symbols in Table 16.

Compare word instructions (described in Section A.6: Compare word simplified
mnemonics), floating-point compare instructions, move to CR instructions, and others can
also modify CR fields, so CR0 and CR1 may hold values that do not adhere to the meanings
described in Table 15.

f

Table 15. CR0 and CR1 fields as updated by integer and floating-point instructions

 CRn Bit
CR Bits BI32 BI16

Description
AIM Book E 0–1 2–3 0–1

CR0[0] 0 32 00 00 00 Negative (LT)—Set when the result is negative.

CR0[1] 1 33 00 01 01 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 2 34 00 10 10 Zero (EQ)—Set when the result is zero.

CR0[3] 3 35 00 11 11 Summary overflow (SO). Copy of XER[SO] at the instruction’s
completion.

CR1[0] 4 36 01 00 — Copy of FPSCR[FX] at the instruction’s completion.

CR1[1] 5 37 01 01 — Copy of FPSCR[FEX] at the instruction’s completion.

CR1[2] 6 38 01 10 — Copy of FPSCR[VX] at the instruction’s completion.

CR1[3] 7 39 01 11 — Copy of FPSCR[OX] at the instruction’s completion.

Table 16. BI32 and BI16 operand settings for CR fields for branch comparisons

 crn
bit

bit expression

CR bits bi32 bi16

DescriptionAIM BI

operand
Book E 0–1 2–3 0–1

crn[0] 4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3+ lt

0
4

8

12

32
36

40

44

00
01
10
11

00 00
—

—

—

less than or floating-point less than (lt, fl).
for integer compare instructions:
ra < simm or rb (signed comparison) or ra <
uimm or rb (unsigned comparison).

for floating-point compare instructions: fra <
frb.

Simplified mnemonics for VLE instructions UM0438

30/50

Only the most useful simplified mnemonics are found in Section A.5: Simplified mnemonics
that incorporate the BO32 and BO16 operands. Unusual cases can still be coded using a
standard branch conditional syntax.

The crS operand

The crS symbols are shown in Table 17 Note that either the symbol or the operand value
can be used in the syntax used with the simplified mnemonic.

To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then
added to a bit-number-within-CR-field symbol can be used, (for example, cr0 * 4 + eq).

crn[1] 4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3+ gt

1
5

9

13

33
37

41

45

00
01

10

11

01 01
—

—

—

greater than or floating-point greater than (gt,
fg).

for integer compare instructions:
ra > simm or rb (signed comparison) or ra >
uimm or rb (unsigned comparison).

for floating-point compare instructions: fra >
frb.

crn[2] 4 * cr0 + eq (or eq)
4 * cr1 + eq
4 * cr2 + eq
4 * cr3+ eq

2
6

10

14

34
38

42

46

00
01

10

11

10 10
—

—

—

equal or floating-point equal (eq, fe).
for integer compare instructions: ra = simm,
uimm, or rb.
for floating-point compare instructions: fra =
frb.

crn[3] 4 * cr0 + so/un (or
so/un)
4 * cr1 + so/un
4 * cr2 + so/un
4 * cr3 + so/un

3

7
11

15

35

39
43

47

00

01
10

11

11 11

—
—

—

summary overflow or floating-point unordered
(so, fu).
for integer compare instructions, this is a copy
of xer[so] at instruction completion.
for floating-point compare instructions, one or
both of fra and frb is a nan.

Table 16. BI32 and BI16 operand settings for CR fields for branch comparisons (continued)

 crn
bit

bit expression

CR bits bi32 bi16

DescriptionAIM BI

operand
Book E 0–1 2–3 0–1

Table 17. CR field identification symbols

Symbol BI32[0–1] BI16 CR Bits

cr0 (default, can be eliminated from syntax) 00 Implied 32–35

cr1 01 — 36–39

cr2 10 — 40–43

cr3 11 — 44–47

UM0438 Simplified mnemonics for VLE instructions

31/50

A.5 Simplified mnemonics that incorporate the BO32 and BO16
operands
The mnemonics in Table 18 allow common BO32 and BO16 operand encodings to be
specified as part of the mnemonic, along with the set link register bit (LK). There are no
simplified mnemonics for unconditional branches, branch to link register, and branch to
count register. For these, the basic mnemonics e_b, e_bl, se_b, se_bl, se_blr, se_blrl,
se_bctr, and se_bctrl are used.

Table 19 shows the syntax for basic simplified branch mnemonics

The simplified mnemonics in Table 18 that test a condition require a corresponding CR bit
as the first operand (as the examples in Section A.5.1: Examples that eliminate the BO32
and BO16 operands below illustrate). The symbols in Table 17 can be used in place of a
numeric value.

A.5.1 Examples that eliminate the BO32 and BO16 operands

The simplified mnemonics in Table 18 are used in the following examples:

Table 18. Branch simplified mnemonics

Branch semantics
LR Update Not Enabled LR Update Enabled

e_bc se_bc e_bcl

Branch if condition true e_bt se_bt e_btl

Branch if condition false e_bf se_bf e_bfl

Decrement CTR, branch if CTR ≠ 0(1)

1. Simplified mnemonics for branch instructions that do not test CR bits should specify only a target.
Otherwise, a programming error may occur.

e_bdnz — e_bdnzl

Decrement CTR, branch if CTR = 01 e_bdz — e_bdzl

Table 19. Branch instructions

Instruction Standard mnemonic Syntax
Simplified
mnemonic

Syntax

Branch e_b (e_bl)
se_b (se_bl)

target_addr
N/A, syntax does not include BO32 or

BO16

Branch Conditional
e_bc (e_bcl)

se_bc

BO32,BI32,target_add
r

BO16,BI16,target_add
r

e_bx(1) (e_bxl)
se_bx1

BI32(2),target_addr
BI16 2,target_addr

Branch to Link
Register

se_blr (se_blrl) —
N/A, syntax does not include BO32 or

BO16

Branch to Count
Register

se_bctr (se_bctrl) —
N/A, syntax does not include BO32 or

BO16

1. x stands for one of the symbols in Table 14 where applicable.

