
Introduction
This document must be read along with the technical documentation such as reference manual(s) and datasheets for the
STM32H7 dual-core series microcontroller devices, available on www.st.com.

It describes how to use the devices in the context of a safety-related system, specifying the user's responsibilities for installation
and operation in order to reach the targeted safety integrity level. It also pertains to the X-CUBE-STL software product.

It provides the essential information pertaining to the applicable functional safety standards, which allows system designers to
avoid going into unnecessary details.

The document is written in compliance with IEC 61508.

The safety analysis in this manual takes into account the device variation in terms of memory size, available peripherals, and
package.

This manual addresses the STM32H7 dual-core series microcontroller (named as STM32H7 dual-core), that include two CPU
cores, the Arm® Cortex®-M7 and Cortex®-M4.

STM32H7 dual-core series safety manual

 UM2840

User manual

UM2840 - Rev 2 - August 2023
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com
https://www.st.com/en/product/x-cube-stl?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2840

1 About this document

1.1 Purpose and scope
This document describes how to use Arm® Cortex®‑M7 -based STM32H7 dual-core series microcontroller unit
(MCU) devices (further also referred to as Device(s)) in the context of a safety‑related system, specifying the
user's responsibilities for installation and operation, in order to reach the desired safety integrity level.
It is useful to system designers willing to evaluate the safety of their solution embedding one or more Device(s).
For terms used, refer to the glossary at the end of the document.

Note: This manual addresses the STM32H7 dual-core series microcontrollers, that are devices with two CPU cores,
the Arm® Cortex®-M7 and Cortex®-M4.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.2 Normative references
This document is written in compliance with the IEC 61508 international norm for functional safety of electrical,
electronic and programmable electronic safety-related systems, version IEC 61508-1-7 © IEC:2010. The
compliance to other functional safety standards is considered in reference document [3].
The following table maps the document content with respect to the IEC 61508-2 Annex D requirements.

Table 1. Document sections versus IEC 61508-2 Annex D safety requirements

Safety
requirement Section number

D2.1 a) Section 3 Reference safety architecture

D2.1 b) Section 3.2 Compliant item

D2.1 c) Section 3.2 Compliant item

D2.2 a)

General information are provided in Section 4.1 Random hardware failure safety results.

Detailed information on failure modes and related failure rates are included in other reference documents
[1], [2] referred in Section 1.3 Reference documents.

D2.2 b)

D2.2 c)

D2.2 d)

D2.2 e)

D2.2 f)
Useful information for DTI of each safety mechanisms are provided in related specification tables (filed
“Periodicity”) of Section 3.6 Hardware and software diagnostics. General guidance on DTI is included in
Safety requirement assumptions.

D2.2 g)
Because of the software-based nature of Device safety concept, the outputs of the Compliant Item
triggered by internal diagnostics are decided at application software level, and so they cannot be
described in this manual.

D2.2 h) Periodic proof test is excluded by specific ASR3.1 in Safety requirement assumptions

D2.2 i) Conditions of use

D2.2 j) Section 3.2.3 Reference safety architectures - 1oo1, Section 3.2.4 Reference safety architectures -
1oo2

D2.2 k) Section 3.2.2 Safety functions performed by Compliant item

 UM2840
About this document

UM2840 - Rev 2 page 2/145

1.3 Reference documents

[1] AN5631: Results of FMEA on STM32H7 dual-core microcontrollers.

[2] AN5596: Results of FMEDA on STM32H7 dual-core microcontrollers.

[3] AN5689: Adapting the X-CUBE-STL functional safety package for STM32 (IEC 61508 compliant) to other safety
standards

[4] AN5893: X-CUBE-STL functional safety package: advanced topics

 UM2840
Reference documents

UM2840 - Rev 2 page 3/145

2 Device development process

STM32 series product development process (see Figure 1), compliant with the IATF 16949 standard, is a set of
interrelated activities dedicated to transform customer specification and market or industry domain requirements
into a semiconductor device and all its associated elements (package, module, sub-system, hardware, software,
and documentation), qualified with ST internal procedures and fitting ST internal or subcontracted manufacturing
technologies.

Figure 1. STMicroelectronics product development process

·Key characteristics and
requirements related to future
uses of the device

·Industry domain(s), specific
customer requirements and
definition of controls and tests
needed for compliance

·Product target specification
and strategy

·Project manager
appointment to drive product
development

·Evaluation of the
technologies, design tools
and IPs to be used

·Design objective
specification and product
validation strategy

·Design for quality
techniques (DFD, DFT, DFR,
DFM, …) definition

·Architecture and positioning
to make sure the software
and hardware system
solutions meet the target
specification

·Product approval strategy
and project plan

·Semiconductor design
development

·Hardware development
·Software development
·Analysis of new product

specification to forecast
reliability performance

·Reliability plan, reliability
design rules, prediction of
failure rates for operating life
test using Arrhenius’s law and
other applicable models

·Use of tools and
methodologies such as
APQP, DFM, DFT, DFMEA

·Detection of potential
reliability issues and solution
to overcome them

·Assessment of Engineering
Samples (ES) to identify the
main potential failure
mechanisms

·Statistical analysis of
electrical parameter drifts for
early warning in case of fast
parametric degradation (such
as retention tests)

·Failure analysis on failed
parts to clarify failure modes
and mechanisms and identify
the root causes

·Physical destructive
analysis on good parts after
reliability tests when required

·Electrostatic discharge
(ESD) and latch-up sensitivity
measurement

·Successful completion of
the product qualification
plan

·Secure product deliveries
on advanced technologies
using stress methodologies
to detect potential weak
parts

·Successful completion of
electrical characterization

·Global evaluation of new
product performance to
guarantee reliability of
customer manufacturing
process and final application
of use (mission profile)

·Final disposition for
product test, control and
monitoring

1 Conception 3 Qualification2 Design and
validation

 UM2840
Device development process

UM2840 - Rev 2 page 4/145

3 Reference safety architecture

This section reports details of the STM32H7 dual-core series safety architecture.

Note: this manual addresses the STM32H7 dual-core series microcontrollers, that include two CPU cores, the Arm®

Cortex®-M7 and Cortex®-M4.

3.1 Safety architecture introduction
The Device(s) analyzed in this document can be used as Compliant item(s) within different safety applications.
The aim of this section is to identify such Compliant item(s), that is, to define the context of the analysis with
respect to a reference concept definition. The concept definition contains reference safety requirements, including
design aspects which are outside of the defined Compliant item.
As a consequence of a Compliant item approach, the goal is to list the system-related information considered
during the analysis, rather than to provide an exhaustive hazard and risk analysis of the system around Device.
Such information includes, among others, application-related assumptions for danger factors, frequency of
failures and diagnostic coverage guaranteed by the application.

3.2 Compliant item
This section defines the Compliant item term and provides information on its usage in different safety architecture
schemes.

3.2.1 Definition of Compliant item
According to IEC 61508-1 clause 8.2.12, a Compliant item is any item (for example an element) on which a claim
is being made with respect to the clauses of the IEC 61508 series. Any mature Compliant item must be described
in a safety manual available to the End user.
In this document, Compliant item is defined as a system including one or two STM32 devices (see Figure 2). The
communication bus is directly or indirectly connected to sensors and actuators.

Figure 2. STM32 as Compliant item

Remote
controller

Remote
controller

Remote
controller

Remote
controller

Sensor
Actuator

S

S

A

A

Processing element

Compliant item

STM32
device(s)

Other components might be related to the Compliant item, like the external HW components needed to guarantee
either the functionality of the Device (external memory, clock quartz and so on) or its safety (for example, the
external watchdog or voltage supervisors).
As defined, a Compliant item can be classified as an element according to IEC 61508-4, 3.4.5.
In summary, claims related to this Compliant item are related to the possible use of a Device for the
implementation of any safety function up to SIL2 (for a single Device) and up to SIL3 (for two destinct Devices),
with specific architectures and observing all the requirements and indications provided in this manual.

 UM2840
Reference safety architecture

UM2840 - Rev 2 page 5/145

3.2.2 Safety functions performed by Compliant item
In essence, Compliant item architecture encompasses the following processes performing the safety function or a
part of it:
• input processing elements (PEi) reading safety related data from the remote controller connected to the

sensor(s) and transferring them to the following computation elements
• computation processing elements (PEc) performing the algorithm required by the safety function and

transferring the results to the following output elements
• output processing elements (PEo) transferring safety related data to the remote controller connected to the

actuator
• in 1oo2 architecture, potentially a further voting processing element (PEv) in charge to facilitate the safety

function processing by each of the two channels, individually.
• the computation processing elements can be involved (to the extent depending to the target safety integrity)

in the implementation of local software-based diagnostic functions; this is represented by the block PEd
• processes external to Compliant item ensuring safety integrity, such as watchdog (WDTe) and voltage

monitors (VMONe)

The role of the PEv process is clarified in Section 3.2.4 Reference safety architectures - 1oo2. The role of the
WDTe and VMONe external processes is clarified under Section 3.6 Hardware and software diagnostics:
• WDTe: refer to External watchdog – CPU_SM_5 and Control flow monitoring in Application software –

CPUM7_SM_1 and CPUM4_SM_1,
• VMONe: refer to Supply voltage internal monitoring (PVD) – VSUP_SM_1 and System-level power supply

management - VSUP_SM_5.

In summary, Devices support the implementation of End user safety functions consisting of three operations:
• safe acquisition of safety-related data from input peripheral(s)
• safe execution of Application software program and safe computation of related data
• safe transfer of results or decisions to output peripheral(s)

Claims on Compliant item and computation of safety metrics are done with respect to these three basic
operations.

Caution: Due to the general purpose nature of the Device, its safety concept is mainly software-based. Accordingly, any
following claim related to the possibility of Device itself to support the implementation of safety functions up to a
certain SIL is strongly correlated to the observance of CoUs as requested in Conditions of use.
As the STM32H7 dual-core series microcontroller includes two separate CPUs (Arm® Cortex®-M7 and Cortex®-
M4), the safety function(s) and so the related three above decribed sub-operations can be performed by different
possible schemes. Two possible main schemes are:
• Individual scheme: each CPU may implement a specific safety function, with no collaboration from the other

CPU
• Collaborative scheme: the two CPUs collaborate for the implementation of the same safety function(s)

The two schemes are shown in the following figure, where the notation: SF1(s), SF2(s), SF(s), means that each
"channel" can be used to implement one or multiple safety functions.

