‘— UM1819
,’ life.augmented User manual

Demonstration firmware for STM32091C-EVAL board

Introduction

The STM32CubeF0 Demonstration comes on top of the STM32Cube™ as a firmware
package that offers a full set of software components based on a modules architecture
allowing re-using them separately in standalone applications. All these modules are
managed by the STM32Cube™ Demonstration kernel allowing to dynamically adding new
modules and access to common resources (storage, graphical and components).

The STM32CubeF0 Demonstration is built on the light kernel and on services provided by
BSP, components, based on the STM32Cube™ HAL, using almost the whole STM32
capability to offer a large scope of usages.

Figure 1. STM32091C-Evaluation board

EEEn _ TR S

oo T 3t
e I ol o
Femmon olidipgiin:

:

=54 STM32001C-EVAL
81189 ﬁev;B : p

751

12 TPI3

A/

e
24
@
2

90006Z¢1L2
£0-D S/IS688N

October 2014 DoclD026947 Rev 1 1/43

www.st.com

http://www.st.com

Contents umMm1819

Contents
1 Demonstration description i i iiiiiaaa, 6
1.1 Demonstration folder organization 6
1.2 Demonstration Architecture overview L. 7
2 Demonstration functional description 9
2.1 MEeNU .. 9
2.2 Demostartup e 11
2.3 Navigation 13
24 Modules e 13
241 Thermometer 13
242 BXUART . e 14
243 Low power organization i 15
244 ADOUL . e 20
245 File Browser e 21
246 Image viewer 22
3 Hardware settings i i it e i iennns 23
4 Software settings i 25
4.1 Clock Control 25
4.2 Peripherals e 25
4.3 Media files 25
4.4 Programming the demonstration 26
441 Using Binaryfile 26
442 Using preconfigured projects 26
5 Software description 27
5.1 Application 27
5.2 Application startup overview 27
53 Kernel 28
5.31 OVeIVIEW . . e 28
5.3.2 Kodemo 29
5.3.3 K mMeNU ..o 29

2/43 DocID026947 Rev 1 ‘Yl

UM1819 Contents
534 Komodule 30

535 K Storage 30

5.3.6 K t0O0IS . .o e 31

5.3.7 KIWINdow 31

5.3.8 Memory management 31

54 Module 32

5.5 Module control 32

5.5.1 K _Moduleltem_Typedef 32

5.5.2 kModulePreExec & kModulePostExec 33

5.5.3 KModuleExec e 34

554 kModuleRessourceCheck 34

5.6 Graphicalaspect 35

5.6.1 The structuretMenu 35

5.6.2 The structure tMenultem 35

5.6.3 Menu Architecture 35

5.7 Functionality e 36

5.8 Addinganewmodule 37

59 Middleware (FatFS) i 37

6 Footprint i it e e s 39
6.1 Kernel footprint 39

6.2 Module footprint 39

6.3 HAL footprint 40

6.4 BSP footprint 40

6.5 BSP components footprint 41

6.6 Third party footprint e 41

7 Revision history 42
m DoclD026947 Rev 1 3/43

List of tables umMm1819

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.

4/43

Default jumper's configuration e 24
Peripherals 25
Function Description. 27
Files kernel [isto e 28
K _demo_Start function description. 29
K_menu function description e 29
K_module function description 30
K_Storage function Description e 31
K _tools function description e 31
K_Window function description. e 31
K Moduleltem_Typedef 32
tMenu structure. 35
tMenultem structure e 35
APIs functions description e 37
Software CoNsUMPLION e 39
Kernel footprint consumption e 39
Module footprint consumption. e 39
HAL footprint consumption 40
BSP footprint consumption e 41
BSP components footprint consumption. 41
Third party footprint consumption. e 41
Document revision history 42

3

DoclD026947 Rev 1

UM1819

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

3

STM32091C-Evaluationboard 1
Demonstration folder organization 6
Demonstration Architecture overview. 7
Demonstration main menu 9
Structure of the demonstration menus 10
SD card detection ITOr. 11
SD card resource Error. 11
ST LOg0 . oot e 12
Demonstration main menu 12
Temperature display 13
BXUARTSs loopback. 14
LOW POWEI MENU . . .ttt e et e e e e e e e e e 15
Stop mode entered with EXT1. 16
Settingwakeup time 16
Stop mode entered, wait RTC alarm i, 17
Standby mode entered, press JOY _seltoexit&reset............................ 18
Standby mode started, wait RTC alarm 19
AboUut MenU 20
File browser display 21
STM32091C_EVAL board e e e 23
SD Card directory organization. 25
Application startup overview 28
K_menu execution flow. 30
kModulePreExec example: 33
kModulePostExec example: 33
KModule example:. 34
KModuleRessourceChecK.t e e e 34
menu architecture inside amodule 36

DoclD026947 Rev 1 5/43

Demonstration description

UM1819

1.1

6/43

Demonstration description

The demonstration has been designed with three main objectives:

e Toolkit with low memory consumption.

e Modular applications: independents with high level of reuse.

e Basic menu navigation through joystick.

