f; UM1995
” life.augmented

User manual

Clock drift compensation library
software expansion for STM32Cube

January 2018

Introduction

The clock drift compensation (CDC) library user manual describes the software interface
and its requirements. It describes how to integrate the module into a main program, like the
Audio STM32Cube expansion software. It also provides a basic understanding of the
underlying algorithm.

The CDC library is used to adapt the data rate by smoothly adding or removing one sample
on demand. This module is needed and can be used when two asynchronous clocking
mechanisms are used in the same SW chain like:

e Audio chain with a slave input (IIS for instance) connected to a master 1IS output
e USB streaming synchronization
e One clock locked to a network while the system clock is free running

The CDC library is part of X-CUBE-AUDIO firmware package.

DoclD028715 Rev 3 1/19

www.st.com

http://www.st.com

Contents UM1995

Contents
1 Module overview i i i s 5
1.1 Algorithm function 5
1.2 Module configuration 5
1.3 Resource summary 6
2 Module Interfaces it i 8
21 APl 8
211 cdc resetfunction 8
2.1.2 cdc_setParam function 8
213 cdc_getParam function 9
214 cdc_setConfig function 9
21.5 cdc_getConfig function 10
216 cdc _processfunction 10
2.2 External definitionsand types i 10
2.21 Inputand outputbuffers 10
222 Returned errorvalues i 11
2.3 Static parameters structure L. 12
24 Dynamic parameters structure 12
3 Algorithm description i i i e 13
3.1 Processing steps 13
3.2 Dataformats 13
3.3 Performance Assessment 13
4 System requirements and hardwaresetup 14
4.1 Recommendations for optimal setup, 14
411 Module integrationexample i 14
41.2 Module integration summary 15
5 How to run and tune the application 17
6 Revision history e 18

2/19 DoclD028715 Rev 3 ‘Yl

UM1995

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.

3

RESOUICE SUMMAIY. . . . it e e e e et e e e e e e e 6
CAC rESet . . 8
cde _setParam. 9
cdc _getParam. 9
cdC_setCoNfig.o 9
cdc _getConfig. 10
CAC PrOCESS .« . v i ittt 10
Inputand output buffers e 11
Returned error values. e 11
Static parameters structure. 12
Dynamic parameters structure 12
Document revision history 18

DoclD028715 Rev 3 3/19

List of figures UM1995

List of figures

Figure 1. CDC mMoOdUle e e 13
Figure 2. Basicaudio chain e 14
Figure 3. APl call procedure e 15

4/19 DocID028715 Rev 3

3

UM1995

Module overview

1.1

1.2

3

Module overview

Algorithm function

The CDC module provides functions to smoothly add or remove one sample as soon as a
drift is detected between input and output streams. It is independent from input sampling
rate.

Module configuration

The CDC module supports mono and stereo interleaved 16-bit or 32-bit 1/0 data, with a
minimum input frame size of 282 stereo samples for the High Quality version (HQ) and a
minimum of 218 stereo samples for the standard quality version.

Several versions of the module are available depending on the I/O format, the quality level,
the Cortex Core and the used tool chain:

e CDC_CM4_IAR.a/CDC_CM4_GCC.a/CDC_CM4_Keil.lib:
Standard version for low-MIPS and good quality requirements with 16 bits input/output
buffers. It runs on any STM32 microcontroller featuring an Arm® core with Cortex®-M4
instruction set.

¢ CDCHQ_CM4_lAR.a/CDCHQ_CM4_GCC.a/ CDCHQ_CM4_Keil.lib:
High Quality version with 16 bits input/output buffers. It runs on any STM32
microcontroller featuring an Arm® core with Cortex®-M4 instruction set.

e CDC_32b CM4_IAR.a/CDC_32b_CM4_GCC.a/CDC_32b_CM4_Keil.lib:
Standard version for low-MIPS and good quality requirements with 32 bits input/output
buffers. It runs on any STM32 microcontroller featuring an Arm® core with Cortex®-M4
instruction set.

e CDCHQ_32b_CM4_lIAR.a/CDCHQ_32b_CM4_GCC.a/CDCHQ_32b_CM4_Keil.lib:
High Quality version with 32 bits input/output buffers. It runs on any STM32
microcontroller featuring an Arm® core with Cortex®-M4 instruction set.