 UM2840
Compliant item

UM2840 - Rev 2 page 6/145

Figure 3. Individual and collaborative schemes

D
T6

90
06

V1

PEi1 PEc1
CPU1 PEo1

PEi2 PEo2PEc2
CPU2

SF1(s)

SF2(s)

PEi12

Individual scheme

PEi PEc1
CPU1 PEoPEc2

CPU2
SF(s)

Collaborative scheme

The schemes can be embedded in the reference safety architectures described below.
Consequences related to the coexistence on the two CPUs in the same MCU are embedded in related Assumed
Safety Requirements (refer to Section 3.3 Safety analysis assumptions) and Conditon of Use (refer to
Section 3.7 Conditions of use); related rationales are exposed in Section 3.2.5 The separation concept.
According to the definition for implemented safety functions, Compliant item (element) can be regarded as type B
(as per IEC 61508-2, 7.4.4.1.3 definition). Despite accurate, exhaustive and detailed failure analysis, Device has
to be considered as intrinsically complex. This implies its type B classification.
Two main safety architectures are identified: 1oo1 (using one Device) and 1oo2 (using two Devices).

3.2.3 Reference safety architectures - 1oo1
1oo1 reference architecture (Figure 4) ensures safety integrity of Compliant item through combining Device
internal processes (implemented safety mechanisms) with external processes WDTe and VMONe. In this
architecture, the Device is considered intrinsically having hardware fault tolerance (HFT) equal to 0.
1oo1 reference architecture targets safety integrity level (SIL) SIL2. Both individual and collaborative scheme are
possible.

 UM2840
Compliant item

UM2840 - Rev 2 page 7/145

3.2.3.1 Individual scheme

Figure 4. 1oo1 reference architecture - individual scheme

PEi1

PEd1

PEo1

PEi2 PEo2PEc2
CPU2

SF1

SF2

PEc1
CPU1

PEd2

Actuators
1

Actuators
2

Sensors

VMONe WDTe

PEi12

In the framework of individual scheme, the two chains PEi1/PEc1/PEo1 and PEi2/PEc2/PEo2 implement separate
sets of safety function(s). Individual set of external actuators are involved in the safety function(s) implementation.
Link between WDTe and actuators show the capability of the external watchdog to force the safe state.

Caution: All implemented safety function(s) share a common management for safe state and PST requirement - refer to
Section 3.3 Safety analysis assumptions for related ASR.

3.2.3.2 Collaborative scheme

Figure 5. 1oo1 reference architecture - collaborative scheme

D
T6

90
08

V1

PEi

PEd1

PEo
PEc2
CPU2

PEc1
CPU1

PEd2

ActuatorsSensors

VMONe WDTe

In the collaborative scheme, both CPUs are involved in the implementation of the same safety function(s). The
CPUs connection order is just informative and it is not constrained.

 UM2840
Compliant item

UM2840 - Rev 2 page 8/145

3.2.4 Reference safety architectures - 1oo2
The 1oo2 reference architecture (Figure 6) contains two separate channels, either implemented as a 1oo1
reference architecture ensuring safety integrity of the Compliant item through combining Device internal
processes (implemented safety mechanisms) with external processes: WDTe and VMONe. The overall safety
integrity is then ensured by the external voter PEv, which allows claiming hardware fault tolerance (HFT) equal to
1. The PEv role is indeed to facilitate the safety function processing by each of the two individual channels, to
allow the correct execution of the safety function even in case one channel is faulty. The complexity of the PEv
implementation strongly depends on the nature of the safety function and safe state definitions. Achievement of
higher safety integrity levels as per IEC 61508-2 Table 3 is therefore possible. Appropriate separation between
the two channels (including power supply separation) should be implemented in order to avoid huge impact of
common-cause failures (refer to Section 4.2 Analysis of dependent failures). However, β and βD parameters
computation is required.
This architecture targets SIL3, under the assumption that each channel follows all requirements indicated for SIL2
in this manual. Pay attention: according the clause 7.4.3.2 in IEC 61508-2, this architectural scheme may provide
benefits to the software applications systematic capability (SC) only in case diverse software is adopted on the
two channels. For the sake of simplicity, only the collaborative scheme is shown in Figure 6. Note that the 1oo2
architecture is possible with the individual scheme.

Figure 6. 1oo2 reference architecture

D
T6

90
26

V1

PEi

PEd1

PEo
PEc2
CPU2

PEc1
CPU1

PEd2

Actuators
Sensors

VMONe

WDTe

PEi

PEd1

PEo
PEc2
CPU2

PEc1
CPU1

PEd2

VMONe

WDTe

PEv

3.2.5 The separation concept
The coexistence of two different CPU (Arm® Cortex®-M7 and M4) on the Device is managed by the means of the
STM32H7 dual-core dedicated separation concept, shown in this section. The separation concept mitigates
potential interferences between the two CPUs (and their software) and it is composed by two different aspects:
spatial separation and temporal separation.

Spatial separation

Arm® Cortex®-M7 and M4 coexist on the same device and so they share the control and the access to common
resources, like SRAM, flash memory, peripherals. Interferences are therefore possible, but in the lack of
hardware-built segregation features for the CPUs, they are mitigated by a combination of requirements driving the
implementation of final application:
• CoU_10 and CoU_11 forces the implementation of a kind of “private” SRAMs, one for each CPU, which is

quite valuable when individual scheme is adopted. Possible interferences are mitigated by the static
allocation of the SRAM and by dynamic checking performed by the two MPUs, as requested by CoU_12.

 UM2840
Compliant item

UM2840 - Rev 2 page 9/145

• Because of CoU_15, each CPU has its “private” watchdog which can be triggered just by the CPU itself –
this mitigates potential issues related to the management of the required external watchdog, as it provides
an additional layer of protection to the control flow execution for each CPU. Furthermore, CoU_16 guarantee
that the software routines charged of watchdog management and safety data exchange between CPUs are
always active because developed with highest systematic capability.

Temporal separation

The two CPUs Arm® Cortex®-M7 and M4 can boot in independent way and this makes them not strictly linked
from temporal point of view. The effectiveness of the spatial separation (see above) is correlated to the actual
capability of prescribed hardware and software to correctly functioning. Accordingly, it is End user responsibility to
guarantee by system-level measures and solutions the safe state during the STM32H7 dual-core boot. The CPU
separation cannot be considered working until at least CoU_17 (startup tests) is satisfied.

 UM2840
Compliant item

UM2840 - Rev 2 page 10/145

3.3 Safety analysis assumptions
This section collects all assumptions made during the safety analysis of the Devices.

3.3.1 Safety requirement assumptions
The safety concept specification, the overall safety requirement specification and the consequent allocation
determine the assumed requirements for Compliant item as further listed. ASR stands for assumed safety
requirement. Refer to [4] for additional details about following assumptions.

Caution: It is End user’s responsibility to check the compliance of the final application with these assumptions.

ASR1: Compliant item can be used to implement four kinds of safety function modes of operation according to
IEC 61508-4, 3.5.16:
• a continuous mode (CM) or high-demand (HD) SIL3 safety function (CM3), or
• a low-demand (LD) SIL3 safety function (LD3), or
• a CM or HD SIL2 safety function (CM2), or
• a LD SIL2 safety function (LD2).

ASR2: Compliant item is used to implement safety function(s) allowing a specific worst-case time budget (see
note below) for the STM32 MCU to detect and react to a failure. That time corresponds to the portion of the
process safety time (PST) allocated to Device (STM32xx Series duty in Figure 7) in error reaction chain at system
level.
In case of multiple safety functions implementation leading to multiple different time constraints, the shortest one
must be adopted for each safety function.

Note: As collateral effect, time constraint for the execution of periodical tests are always the same for both CPUs of the
device.

Note: The computation for time budget mainly depends on the execution speed for periodic tests implemented by
software. It is possible that such a duration depends on the actual amount of hardware resources (RAM
memory, flash memory, peripherals) actually declared as safety-related. Further constraints and requirements
from IEC 61508-2, 7.4.5.3 must be considered.

Figure 7. Allocation and target for STM32 PST

System-level PST

MCU detection FW reaction SW reaction Actuator reaction

STM32xx Series duty End user duty
….

ASR3.1: Compliant item is assumed to be operating at constant failure rate and does not intrinsically require any
proof tests.
ASR3.2: It is assumed that the Device operates within specified electrical specifications and environment limits.
The End user is responsible for the compliance to this assumption.
ASR 4.1: It is assumed that both CPUs available in the Device (Arm® Cortex®-M7 and M4) are considered as
safety related.
ASR4.2: It is assumed that in case multiple safety functions are implemented in the Compliant item, all functions
are classified with the same SIL for hardware safety integrity and the same SC for software systematic capability
and therefore they are not distinguishable in terms of their safety requirements.
ASR4.3: In case of multiple safety function implementations, it is assumed that End user is responsible to duly
ensure their mutual independence.
ASR4.4: It is assumed that there are no non-safety-related functions implemented in Application software,
coexisting with safety functions.

 UM2840
Safety analysis assumptions

UM2840 - Rev 2 page 11/145

ASR5: It is assumed that the implemented safety function(s) does (do) not depend on transition of Device (or one
of its CPUs) to and from a low-power state.
ASR6.1: The local safe state of Compliant item is the one in which either:
• SS1: Application software(1) is informed by the presence of a fault and a reaction by Application software

itself is possible.
• SS2: Application software(1) cannot be informed by the presence of a fault or Application software is not able

to execute a reaction.

Note: End user must take into account that random hardware failures affecting Device can compromise its operation
(for example failure modes affecting the program counter prevent the correct execution of software).

The following table provides details on the SS1 and SS2 safe states.

Table 2. SS1 and SS2 safe state details

Safe
state Condition Compliant

item action

System transition to
safe state - 1oo1

architecture
(individual scheme)

System transition to
safe state – 1oo1

architecture
(collaborative scheme)

System transition to
safe state – 1oo2

architecture

SS1

Application software(1)

is informed by the
presence of a fault and
a reaction by
Application software
itself is possible.

Fault reporting
to Application
software

Application software(1)

drives all implemented
safety functions in their
safe state, possibly
leveraging on inter-CPU
communications
(CPU_SM_11)

Application software(1)

drives the overall
system in its safe state

Application software(1)

in one of the two
channels drives the
overall system in its
safe state

SS2

Application software(1)

cannot be informed by
the presence of a fault
or Application software
is not able to execute
a reaction.

Reset signal
issued by
WDTe

WDTe drives all
implemented safety
functions in their safe
state (“safe shutdown”)
(2)

WDTe drives the overall
system in its safe state
(“safe shutdown”)(2)

PEv drives the overall
system in its safe state

1. Any of the application software running on the two different CPUs available on Device, Arm®Cortex® M7 and M4 (or even
both of them).