Demonstration folder organization

Figure 2. Demonstration folder organization

4 | Firmware
_htmresc
Documentation
J Drivers
Middlewares
4 Projects
, STM32F030RE-Mucleo
> STM32F072B-Discovery
> STM32F072RB-Mucleo
> STM32F091RC-Mucleo
. STM32F0308-Discovery
) STM32072B_EVAL
4 STM32091C_EVAL
Applications
4 . Demcnstrations
Binary
. Config
> i Core
> Demo
, EWARM
MDK-ARM
4 Modules
Buart
filebrowser
/| imagebrowser
lowpower
main_app
| thermometer
50 _card
TrueSTUDIO
Examples
, Templates
> WINZ2
Utilities

DoclD026947 Rev 1

3

UmM1819 Demonstration description

The demonstration sources are located in the “Projects” folder of the STM32Cube package
for each supported board, here in STM32091C_EVAL folder. The sources are divided into
five groups described as follows:

e Binary: demonstration binary file in Hex format

e Config: all middleware’s components and HAL configuration files
e Core: contains the kernel files

o Demo: contains startup files

e Modules: contains user modules including the graphical aspect and the modules
functionalities.

e SD_card: resource files required by the demo that should be present in SD card

e Project settings: a folder per tool chain containing the project settings and the linker
files.

1.2 Demonstration Architecture overview

Figure 3. Demonstration Architecture overview

Module

Middleware
FatFS

STM32Cube HAL & BSP
(Hardware Abstraction Layer)

3

DoclD026947 Rev 1 7/43

Demonstration description um1819

8/43

The STM32CubeF0 Demonstration is composed of:

e Application: in charge to initialize kernel, HAL, interrupt handler and launch the main
module

e Kernel: module scheduler and services provider (popup, files system, ...)
e Module: graphical aspect and application execution

e Middleware: Only FATFS used

e STM32Cube HAL & BSP: provide access to HW and external component

3

DoclD026947 Rev 1

UmM1819 Demonstration functional description

2 Demonstration functional description

21 Menu

The purpose of the demonstration is to bring out the capabilities of microcontroller and
Evaluation board peripherals. It runs only on the STM32091C_EVAL board. The
demonstration contains the following applications. (Refer to Figure 4)

Figure 4. Demonstration main menu

Images Viewer

. —

—N UART

3

The UP, DOWN, RIGHT and LEFT joystick directions allow the user to navigate between
items in the main menu and the submenus.

To enter a submenu, press the SEL push-button.

The SEL push-button designates the action of vertically pressing the top of the joystick, as
opposed to moving it horizontally UP, DOWN, RIGHT or LEFT.

DoclD026947 Rev 1 9/43

3

Demonstration functional description um1819

Figure 5. Structure of the demonstration menus

j<>
V = —

4
=

1 Y) Image display

]

P 2 | v 1
A T 73.4°F exit [
Exit: EXTI J

. Exit RTCAIarml

Il Exit: Wakeup pinl
Exit: RTC Alarm

—» STOPmode[> >

IS 7

.augmented

STANDBY
mode

-
L1

Joystick
UpP

DOWN

—> return

File selection
browsing

S ra—

Browser display|

Y
5 \ 4 ,

Demo
Main menu

MSv357058V1

3

10/43 DoclD026947 Rev 1

UmM1819 Demonstration functional description

2.2 Demo startup

After a board reset, at demo startup, the system checks if a SD card memory is present in
connector CN8. If no card is detected, the demo does not start and the message shown in
Figure 6 is displayed on the LCD screen.

Figure 6. SD card detection error

The demo continues only if an SD card is inserted.

Then, each module will check if all needed graphic icons & bitmap files are present on SD
card. If some resources are missing, the below message appears on the screen, and the
demo does not continue.

Figure 7. SD card resource Error

3

DoclD026947 Rev 1 11/43

Demonstration functional description um1819

If all needed files are well present in SD Card memory, STM32091C_EVAL welcome screen
is displayed and ST logo appears on LCD (see Figure 8).

Figure 8. ST Logo

STM32081C-EVAL
DEMONSTRATION

12.qugmented

Finally, the main menu is displayed as shown in Figure 9, and user can start enjoying

applications.
Figure 9. Demonstration main menu
Images Viewer
Note: Some icons shown in Figure 9 are taken from wikimedia

Once a submenu has been pre-selected, the associated icon is highlighted in blue color, the
name of the module is displayed at the top of the screen.

12/43 DocID026947 Rev 1 ‘Yl

UmM1819 Demonstration functional description

2.3 Navigation

The demonstration menu is based on circular navigation, submenu selection, item selection
and back navigation.

User navigates using joystick push-button located on evaluation board: RIGHT, LEFT, SEL,
UP and DOWN.

e UP, DOWN, RIGHT and LEFT push-buttons are used to perform circular navigation in
main menu and current menu items.

e SEL push-button selects the current item.
e UP and DOWN push-buttons are used for vertical navigation in submenus.

2.4 Modules

The following section provides a detailed description of each module of demonstration.