2. BI32 or BI16 can be a numeric value or an expression as shown in Table 17..

Simplified mnemonics for VLE instructions UM0438

32/50

1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count
loaded into CTR) (note that no CR bits are tested).

e_bdnz target equivalent to e_bc 2,0,target
Because this instruction does not test a CR bit, the simplified mnemonic should specify
only a target operand. Specifying a CR (for example, e_bdnz 0,target or e_bdnz
cr0,target) may be considered a programming error. Subsequent examples test
conditions).

2. Branch if condition in CR0 is equal.
e_bt eq,target equivalent to e_bc 1,2,target
Other equivalents include e_bt 2,target or the unlikely e_bt 4 * cr0 +
eq,target

3. Same as (2), but equal condition is in CR3.
e_bt 4 * cr3 + eq,target equivalent to e_bc 1,14,target
e_bt 14,target would also work

4. Branch if bit 47 of CR is false.
bf 15,target equivalent to e_bc 0,15,target
bf 4 * cr3 + so,target would also work

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 15,target equivalent to bcl 4,15,target

Table 20 lists simplified mnemonics and syntax for e_bc and se_bc without LR updating.

Table 21 provides simplified mnemonics and syntax for e_bcl.

Table 20. Simplified mnemonics for e_bc and se_bc without LR update

Branch semantics e_bc
Simplified
mnemonic

se_bc
Simplified
mnemonic

Branch if condition true
e_bc 1,BI32,target

e_bt BI32,target
(1) se_bc 1,BI16,target se_bt BI16,target

Branch if condition false e_bc 0,BI32,target e_bf BI32,target1 se_bc 0,BI16,target se_bf BI16,target

Decrement CTR, branch if
CTR ≠ 0

e_bc 2,0,target e_bdnz target(2) — —

Decrement CTR, branch if
CTR = 0

e_bc 3,0,target e_bdz target2 — —

1. Instructions for which B032 is either 1 (branch if condition true) or 0 (branch if condition false) do not depend on the CTR
value and can be alternately coded by incorporating the condition specified by the BI32 field, as described in Section A.5.2:
Simplified mnemonics that incorporate CR conditions (eliminates BO32 and BO16 and replaces BI32 with crS)

2. Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise, a
programming error may occur.

Table 21. Simplified mnemonics for e_bcl with LR update

Branch semantics e_bcl
Simplified
mnemonic

Branch if condition true(1) e_bcl 1,BI32,target e_btl BI32,target

Branch if condition false1 e_bcl 0,BI32,target e_bfl BI32,target

UM0438 Simplified mnemonics for VLE instructions

33/50

A.5.2 Simplified mnemonics that incorporate CR conditions (eliminates
BO32 and BO16 and replaces BI32 with crS)

The mnemonics in Table 24 are variations of the branch-if-condition-true (BO32 = 1 or BO16
= 1) and branch-if-condition-false (BO32 = 0 or BO16 = 0) encodings. Because these
instructions do not depend on the CTR, the true/false conditions specified by either BO32 or
BO16 can be combined with the CR test bit specified by the BI32 or BI16 operand to create
a different set of simplified mnemonics that eliminates the BO32 and BO16 operands and
the portion of the BI32 and BI16 operands (BI32[2–3] and BI16[0–1]) that specifies one of
the four possible test bits. However, for simplified mnemonics using the BO32 operand, the
simplified mnemonic cannot specify in which of the four CR fields (CR0–CR3) the test bit
falls, so the BI32 operand is replaced by a crS operand.

The standard codes shown in Table 22 are used for the most common combinations of
branch conditions. For ease of programming, these codes include synonyms; for example,
less than or equal (le) and not greater than (ng) achieve the same result.

Note: A CR field symbol, cr0–cr3, is used as the first operand after the simplified mnemonic. If the
default, CR0, is used, no crS is necessary.

c

Decrement CTR, branch if CTR ≠ 0 e_bcl 2,0,target e_bdnzl target(2)

Decrement CTR, branch if CTR = 0 e_bcl 3,0,target e_bdzl target 2

1. Instructions for which B032 is either 1 (branch if condition true) or 0 (branch if condition false) do not depend on the CTR
value and can be alternately coded by incorporating the condition specified by the BI32 field. See Section A.5.2: Simplified
mnemonics that incorporate CR conditions (eliminates BO32 and BO16 and replaces BI32 with crS)

2. Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise, a
programming error may occur.

Table 21. Simplified mnemonics for e_bcl with LR update (continued)

Branch semantics e_bcl
Simplified
mnemonic

Table 22. Standard coding for branch conditions

Code Description Equivalent Bit Tested

lt Less than — LT

le Less than or equal (equivalent to ng) ng GT

eq Equal — EQ

ge Greater than or equal (equivalent to nl) nl LT

gt Greater than — GT

nl Not less than (equivalent to ge) ge LT

ne Not equal — EQ

ng Not greater than (equivalent to le) le GT

so Summary overflow — SO

ns Not summary overflow — SO

un Unordered (after floating-point comparison) — SO

nu Not unordered (after floating-point comparison) — SO

Simplified mnemonics for VLE instructions UM0438

34/50

Table 23 shows the syntax for simplified branch mnemonics that incorporate CR conditions.
Here, crS replaces a BI32 operand to specify only a CR field (because the specific CR bit
within the field is now part of the simplified mnemonic. Note that the default is CR0; if no crS
is specified, CR0 is used.

m

Table 24 shows the simplified branch mnemonics incorporating conditions.