2. The safe state achievement intended here is compliant to Note on IEC 61508-2, 7.4.8.1

ASR6.2: It is assumed that the safe state(s) defined at system level by End user is compatible with the assumed
local safe state (SS1, SS2) for Compliant item.
ASR6.3: When individual scheme is adopted, it is assumed that the safe state defined at system level is
compatible with the causal connection between the individual safe state of each safety functions described in
Table 2.

Note: According to the requirements listed on Table 2, the detection of a fault must cause the transition to safe state
for each implemented safety functions. Accordingly, even if in principle different safe states can be defined for
the different implemented safety functions, their time evolution cannot be kept separated.
ASR7: Compliant item is assumed to be analyzed according to routes 1H and 1S of IEC 61508-2.

Note: Refer to Section 3.5 Systematic safety integrity and Section 3.6 Hardware and software diagnostics.
ASR8: Compliant item is assumed to be regarded as type B, as per IEC 61508-2, 7.4.4.1.3.
ASR9.1: It is assumed that STM32H7 is not used to build fail-operational solutions based exclusively on the
presence of two different CPUs in the Device itself.
ASR9.2: It is assumed that a single STM32H7 instance is not used to build a HFT>0 solutions based exclusively
on the presence of two different CPUs in the Device itself.
ASR9.3: It is assumed that the architecture 1oo1 with individual scheme (see Section 3.2.3 Reference safety
architectures - 1oo1) is not used to artificially implement a 1oo2 scheme with one single STM32H7 device

Note: ASR9.3 is placed to avoid the implementation of the same safety function of the two separate CPUs in the
individual scheme, managed then with an external voter. That solution cannot be considered a true 1oo2
architecture as described in IEC 61508-6 because of the incomplete separation between the two channels.
ASR 10.1: Device package is considered full safety related, in the framework of Device failure rate computations.

 UM2840
Safety analysis assumptions

UM2840 - Rev 2 page 12/145

ASR10.2: When adopting individual scheme, is End user responsibility to prove the freedom from interferences
between physical pins associated to different safety functions (for example, by running a pin-level FMEDA).
ASR11: It is assumed that is End user's responsibility to correct manage the CPUs boot process (including, but
not limited to, the handling of BOOT options) in order to implement a boot process compliant to all requirements
included in this manual.
ASR12: It is assumed that dual-bank flash memory mass erase and reprogramming features are used during
maintenance state of the final system, and not for the implementation of the safety function.
ASR13: It is assumed that the evaluation of hazards related to human factors (like misuse or security issues)
related to the use of the Compliant item is under the full responsibility of the End user.

3.4 Electrical specifications and environment limits
To ensure safety integrity, the user must operate Device(s) within its (their) specified:
• absolute maximum rating
• capacity
• operating conditions

For electrical specifications and environmental limits of Device(s), refer to its (their) technical documentation such
as datasheet(s) and reference manual(s) available on www.st.com.

Note: The device operation within specified limits is a prerequisite for the correct implementation of any safety
function. This is explicitly assumed within the assumptions (refer to above ASR3.2).

3.5 Systematic safety integrity
According to the requirements of the IEC 61508-2, 7.4.2.2 clause, the Route 1S is considered in the safety
analysis of Device(s). As authorized by the IEC 61508-2, 7.4.6.1 clause, the STM32 MCU products can be
considered as standard, mass-produced electronic integrated devices, for which stringent development
procedures, rigorous testing and extensive experience of use minimize the likelihood of design faults. However,
ST internally assesses the compliance of the Device development flow, through techniques and measures
suggested in the IEC 61508-2 Annex F. As highly confidential information on ST processes are concerned within
the evaluation activity, the safety case database (see Section 5 List of evidences) keeps evidences of the current
compliance level to the standard.

3.6 Hardware and software diagnostics
This section lists all the safety mechanisms (hardware, software and application-level) considered in the Device
safety analysis. It is expected that users are familiar with the architecture of Device, and that this document is
used in conjunction with the related Device datasheet, user manual and reference information. To avoid
inconsistency and redundancy, this document does not report device functional details. In the following
descriptions, the words safety mechanism, method, and requirement are used as synonyms.
As the document provides information relative to the superset of peripherals available on the devices it covers
(not all devices have all peripherals), users are supposed to disregard any recommendations not applicable to
their Device part number of interest.
Information provided for a function or peripheral applies to all instances of such function or peripheral on Device.
Refer to its reference manual or/and datasheet for related information.
The implementation guidelines reported in the following section are for reference only. The safety verification
executed by ST during the Device safety analysis and related diagnostic coverage figures reported in this manual
(or related documents) are based on such guidelines. For clarity, safety mechanisms are grouped by Device
function.
Information is organized in form of tables, one per safety mechanism, with the following fields:

SM CODE Unique safety mechanism code/identifier used also in FMEA document. Identifiers use the scheme
mmm_SM_x where mmm is a 3- or 4-letter module (function, peripheral) short name, and x is a
number. It is possible that the numbering is not sequential (although usually incremental) and/or that
the module short name is different from that used in other documents.

 UM2840
Electrical specifications and environment limits

UM2840 - Rev 2 page 13/145

http://www.st.com

Description Short mnemonic description

Ownership ST: method is available on silicon.

End user: method must be implemented by End user through Application software modification,
hardware solutions, or both.

Detailed
implementation

Detailed implementation sometimes including notes about the safety concept behind the introduction
of the safety mechanism.

Error reporting Describes how the fault detection is reported to Application software.

Fault detection time Time that the safety mechanism needs to detect the hardware failure.

Addressed fault
model

Reports fault model(s) addressed by the diagnostic (permanent, transient, or both), and other
information:
• If ranked for Fault avoidance: method contributes to lower the probability of occurrence of a

failure
• If ranked for Systematic: method is conceived to mitigate systematic errors (bugs) in

Application software design

Dependency on
Device configuration

Reports if safety mechanism implementation or characteristics change among different Device part
numbers.

Initialization Specific operation to be executed to activate the contribution of the safety mechanism

Periodicity Continuous : safety mechanism is active in continuous mode.

Periodic: safety mechanism is executed periodically(1).

On-demand: safety mechanism is activated in correspondence to a specified event (for instance,
reception of a data message).

Startup: safety mechanism to be executed only at power-up or during off-line maintenance periods.
This is due to functional-only aspects or due to the poor compatibility with the correct execution of
the safety function.

Test for the
diagnostic

Reports specific procedure (if any and recommended) to allow on-line tests of safety mechanism
efficiency. If no specific procedure applies (as for the majority of safety mechanisms), the field
indicates Not applicable.

Multiple-fault
protection

Reports the safety mechanism(s) associated in order to correctly manage a multiple-fault scenario
(refer to Section 4.1.3 Notes on multiple-fault scenario).

Recommendations
and known limitations

Additional recommendations or limitations (if any) not reported in other fields.

1. In CM systems, safety mechanism can be accounted for diagnostic coverage contribution only if it is executed at least once
per PST. For LD and HD systems, constraints from IEC 61508-2, 7.4.5.3 must be applied.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 14/145

3.6.1 Arm® Cortex®-M7 CPU

Table 3. CPUM7_SM_0

SM CODE CPUM7_SM_0

Description Periodic core self-test software for Arm® Cortex®-M7 CPU

Ownership End user or ST (X-CUBE-STL, see Appendix A)

Detailed implementation

The software test is built around well-known techniques already addressed by IEC 61508-7,
A.3.2 (Self-test by software: walking bit one-channel). To reach the required values of
coverage, the self-test software is specified by means of a detailed analysis of all the CPU
failure modes and related failure modes distribution

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic
Self-diagnostic capabilities can be embedded in the software, according the test
implementation design strategy chosen. The adoption of checksum protection on results
variables and defensive programming are recommended.

Multiple-fault protection CPU_SM_5: external watchdog

Recommendations and known limitations

This method is the main asset in STM32H7 dual-core series safety concept. CPU integrity is a
key factor because the defined diagnostics for MCU peripherals are to major part software-
based.

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3 Notes on multiple-fault scenario for details.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 15/145

Table 4. CPUM7_SM_1

SM CODE CPUM7_SM_1

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

A significant part of the failure distribution of Arm® Cortex®-M7 CPU core for permanent faults
is related to failure modes directly related to program counter loss of control or hang-up. Due
to their intrinsic nature, such failure modes are not addressed by a standard software test
method like CPUM7_SM_0. Therefore it is necessary to implement a run-time control of the
Application software flow, in order to monitor and detect deviation from the expected behavior
due to such faults. Linking this mechanism to watchdog firing assures that severe loss of
control (or, in the worst case, a program counter hang-up) is detected.

The guidelines for the implementation of the method are the following:
• Different internal states of the Application software are well documented and described

(the use of a dynamic state transition graph is encouraged).
• Monitoring of the correctness of each transition between different states of the

Application software is implemented.
• Transition through all expected states during the normal Application software program

loop is checked.
• A function in charge of triggering the system watchdog is implemented in order to

constrain the triggering (preventing the issue of CPU reset by watchdog) also to the
correct execution of the above-described method for program flow monitoring. The use
of window feature available on internal window watchdog (WWDG) is recommended.

• The use of the independent watchdog (IWDG), or an external one, helps to implement a
more robust control flow mechanism fed by a different clock source.

In any case, safety metrics do not depend on the kind of watchdog in use (the adoption of
independent or external watchdog contributes to the mitigation of dependent failures, see
Section 4.2.2 Clock)

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0: periodic core self-test software

Recommendations and known limitations -

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 16/145

Table 5. CPUM7_SM_2

SM CODE CPUM7_SM_2

Description Double computation in Application software

Ownership End user

Detailed implementation

A timing redundancy for safety-related computation is considered to detect transient faults
affecting the Arm® Cortex®-M7 CPU subparts devoted to mathematical computations and
data access.

The guidelines for the implementation of the method are the following:
• The requirement needs be applied only to safety-relevant computation, which in case of

wrong result could interfere with the system safety functions. Such computation must be
therefore carefully identified in the original Application software source code

• Both mathematical operation and comparison are intended as computation.
• The redundant computation for mathematical computation is implemented by using

copies of the original data for second computation, and by using an equivalent formula if
possible

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple-fault protection CPUM7_SM_0: periodic core self-test software

Recommendations and known limitations End user is responsible to carefully avoid that the intervention of optimization features of the
used compiler removes timing redundancies introduced according to this condition of use.