241 Thermometer

Overview

The STM32F091VCT6 microcontroller has two embedded 12C peripherals that can be
connected to any device supporting the 12C protocol. A STLM75 (or a compatible device)
12C temperature sensor is mounted on the STM32091C-EVAL board and used to capture
the external temperature (-55°C to +125°C). Once Temperature submenu has been
selected by pressing SEL push-button, temperature value is displayed in Celsius and
Fahrenheit as shown in Figure 10.

Figure 10. Temperature display

Temperature (LM75)

Press down to

Press DOWN key to return to the main menu.

3

DoclD026947 Rev 1 13/43

Demonstration functional description um1819

2.4.2 8xXUART

Overview

This module intends to demonstrate the new capability of the STM32F091VCT®6, to ensure
Data buffer transmission and reception over 8 UARTS.

Hardware configuration
STM32091C_EVAL board is equipped with a new CN1 header for all UART Tx/Rx.

Before running this application, user shall ensure that all UARTs are chained together
thanks to jumpers plugged on dedicated connector CN1.

Also, jumper JP1 should be fitted in position 2<->3 in order to route (UART1Rx) PA10 to
CN1.

Functional description

In this module, a transmit Buffer is predefined with a 180 chars string, that will be
transmitted/received in loop by packet of 18 data through all 8 UARTS.

User will be able to monitor the number of packets transmitted/received on each UART, and
the number of full transfer loops achieved.

Figure 11. 8xUARTSs loopback

gUarts application

A1l jumpers c¢losed on CHL
Jpl fitted in pos EXT RX

Part— ¢ % &

Press down to exit

Press DOWN key to return to the main menu.

Note: In case one of the jumpers on CN1 is removed during the loopback test, the packet
transmission/reception will be stopped.

3

14/43 DoclD026947 Rev 1

UmM1819 Demonstration functional description

243 Low power organization

Overview

STM32F091VCT6 microcontroller provides different operating modes in which the power
consumption is reduced. The purpose of this menu is to show the behavior of
microcontroller in different low-power modes. The Stop and Standby modes are taken as
examples.

Figure 12. Low power menu

Low power

le
&

RETURN

Functional description:

STOP mode

This menu allows user to put STM32F091VCT6 in STOP mode with Low power regulator
ON and wake it up in two different ways:

1. Tamper button configured as External Interrupt (WFI)

— Press JOY_SEL to enter STOP mode. When the MCU is in Stop mode, the
message shown in Figure 13 is displayed on the LCD.

DoclD026947 Rev 1 15/43

3

Demonstration functional description um1819

16/43

Figure 13. Stop mode entered with EXTI

stop mode
started

press tamper
Lo exit

MCU remains in Stop mode until Tamper push-button is pressed. System clock is then set to
48 MHz and the application resumes execution.

2. RTC Alarm (WFE)

— When selecting this submenu, user has to set alarm delay when MCU has to exit
from Stop mode. Figure 14 shows how to set the wakeup time, using JOY_UP,
JOY_DOWN, JOY_LEFT, JOY_RIGHT.

Figure 14. Setting wakeup time

—STOP Aiarme

00:00:15

— Wakeup time is validated after a press on JOY_SEL, and MCU enters then in
STOP mode.

DocID026947 Rev 1 ‘Yl

UmM1819 Demonstration functional description

Figure 15. Stop mode entered, wait RTC alarm

RTC Alarm wakes up MCU from Stop mode after programmed time has elapsed.

The system clock is then restored to 48 MHz and application resumes execution.

STANDBY mode

This menu allows user to put STM32F091VCT6 in Standby mode, and wake it up in two
different ways:
1. JOY_SEL button configured as Wake-up pin

— Wakeup push-button is used to wake up the MCU from the Standby mode. Once
the Standby mode> EXIT Wakeup submenu has been selected, user shall then
press SEL push-button to allow the system entering Standby mode.

DoclD026947 Rev 1 17/43

3

Demonstration functional description um1819

Figure 16. Standby mode entered, press JOY_sel to exit & reset

standby mode
started
walt alarm
to exit
and reset

MCU remains in Standby mode until Wakeup push-button is pressed. Once the Wakeup
push-button has been pressed, MCU exits Standby mode and program execution resets.

2. RTC Alarm

— When selecting this submenu, user has to set alarm delay when MCU has to exit
from Standby mode.

— RTC Alarm wakes up the MCU from the Standby mode after the programmed time
has elapsed. When selecting this submenu, the user has to set the alarm to the
time when the MCU has to exit from Standby mode.

— User can set the wakeup time, using JOY_UP, JOY_DOWN, JOY_LEFT,

JOY_RIGHT. Once Wakeup time is validated with a press on JOY_SEL, MCU
enters then in STANDBY mode.

3

18/43 DoclD026947 Rev 1

UmM1819 Demonstration functional description

Figure 17. Standby mode started, wait RTC alarm

After the programmed timing has elapsed, the system exits the Standby mode and program
execution resets.

3

DoclD026947 Rev 1 19/43

Demonstration functional description

UM1819

244

20/43

About

Overview

This submenu shows version & date of STM32091C_EVAL demo firmware. When“About
menu” is selected, the message shown in Figure 18 is displayed on the LCD screen.