e CDC_CM7_lAR.a/CDC_CM7_GCC.a/CDC_CM7_Keil.lib:

Standard version for low-MIPS and good quality requirements with 16 bits input/output
buffers. It runs on any STM32 microcontroller featuring an Arm® core with Cortex®-M7
instruction set.

e CDCHQ_CM7_lAR.a/CDCHQ_CM7_GCC.a/CDCHQ_CM7_Keil.lib:

High Quality version with 16 bits input/output buffers. It runs on any STM32
microcontroller featuring an Arm® core with Cortex®-M7 instruction set.

e CDC_32b_CM7_IAR.a/CDC_32b_CM7_GCC.a/CDC_32b_CM7_Keil.lib:

Standard version for low-MIPS and good quality requirements with 32 bits input/output
buffers. It runs on any STM32 microcontroller featuring an Arm® core with Cortex®-M7
instruction set.

e CDCHQ_32b_CM7_lAR.a/CDCHQ_32b_CM7_GCC.a/CDCHQ_32b_CM7_Keil.lib:
High Quality version with 32 bits input/output buffers. It runs on any STM32
microcontroller featuring an Arm® core with Cortex®-M7 instruction set.

DocID028715 Rev 3 5/19

Module overview UM1995

1.3 Resource summary

Table 1 contains the module requirements for Flash memory, Stack, RAM and
frequency (MHz). All these requirements are independent from input sampling frequency.

Table 1. Resource summary

User Case Flash Peak
as . ea
Version @14: KHz, Core Fla(stt;)((:t(;de data Stack Pe:;\;ent ?{X:nt(ﬁ')] Frequency
ms ’ (.rodata) (MHz)
framing
2266
M4 Bytes 3.1
Mono
M7 2222 17
Standard Bytes 8 100 12 504
2266 Bytes Bytes Bytes Bytes
M4 Bytes 6.6
Stereo 222
M7 Bytes 3.9
2638
M4 Bytes 4.7
Mono
M7 2590 25
High qualit Bytes 8 100 12 672
gnq y 2638 Bytes Bytes Bytes Bytes
M4 Bytes 10.2
Stereo 2590
M7 Bytes 56
2392
M4 Bytes 3.7
Mono
M7 2348 19
Standard Bytes 8 100 12 1008
32-bit 110 2392 Bytes Bytes Bytes Bytes
M4 Bytes 7.2
Stereo 328
M7 Bytes 4.3
2728
M4 Bytes 5.6
Mono
M7 2728 29
High quality Bytes 8 100 12 1344
32-bit I/O 2776 Bytes Bytes Bytes Bytes
M4 Bytes 12
Stereo 7798
7
M7 Bytes 6.2

1. Scratch RAM is the memory that can be shared with other process running on the same priority level. This memory is not
used from one frame to another by CDC routines.

6/19 DoclD028715 Rev 3 ‘Yl

UM1995 Module overview

Note: The footprints are measured on board, using IAR Embedded Workbench for ARM v7.40
(IAR Embedded Workbench common components v7.2).

The Averagepy. is given by the following formula:

« ppm drift x sampling freq
1000000

Average,,,, = peak frequency x frame size sec

For instance, on ST32F4, using High Quality version with a 10ms framing @ 48 kHz and a
drift to compensate 300 ppm, we obtain:

e Peak Frequency (during one frame) = 10.2 MHz
e Average Frequency = 1.5 MHz

Maximum theoretical ppm drift (to be compensated) is given by the following formula:

1000000
frame size sec x sampling freq

ppm drift max =

With the same example as above, we obtain:
e ppm_drift_ max = 2083 ppm

3

DocID028715 Rev 3 7/19

Module Interfaces UM1995

2

Module Interfaces

Two files are needed to integrate the CDC module: CDC_xxx_CMy_zzz.a/.lib and the
cdc_glo.h header file. They contain all definitions and structures to be exported to the
framework.