Table 6. CPUM7_SM_3

SM CODE CPUM7_SM_3

Description Arm® Cortex®-M7 HardFault exceptions

Ownership ST

Detailed implementation

HardFault exception raise is an intrinsic safety mechanism implemented in Arm® Cortex®-M7
core, mainly dedicated to intercept systematic faults due to software limitations or error in
software design (causing for example execution of undefined operations, unaligned address
access). This safety mechanism is also able to detect hardware random faults inside the CPU
bringing to such described abnormal operations.

Error reporting High-priority interrupt event

Fault detection time Depends on implementation. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic
It is possible to write a test procedure to verify the generation of the HardFault exception;
anyway, given the expected minor contribution in terms of hardware random-failure detection,
such implementation is not recommended.

Multiple-fault protection CPUM7_SM_0: periodic core self-test software

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 17/145

Table 7. CPUM7_SM_4

SM CODE CPUM7_SM_4

Description Stack hardening for Application software

Ownership End user

Detailed implementation

The stack hardening method is required to address faults (mainly transient) affecting Arm®

Cortex®-M7 CPU register bank. This method is based on source code modification,
introducing information redundancy in register-passed information to called functions.

The guidelines for the implementation of the method are the following:
• To pass also a redundant copy of the passed parameters values (possibly inverted) and

to execute a coherence check in the function.
• To pass also a redundant copy of the passed pointers and to execute a coherence

check in the function.
• For parameters that are not protected by redundancy, to implement defensive

programming techniques (plausibility check of passed values). For example enumerated
fields are to be checked for consistency.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple-fault protection CPUM7_SM_0: periodic core self-test software

Recommendations and known limitations
This method partially overlaps with defensive programming techniques required by IEC 61508
for software development. Therefore in presence of Application software qualified for safety
integrity greater or equal to SC2, optimizations are possible.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 18/145

Table 8. CPUM7_SM_7

SM CODE CPUM7_SM_7

Description Memory protection unit (MPU)

Ownership ST

Detailed implementation The Arm® Cortex®-M7 CPU memory protection unit is able to detect illegal access to
protected memory areas, according to criteria set by End user.

Error reporting Exception raise (MemManage)

Fault detection time Refer to functional documentation

Addressed fault model
Systematic (software errors)

Permanent/transient (only program counter and memory access failures)

Dependency on Device configuration None

Initialization MPU registers must be programmed at start-up

Periodicity On line

Test for the diagnostic Not needed

Multiple-fault protection MPUM7_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations

The use of memory partitioning and protection by MPU functions is highly recommended
when multiple safety functions are implemented in Application software. The MPU can be
indeed used to
• enforce privilege rules
• separate processes
• enforce access rules

Hardware random-failure detection capability for MPU is restricted to well-selected failure
modes, mainly affecting program counter and memory access CPU functions. The associated
diagnostic coverage is therefore not expected to be relevant for the safety concept of Device.

Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 19/145

Table 9. CPUM7_SM_9

SM CODE CPUM7_SM_9

Description Periodic self-test software for Arm® Cortex® -M7 caches

Ownership End user or ST (X-CUBE-STL, see Appendix A)

Detailed implementation

The software test is built around well-known techniques already addressed by IEC 61508-7, A.3.2 (Self-
test by software: walking bit one-channel). The scope of the software test are failure modes affecting
Arm® Cortex® -M7 L1 caches controllers.

The achieved diagnostic coverage strongly depends on the complexity of the test implementation, and
on the percentage of caches failure modes addressed.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device
configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple faults protection CPU_SM_5: external watchdog

Recommendations and known
limitations

End user waiver of cache features, disabling it by software, leads to following benefits in STM32H7
dual-core series safety concept:
• No need to implement this method (CPUM7_SM_9)

• Decrease of Arm® Cortex® -M7 overall failure rate

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 20/145

Table 10. CPUM7_SM_10

SM CODE CPUM7_SM_10

Description ECC on Arm® Cortex®-M7 - L1 caches

Ownership ST

Detailed implementation

ECC on Arm® Cortex®-M7 - L1 cache memories (data and instructions) are protected by an ECC
(Error Correction Code) redundancy, implementing a protection feature at double-word (64 bit)
level:
• One bit fault: correction
• Two bits fault: detection

Error reporting Errors correction/detection are reported on IEBR0-1, DEBR0-1 registers. Refer to Arm®

documentation for further details.

Fault detection time ECC bits are checked during cache usage

Addressed fault model Permanent/transient

Dependency onDevice configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic

Direct test procedure for ECC efficiency is not available. ECC run-time hardware failures leading
to the disable of such protection, or to wrong corrections, fall into a “multiple fault scenario” from
IEC 61508 perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field "Multiple-fault protection". Read also the note on
"Recommendations and known limitations" field.

Multiple faults protection

CPUM7_SM_1 control flow monitoring in application software

CPUM7_SM_3: Arm® Cortex®-M7 HardFault exceptions

CPUM7_SM_4 stack hardening for application software

RAM_SM_3 information redundancy for safety-related variables in application software

Recommendations and known limitations

Important note: because of the lack of ECC direct test procedure, single-fault failures leading to
unintended ECC correction may cause an incorrect data read from flash memory. This is why the
STM32H7 dual-core series safety concept strongly recommends the adoption of multiple layers
of overlapped safety mechanisms which collaborate to mitigate such kind of ECC failures. Refer
to [1] for further detailed information on ECC failures mitigation strategy.

Important: there is no interrupt notification for caches ECC correction/detection. Accordingly,
IEBR0-1 and DEBR0-1 registers must be periodically monitored to collect errors notifications.
The polling operation for these registers must be executed at least once per PST (see also note
1 in Section 3.6 Hardware and software diagnostics). It is strongly recommended to do not use
"Valid" bit function in IEBR0-1, DEBR0-1 to implement fault-tolerant schemes on the CPU
caches, because of limited capability of such invalidate function.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 21/145

Table 11. MPUM7_SM_0

SM CODE MPUM7_SM_0

Description Periodic read-back of Arm® Cortex®-M7 configuration registers

Ownership End user

Detailed implementation

This method must be applied to Arm® Cortex®-M7 MPU configuration registers (also unused
by the End user Application software).

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 12. MPUM7_SM_1

SM CODE MPUM7_SM_1

Description Arm® Cortex®-M7 MPU software test.

Ownership End user.

Detailed implementation

This method tests Arm® Cortex®-M7 MPU capability to detect and report memory accesses violating
the policy enforcement implemented by the MPU itself.

The implementation is based on intentionally performing memory accesses (in writing and read) to
memory areas outside of the allowed by the MPU regions programming, and to collect and verify
related generated error exceptions.

Test can be executed with the final MPU region programming or with a dedicated one.

Error reporting Depends on implementation.

Fault detection Time Depends on implementation.

Addressed Fault Model Permanent.

Dependency on device configuration None.

Initialization Depends on implementation.

Periodicity On demand.

Test for the diagnostic Not needed.

Multiple faults protection CPUM7_SM_0: Periodic core self test software

Recommendations and known
limitations

Startup execution of this safety mechanism is recommended for multiple fault mitigations - refer to
Section 4.1.3 Notes on multiple-fault scenario.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 22/145

3.6.2 Arm® Cortex®-M4 CPU

Table 13. CPUM4_SM_0

SM CODE CPUM4_SM_0

Description Periodic core self-test software for Arm® Cortex®-M4 CPU

Ownership End user or ST (X-CUBE-STL, see Appendix A)

Detailed implementation

The software test is built around well-known techniques already addressed by IEC 61508-7,
A.3.2 (Self-test by software: walking bit one-channel). To reach the required values of
coverage, the self-test software is specified by means of a detailed analysis of all the CPU
failure modes and related failure modes distribution

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic
Self-diagnostic capabilities can be embedded in the software, according the test
implementation design strategy chosen. The adoption of checksum protection on results
variables and defensive programming are recommended.

Multiple-fault protection CPU_SM_5: external watchdog

Recommendations and known limitations

This method is the main asset in STM32H7 dual-core safety concept. CPU integrity is a key
factor because the defined diagnostics for MCU peripherals are to major part software-based.

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3 Notes on multiple-fault scenario for details.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 23/145

Table 14. CPUM4_SM_1

SM CODE CPUM4_SM_1

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

A significant part of the failure distribution of Arm® Cortex®-M4 CPU core for permanent faults
is related to failure modes directly related to program counter loss of control or hang-up. Due
to their intrinsic nature, such failure modes are not addressed by a standard software test
method like CPUM4_SM_0. Therefore it is necessary to implement a run-time control of the
Application software flow, in order to monitor and detect deviation from the expected behavior
due to such faults. Linking this mechanism to watchdog firing assures that severe loss of
control (or, in the worst case, a program counter hang-up) is detected.

The guidelines for the implementation of the method are the following:
• Different internal states of the Application software are well documented and described

(the use of a dynamic state transition graph is encouraged).
• Monitoring of the correctness of each transition between different states of the

Application software is implemented.
• Transition through all expected states during the normal Application software program

loop is checked.
• A function in charge of triggering the system watchdog is implemented in order to

constrain the triggering (preventing the issue of CPU reset by watchdog) also to the
correct execution of the above-described method for program flow monitoring. The use
of window feature available on internal window watchdog (WWDG) is recommended.

• The use of the independent watchdog (IWDG), or an external one, helps to implement a
more robust control flow mechanism fed by a different clock source.

In any case, safety metrics do not depend on the kind of watchdog in use (the adoption of
independent or external watchdog contributes to the mitigation of dependent failures, see
Section 4.2.2 Clock)

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic NA

Multiple-fault protection CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations -

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 24/145

Table 15. CPUM4_SM_2

SM CODE CPUM4_SM_2

Description Double computation in Application software

Ownership End user

Detailed implementation

A timing redundancy for safety-related computation is considered to detect transient faults
affecting the Arm® Cortex®-M4 CPU subparts devoted to mathematical computations and
data access.

The guidelines for the implementation of the method are the following:
• The requirement needs be applied only to safety-relevant computation, which in case of

wrong result could interfere with the system safety functions. Such computation must be
therefore carefully identified in the original Application software source code

• Both mathematical operation and comparison are intended as computation.
• The redundant computation for mathematical computation is implemented by using

copies of the original data for second computation, and by using an equivalent formula if
possible

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple-fault protection CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations End user is responsible to carefully avoid that the intervention of optimization features of the
used compiler removes timing redundancies introduced according to this condition of use.