Instructions using the mnemonics in Table 24 indicate the condition bit, but not the CR field.
If no field is specified, CR0 is used. For 32-bit instruction forms (denoted with the e_ prefix)
the CR field symbols defined in Table 17 (cr0–cr3) are used, as shown in examples of
Section A.5.3: Branch simplified mnemonics that incorporate CR conditions: examples
below. Note that the 16-bit instruction forms (denoted with the se_ prefix) must use CR0.

Table 23. Branch instructions and simplified mnemonics that incorporate CR conditions

Instruction
Standard

mnemonic
Syntax

Simplified
mnemonic

Syntax

Branch e_b (e_bl)
se_b (se_bl)

target_addr —

Branch Conditional e_bc (e_bcl)
se_bc

BO32,BI32,target_addr

BO16,BI16,target_addr

e_bx (1) (e_bxl)
se_bx1

crS(2),target_addr

target_addr

Branch to Link Register se_blr (se_blrl) — —

Branch to Count Register se_bctr (se_bctrl) — —

1. x stands for one of the symbols in Table 22 where applicable.

2. crS can be a numeric value or an expression as shown in Table 17.

Table 24. Simplified mnemonics with comparison conditions

Branch semantics
LR Update Not Enabled LR Update Enabled

e_bc se_bc e_bcl

Branch if less than e_blt se_blt e_bltl

Branch if less than or equal e_ble se_ble e_blel

Branch if equal e_beq se_beq e_beql

Branch if greater than or equal e_bge se_bge e_bgel

Branch if greater than e_bgt se_bgt e_bgtl

Branch if not less than e_bnl se_bnl e_bnll

Branch if not equal e_bne se_bne e_bnel

Branch if not greater than e_bng se_bng e_bngl

Branch if summary overflow e_bso se_bso e_bsol

Branch if not summary overflow e_bns se_bns e_bnsl

Branch if unordered e_bun se_bun e_bunl

Branch if not unordered e_bnu se_bnu e_bnul

UM0438 Simplified mnemonics for VLE instructions

35/50

A.5.3 Branch simplified mnemonics that incorporate CR conditions:
examples

The following examples use the simplified mnemonics shown in Table 24:

1. Branch if CR0 reflects not-equal condition.
e_bne target equivalent to e_bc 0,2,target
se_bne target equivalent to se_bc 0,2,target

2. Same as (1) but condition is in CR3.
e_bne cr3,target equivalent to e_bc 0,14,target

3. Branch if CR2 specifies greater than condition, setting the LR. This is a form of
conditional call.

e_bgtl cr2,target equivalent to e_bcl 1,9,target

A.5.4 Branch simplified mnemonics that incorporate CR conditions: listings

Table 25 shows simplified branch mnemonics and syntax for e_bc and se_bc without LR
updating.

Table 25. Simplified mnemonics for e_bc and se_bc without comparison conditions
or LR updating

Branch semantics e_bc
Simplified
mnemonic

se_bc
Simplified
mnemonic

Branch if less than e_bc
1,BI32(1),target

e_blt crS,target se_bc 1,BI161,target se_blt target

Branch if less than or equal
e_bc

0,BI32(2),target

e_ble crS,target

se_bc 0,BI162,target

se_ble target

Branch if not greater than e_bng
crS,target

se_bng target

Branch if equal e_bc
1,BI32(3),target

e_beq
crS,target

se_bc 1,BI163,target se_beq target

Branch if greater than or
equal e_bc 0,BI321,target

e_bge
crS,target se_bc 0,BI161,target

se_bge target

Branch if not less than e_bnl crS,target se_bnl target

Branch if greater than e_bc 1,BI322,target e_bgt crS,target se_bc 1,BI162,target se_bgt target

Branch if not equal
e_bc 0,BI323,target

e_bne
crS,target

se_bc 0,BI163,target se_bne target

Branch if summary overflow

e_bc
1,BI32(4),target

e_bso
crS,target

se_bc 1,BI164,target

se_bso target

Branch if unordered e_bun
crS,target

se_bun target

Branch if not summary
overflow

e_bc 0,BI324,target

e_bns
crS,target

se_bc 0,BI164,target

se_bns target

Branch if not unordered e_bnu
crS,target

se_bnu target

1. The value in the BI32 or BI16 operand selects CRn[0], the LT bit.

2. The value in the BI32 or BI16 operand selects CRn[1], the GT bit.

Simplified mnemonics for VLE instructions UM0438

36/50

Table 26 shows simplified branch mnemonics and syntax for e_bcl.

A.6 Compare word simplified mnemonics
In compare word instructions, the L operand indicates a word (L = 0) or double-word (L = 1).
Simplified mnemonics in Table 27 eliminate the L operand for word comparisons.