Note: The audio_fw_glo.h file is a generic header file common to all audio modules. It must be
included in the audio framework.
2.1 API
Six generic functions have a software interface to the main program:
e cdc reset
e cdc_setParam
e cdc_getParam
e cdc_setConfig
e cdc_getConfig
e cdc_process
211 cdc_reset function
This procedure initializes the persistent memory of the CDC module and static and dynamic
parameters with default values.
API description:
int32_t cdc_reset(void *persistent_mem_ptr, void *scratch_mem_ptr) ;
Table 2. cdc_reset
110 Name Type Description
Input persistent_mem_ptr void * Pointer to internal persistent memory
Input scratch_mem_ptr void * Pointer to internal scratch memory
Returned value |- int32_t Error value
This routine must be called at least once at initialization time, when the real time processing
has not started.
21.2 cdc_setParam function
This procedure writes module static parameters from the main framework to the module’s
internal memory. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters, i.e. the parameters with values which cannot
be changed during the module processing.
API description:
int32_t cdc_setParam(cdc_static_param_t *input_static_param_ptr,
void*persistent_mem ptr) ;
8/19 DoclD028715 Rev 3 Kys

UM1995 Module Interfaces
Table 3. cdc_setParam
/10 Name Type Description
Input input_static param_ptr |cdc_static param_t* Pointer to static parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value |- int32_t Error value

Note: There is currently no static parameter, so no reason to call this routine in this module
version.
21.3 cdc_getParam function
This procedure gets the module static parameters from the module internal memory to the
main framework. It can be called after the reset routine and before the start of the real time
processing. It handles the static parameters, i.e. the parameters with values which cannot
be changed during the module processing.
API description:
int32_t cdc_getParam(cdc_static_param_t *input_static_param_ptr, void
*persistent_mem_ptr) ;
Table 4. cdc_getParam
/10 Name Type Description
Input input_static_param_ptr |cdc_static_param_t * Pointer to static parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value |- int32_t Error value

Note: There is currently no static parameter, so no reason to call this routine in this module
version.
214 cdc_setConfig function
This procedure sets the module dynamic parameters from the main framework to the
module internal memory. It can be called at any time during processing (after cdc_reset()
routines).
API description:
int32_t cdc_setConfig(cdc_dynamic_param_t *input_dynamic_param_ptr, void
*persistent_mem_ptr) ;
Table 5. cdc_setConfig
110 Name Type Description
Input input_dynamic_param_ptr |cdc_dynamic_param_t* | Pointer to dynamic parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value |- int32_t Error value

S74

DoclD028715 Rev 3

9/19

Module Interfaces UM1995

21.5 cdc_getConfig function
This procedure gets module dynamic parameters from the internal persistent memory to the
main framework. It can be called at any time during processing (after reset and setParam
routines).
API description:
int32_t cdc_getConfig(cdc_dynamic_param_t *input_dynamic_param_ptr, void
*persistent_mem_ptr) ;
Table 6. cdc_getConfig
110 Name Type Description
Input input_dynamic_param_ptr | cdc_dynamic_param_t * | Pointer to dynamic parameters structure
Input persistent_mem_ptr void * Pointer to internal persistent memory
Returned value |- int32_t Error value
2.1.6 cdc_process function
This procedure is the module’s main processing routine. It should be called at any time, to
process each frame.
int32_t cdc_process (buffer_t *input_buffer, buffer_t *output_buffer, void
*persistent_mem_ptr) ;
Table 7. cdc_process
110 Name Type Description
Input input_buffer buffer_t * Pointer to input buffer structure
Output output_buffer buffer_t * Pointer to output buffer structure
Input persistent_mem_ptr void * Pointer to internal static memory
Returned value - int32_t Error value
This process routine cannot run in place; the input_buffer data is modified during
processing, thus it cannot be used as it is after any call to the cdc_process() routine.
2.2 External definitions and types
2.21 Input and output buffers
The CDC library uses extended I/O buffers which contain, in addition to the samples, some
useful information on the stream such as the number of channels, the number of bytes per
sample and the interleaving mode.
An 1/O buffer structure type, like the one described below, must be used each time, before
calling processing routine; otherwise an error will be returned:
typedef struct {
int32_t nb_channels;
int32_t nb_bytes_per_Sample;
10/19 DoclD028715 Rev 3 Kys

UM1995 Module Interfaces

void *data_ptr;
int32_t buffer_size;
int32_t mode;

} buffer_t;

Table 8. Input and output buffers

Name Type Description

nb_channels int32_t | Number of channels in data: 1 for mono, 2 for stereo.

nb_bytes_per_Sample |int32_t | Dynamic of data in number of bytes (2 for 16-bits data, 4 for 32 bits data)

data_ptr void * | Pointer to data buffer (must be allocated by the main framework)
buffer_size int32_t | Number of samples per channel in the data buffer

Buffer mode:
mode int32_t | 0 = not interleaved,

1 = interleaved.