Figure 18. About menu

Version 1.1.
03 - October —

MCD Application Team
COPYRIGHT 2014
STMicroelectronics

Press DOWN key to return to the main menu.

DoclD026947 Rev 1

3

UM1819

Demonstration functional description

245

3

File Browser

Overview

File browser module is a system module that allows exploring the folder “USER” from
connected storage unit(s) — here SD card. It allows user to display file information and
browse sub-directories. The file list structure is built during the media connection.

Figure 19. File browser display

Functional description

File browser is light and allows basic file system operations like: explore folder, file
information. Others operations like file deletion or opening supported extension file are not
supported.

Pressing UP/DOWN joystick allows user to browse files and sub- directories. When sub-
directory is selected (highlighted in green), user can enter it by pressing joy selector.
Pressing joystick LEFT, allows to go up in File System structure or go back to main menu, if
already in root directory.

DoclD026947 Rev 1 21/43

Demonstration functional description UM1819

2.4.6

22/43

Image viewer

Overview

Image viewer module allows to retrieve BMP images stored on SD card & to display them in
full screen on the LCD.

When Image viewer is selected, a first image is displayed on the screen. User can then use
RIGHT or LEFT push-button to view next/previous image stored on SD card.

This application reads all bitmap pictures from USER directory (see Section 4.4:
Programming the demonstration) and displays only the BMP files having the following
format:

e Bit depth: 16 bits (RGB)
e Size: 240x320

Press DOWN or UP push-button to return to main menu.

3

DoclD026947 Rev 1

UM1819 Hardware settings

3 Hardware settings

The STM32Cube demonstration supports STM32F091xC device and runs on
STM32091C_EVAL board from STMicroelectronics.

Figure 20. STM32091C_EVAL board

INTERFACE
EEPAON

32091C-EVAL

MB1169 Rev.B

-— 151

e 0o @ .
E:DVGCHLW }D,S
ANT7-M24LR-A i
N " " bey
e | IPTEXT_RX
siwibag oy -
/= | =

RE
=3
Ra
&G
So
2

«

ABCchanne || pco

For the STM32091C-EVAL board the following default jumper’s configuration is used.

DoclD026947 Rev 1 23/43

3

Hardware settings

UM1819

24/43

Table 1. Default jumper’s configuration

Jumper Position description
JP18 Not fitted
JP17 fitted: Speaker amplifier enabled
JP15 Only STk is fitted to power the board from USB or ST-LINK/V2-1
JP14 <1-2>: Mono playback enabled
JP13 RS232 fi.tted.: R$232_RX is connected to RS232 transceiver and RS232
communication is enabled
JP12 fitted
JP11 Not fitted
JP10 <1-2>: VDDIO2 connected to 3.3V
JP9 <2-3>
JP8 fitted
JP7 <1-2>: VBat pin connected to VDD
JP6 fitted
JP5 <1-2>
JP4 Not fitted
JP3 <1-2>: CAN receiver working in high-speed mode
JP2 Not fitted
JP1 <2-3> (used for USARTX look-back test)
CN1 All jumpers should be fitted

DoclD026947 Rev 1

3

UM1819 Software settings

4 Software settings

4.1 Clock Control

STM32F091VCT6 internal clocks are derived from the HSE (clocked by the external 8 MHz
crystal).

In this demo application, the various system clocks are configured as follows:
e System clock is set to 48 MHz: the PLL is used as the system clock source.
e HCLK frequency is set to 48 MHz.

Only the RTC is clocked by a 32 kHz external oscillator.

4.2 Peripherals

All used peripherals are described in Table 2

Table 2. Peripherals

Used peripherals Application/Module
12C1 Temperature sensor
EXTI Meny ngvigation + joystick + push-button + low power mode + audio +
Applications
GPIO All Applications
PWR Low power modes application
RCC All Applications + Demo kernel
RTC Low power mode application
SPI Color LCD + SD card
UART 8XUART application

4.3 Media files

STM32091C_EVAL board comes with a MicroSD card memory preprogrammed with Image
resources, txt files and directories tree used by demonstration FW. However, you can load
your own image (*.bmp) files in the USER directory, assuming that file formats are
supported by the demonstration.

Figure 21. SD Card directory organization

STFILES e——) Demo mandatory files
LISER e——) USER files
L] STM32.TXT
‘Yl DoclD026947 Rev 1 25/43

Software settings UM1819

4.4 Programming the demonstration

User can program the demonstration using two methods:

4.4.1 Using Binary file

To program demonstration’s binary image into the internal Flash memory, you have to use
the STM32CubeF0_Demo_STM32091C_EVAL.hex file located under Project\STM32091C-
EVAL\Binary.

4.4.2 Using preconfigured projects
Select the folder corresponding to your preferred toolchain (MDK-ARM, EWARM or
TrueSTUDIO).
e Open STM32F091C-EVAL_Demo project and rebuild all sources.
e Load the project image through your debugger.
e Restart the evaluation board (press B1: reset button).