3. The value in the BI32 or BI16 operand selects CRn[2], the EQ bit.

4. The value in the BI32 or BI16 operand selects CRn[3], the SO bit.

Table 26. Simplified mnemonics for e_bcl with comparison conditions and LR
updating

Branch semantics e_bcl Simplified mnemonic

Branch if less than e_bcl 1,BI32(1),target

1. The value in the BI32 operand selects CRn[0], the LT bit.

e_bltl crS,target

Branch if less than or equal
e_bcl 0,BI32(2),target

2. The value in the BI32 operand selects CRn[1], the GT bit.

e_blel crS,target

Branch if not greater than e_bngl crS,target

Branch if equal e_bcl 1,BI32(3),target

3. The value in the BI32 operand selects CRn[2], the EQ bit.

e_beql crS,target

Branch if greater than or equal
e_bcl 0,BI321,target

e_bgel crS,target

Branch if not less than e_bnll crS,target

Branch if greater than e_bcl 1,BI322,target e_bgtl crS,target

Branch if not equal e_bcl 0,BI323,target e_bnel crS,target

Branch if summary overflow
e_bcl 1,BI32(4),target

4. The value in the BI32 operand selects CRn[3], the SO bit.

e_bsol crS,target

Branch if unordered e_bunl crS,target

Branch if not summary overflow
e_bcl 0,BI324,target

e_bnsl crS,target

Branch if not unordered e_bnul crS,target

Table 27. Word compare simplified mnemonics

Operation Simplified mnemonic Equivalent to:

Compare Word Immediate e_cmpwi crD,rA,SIMM e_cmpi crD,rA,SIMM

e_cmpwi cr0,rA,SIMM e_cmp16i rA,SIMM

Compare Word cmpw crD,rA,rB cmp crD,0,rA,rB

Compare Logical Word Immediate e_cmplwi crD,rA,UIMM e_cmpli crD,rA,UIMM

e_cmplwi cr0,rA,UIMM e_cmpl16i rA,UIMM

Compare Logical Word cmplw crD,rA,rB cmpl crD,0,rA,rB

UM0438 Simplified mnemonics for VLE instructions

37/50

As with branch mnemonics, the crD field of a compare instruction can be omitted if CR0 is
used, as shown in examples 1 nd 3 below. Otherwise, the target CR field must be specified
as the first operand. The following examples use word compare mnemonics:

1. Compare rA with immediate value 100 as signed 32-bit integers and place result in
CR0.

e_cmpwi rA,100 equivalent to e_cmp16i rA,100
2. Same as (1), but place results in CR4.

e_cmpwi cr3,rA,100 equivalent to e_cmpi 3,rA,100
3. Compare rA and rB as unsigned 32-bit integers and place result in CR0.

cmplw rA,rB equivalent to cmpl 0,0,rA,rB

A.7 Trap instructions simplified mnemonics
The codes in Table 28 are for the most common combinations of trap conditions.

The mnemonics in Table 29 are variations of trap instructions, with the most useful TO
values represented in the mnemonic rather than specified as a numeric operand.

Table 28. Standard codes for trap instructions

Code Description TO Encoding < > = <U(1)

1. The symbol ‘<U’ indicates an unsigned less-than evaluation is performed.

>U(2)

2. The symbol ‘>U’ indicates an unsigned greater-than evaluation is performed.

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Simplified mnemonics for VLE instructions UM0438

38/50

The following examples use the trap mnemonics shown in Table 29

1. Trap if rA is not equal to rB.
twne rA,rB equivalent to tw 24,rA,rB

2. Trap unconditionally.
trap equivalent to tw 31,0,0

Trap instructions evaluate a trap condition by comparing the contents of rA with the contents
of rB. The comparison results in five conditions that are ANDed with operand TO. If the
result is not 0, the trap exception handler is invoked. See Table 30 for these conditions.

Table 29. Trap simplified mnemonics

Trap semantics tw Register

Trap unconditionally trap

Trap if less than twlt

Trap if less than or equal twle

Trap if equal tweq

Trap if greater than or equal twge

Trap if greater than twgt

Trap if not less than twnl

Trap if not equal twne

Trap if not greater than twng

Trap if logically less than twllt

Trap if logically less than or equal twlle

Trap if logically greater than or equal twlge

Trap if logically greater than twlgt

Trap if logically not less than twlnl

Trap if logically not greater than twlng

Table 30. TO operand Bit Encoding

TO Bit ANDed with condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

UM0438 Simplified mnemonics for VLE instructions

39/50

A.8 Simplified mnemonics for accessing SPRs
The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric
operand. Simplified mnemonics are provided that represent the SPR in the mnemonic rather
than requiring it to be coded as a numeric operand. The pattern for mtspr and mfspr
simplified mnemonics is straightforward: replace the -spr portion of the mnemonic with the
abbreviation for the spr (for example XER, SRR0, or LR), eliminate the SPRN operand,
leaving the source or destination GPR operand, rS or rD.

Following are examples using the SPR simplified mnemonics:

1. Copy the contents of rS to the XER.
mtxer rS equivalent to mtspr 1,rS

2. Copy the contents of the LR to rS.
mflr rD equivalent to mfspr rD,8

3. Copy the contents of rS to the CTR.
mtctr rS equivalent to mtspr 9,rS

The examples above show simplified mnemonics for accessing SPRs defined by the AIM
version of the PowerPC architecture; however, the same formula is used for Book E, EIS,
and implementation-specific SPRs, as shown in the following examples:

1. Copy the contents of rS to CSRR0.
mtcsrr0 rS equivalent to mtspr 58,rS

2. Copy the contents of IVOR0 to rS.
mfivor0 rD equivalent to mfspr rD,400

3. Copy the contents of rS to the MAS1.
mtmas1 rS equivalent to mtspr 625,rS

There are additional simplified mnemonics for accessing SPRGs, which are not all
supported by all assemblers. These mnemonics are shown in Table 31 along with the
equivalent simplified mnemonic using the formula described in this section.