Table 16. CPUM4_SM_3

SM CODE CPUM4_SM_3

Description Arm® Cortex®-M4 HardFault exceptions

Ownership ST

Detailed implementation

HardFault exception raise is an intrinsic safety mechanism implemented in Arm® Cortex®-M4
core, mainly dedicated to intercept systematic faults due to software limitations or error in
software design (causing for example execution of undefined operations, unaligned address
access). This safety mechanism is also able to detect hardware random faults inside the CPU
bringing to such described abnormal operations.

Error reporting High-priority interrupt event

Fault detection time Depends on implementation. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic
It is possible to write a test procedure to verify the generation of the HardFault exception;
anyway, given the expected minor contribution in terms of hardware random-failure detection,
such implementation is not recommended.

Multiple-fault protection CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 25/145

Table 17. CPUM4_SM_4

SM CODE CPUM4_SM_4

Description Stack hardening for Application software

Ownership End user

Detailed implementation

The stack hardening method is required to address faults (mainly transient) affecting Arm®

Cortex®-M4 CPU register bank. This method is based on source code modification,
introducing information redundancy in register-passed information to called functions.

The guidelines for the implementation of the method are the following:
• To pass also a redundant copy of the passed parameters values (possibly inverted) and

to execute a coherence check in the function.
• To pass also a redundant copy of the passed pointers and to execute a coherence

check in the function.
• For parameters that are not protected by redundancy, to implement defensive

programming techniques (plausibility check of passed values). For example enumerated
fields are to be checked for consistency.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not needed

Multiple-fault protection CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
This method partially overlaps with defensive programming techniques required by IEC 61508
for software development. Therefore in presence of Application software qualified for safety
integrity greater or equal to SC2, optimizations are possible.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 26/145

Table 18. CPUM4_SM_7

SM CODE CPUM4_SM_7

Description Memory protection unit (MPU)

Ownership ST

Detailed implementation The Arm® Cortex®-M4 CPU memory protection unit is able to detect illegal access to
protected memory areas, according to criteria set by End user.

Error reporting Exception raise (MemManage)

Fault detection time Refer to functional documentation

Addressed fault model
Systematic (software errors)

Permanent/transient (only program counter and memory access failures)

Dependency on Device configuration None

Initialization MPU registers must be programmed at start-up

Periodicity On line

Test for the diagnostic Not needed

Multiple-fault protection MPUM4_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations

The use of memory partitioning and protection by MPU functions is highly recommended
when multiple safety functions are implemented in Application software. The MPU can be
indeed used to
• enforce privilege rules
• separate processes
• enforce access rules

Hardware random-failure detection capability for MPU is restricted to well-selected failure
modes, mainly affecting program counter and memory access CPU functions. The associated
diagnostic coverage is therefore not expected to be relevant for the safety concept of Device.

Enabling related interrupt generation on the detection of errors is highly recommended.

Table 19. MPUM4_SM_0

SM CODE MPUM4_SM_0

Description Periodic read-back of Arm® Cortex®-M4 MPU configuration registers

Ownership End user

Detailed implementation

This method must be applied to Arm® Cortex®-M4 MPU configuration registers (also unused
by the End user Application software).

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 27/145

Table 20. MPUM4_SM_1

SM CODE MPUM4_SM_1

Description Arm® Cortex®-M4 MPU software test.

Ownership End user.

Detailed implementation

This method tests Arm® Cortex®-M4 MPU capability to detect and report memory accesses violating
the policy enforcement implemented by the MPU itself.

The implementation is based on intentionally performing memory accesses (in writing and read) to
memory areas outside of the allowed by the MPU regions programming, and to collect and verify
related generated error exceptions.

Test can be executed with the final MPU region programming or with a dedicated one.

Error reporting Depends on implementation.

Fault detection Time Depends on implementation.

Addressed Fault Model Permanent.

Dependency on device configuration None.

Initialization Depends on implementation.

Periodicity On demand.

Test for the diagnostic Not needed.

Multiple faults protection CPUM4_SM_0: Periodic core self test software

Recommendations and known
limitations

Startup execution of this safety mechanism is recommended for multiple fault mitigations - refer to
Section 4.1.3 Notes on multiple-fault scenario.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 28/145

3.6.3 CPUs-shared safety mechanisms

Table 21. CPU_SM_5

SM CODE CPU_SM_5

Description External watchdog

Ownership End user

Detailed implementation

Using an external watchdog linked to control flow monitoring method (refer to CPUM7_SM_1
and CPUM4_SM_1) addresses failure mode of program counter or control structures of CPU.

External watchdog can be designed to be able to generate the combination of signals needed
on the final system to achieve the safe state. It is recommended to carefully check the
assumed requirements about system safe state reported in Safety requirement assumptions.

It also contributes to reduce potential common cause failures, because the external watchdog
is clocked and supplied independently of Device.

Error reporting Depends on implementation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic To be defined at system level (outside the scope of Compliant item analysis)

Multiple-fault protection
CPUM7_SM_1, CPUM4_SM_1: control flow monitoring in Application software

CPU_SM_6: Internal watchdogs IWDG/WWDG

Recommendations and known limitations

In case of usage of windowed watchdog, End user must consider possible tolerance in
Application software execution, to avoid false error reports (affecting system availability).

It is worth to note that the use of an external watchdog could be needed anyway when the
Device is used to trigger final elements, in order to comply at system level with requirements
from IEC 61508-2:2010 Table A.1/Table A.14.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 29/145

Table 22. CPU_SM_6

SM CODE CPU_SM_6

Description Internal watchdogs IWDG/WWDG

Ownership ST

Detailed implementation
Using the IDWG/WWDG watchdog linked to control flow monitoring method (refer to
CPUM7_SM_1 and CPUM4_SM_1) addresses failure mode of program counter or control
structures of CPU.

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization IWDG/WWDG activation. It is recommended to use hardware watchdog in Option byte
settings (IWDG/WWDG are automatically enabled after reset)

Periodicity Continuous

Test for the diagnostic WDG_SM_1: Software test for watchdog at startup

Multiple-fault protection
CPUM7_SM_1, CPUM4_SM_1: control flow monitoring in Application software

WDG_SM_0: periodic read-back of configuration registers

Recommendations and known limitations

The IWDG/WWDG intervention is able to achieve a potentially “incomplete” local safe state
because it can only guarantee that CPU is reset. No guarantee that Application software can
be still executed to generate combinations of output signals that might be needed by the
external system to achieve the final safe state. Internal watchdog use is part of STM32H7
separation concept - refer to Section 3.2.5 The separation concept and to CoU_15 and
CoU_16 for further information.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 30/145

Table 23. CPU_SM_11

SM CODE CPU_SM_11

Description Cross-CPU safety information exchange

Ownership End user

Detailed implementation

A communication scheme for safety information between the two CPUs is implemented to
allow the exchange of following information:
• CPU integrity check status (i.e. the correct execution of CPUM7_SM_0, CPUM4_SM_0

on the related CPU)
• Successful execution of each implemented software-based periodic safety mechanisms

Timestamp/frame counter mechanisms (or other equivalent) must be implemented to detect
missing updates of the data and to avoid multiple data consumption.

Safety data must be exchanged on the shared SRAM area identified by CoU_11.

It is strongly recommended to use the HSEM module to support the implementation of data
exchange.

Each CPU must force the safe state in case of a) failure reporting from the other CPU by
messages b) wrong, incorrect, or missing message from the other CPU.

Error reporting Depends on implementation

Fault detection Time Depends on implementation

Addressed Fault Model Permanent/transient

Dependency on MCU configuration N/A

Initialization Depends on implementation

Periodicity Periodical

Test for the diagnostic Not needed

Multiple faults protection
CPUM7_SM_0: periodic core self-test software

CPUM4_SM_0: periodic core self-test software

Recommendations and known limitations

This method can be used to implement CPU communications required by CoU_14, case b)

The main target of this method is to improve the separation concept (refer to
Section 3.2.5 The separation concept), so its implementation could be recommended or not,
depending on the architecture and CPU scheme selected. It must not be confused with
DUAL_SM_0 which specifies communications between two different STM32H7 dual-core and
not between CPUs of the same MCU.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 31/145

3.6.4 System bus architecture/BusMatrix

Table 24. BUS_SM_0

SM CODE BUS_SM_0

Description Periodic software test for interconnections

Ownership End user

Detailed implementation

The intra-chip connection resources (Bus Matrix, AHB or APB bridges) needs to be
periodically tested for permanent faults detection. Note that STM32H7 dual-core series
devices have no hardware safety mechanism to protect these structures. The test executes a
connectivity test of these shared resources, including the testing of the arbitration
mechanisms between peripherals.

According to IEC 61508-2 Table A.8, A.7.4 the method is considered able to achieve high
levels of coverage.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations Implementation can be considered in large part as overlapping with the widely used Periodic
read-back of configuration registers required for several peripherals.

Table 25. BUS_SM_1

SM CODE BUS_SM_1

Description Information redundancy in intra-chip data exchanges

Ownership End user

Detailed implementation

This method requires to add some kind of redundancy (for example a CRC checksum at
packet level) to each data message exchanged inside Device.

Message integrity is verified using the checksum by the Application software, before
consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
Implementation can be in large part overlapping with other safety mechanisms requiring
information redundancy on data messages for communication peripherals. Optimizations are
therefore possible.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 32/145

Table 26. LOCK_SM_0

SM CODE LOCK_SM_0

Description Lock mechanism for configuration options

Ownership ST

Detailed implementation

The STM32H7 dual-core devices feature spread protection to prevent unintended
configuration changes for some peripherals and system registers (for example PVD_LOCK,
timers); the spread protection detects systematic faults in software application. The use of this
method is encouraged to enhance the end application robustness to systematic faults.

Error reporting Not generated (when locked, register overwrites are just ignored)

Fault detection time NA

Addressed fault model None (Systematic only)

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple-fault protection Not needed

Recommendations and known limitations No DC associated because this test addresses systematic faults

3.6.5 Embedded SRAM

Table 27. RAM_SM_0

SM CODE RAM_SM_0

Description Periodic software test for static random access memory (SRAM)

Ownership End user or ST (X-CUBE-STL, see Appendix A)

Detailed implementation

To enhance the coverage on SRAM data cells and to ensure adequate coverage for
permanent faults affecting the address decoder it is required to execute a periodic software
test on the system RAM memory. The selection of the algorithm must ensure the target SFF
coverage for both the RAM cells and the address decoder. Evidences of the effectiveness of
the coverage of the selected method must be also collected

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration RAM size can change according to the part number.

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

Usage of a March test C- is recommended.

Because the nature of this test can be destructive, RAM contents restore must be
implemented. Possible interferences with interrupt-serving routines fired during test execution
must be also considered (such routines can access to RAM invalid contents).