3

26/43 DoclD026947 Rev 1

UM1819 Software description

5 Software description

Following sections will describe in details:

e Application: in charge to initialize kernel, HAL, interrupt handler and launch the main
module

e Kernel: module scheduler and services provider (popup, files system, ...)
e Module: graphical aspect and application execution
e Middleware: Only FATFS used

5.1 Application

The application goal is to prepare demonstration startup, by initializing all the HW/SW
before the main module execution (first action done by the kernel is to run a default module
ID, please refer to chapter k_demo for more detail). Table below provides a description of all
the actions performed by the different functions.

Table 3. Function Description

Functions (Main.c) Descriptions

initialize the HAL, configure the clock and start

Main the demonstration

kModule_Init Initialize the kModule with all the modules
Initialize the LCD, check SD state, initialize

kDemo_Initialization FatFs, display the startup window, initialize the
module and check the modules resources

kDemo_Unlnitialization Implemented however performs no action

According the PIN id forward SD detection or

HAL_GPIO_EXTI_Callback Joystick event to kernel

The file “stm32f0xx_it.c” is also part of the application and is used, as usual, to map the
interrupt vector on the driver HAL driver, depending on the module requirement.

5.2 Application startup overview

The following graph summarizes the application startup until the kernel takes the lead.

3

DoclD026947 Rev 1 27143

Software description UM1819

Figure 22. Application startup overview

HAL_Init

Clock_Init
KDemo_Start

KDemo_Initialize

LCD init
KStorage_Initialize

Display STDemo window

KModulelnit to add all modules used

YATRTIARTAYL

KDemo_Initialize complete

kModule_Execute(MODULE_MAIN_APP)

- - Y- ___ Y ____ Y _________

At this stage of the demonstration, main menu is ﬁ

displayed and kernel handles the menu navigation ¢
|

kMenu_Execute(MainMenu)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
KMEnu_Init \
|
|
|
:
-1
|

MSv357074V1

5.3 Kernel

5.31 Overview

The goal of demonstration kernel is mainly to provide a generic platform that controls and
monitors all the modules with minimum memory consumption. The kernel provides also a
set of friendly services that simplifies module’s implementation. Table below provides files
kernel list with a short description.

Table 4. Files kernel list

Kernel Description
K_demo Initialize the demo
K_menu Handle the menu navigation and functionality execution
K_module Initialize the module
K_storage Provide a set of function around the storage
K_tools Provide a set of function tools
K_window Provide a set of function to display a popup window
28/43 DoclD026947 Rev 1 "_l

UM1819 Software description

5.3.2 K_demo

The function “Kdemo_Start” is executed by the application to launch modules scheduling
and the kernel starts by running the module with “ID=MODULE_MAIN_APP”. To keep the
kernel independent with the HW/SW, functions KDemo _initialization and
KDemo_Unlnitialization are defined on application side and called by kDemo_Start (see
application chapter for details about these functions)

Table 5. K_demo_Start function description

Function Description
KDemo_ Initialization Initialize the demo (function defined on application side)
kDemo_Unlnitialization Initialize the demo (function defined on application side)
kDemo_Start Start the demo (Initialize, Run, Unlnitialize, Exit)
kDemo_Execute Initialize kMenu and execute the module “MODULE_MAIN_APP”

5.3.3 K_menu

The module execution is started by a call to the function kMenu_Execute. This kernel
function handles the menu navigation and the execution functionalities (thanks to the
structure t_menu defined inside the module).

Table 6. K_menu function description

Function Description
kMenu_Init Initialize the joystick
kMenu_EventHandler GPIO Event handler
KMenu_Execute Function to execute a menu
kMenu_Header Function to display header information
kMenu_HandleSelectionExecute The function handle the menu navigation

The Graph below shows the execution flow for a menu:

3

DoclD026947 Rev 1 29/43

Software description UM1819

Figure 23. K_menu execution flow

return upper menu or exit the module

| Main menu ! !
—p L p |
I I I
| | |
: Swith menu type : :
| TYPE_ICON | !
|] |
: TYPE_TEXT : display icon or text menu :
: | waint for a user event :
| | |
| | ¢
| TYPE_EXEC 1 |
| N : . | Handle the menu
: return module : execute module functionality : e
PR — N | navigation
: Swith | : user selection :
: SubMenu with user se h !
I I I
| SEL_SUBMENU | |
I I I
: : :
Exec Module | SEL_MODULE ! !
L /1
| | |
| SEL_EXEC ! !
| |
: return current menu D execute module functionality :
I I
| | |
| SEL_EXIT ! !
| | |
| | |
< | |
| | |
| | |

MSv357075V1

5.3.4 K_module

Table 7. K_module function description

Function Description
kModule_Init Defined on application side
kModule_Add Add module inside the module list
kModule_CheckRessource Check the module resource
kModule_Execute Execute the module

This kernel part centralizes information about all modules available inside demonstration fw;
Function kModule_Init (defined on application side) aims to register all the modules present
whit the help of function kModule_Init (thanks to the structure K_Moduleltem_Typedef
defined inside the module).