Table 31. Additional simplified mnemonics for Accessing SPRGs

SPR
Move to SPR Move from SPR

Simplified mnemonic Equivalent to Simplified mnemonic Equivalent to

SPRGs mtsprg n,rS
mtspr 272 + n,rS

mfsprg rD,n
mfspr rD,272 + n

mtsprgn,rS mfsprgn rD

Simplified mnemonics for VLE instructions UM0438

40/50

A.9 Recommended simplified mnemonics
This section describes commonly-used operations (such as no-op, load immediate, load
address, move register, and complement register).

A.9.1 No-Op(nop)

Many instructions can be coded in such a way that, effectively, no operation is performed.
Additional mnemonics are provided for the preferred forms of no-op. If an implementation
performs any type of run-time optimization related to no-ops, the preferred forms are the
following:

e_nop equivalent to e_ori 0,0,0
se_nop equivalent to se_or 0,0

A.9.2 Load Address (la)

The la mnemonic permits computing the value of a base-displacement operand, using the
e_add16i instruction that normally requires a separate register and immediate operands.

e_la rD,d(rA) equivalent to e_add16i rD,rA,d
The e_la mnemonic is useful for obtaining the address of a variable specified by name,
allowing the assembler to supply the base register number and compute the displacement.
If the variable V is located at offset dV bytes from the address in rV, and the assembler is
directed to use rV as a base for references to the data structure containing V, the following
line causes the address of V to be loaded into rD:

e_la rD,V equivalent to e_add16i rD,rV,dV

A.9.3 Move Register (mr)

Several instructions can be coded to copy the contents of one register to another. A
simplified mnemonic is provided to signify that no computation is being performed, but
merely that data is being moved from one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded
with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS equivalent to or rA,rS,rS

A.9.4 Complement Register (not)

Several instructions can be coded to complement the contents of one register and place the
result into another register. A simplified mnemonic allows this operation to be coded easily.

The following instruction complements the contents of rS and places the result into rA. This
mnemonic can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying
instruction.

not rA,rS equivalent to nor rA,rS,rS

A.9.5 Move to Condition Register (mtcr)

The mtcr mnemonic permits copying the contents of a GPR to the CR, using the same
syntax as the mfcr instruction.

mtcr rS equivalent to mtcrf 0xFF,rS

UM0438 Simplified mnemonics for VLE instructions

41/50

A.10 EIS-Specific simplified mnemonics
This section describes simplified mnemonics used by auxiliary processing units (APUs)
defined as part of the Book E implementation standards (EIS).

A.10.1 Integer Select (isel)

The following mnemonics simplify the most common variants of the isel instruction that
access CR0:

Integer Select Less Than
isellt rD,rA,rB equivalent to isel rD,rA,rB,0

Integer Select Greater Than
iselgt rD,rA,rB equivalent to isel rD,rA,rB,1

Integer Select Equal
iseleq rD,rA,rB equivalent to isel rD,rA,rB,2

A.11 Comprehensive list of simplified mnemonics
Table 32 lists simplified mnemonics. Note that compiler designers may implement additional
simplified mnemonics not listed here.

Table 32. Simplified mnemonics

Simplified mnemonic Mnemonic Instruction

e_bdnz target(1) e_bc 2,0,target
Decrement CTR, branch if CTR ≠ 0 (e_bc without
LR update)

e_bdnzl target 1 e_bcl 2,0,target
Decrement CTR, branch if CTR ≠ 0 (e_bcl with LR
update)

e_bdz target 1 e_bc 3,0,target
Decrement CTR, branch if CTR = 0 (e_bc without
LR update)

e_bdzl target 1 e_bcl 3,BI32,target
Decrement CTR, branch if CTR = 0 (e_bcl with LR
update)

e_beq crS,target e_bc 1,BI32(2),target Branch if equal (e_bc without LR updating)

se_beq target se_bc 1,BI162,target Branch if equal (se_bc)

e_beql crS,target e_bcl 1,BI32 2,target Branch if equal (e_bcl with LR updating)

e_bf BI32,target e_bc 0,BI32,target
Branch if condition false (3) (e_bc without LR
update)

se_bf BI16,target se_bc 0,BI16,target Branch if condition false3 (se_bc)

e_bfl BI32,target e_bcl 0,BI32,target Branch if condition false 3 (e_bcl with LR update)

e_bge crS,target e_bc 0,BI32(4),target
Branch if greater than or equal (e_bc without LR
updating)

se_bge target se_bc 0,BI164,target Branch if greater than or equal (se_bc)

e_bgel crS,target e_bcl 0,BI324,target
Branch if greater than or equal (e_bcl with LR
updating)

Simplified mnemonics for VLE instructions UM0438

42/50

e_bgt crS,target e_bc 1,BI32(5),target Branch if greater than (e_bc without LR updating)

se_bgt target se_bc 1,BI165,target Branch if greater than (se_bc)

e_bgtl crS,target e_bcl 1,BI325,target Branch if greater than (e_bcl with LR updating)

e_ble crS,target e_bc 0,BI325,target
Branch if less than or equal (e_bc without LR
updating)

se_ble target se_bc 0,BI165,target Branch if less than or equal (se_bc)

e_blel crS,target e_bcl 0,BI325,target
Branch if less than or equal (e_bcl with LR
updating)

e_blt crS,target e_bc 1,BI324,target Branch if less than (e_bc without LR updating)

se_blt target se_bc 1,BI164,target Branch if less than (se_bc)

e_bltl crS,target e_bcl 1,BI324,target Branch if less than (e_bcl with LR updating)

e_bne crS,target e_bc 0,BI323,target Branch if not equal (e_bc without LR updating)

se_bne target se_bc 0,BI163,target Branch if not equal (se_bc)

e_bnel crS,target e_bcl 0,BI323,target Branch if not equal (e_bcl with LR updating)

e_bng crS,target e_bc 0,BI325,target
Branch if not greater than (e_bc without LR
updating)