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3 Notes on multiple-fault scenario.

Unused RAM section can be excluded by the testing, under End user responsibility on actual
RAM usage by final Application software.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 33/145

Table 28. RAM_SM_2

SM CODE RAM_SM_2

Description Stack hardening for Application software

Ownership End user

Detailed implementation

The stack hardening method is used to enhance the Application software robustness to SRAM
faults that affect the address decoder. The method is based on source code modification,
introducing information redundancy in the stack-passed information to the called functions.
Method contribution is relevant in case the combination between the final Application software
structure and the compiler settings requires a significant use of the stack for passing function
parameters.

Implementation is the same as method CPUM7_SM_4, CPUM4_SM_4.

Error reporting Refer to CPUM7_SM_4, CPUM4_SM_4

Fault detection time Refer to CPUM7_SM_4, CPUM4_SM_4

Addressed fault model Refer to CPUM7_SM_4, CPUM4_SM_4

Dependency on Device configuration Refer to CPUM7_SM_4, CPUM4_SM_4

Initialization Refer to CPUM7_SM_4, CPUM4_SM_4

Periodicity Refer to CPUM7_SM_4, CPUM4_SM_4

Test for the diagnostic Refer to CPUM7_SM_4, CPUM4_SM_4

Multiple-fault protection Refer to CPUM7_SM_4, CPUM4_SM_4

Recommendations and known limitations Refer to CPUM7_SM_4, CPUM4_SM_4

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 34/145

Table 29. RAM_SM_3

SM CODE RAM_SM_3

Description Information redundancy for safety-related variables in the Application software

Ownership End user

Detailed implementation

To address transient faults affecting the SRAM controller and memory cells, it is required to
implement information redundancy on the safety-related system variables stored in the SRAM.

The guidelines for the implementation of this method are the following:
• The system variables that are safety-related (in the sense that a wrong value due to a

failure in reading on the RAM affects the safety functions) are well-identified and
documented.

• The arithmetic computation or decision based on such variables are executed twice and
the two final results are compared.

• Safety-related variables are stored and updated in two redundant locations, and
comparison is checked before consuming data.

• Enumerated fields must use non-trivial values, checked for coherence with the same
frequency as for periodically executed diagnostics (see (1) in Section 3.6 Hardware and
software diagnostics).

• Data vectors stored in SRAM must be protected by a encoding checksum (such as
CRC).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

Implementation of this safety method shows a partial overlap with an already foreseen method
for Arm® Cortex®-M7 (CPUM7_SM_2), M4 (CPUM4_SM_2) ; optimizations in implementing
both methods are therefore possible.

Reduction to the application scope for this method is achieved by executing an accurate
safety analysis of the software. Refer to [4] for details. However, the scope reduction may not
be possible nor desirable.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 35/145

Table 30. RAM_SM_4

SM CODE RAM_SM_4

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

In case End user Application software is executed from SRAM, permanent and transient faults
affecting the memory (cells and address decoder) can interfere with the program execution.

The implementation of this method is required to address such failures.

For more details on the implementation, refer to CPUM7_SM_1, CPUM4_SM_1 description.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
Needed only in case of Application software execution from SRAM.

CPUM7_SM_1, CPUM4_SM_1 correct implementation supersedes this requirement.

Table 31. RAM_SM_5

SM CODE RAM_SM_5

Description Periodic integrity test for Application software in RAM

Ownership End user

Detailed implementation

In case Application software or diagnostic libraries are executed in RAM, it is needed to
protect the integrity of the code itself against soft-error corruptions and related code
mutations. This method must check the integrity of the stored code by checksum computation
techniques, on a periodic basis. For implementation details, refer to similar method
FLASH_SM_0.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection
CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

CPUM7_SM_1, CPUM4_SM_1: Control flow monitoring in Application software.

Recommendations and known limitations This method must only be implemented if Application software or diagnostic libraries are
executed from RAM.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 36/145

Table 32. RAM_SM_6

SM CODE RAM_SM_6

Description Read protection (RDP) and write protection (WRP)

Ownership ST

Detailed implementation
SRAM can be protected against illegal reads or erase/write by using these protection features.
The combination of these techniques and the related different protection level allows End user
to build an effective access protection policy.

Error reporting Refer to functional documentation - in some cases a HardFault error is generated.

Fault detection time Refer to functional documentation

Addressed fault model Systematic

Dependency on Device configuration Not applicable

Initialization Not required

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations

Hardware random-failure detection capability for SRAM2 access policy is restricted to well-
selected marginal failure modes, mainly affecting program counter and SRAM2 interface
functions. The associated diagnostic coverage is therefore expected to be irrelevant in the
framework of STM32H7 dual-core series safety concept.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 37/145

Table 33. RAM_SM_7

SM CODE RAM_SM_7

Description ECC on SRAM

Ownership ST

Detailed implementation

Internal SRAM is protected by an ECC (error correction code) redundancy implementing a
protection feature:
• one-bit fault: correction
• two-bit fault: detection

Error reporting Refer to functional documentation

Fault detection time ECC bits are checked during a memory reading.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic

Direct test procedure for ECC efficiency is not available. ECC runtime hardware failures
leading to the disable of the diagnostic, or to wrong corrections, fall into a “multiple fault
scenario” from IEC 61508 perspective. Related failures are adequately mitigated by the
combination of safety mechanisms reported in this table, field "Multiple fault protection".Also
refer to reference [4] for further information.

Multiple-fault protection

• RAM_SM_0: Periodic software test for static random access memory (SRAM)
• DIAG_SM_0: Periodic read-back of hardware diagnostics configuration registers
• RAM_SM_3: Information redundancy for safety-related variables in the Application

software

Recommendations and known limitations

Note that because the ECC is checked during memory reads, RAM locations occupied by the
safety related data which are rarely accessed (for instance, variables and/or code related to
failures/errors management) are potentially exposed to the risk of error accumulation. In such
a case, it is recommended to periodically check those locations by a memory scrubbing (by
simply reading memory to reveal error correction or detection).

The single error correction performed by the ECC is done just on the data read from the
memory, but the value stored in the memory cells is not automatically corrected. To completely
remove the error, a rewrite on the memory location with correct data is needed.

Important:
Due to the lack of direct ECC test procedure, single-fault failures leading to
unintended ECC corrections may cause an incorrect data read from memory. This
is why STM32H7 dual-core safety concept strongly recommends the adoption of
multiple layers of overlapped safety mechanisms which collaborate to mitigate
such kind of ECC failures. Refer to [1] and [4] for further detailed information on
ECC failures mitigation strategy.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 38/145

Table 34. RAM_SM_8

SM CODE RAM_SM_8

Description Periodic test by software for SRAM address decoder

Ownership End user or ST

Detailed implementation Permanent faults affecting the SRAM interfaces address decoder are addressed through a
dedicated software test that checks the memory cells contents versus the expected value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration SRAM size depends on the part number

Initialization Not required

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations Overlaps with RAM_SM_0 implementation are possible.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 39/145

3.6.6 Embedded flash memory

Table 35. FLASH_SM_0

SM CODE FLASH_SM_0

Description Periodic software test for flash memory

Ownership End user or ST (X-CUBE-STL, see Appendix A)

Detailed implementation

Permanent faults affecting the system flash memory interface address decoder are addressed
through a dedicated software test that checks the memory cells contents versus the expected
value, using signature-based techniques. According to IEC 61508-2 Table A.5, the effective
diagnostic coverage of such techniques depends on the width of the signature in relation to
the block length of the information to be protected - therefore the signature computation
method is to be carefully selected. Note that the simple signature method (IEC 61508-7 -
A.4.2 Modified checksum) is inadequate as it only achieves a low value of coverage.

The information block does not need to be addressed with this test as it is not used during
normal operation (no data nor program fetch).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration Flash memory size changes according to the part number.

Initialization Memory signatures must be stored in flash memory as well.

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection

CPUM7_SM_0: Periodic core self-test software for Arm® Cortex®-M7

CPUM4_SM_0: Periodic core self-test software for Arm® Cortex®-M4

CPUM7_SM_1: Control flow monitoring in Application software

CPUM4_SM_1: Control flow monitoring in Application software

Recommendations and known limitations

This test is expected to have a relevant time duration – test integration must therefore
consider the impact on Application software execution.

The use of internal cyclic redundancy check (CRC) module is recommended. In principle
direct memory access (DMA) feature for data transfer can be used.

Unused flash memory sections can be excluded from testing.

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3 Notes on multiple-fault scenario for details.

As far as ASR2 requirement on PST duration (adoption of the same value for both CPUs) and
CoU_14 are correctly implemented, the overall flash memory test can be partitioned among
the two CPUs, or even delegated to only one.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 40/145

Table 36. FLASH_SM_1

SM CODE FLASH_SM_1

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

Permanent and transient faults affecting the system flash memory, memory cells and address
decoder, can interfere with the access operation by the CPU, leading to wrong data or
instruction fetches.

Such failures can be detected by control flow monitoring techniques implemented in
Application software loaded from flash memory.

For more details on the implementation, refer to description CPUM7_SM_1, CPUM4_SM_1.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations CPUM7_SM_1, CPUM4_SM_1 correct implementation supersedes this requirement.

Table 37. FLASH_SM_2

SM CODE FLASH_SM_2

Description Arm®Cortex®-M7 and M4 HardFault exceptions

Ownership ST

Detailed implementation

Hardware random faults (both permanent and transient) affecting system flash memory
(memory cells, address decoder) can lead to wrong instruction codes fetches, and eventually
to the intervention of the Arm®Cortex®-M7 HardFault exceptions. Refer to CPUM7_SM_3,
CPUM4_SM_3 for detailed description.

Error reporting Refer to CPUM7_SM_3, CPUM4_SM_3

Fault detection time Refer to CPUM7_SM_3, CPUM4_SM_3

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Refer to CPUM7_SM_3, CPUM4_SM_3

Periodicity Continuous

Test for the diagnostic Refer to CPUM7_SM_3, CPUM4_SM_3

Multiple-fault protection Refer to CPUM7_SM_3, CPUM4_SM_3

Recommendations and known limitations Refer to CPUM7_SM_3, CPUM4_SM_3

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 41/145

Table 38. FLASH_SM_3

SM CODE FLASH_SM_3

Description Option byte write protection

Ownership ST

Detailed implementation This safety mechanism prevents unintended writes on the option byte. The use of this method
is encouraged to enhance end application robustness for systematic faults.