5.3.5 K_Storage

The K_Storage handles only the SD card storage and provides some services to simplify the
modules development.

30/43 DocID026947 Rev 1 ‘Yl

UM1819 Software description
Table 8. K_Storage function Description
Function Description
kStorage_Init Mount the SD card file system
kStorage_Delnit Unmount the file system
kStorage_GetStatus Return SD card presence
KStorage_GetDirectoryFiles Return the name of the file present inside a
directory
kStorage_FileExist Check if a file exist
kStorage_GetFilelnfo Return file information
KStorage_OpenFileDrawBMP Open a bmp file and display it (only file of 8ko
max)
kStorage_OpenFileDrawPixel Open a bmp file and display it line by line
kStorage_GetExt Return the file extension
5.3.6 K_tools
The K_Tools provides tools for module development.
Table 9. K_tools function description
Function Description
kTools_Buffercmp Return 0 if the both buffers are identical
5.3.7 K_Window
The k_Window provides services to display popup window without user event management
(must be handled outside, for example inside the module).
Table 10. K_Window function description
Function Description
kWindow_Popup Display a popup
kWindow_Error Display a red popup with an error message
5.3.8 Memory management

3

Nothing specific to optimize the memory management, only two recommendations:

e kernel is recursive, so the stack allocation must be aligned with the deep of the
modules chains.

e Each module allocates memory, for optimization purpose the allocation must be done
on the heap (kModulePreExec allocate and kModulePreExec release the memory)

DoclD026947 Rev 1 31/43

Software description

UM1819

5.4

5.5

5.5.1

32/43

The demonstration is currently using:
— CSTACK = 0x1800
- HEAP =0x3000

Module

A module is an autonomous application that can run directly from the launcher or from
another module. The module contains two main parts:

e Module control: the kernel used this part to handle the display and interact with the

end-user.

e Functionalities: execution function(s)

Module control

K_Moduleltem_Typedef

This structure is equivalent to a main function for the module:

Table 11. K_Moduleltem_Typedef

File code[Byte]
kModuleld Unique ID module (defined inside k_config.h)
kModulePreExec the function is used to allocate memory or to execute any specific

action before the module execution (this function is optional)

kModuleExec

Entry point used to start the main menu of the module

kModulePostExec

The function is used to release the resource allocation done inside
kModulePreExec (this function is optional)

kModuleRessouceCheck

Function used to control if the resource of the module are available
(this function is optional)

3

DoclD026947 Rev 1

UM1819

Software description

5.5.2

3

kModulePreExec & kModulePostExec

Both functions are optional and used mainly for memory optimization (memory allocated

only when the module is running)

Figure 24. kModulePreExec example:

118] /*=*

120 * [@brief setup the HW/Memory for the & uart application
121 * @param None.

122 * [@note et the memecry + Hw initialisation.
123 * @retval None.

124 - *f

125 EMODULE RETUBN HuitUartConfig(wvoid)

126 [H {

127 uintf t index;

128

1235 /* Memory allocation for the example */

130 for(index = 0; index « USART INDEX MAX; indext++)

131 [I
132 aRxBuffer[index]

malloc{sizeoi (uintd t) *BUFFER_S5IZE);

Figure 25. kModulePostExec example:

196 [0 /*+

1497 * [@brief unsetup the HW for the & uart application
138 * [@param None.

1939 * @note reset the memeory + Hw initialisation.
200 * @retval None.

201 - *7

202 EMCODULE RETUEN HuitUartUnConfig(woid)

203 [[

204 uintd_t index;

205

208 f* free the memory allocated */

207 /* Memory allocation for the example */

208 for(index = 0; index « USZRT INDEX MRX; indext++)
2049

-
210 ﬁ] free (aBxBuffer[index]);

DoclD026947 Rev 1

33/43

Software description UM1819

5.5.3 kModuleExec

This function is mainly used to execute the module and start the menu execution of the

modules.
Figure 26. kModule example:
229 L:_| L
230 * @brief BRun the & uart application
231 * [@param HNone.
232 * [@note run and display information about the uart transaction.
233 * [@retval Hone.
234 - *f
235 EMODULE RETUEN HuitUartExec (void)
236 1 I
237 /* Prepare the main MMI */
238 BSF_LCD Clear({LCD COLOR WHITE):
239 kMenu_Execute (HuitUartMenu);
240
241 /* Execute the app Suart */
242 S* Bpp initialization *f
243 return EMODULE OK:
244 - 1

5.5.4 kModuleRessourceCheck

The function is used to control if resources are available: for example control if bmp file are
well present on the SD card.