2.2.2 Returned error values

Table 9 contains the possible returned error values:

Table 9. Returned error values

Definition Value Description
CDC_ERROR_NONE 0 OK - no error detected
CDC_IOBUFFERS_TOO_SMALL -1 Input frame size is too small
CDC_UNSUPPORTED_NUM_CHANNEL -2 Input data is neither mono nor stereo
CDC_WRONG_NBBYTES_PER_SAMPLES -3 Input data are neither 16 nor 32-bit values

Output frame size is not aligned with input
CDC_INCONSISTENT_BUFFERSIZE_WITH_MODE -4 frame size and current dynamic used mode.
It should be input size +/- 1 sample

Only UPSAMPLING_MODE and

CDC_UNSUPPORTED_MODE S DOWNSAMPLING_MODE are supported
CDG_UNSUPPORTED_INPLACE_PROCESSING 6 |\nput and output buffers must not be the
CDC BAD HW 7 The library is not used with the right
- - hardware.
‘Yl DoclD028715 Rev 3 11/19

Module Interfaces UM1995

2.3 Static parameters structure

There is no static parameter to be set before calling process routine. The static parameter
structure contains a dummy field, for the compatibility with other structures.

struct cdc_static_param {
int32_t empty;
}

typedef struct cdc_static_param cdc_static_param_t;

Table 10. Static parameters structure

Name Type Description
empty int32_t Dummy field - just required to have a non-empty structure
2.4 Dynamic parameters structure

There is one dynamic parameter to be used.
struct cdc_dynamic_param {

uint32_t cdc_mode;
}

typedef struct cdc_dynamic_param cdc_dynamic_param_t;

Table 11. Dynamic parameters structure

Name Type Description

This corresponds to drift direction to compensate:

cdc_mode uint32_t | #define DOWNSAMPLING_MODE 0 /I removes one sample
#define UPSAMPLING_MODE 1 /l add one sample
12/19 DoclD028715 Rev 3 Kys

UM1995 Algorithm description

3 Algorithm description

3.1 Processing steps

The CDC module is a module based on re-sampling techniques using two-stage poly-phase
filter. This implementation has been MIPS optimized, for Cortex® M4 and M7 cores, by
using SIMD instructions set. Audio quality is obtained using fine-tuned ratio and poly-phase
filters.

Figure 1 shows an example of drift compensation by smoothly adding one sample to
generate a 10ms frame at 48 kHz.

Figure 1. CDC module

Input Size — ex: 479 samples

Input Buffer I

|

|

|

|

|

|

i
Output Buffer —
‘ \

Output Size: 480 samples MSv39442V1

3.2 Data formats

The module supports fixed point data, in Q15 or Q31 format, with a mono or stereo
interleaved pattern.

3.3 Performance Assessment

There is no objective measurement available for the CDC module; performances are based
on subjective assessment, using tones and frequency sweeps.

3

DoclD028715 Rev 3 13/19

System requirements and hardware setup

UM1995

4

4.1

41.1

14/19

System requirements and hardware setup

CDC libraries are built to run either on a Cortex® M4 or on a Cortex® M7 core, without FPU
usage. They can be integrated and run on corresponding STM32F4/STM32L4 or STM32F7
family devices. There is no other hardware dependency.

Recommendations for optimal setup

The clock drift compensation algorithm could be placed in the first part of the audio chain,
between the audio decoder and the sampling rate converter for instance. If needed, after
this module, streams can be mixed, or post processing can be applied. Samples are then

played on the audio DAC. Refer to Figure 2: Basic audio chain.

Figure 2. Basic audio chain

—
Stream
Acquisition
—

Audio Decoder

CDC

Sampling
Rate
Converter

Audio Post
Processing

%
%

MSv39443V1

Module integration example

Cube expansion CDC integration examples are provided on STM32746G-Discovery and

STM324691_Discovery boards. Refer to provided integration code for more details.