Error reporting Write protection exception

Fault detection time Not applicable

Addressed fault model None (systematic only)

Dependency on Device configuration None

Initialization None (always enabled)

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
This method addresses systematic faults in software application and it have zero efficiency in
addressing hardware random faults affecting the option byte value during running time. No DC
value is therefore associated.

Table 39. FLASH_SM_4

SM CODE FLASH_SM_4

Description Static data encapsulation

Ownership End user

Detailed implementation
If static data are stored in flash memory, encapsulation by a checksum field with encoding
capability (such as CRC) must be implemented.

Checksum validity is checked by Application software before static data consuming.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 42/145

Table 40. FLASH_SM_6

SM CODE FLASH_SM_6

Description Flash memory unused area filling code

Ownership End user

Detailed implementation
Used flash memory area must be filled with deterministic data. This way in case that the
program counter jumps outside the application program area due to a transient fault affecting
CPU, the system evolves in a deterministic way.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model None (fault avoidance)

Dependency on Device configuration None

Initialization Not applicable

Periodicity Not applicable

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations Filling code can be made of NOP instructions, or an illegal code that leads to a HardFault
exception raise.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 43/145

Table 41. FLASH_SM_7

SM CODE FLASH_SM_7

Description ECC on flash memory

Ownership ST

Detailed implementation

Internal Flash memory is protected by ECC (Error Correction Code) redundancy,implementing
a protection feature at double-word (64 bit) level:
• one-bit fault: correction
• two-bit fault: detection

Error reporting

Correction:
• ECCC flag (ECC correction) is set in the FLASH_ECCR register.
• Interrupt is generated.

Detection:
• ECCD flag (ECC detection) is set in the FLASH_ECCR register.
• NMI is generated.
• The address of the failing double word and its associated bank are saved in the

ADDR_ECC[20:0] and BK_ECC bitfields of the FLASH_ECCR register.

Fault detection time ECC bits are checked during a memory reading.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic

Direct test procedure for ECC efficiency is not available. ECC run-time hardware failures
leading to disabling the diagnostic, or leading to wrong corrections, fall into multiple-fault
scenario, from IEC 61508 perspective. Related failures are adequately mitigated by the
combination of safety mechanisms reported in this table, field Multiple-fault protection.
Also refer to the Recommendations and known limitations field.

Multiple-fault protection

FLASH_SM_0: Periodic software test for flash memory

DIAG_SM_0: Periodic read-back of hardware diagnostics configuration registers

CPUM7_SM_3: Arm® Cortex®-M7 HardFault exceptions

CPUM4_SM_3: Arm® Cortex®-M4 HardFault exceptions

Recommendations and known limitations

Enabling related interrupt generation on the detection of errors is highly recommended.

Note that because ECC is checked during memory reads, Flash section occupied by safety
related program/data which are rarely accessed (for instance, code related to failures/errors
management) are potentially exposed to the risk of error accumulation. In such a case, it is
recommended to periodically check those locations with FLASH_SM_0 method.

Important note: because of the lack of ECC direct test procedure, single-fault failures leading
to unintended ECC correction may cause an incorrect data read from Flash memory. This is
why STM32H7 dual-core safety concept strongly recommends the adoption of multiple layers
of overlapped safety mechanisms which collaborate to mitigate such kind of ECC failures.
Refer to [1] for further detailed information on ECC failures mitigation strategy.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 44/145

Table 42. FLASH_SM_8

SM CODE FLASH_SM_8

Description Read protection (RDP), write protection (WRP)

Ownership ST

Detailed implementation
Flash memory can be protected against illegal read or erase/write accesses by using these
protection features. The combination of these techniques and the related different protection
levels allows End user to build an effective access protection policy.

Error reporting
Refer to functional documentation.

In some cases, a HardFault error is generated.

Fault detection time Refer to functional documentation.

Addressed fault model Systematic

Dependency on Device configuration None

Initialization Not required

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations

Hardware random-failure detection capability for Flash memory access policy is restricted to
well-selected marginal failure modes, mainly affecting program counter and Flash memory
interface functions. The associated diagnostic coverage is therefore expected to be irrelevant
in the framework of STM32H7 dual-core series safety concept.

Table 43. FLASH_SM_9

SM CODE FLASH_SM_9

Description Periodic test by software for flash memory address decoder

Ownership End user

Detailed implementation
Permanent faults affecting the system flash memory interface address decoder are addressed
through a dedicated software test that checks the memory cells contents versus the expected
value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration flash memory size depends on part number.

Initialization Not required

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations Overlaps with FLASH_SM_0 implementation are possible.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 45/145

3.6.7 Power controller (PWR)

Table 44. VSUP_SM_0

SM CODE VSUP_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 45. VSUP_SM_1

SM CODE VSUP_SM_1

Description Supply voltage internal monitoring (PVD)

Ownership ST

Detailed implementation
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when
VDD drops below the VPVD threshold or when VDD is higher than the VPVD threshold.

Error reporting Interrupt event generation

Fault detection time Depends on threshold programming. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Protection enable by the PVDE bit and the threshold setting in the Power control register
(PWR_CR)

Periodicity Continuous

Test for the diagnostic

Direct test procedure for PVD efficiency is not available. PVD run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection DIAG_SM_0: Periodic read-back of hardware diagnostics configuration registers

Recommendations and known limitations

Internal monitoring PVD has limited capability to address failures affecting STM32H7 dual-
core series internal voltage regulator. Refer to [1] for details.

Internal monitoring PVD has limited capability to address failures affecting the internal voltage
regulator. Refer to Device FMEA for details.

In case the hardware option is not available on the chosen partnumbers, its contribution to the
overall safety concept is supported by other overlapping methods indicated for the mitigation
of failures affecting internal power.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 46/145

Table 46. VSUP_SM_2

SM CODE VSUP_SM_2

Description Independent watchdog

Ownership ST

Detailed implementation

Failures in the power supplies for digital logic (core or peripherals) may lead to alteration of
Application software timing, which can be detected by IWDG as safety mechanism introduced
to monitor the Application software control flow. Refer to CPU_SM_1 and CPU_SM_6 for
further information.

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization IWDG activation. It is recommended to use Hardware watchdog in Option byte settings (IWDG
is automatically enabled after reset).

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_6.

Multiple-fault protection CPUM7_SM_1, CPUM4_SM_1: Control flow monitoring in Application software.

Recommendations and known limitations

In specific part numbers, IWDG can be fed by a power supply independent from the one used
for CPU core and main peripherals. Such diversity helps to increase the protection guaranteed
by IWDG from main power supply anomalies.

The adoption of an external watchdog (refer to CPU_SM_5) adds further diversity.

Table 47. VSUP_SM_3

SM CODE VSUP_SM_3

Description Internal temperature sensor check

Ownership End user

Detailed implementation
The internal temperature sensor must be periodically tested in order to detect abnormal
increase of the die temperature – hardware faults in supply voltage system may cause
excessive power consumption and consequent temperature rise.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
This method also mitigates the probability of common-cause failure due to excessive
temperature, affecting the Device.

Refer to the Device datasheet to set the threshold temperature.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 47/145

Table 48. VSUP_SM_5

SM CODE VSUP_SM_5

Description System-level power supply management

Ownership End user

Detailed implementation

This method is implemented at system level in order to guarantee the stability of power supply
value over time. It can include a combination of different overlapped solutions, some listed
here below (but not limited to):
• additional voltage monitoring by external components
• passive electronics devices able to mitigate overvoltage
• specific design of power regulator in order to avoid power supply disturbance in

presence of a single failure

Error reporting Depends on implementation

Fault detection time Fault avoidance

Addressed fault model None

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations Usually, this method is already required/implemented to guarantee the stability of each
component of the final electronic board.

3.6.8 Reset and clock controller (RCC)

Table 49. CLK_SM_0

SM CODE CLK_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to configuration registers for clock and reset system (refer to
RCC register map).

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 48/145

Table 50. CLK_SM_1

SM CODE CLK_SM_1

Description Clock security system (CSS)

Ownership ST

Detailed implementation

The clock security system (CSS) detects the loss of high-speed external (HSE) oscillator clock
activity and executes the corresponding recovery action, such as:
• switch-off HSE
• commutation on the HSI
• generation of related NMI

Error reporting NMI

Fault detection time Depends on implementation (clock frequency value)

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization CSS protection must be enabled through Clock interrupt register (RCC_CIR) after boot.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection
CPU_SM_5: External watchdog

CLK_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations

It is recommended to carefully read reference manual instruction on NMI generation, in order
to correctly managing the faulty situation by Application software.

As the test of the diagnostic is not available in the hardware, it must be done at system level
during startup or maintenance period. The use of this method to implement fail operational
schemes is not recommended.

Table 51. CLK_SM_3

SM CODE CLK_SM_3

Description Internal clock cross-measurement

Ownership End user

Detailed implementation

This method is implemented using general-purpose timers capabilities to be fed by the 32 KHz
RTC clock or an external clock source (if available). Timer counter progress is compared with
another counter (fed by internal clock). Abnormal values of oscillator frequency can therefore
be detected.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection
CPUM7_SM_1, CPUM4_SM_1: Control flow monitoring in Application software.

CPU_SM_5: External watchdog

Recommendations and known limitations Efficiency versus transient faults is negligible. It provides only medium efficiency in permanent
clock-related failure mode coverage.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 49/145

Table 52. CLK_SM_5

SM CODE

Description External watchdog

Ownership End user

Detailed implementation The external watchdog is able to detect failures in internal main MCU clock (lower frequency).
Refer to CPU_SM_5 for further details.

Error reporting Depends on implementation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not needed

Multiple-fault protection CPUM7_SM_1, CPUM4_SM_1: Control flow monitoring in Application software.

Recommendations and known limitations If a time window function option is used, the End user must consider possible tolerance in
application software execution, to avoid false error reports (affecting system availability).

3.6.9 Clock recovery system (CRS)
No safety mechanisms are defined for CRS because of the consequences of CoU_8 (refer to Table 175. List of
safety recommendations). CRS deactivation is guaranteed by Section 3.6.50 Disable and periodic cross-check
of unintentional activation of unused peripherals.

3.6.10 Hardware semaphore (HSEM)

Table 53. HSEM_SM_0

SM CODE HSEM_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to HSEM configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 50/145

Table 54. HSEM_SM_1

SM CODE HSEM_SM_1

Description Control flow monitoring for concurrent tasks

Ownership End user

Detailed implementation

This method is intended to monitor the correct execution of software tasks that use the HSEM
semaphore method for their synchronization. The method is implemented by software,
leveraging on the presence of a system watchdog (internal or external).