Figure 27. kModuleRessourceCheck

125
126
127
128
129
130
131
132
133
134
135
136
137
138
135
140
141
142
143

124 [s**

*# [@brief check the main application ressources
* [Eparam HNone.
* inote None.
* @retval None.
* __.f
EMODULE RETURN AppMainExecCheckRessource ()
i

uintd_t index;

/* check icon menu */
for{index = J; index < countof(MainMenultems):; index++)
{
if (kStorage FileExist (MainMenultems[index].pIconPath) != KSTORAGE NOERROR)
{
return EMODULE ERROR TCON;
1

1
return EMODULE OK;

34/43

DoclD026947 Rev 1

3

UM1819 Software description
5.6 Graphical aspect
The graphical aspect consists in describing, inside structure, the menu architecture.
5.6.1 The structure tMenu
This structure is the main entry point used by function kMenuExecute, to display the module
MMI and execute the functionalities.
Table 12. tMenu structure
File code[Byte]
pszTitle Menu title
psltems Pointer on the menu data
nltems Number of entry inside menu data pointer
nType Menu Type:
TYPE_ICON, TYPE_TEXT, TYPE_EXEC
line In case of icon, number of icon line
column In case of icon, number of icon column
5.6.2 The structure tMenultem
This structure is the menu item description
Table 13. tMenultem structure
File code[Byte]
pszTitle Menu title
X,y Icon position on the screen
Type de selection
SEL_EXEC: execute a functionality
SelType SEL_SUBMENU: select a sub menu
SEL_EXIT: exit the current menu and return to previous menu or module
SEL_MODULE: execute a module
Moduleld Module ID
pfExecFunc Function to execute
pfActionFunc Callback used to capture the user feedback
psSubMenu Pointer on a submenu
5.6.3 Menu Architecture

3

The figure below shows an example of a basic menu structure with the use of two modules:

. The module “Main” is built with two levels of menu and three functionalities. The level
main is an “ICON” menu which can execute another module, execute the function1 or

DoclD026947 Rev 1

35/43

Software description UM1819

display a sub “TEXT". This submenu can execute functionsub1, functionsub2 or go
back on “Main” Menu.

e The module “App1”is a “TEXT” with 2 embedded functionalities function1, function2.

Figure 28. menu architecture inside a module

Module Main
tMenuMain:
TYPE_ICON [
TMenultemMain
[SEL_MODULE, MODULE_APP 1
[SEL_EXEC, function1 |
[SEL_SUB_MENU i
‘ y
v Module App1
tMenuSUB:
TYPE_TEXT tMenuApp1:
TMenultemSub TYPE_TEXT
[SEL_EXEG, functionsub1 | TMenultemMain
[SEL_EXEC, functionsub2 | [SEL_EXEC, function1 |
[SEL_EXIT | [SEL_EXEC, function2 |
\/\ = |

MSv357081V1

5.7 Functionality

Functionality is an action selected by the end-user through the menu. This menu event will
call of a function which must respect the following prototype:

void functionExec (void)

On the function exit, the kernel will return into the previous menu state.

In many cases, the functionality will be stopped by an user event. So the kernel offers the
capability to return all the events through a callback function with the following prototype:

void functionSel (uint8 t sel)

The functionality settings are done inside tMenultem through the fields: pfExecFunc and
pfActionFunc.

3

36/43 DoclD026947 Rev 1

UM1819 Software description
5.8 Adding a new module
Once the module appearance and functionality are defined and created, based on
constraints described above, only the module is left to be added:
1. Define unique ID of the new module in k_config.h file.
2. k_ModuleAdd() function should be called in KDemo_Initialization (), with unique ID
defined in step1.
3. Modify main module to add the call to this new module (See Figure 28).
5.9 Middleware (FatFS)

3

Only one middleware has been integrated inside the demonstration toolkit: FatFS. The full
APIs functions set given by the file system interface are:

Table 14. APIs functions description

Function Description
f_mount Register/Unregister a work area
f_open Open/Create a file
f_close Close a file
f read Read file
f_write Write file
f_Iseek Move read/write pointer, Expand file size
f_truncate Truncate file size
f_sync Flush cached data
f_opendir Open a directory
f_readdir Read a directory item
f_getfree Get free clusters
f_stat Get file status
f_mkdir Create a directory
f_unlink Remove a file or directory
f_chmod Change attribute
f_utime Change timestamp
f_rename Rename/Move a file or directory
f_mkfs Create a file system on the drive
f_forward Forward file data to the stream directly
f_chdir Change current directory
f_chdrive Change current drive
f_getcwd Retrieve the current directory
f_gets Read a string

DoclD026947 Rev 1

37/43

Software description

UM1819

38/43

Table 14. APIs functions description (continued)

Function Description
f_putc Write a character
f_puts Write a string
f_printf Write a formatted string

DoclD026947 Rev 1

3

UM1819

Footprint

6

6.1

Note:

6.2

3

Footprint

This chapter sums up Ram / Rom consumption per software blocks. Here is full
demonstration software consumption:

Table 15. Software consumption

Full demonstration Read only code Read only data Read Write data memory
software memory [Byte] [Byte] [Byte]
55150 18272 25500

Kernel footprint

The following table shows the code memory, data memory and the constant memory used
for each kernel file:

Table 16. Kernel footprint consumption

File Read only code Read only data Read Write data

memory [Byte] [Byte] memory [Byte]
k_demo 60 - -
k_menu 1436 - 4
k_module 220 - 160
k_storage 884 52 1111
k_tools 38 - -
k_window 252 12 -
main 682 204 -

In this section, memory is sometimes allocated dynamically in some structures in order to
save maximum RAM consumption.