DoclD028715 Rev 3

3

UM1995 System requirements and hardware setup

4.1.2 Module integration summary

Figure 3. API call procedure

Memory allocation
CRC enable and reset

v

cdc_reset()

<
A

Audio stream read
Input_buffer preparation

3

Drift to
compensate?

cdc_setConfig()

v

buffer size setting
cdc_process()

A

Audio stream write

A

Memory freeing

MSv39444V1

3

DocID028715 Rev 3 15/19

System requirements and hardware setup UM1995

16/19

As explained above, the module persistent and scratch memories have to be allocated,
as well as the input and output buffer. Also, CDC library must run on STM32 devices so
CRC HW block must be enable and reset.

Once the memory has been allocated, the call to cdc_reset() function will initialize the
internal variables.

The audio stream is read from the proper interface and the input_buffer structure has to
be filled in according to the stream characteristics (number of channels, sample rate,
interleaving and data pointer). The output buffer structure has to be set as well.

At this step the output of a drift detector is caught. Drift direction information is
extracted here as well. If some drift compensation is needed, CDC will be called, else
CDC processing is bypassed.

The dynamic parameters are updated and cdc_setConfig() routine is called to send the
dynamic parameters from the audio framework to the module.

Depending on drift direction and framework, update input or output buffer size (+/- 1
sample compared to frame size) and call the processing main routine to apply the CDC
compensation.

The output audio stream can now be written in the proper interface.
Once the processing loop is over, the allocated memory has to be freed.

3

DoclD028715 Rev 3

UM1995 How to run and tune the application

5 How to run and tune the application

CDC library does not manage drift detection but only drift compensation.

The drift detection output is the only dynamic parameter used to add, to remove a sample or
to keep the stream as it is. For this reason there is no tuning available for CDC module.

The only available choice is to link the CDC_xxx_CMy_zzz.al/.lib library version associated
to cdc_glo.h header file.

In the integration example, samples are get from a file 1/0, and one sample every 70 ms is
added to simulate a ~ 300 ppm drift at 48 kHz. Signal modification cannot be heard even by
playing tones or sweeps.

3

DocID028715 Rev 3 17/19

Revision history

UM1995

6

18/19

Revision history

Table 12. Document revision history

Date Revision Changes
20-Jan-2016 1 Initial release.
Updated:
— Section 1.2: Module configuration
— Table 1: Resource summary
21-Mar-2017 2 _ Section 2.1: AP
— Section 4.1.1: Module integration example
— Section 5: How to run and tune the application
09-Jan-2018 3 Updated:
— Introduction

DoclD028715 Rev 3

3

UM1995

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

3

DocID028715 Rev 3 19/19

	1 Module overview
	1.1 Algorithm function
	1.2 Module configuration
	1.3 Resource summary
	Table 1. Resource summary

	2 Module Interfaces
	2.1 API
	2.1.1 cdc_reset function
	Table 2. cdc_reset

	2.1.2 cdc_setParam function
	Table 3. cdc_setParam

	2.1.3 cdc_getParam function
	Table 4. cdc_getParam

	2.1.4 cdc_setConfig function
	Table 5. cdc_setConfig

	2.1.5 cdc_getConfig function
	Table 6. cdc_getConfig

	2.1.6 cdc_process function
	Table 7. cdc_process

	2.2 External definitions and types
	2.2.1 Input and output buffers
	Table 8. Input and output buffers

	2.2.2 Returned error values
	Table 9. Returned error values

	2.3 Static parameters structure
	Table 10. Static parameters structure

	2.4 Dynamic parameters structure
	Table 11. Dynamic parameters structure

	3 Algorithm description
	3.1 Processing steps
	Figure 1. CDC module

	3.2 Data formats
	3.3 Performance Assessment

	4 System requirements and hardware setup
	4.1 Recommendations for optimal setup
	Figure 2. Basic audio chain
	4.1.1 Module integration example
	4.1.2 Module integration summary
	Figure 3. API call procedure

	5 How to run and tune the application
	6 Revision history
	Table 12. Document revision history