se_bng target se_bc 0,BI165,target Branch if not greater than (se_bc)

e_bngl crS,target e_bcl 0,BI325,target Branch if not greater than (e_bcl with LR updating)

e_bnl crS,target e_bc 0,BI324,target Branch if not less than (e_bc without LR updating)

se_bnl target se_bc 0,BI164,target Branch if not less than (se_bc)

e_bnll crS,target e_bcl 0,BI324,target Branch if not less than (e_bcl with LR updating)

e_bns crS,target e_bc 0,BI32(6),target
Branch if not summary overflow (e_bc without LR
updating)

se_bns target se_bc 0,BI166,target Branch if not summary overflow (se_bc)

e_bnsl crS,target e_bcl 0,BI326,target
Branch if not summary overflow (e_bcl with LR
updating)

e_bnu crS,target e_bc 0,BI326,target Branch if not unordered (e_bc without LR updating)

se_bnu target se_bc 0,BI166,target Branch if not unordered (se_bc)

e_bnul crS,target e_bcl 0,BI326,target Branch if not unordered (e_bcl with LR updating)

e_bso crS,target e_bc 1,BI326,target
Branch if summary overflow (e_bc without LR
updating)

se_bso target se_bso 1,BI166,target Branch if summary overflow (se_bc)

e_bsol crS,target e_bcl 1,BI326,target
Branch if summary overflow (e_bcl with LR
updating)

e_bt BI32,target e_bc 1,BI32,target Branch if condition true3 (e_bc without LR update)

se_bt BI16,target se_bc 1,BI16,target Branch if condition true3 (se_bc)

e_btl BI32,target e_bcl 1,BI32,target Branch if condition true 3 (e_bcl with LR update)

Table 32. Simplified mnemonics (continued)

Simplified mnemonic Mnemonic Instruction

UM0438 Simplified mnemonics for VLE instructions

43/50

e_bun crS,target e_bc 1,BI326,target Branch if unordered (e_bc without LR updating)

se_bun target se_bc 1,BI166,target Branch if unordered (se_bc)

e_bunl crS,target e_bcl 1,BI326,target Branch if unordered (e_bcl with LR updating)

e_clrlslwi rA,rS,b,n (n ≤ b
≤ 31)

e_rlwinm rA,rS,n,b – n,31 – n
Clear left and shift left word immediate

e_clrlwi rA,rS,n (n < 32) e_rlwinm rA,rS,0,n,31 Clear left word immediate

e_clrrwi rA,rS,n (n < 32) e_rlwinm rA,rS,0,0,31 – n Clear right word immediate

cmplw crD,rA,rB cmpl crD,0,rA,rB Compare logical word

e_cmplwi crD,rA,UIMM e_cmpli crD,rA,UIMM Compare logical word immediate

e_cmplwi cr0,rA,UIMM e_cmpl16i rA,UIMM Compare logical word immediate

cmpw crD,rA,rB cmp crD,0,rA,rB Compare word

e_cmpwi crD,rA,SIMM e_cmpi crD,rA,SIMM Compare word immediate

e_cmpwi cr0,rA,SIMM e_cmp16i rA,SIMM Compare word immediate

e_extlwi rA,rS,n,b (n > 0) e_rlwinm rA,rS,b,0,n – 1 Extract and left justify word immediate

e_extrwi rA,rS,n,b (n > 0) e_rlwinm rA,rS,b + n,32 – n,31 Extract and right justify word immediate

e_inslwi rA,rS,n,b (n > 0)
e_rlwimi rA,rS,32 – b,b,(b + n) –

1
Insert from left word immediate

e_insrwi rA,rS,n,b (n > 0)
e_rlwimi rA,rS,32 – (b + n),b,(b

+ n) – 1
Insert from right word immediate

iseleq rD,rA,rB isel rD,rA,rB,2 Integer Select Equal

iselgt rD,rA,rB isel rD,rA,rB,1 Integer Select Greater Than

isellt rD,rA,rB isel rD,rA,rB,0 Integer Select Less Than

e_la rD,d(rA) e_add16i rD,rA,d Load address

e_nop e_ori 0,0,0 No-op

se_nop se_or 0,0 No-op

not rA,rS nor rA,rS,rS NOT (Complement register)

e_rotlwi rA,rS,n e_rlwinm rA,rS,n,0,31 Rotate left word immediate

e_rotrwi rA,rS,n e_rlwinm rA,rS,32 – n,0,31 Rotate right word immediate

e_slwi rA,rS,n (n < 32) e_rlwinm rA,rS,n,0,31 – n Shift left word immediate

e_srwi rA,rS,n (n < 32) e_rlwinm rA,rS,32 – n,n,31 Shift right word immediate

sub rD,rA,rB subf rD,rB,rA Subtract from

sub. rD,rA,rB subf. rD,rB,rA Subtract from

subo rD,rA,rB subf rD,rB,rA Subtract from

subo. rD,rA,rB subf. rD,rB,rA Subtract from

subc rD,rA,rB subfc rD,rB,rA Subtract from carrying

subc. rD,rA,rB subfc. rD,rB,rA Subtract from carrying

Table 32. Simplified mnemonics (continued)