Module footprint

The following table purpose shows the code memory, data memory and the constant
memory for each module:

Table 17. Module footprint consumption

Module Read only code Read only data Read Write data
memory [Byte] [Byte] memory [Byte]
8uart_app 3264 692 65
filesbrowser_app 1852 304 2330
imagesbrowser_app 240 84 2
DoclD026947 Rev 1 39/43

Footprint UmM1819
Table 17. Module footprint consumption (continued)
Module Read only code Read only data Read Write data
memory [Byte] [Byte] memory [Byte]
lowpower_app 1624 824 34
main_app 308 552 1
thermometer_app 324 176 1
Note: In this section, memory is sometimes allocated dynamically in some structures in order to

6.3

6.4

40/43

save maximum RAM consumption.

HAL footprint

The following table purpose shows the code memory, data memory and the constant

memory for each HAL file:

Table 18. HAL footprint consumption

Read only code

Read only data

Read Write data

Module memory [Byte] [Byte] memory [Byte]
stm32f0xx_hal 116 - 4
stm32fOxx_hal_cortex 304 - -
stm32fOxx_hal_gpio 1152 - -
stm32f0xx_hal_i2c 2208 - -
stm32f0xx_hal_msp_tem 2))
plate
stm32fOxx_hal_pwr 156 - -
stm32fOxx_hal_rcc 396 16 -
stm32fOxx_hal_rcc_ex 2404 32 -
stm32f0xx_hal_rtc 1256 - -
stm32f0xx_hal_spi 1996 - -
stm32f0xx_hal_uart 2116 - -
stm32fOxx_hal_uart_ex 356 - -

BSP footprint

The following table purpose shows the code memory, data memory and the constant

memory for each BSP file:

DoclD026947 Rev 1

3

UmM1819 Footprint
Table 19. BSP footprint consumption
Module Read only code Read only data Read Write data
memory [Byte] [Byte] memory [Byte]
stm32091c_eval 2276 55 200
stm32091c_eval_lcd 1536 14836 920
stm32091¢c_eval_sd 1450 1 1
stm32091¢_eval_tsensor 156 - 6
6.5 BSP components footprint
The following table purpose shows the code memory, data memory and the constant
memory for each BSP component file:
Table 20. BSP components footprint consumption
Module Read only code Read only data Read Write data
memory [Byte] [Byte] memory [Byte]
hx8347d 1228 28 697
spfd5408 1204 28 697
stim75 224 8 16
6.6 Third party footprint

3

The following table purpose shows the code memory, data memory and the constant
memory for each Third party (FatFS) file:

Table 21. Third party footprint consumption

Module Read only code Read only data Read Write data
memory [Byte] [Byte] memory [Byte]
diskio 220
ff 7924 144 30
ff_gen_drv 84 12
sd_diskio 268 11 21
DoclD026947 Rev 1 41/43

Revision history

UM1819

7

42/43

Revision history

Table 22. Document revision history

Date

Revision

Changes

24-Oct-2014

1

Initial release.

DoclD026947 Rev 1

3

UM1819

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics — All rights reserved

3

DoclD026947 Rev 1 43/43

	1 Demonstration description
	1.1 Demonstration folder organization
	1.2 Demonstration Architecture overview

	2 Demonstration functional description
	2.1 Menu
	2.2 Demo startup
	2.3 Navigation
	2.4 Modules
	2.4.1 Thermometer
	Overview

	2.4.2 8xUART
	Overview
	Hardware configuration
	Functional description

	2.4.3 Low power organization
	Overview
	Functional description:
	STOP mode
	STANDBY mode

	2.4.4 About
	Overview

	2.4.5 File Browser
	Overview
	Functional description

	2.4.6 Image viewer
	Overview

	3 Hardware settings
	4 Software settings
	4.1 Clock Control
	4.2 Peripherals
	4.3 Media files
	4.4 Programming the demonstration
	4.4.1 Using Binary file
	4.4.2 Using preconfigured projects

	5 Software description
	5.1 Application
	5.2 Application startup overview
	5.3 Kernel
	5.3.1 Overview
	5.3.2 K_demo
	5.3.3 K_menu
	5.3.4 K_module
	5.3.5 K_Storage
	5.3.6 K_tools
	5.3.7 K_Window
	5.3.8 Memory management

	5.4 Module
	5.5 Module control
	5.5.1 K_ModuleItem_Typedef
	5.5.2 kModulePreExec & kModulePostExec
	5.5.3 kModuleExec
	5.5.4 kModuleRessourceCheck

	5.6 Graphical aspect
	5.6.1 The structure tMenu
	5.6.2 The structure tMenuItem
	5.6.3 Menu Architecture

	5.7 Functionality
	5.8 Adding a new module
	5.9 Middleware (FatFS)

	6 Footprint
	6.1 Kernel footprint
	6.2 Module footprint
	6.3 HAL footprint
	6.4 BSP footprint
	6.5 BSP components footprint
	6.6 Third party footprint

	7 Revision history