Simplified mnemonic Mnemonic Instruction

Simplified mnemonics for VLE instructions UM0438

44/50

subco rD,rA,rB subfco rD,rB,rA Subtract from carrying

subco. rD,rA,rB subfco. rD,rB,rA Subtract from carrying

e_sub16i rD,rA,value e_add16i rD,rA,–value Subtract immediate

e_sub2i. rA,value e_add2i. rA,–value Subtract 2 operand immediate and recorded

e_sub2is rA,value e_add2is rA,–value Subtract 2 operand shifted immediate

e_subi rD,rA,value e_addi rD,rA,–value Subtract immediate

e_subic rD,rA,value e_addic rD,rA,–value Subtract immediate carrying

e_subic. rD,rA,value e_addic. rD,rA,–value Subtract immediate carrying

trap tw 31,0,0 Trap unconditionally

tweq rA,rB tw 4,rA,rB Trap if equal

twge rA,rB tw 12,rA,rB Trap if greater than or equal

twgt rA,rB tw 8,rA,rB Trap if greater than

twle rA,rB tw 20,rA,rB Trap if less than or equal

twlge rA,rB tw 12,rA,rB Trap if logically greater than or equal

twlgt rA,rB tw 1,rA,rB Trap if logically greater than

twlle rA,rB tw 6,rA,rB Trap if logically less than or equal

twllt rA,rB tw 2,rA,rB Trap if logically less than

twlng rA,rB tw 6,rA,rB Trap if logically not greater than

twlnl rA,rB tw 5,rA,rB Trap if logically not less than

twlt rA,rB tw 16,rA,rB Trap if less than

twne rA,rB tw 24,rA,rB Trap if not equal

twng rA,rB tw 20,rA,rB Trap if not greater than

twnl rA,rB tw 12,rA,rB Trap if not less than

1. Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may
occur.

2. The value in the BI32 or BI16 operand selects CRn[2], the EQ bit.

3. Instructions for which B032 or BO16 is either 1 (branch if condition true) or 0 (branch if condition false) do not depend on
the CTR value and can be alternately coded by incorporating the condition specified by BI32 or BI16, as described in
Section A.5.2: Simplified mnemonics that incorporate CR conditions (eliminates BO32 and BO16 and replaces BI32 with
crS)

4. The value in the BI32 or BI16 operand selects CRn[0], the LT bit.

5. The value in the BI32 or BI16 operand selects CRn[1], the GT bit.

6. The value in the BI32 or BI16 operand selects CRn[3], the SO bit.

Table 32. Simplified mnemonics (continued)

Simplified mnemonic Mnemonic Instruction

UM0438 Glossary

45/50

Appendix B Glossary

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by the
Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Note that some terms are defined in the context of how they are used in this book.

A

Architecture

A detailed specification of requirements for a processor or computer system. It does not
specify details of how the processor or computer system must be implemented; instead it
provides a template for a family of compatible implementations.

B

Biased exponent

An exponent whose range of values is shifted by a constant (bias). Typically a bias is
provided to allow a range of positive values to express a range that includes both positive
and negative values.

Big-endian

A byte-ordering method in memory where the address n of a word corresponds to the most-
significant byte. In an addressed memory word, the bytes are ordered (left to right) 0, 1, 2, 3,
with 0 being the most-significant byte. See Little-endian.

C

Cache

High-speed memory component containing recently-accessed data and/or instructions
(subset of main memory).

D

Denormalized number

A nonzero floating-point number whose exponent has a reserved value, usually the format's
minimum, and whose explicit or implicit leading significant bit is zero.

E

Effective address (EA)

The 32- or 64-bit address specified for a load, store, or an instruction fetch. This address is
then submitted to the MMU for translation to either a physical memory address or an I/O
address.

Glossary UM0438

46/50

Exponent

In the binary representation of a floating-point number, the exponent is the component that
normally signifies the integer power to which the value two is raised in determining the value
of the represented number. See also Biased exponent.

G

General-purpose register (GPR)

Any of the 32 registers in the general-purpose register file. These registers provide the
source operands and destination results for all integer data manipulation instructions.
Integer load instructions move data from memory to GPRs and store instructions move data
from GPRs to memory.

I

IEEE 754

A standard written by the Institute of Electrical and Electronics Engineers that defines
operations and representations of binary floating-point arithmetic.

Inexact

Loss of accuracy in an arithmetic operation when the rounded result differs from the
infinitely precise value with unbounded range.

L

Least-significant bit (lsb) The bit of least value in an address, register, data element, or
instruction encoding.

Little-endian

A byte-ordering method in memory where the address n of a word corresponds to the least-
significant byte. In an addressed memory word, the bytes are ordered (left to right) 3, 2, 1, 0,
with 3 being the most-significant byte. See Big-endian.

M

Mnemonic

The abbreviated name of an instruction used for coding.

Modulo

A value v which lies outside the range of numbers representable by an n-bit wide destination
type is replaced by the low-order n bits of the two’s complement representation of v.

Most-significant bit (msb)

The highest-order bit in an address, registers, data element, or instruction encoding.

N

NaN

An abbreviation for ‘Not a Number’; a symbolic entity encoded in floating-point format. There
are two types of NaNs—signaling NaNs (SNaNs) and quiet NaNs (QNaNs).

UM0438 Glossary

47/50

Normalization.

A process by which a floating-point value is manipulated such that it can be represented in
the format for the appropriate precision (single- or double-precision). For a floating-point
value to be representable in the single- or double-precision format, the leading implied bit
must be a 1.

O

Overflow

An error condition that occurs during arithmetic operations when the result cannot be stored
accurately in the destination register(s). For example, if two 32-bit numbers are multiplied,
the result may not be representable in 32 bits.

R

Record bit

Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the condition
register (CR) to reflect the result of the operation. Its presence is denoted by a “.” following
the mnemonic.

Reserved field

In a register, a reserved field is one that is not assigned a function. A reserved field may be
a single bit. The handling of reserved bits is implementation-dependent. Software is
permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the
value last written to the bit was 0 and returns an undefined value (0 or 1) otherwise.

RISC (reduced instruction set computing)

An architecture characterized by fixed-length instructions with nonoverlapping functionality
and by a separate set of load and store instructions that perform memory accesses.

S

Saturate

A value v which lies outside the range of numbers representable by a destination type is
replaced by the representable number closest to v.

Signaling NaN

A type of NaN that generates an invalid operation program exception when it is specified as
arithmetic operands. See Quiet NaN.

Significand

The component of a binary floating-point number that consists of an explicit or implicit
leading bit to the left of its implied binary point and a fraction field to the right.

Sticky bit

A bit that when set must be cleared explicitly.

Glossary UM0438

48/50

Supervisor mode

The privileged operation state of a processor. In supervisor mode, software, typically the
operating system, can access all control registers and can access the supervisor memory
space, among other privileged operations.

T

Tiny

A floating-point value that is too small to be represented for a particular precision format,
including denormalized numbers; they do not include ±0.

U

Underflow

An error condition that occurs during arithmetic operations when the result cannot be
represented accurately in the destination register. For example, underflow can happen if two
floating-point fractions are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other words, the result is too small
to be represented accurately.

User mode

The unprivileged operating state of a processor used typically by application software. In
user mode, software can only access certain control registers and can access only user
memory space. No privileged operations can be performed. Also referred to as problem
state.

W

Word

A 32-bit data element.

UM0438 Revision history

49/50

4 Revision history

Table 33. Document revision history

Date Revision Changes

1-July-2007 1 Initial release.

UM0438

50/50

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Preface
	About this book
	Audience
	Organization
	Suggested reading
	Related documentation
	General information
	Conventions
	Terminology conventions
	Table 1. Terminology conventions

	Acronyms and abbreviations
	Table 2. Acronyms and abbreviated terms

	1 Overview
	1.1 Application Binary Interface (ABI)
	1.2 Assembly language interface
	1.3 Simplified mnemonics assembly language interface

	2 Application Binary Interface (ABI)
	2.1 Instruction and data representation
	2.2 Executable and Linking Format (ELF) object files
	2.2.1 VLE information section
	Table 3. Typical Elf note section format
	Table 4. VLE identifier

	2.2.2 VLE identification
	2.2.3 Relocation types
	Table 5. VLE relocation fields
	Table 6. VLE relocation field descriptions
	Table 7. Notation conventions
	Table 8. VLE relocation types
	Table 9. Relocation types with special semantics

	3 Instruction set
	Appendix A Simplified mnemonics for VLE instructions
	A.1 Overview
	A.2 Subtract simplified mnemonics
	A.2.1 Subtract immediate
	Table 10. Subtract immediate simplified mnemonics

	A.2.2 Subtract
	Table 11. Subtract simplified mnemonics

	A.3 Rotate and shift simplified mnemonics
	A.3.1 Operations on words
	Table 12. Word rotate and shift simplified mnemonics

	A.4 Branch instruction simplified mnemonics
	Table 13. Branch instructions
	Figure 1. Branch conditional (e_bc, se_bc) instruction formats
	A.4.1 Key facts about simplified branch mnemonics
	A.4.2 Eliminating the BO32 and BO16 operands
	Table 14. BO32 and BO16 operand encodings

	A.4.3 The BI32 and BI16 operand-CR Bit and field representations
	A.4.4 BI32 and BI16 operand instruction encoding
	Figure 2. BI32 and BI16 fields
	Table 15. CR0 and CR1 fields as updated by integer and floating-point instructions
	Table 16. BI32 and BI16 operand settings for CR fields for branch comparisons
	Table 17. CR field identification symbols

	A.5 Simplified mnemonics that incorporate the BO32 and BO16 operands
	Table 18. Branch simplified mnemonics
	Table 19. Branch instructions
	A.5.1 Examples that eliminate the BO32 and BO16 operands
	Table 20. Simplified mnemonics for e_bc and se_bc without LR update
	Table 21. Simplified mnemonics for e_bcl with LR update

	A.5.2 Simplified mnemonics that incorporate CR conditions (eliminates BO32 and BO16 and replaces BI32 with crS)
	Table 22. Standard coding for branch conditions
	Table 23. Branch instructions and simplified mnemonics that incorporate CR conditions
	Table 24. Simplified mnemonics with comparison conditions

	A.5.3 Branch simplified mnemonics that incorporate CR conditions: examples
	A.5.4 Branch simplified mnemonics that incorporate CR conditions: listings
	Table 25. Simplified mnemonics for e_bc and se_bc without comparison conditions or LR updating
	Table 26. Simplified mnemonics for e_bcl with comparison conditions and LR updating

	A.6 Compare word simplified mnemonics
	Table 27. Word compare simplified mnemonics

	A.7 Trap instructions simplified mnemonics
	Table 28. Standard codes for trap instructions
	Table 29. Trap simplified mnemonics
	Table 30. TO operand Bit Encoding

	A.8 Simplified mnemonics for accessing SPRs
	Table 31. Additional simplified mnemonics for Accessing SPRGs

	A.9 Recommended simplified mnemonics
	A.9.1 No-Op(nop)
	A.9.2 Load Address (la)
	A.9.3 Move Register (mr)
	A.9.4 Complement Register (not)
	A.9.5 Move to Condition Register (mtcr)

	A.10 EIS-Specific simplified mnemonics
	A.10.1 Integer Select (isel)

	A.11 Comprehensive list of simplified mnemonics
	Table 32. Simplified mnemonics

	Appendix B Glossary
	A
	B
	C
	D
	E
	G
	I
	L
	M
	N
	O
	R
	S
	T
	U
	W

	4 Revision history
	Table 33. Document revision history