The watchdog periodic reset function must be constrained to the correct timing execution of
each software task synchronized by semaphores.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

This method must be extended to any software task using an HSEM semaphores function for
synchronization, regardless task nature (safety relevant or non-safety relevant).

Implementation must take into account potential overlaps/optimizations with CPUM7_SM_1,
CPUM4_SM_1.

3.6.11 General-purpose input/output (GPIO)

Table 55. GPIO_SM_0

SM CODE GPIO_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to GPIO configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration GPIO availability can differ according to part number

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations
The execution of the method before any update on GPIO registers helps to mitigate the
possibility of unintended glitches on outputs due to soft errors. For more information refer to
[4].

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 51/145

Table 56. GPIO_SM_1

SM CODE GPIO_SM_1

Description 1oo2 for input GPIO lines

Ownership End user

Detailed implementation

This method addresses GPIO lines used as inputs. Implementation is done by connecting the
external safety-related signal to two independent GPIO lines. Comparison between the two
GPIO values is executed by the Application software each time the signal is used to affect
Application software behavior. This method applies to the single GPIO line used as input.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Permanent/transient

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

To reduce the potential impact of common cause failure, it is recommended to use GPIO lines:
• belonging to different I/O ports (for instance port A and B)
• with different bit port number (for instance PA1 and PB5)
• mapped to non-adjacent pins on the device package

As GPIO pins are shared with other MCU functions, this method must not be applied to pin
connections already used by another peripheral and addressed by related safety
mechanisms.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 52/145

Table 57. GPIO_SM_2

SM CODE GPIO_SM_2

Description Loopback scheme for output GPIO lines

Ownership End user

Detailed implementation

This method addresses GPIO lines used as outputs. Implementation is done by a loopback
scheme, connecting the output to a different GPIO line programmed as input and by using the
input line to check the expected value on output port. Comparison is executed by the
Application software periodically and each time output is updated. This method applies to the
single GPIO line used as output.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

To reduce the potential impact of common cause failure, it is recommended to use GPIO lines:
• belonging to different I/O ports (for instance port A and B)
• with different bit port number (for instance PA1 and PB5)
• mapped to non-adjacent pins on the device package

Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of GPIO output wrong signal permanence required to violate the
related safety function(s). Efficiency is maximized when execution test frequency is higher
than 1/Tm.

As GPIO pins are shared with other MCU functions, this method must not be applied to pin
connections already used by another peripheral and addressed by related safety
mechanisms.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 53/145

Table 58. GPIO_SM_3

SM CODE GPIO_SM_3

Description GPIO port configuration lock register

Ownership ST

Detailed implementation

This safety mechanism prevents configuration changes for GPIO registers; it addresses
therefore systematic faults in software application.

The use of this method is encouraged to enhance the end-application robustness for
systematic faults.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model None (Systematic only)

Dependency on Device configuration None

Initialization Application software must apply a correct locking write sequence after writing the final GPIO
configuration.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations This method does not address transient faults (soft errors) that can possibly cause bit-flips on
GPIO registers at running time.

3.6.12 Debug system or peripheral control

Table 59. DBG_SM_0

SM CODE DBG_SM_0

Description Watchdog protection

Ownership ST

Detailed implementation
The debug unintentional activation due to hardware random fault results in the massive
disturbance of CPU operations, leading to an intervention of the independent watchdog or,
alternatively, the other system watchdog WWDG or the external one (CPU_SM_5).

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval).

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_6.

Multiple-fault protection CPUM7_SM_1, CPUM4_SM_1: Control flow monitoring in Application software.

Recommendations and known limitations None

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 54/145

3.6.13 System configuration controller (SYSCFG)

Table 60. SYSCFG_SM_0

SM CODE SYSCFG_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to system configuration controller configuration registers.

This method is strongly recommended to protect registers related to hardware diagnostics
activation and error reporting chain related features.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations This method is mainly overlapped by several other configuration register read-backs required
for other MCU peripherals. It is reported here for the sake of completeness.

Table 61. DIAG_SM_0

SM CODE DIAG_SM_0

Description Periodic read-back of hardware diagnostics configuration registers

Ownership End user

Detailed implementation

In STM32H7 dual-core series, several hardware-based safety mechanisms are available
(those with the Ownership field set to ST). This method must be applied to any configuration
register related to diagnostic measure operations, including error reporting. End user must
therefore individuate configuration registers related to:
• hardware diagnostic enable
• interrupt/NMI enable (if used for diagnostic error management)

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 55/145

3.6.14 Direct memory access controllers ((DMA, MDMA, BDMA and DMA request multiplexer
(DMAMUX)))

Table 62. DMA_SM_0

SM CODE DMA_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DMA configuration register and channel address register.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 63. DMA_SM_1

SM CODE DMA_SM_1

Description Information redundancy on data packet transferred via DMA

Ownership End user

Detailed implementation

This method is implemented by adding, to data packets transferred by DMA, a redundancy
check (such as CRC check or similar one) with encoding capability. Full data packet
redundancy would be an overkill.

The checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations To give an example about checksum encoding capability, using just a bit-by-bit addition is
inappropriate.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 56/145

Table 64. DMA_SM_2

SM CODE DMA_SM_2

Description Information redundancy by including sender or receiver identifier on data packet transferred
via DMA

Ownership End user

Detailed implementation

This method helps to identify inside the MCU the source and the originator of the message
exchanged by DMA.

Implementation is realized by adding an additional field to protected message, with a coding
convention for message type identification fixed at Device level. Guidelines for the
identification fields are:
• Identification field value must be different for each possible couple of sender or receiver

on DMA transactions.
• Values chosen must be enumerated and non-trivial.
• Coherence between the identification field value and the message type is checked by

the Application software before consuming data.

This method, when implemented in combination with DMA_SM_4, makes available a kind of
virtual channel between source and destinations entities.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 57/145

Table 65. DMA_SM_3

SM CODE DMA_SM_3

Description Periodic software test for DMA

Ownership End user

Detailed implementation

This method requires the periodical testing of the DMA basic functionality, implemented
through a deterministic transfer of a data packet from one source to another (for example from
memory to memory) and the checking of the correct transfer of the message on the target.
Data packets are composed by non-trivial patterns (avoid the use of 0x0000, 0xFFFF values)
and organized in order to allow the detection during the check of the following failures:
• incomplete packed transfer
• errors in single transferred word
• wrong order in packed transmitted data

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 66. DMA_SM_4

SM CODE DMA_SM_4

Description DMA transaction awareness

Ownership End user

Detailed implementation

DMA transactions are non-deterministic by nature, because typically driven by external events
like communication messages reception. Anyway, well-designed safety systems should keep
much control as possible of events – refer for instance to IEC 61508-3 Table 2 item 13
requirements for software architecture.

This method is based on system knowledge of frequency and type of expected DMA
transaction. For instance, an externally connected sensor supposed to send periodically some
messages to a STM32 peripheral. Monitoring DMA transaction by a dedicated state machine
allows the detection of missing or unexpected DMA activities.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
Because DMA transaction termination is often linked to an interrupt generation,
implementation of this method can be merged with the safety mechanism NVIC_SM_1:
Expected and unexpected interrupt check.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 58/145

3.6.15 Chrom-Art Accelerator controller (DMA2D)

Table 67. DMA2D_SM_0

SM CODE DMA2D_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DMA2D configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 68. DMA2D_SM_1

SM CODE DMA2D_SM_1

Description Periodic software test for DMA2D functions

Ownership End user

Detailed implementation

This method requires the periodical testing of the DMA2D basic functionality, implemented
through a deterministic transfer and processing of a set of test images from memory to
memory and the checking of the correct execution (output image must be generated as per
specifications). Output image correctness can be performed by fast methods like CRC
fingerprint computation.

Test definition must be able to cover following DMA2D basic functions:
• full image copy
• image filling with a specific color
• copy of part of the image
• pixel format conversion
• blending of two different images

Achieved diagnostic coverage on the module depends on the quantity and variance of tests
performed.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations In principle, DMA2D basic functions not used in the safety application can be excluded from
this test suite implementation.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 59/145

Table 69. DMA2D_SM_2

SM CODE DMA2D_SM_2

Description DMA processing and interrupt awareness

Ownership End user

Detailed implementation

This method is based on system knowledge of frequency and type of DMA2D transaction
expected. In general, image processing systems are based on a deterministic timing for image
framing arrival and processing.

Therefore, this method requires to monitor the expected execution of image processing and,
in case interrupt generation is used, their correct timing and sequence.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations Implementation of this method can be merged with the safety mechanism NVIC_SM_1:
Expected and unexpected interrupt check

Note: If image processing performed by DMA2D is used for the implementation of a safety function, system level
considerations (as consistency checks on objects recognition results) may guarantee additional diagnostic
coverage. Similarly, system level data redundancy schemes (as for instance algorithms based on processing for
sequences of multiple image frames) may result in a relevant derating for transient failure rate.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 60/145

3.6.16 Extended interrupt and events controller (EXTI)

Table 70. NVIC_SM_0

SM CODE NVIC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This test is implemented by executing a periodic check of the configuration registers for a
system peripheral against its expected value. Expected values are previously stored in RAM
and adequately updated after each configuration change. The method mainly addresses
transient faults affecting the configuration registers, by detecting bit flips in the registers
contents. It addresses also permanent faults on registers because it is executed at least once
per PST (or another timing constraint; refer to (1) in Section 3.6 Hardware and software
diagnostics) after an update of the peripheral.

Method must be implemented to any configuration register whose contents are able to
interfere with NVIC or EXTI behavior in case of incorrect settings. Check includes NVIC vector
table.

According to the state-of-the-art automotive safety standard ISO26262, this method can
achieve high levels of diagnostic coverage (DC) (refer to ISO26262-5:2018, Table D.4).

An alternative valid implementation requiring less space in SRAM can be realized on the basis
of signature concept:
• Peripheral registers to be checked are read in a row, computing a CRC checksum (use

of hardware CRC is encouraged).
• Obtained signature is compared with the golden value (computed in the same way after

each register update, and stored in SRAM).
• Coherence between signatures is checked by Application software – signature

mismatch is considered as failure detection.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

This method addresses only failures affecting configuration registers, and not peripheral core
logic or external interface.

Attention must be paid to registers containing mixed combination of configuration and status
bits. Mask must be used before saving register contents affecting signature, and related
checks done, to avoid false positive detections.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 61/145

Table 71. NVIC_SM_1

SM CODE NVIC_SM_1

Description Expected and unexpected interrupt check

Ownership End user

Detailed implementation

According to IEC 61508-2 Table A.1 recommendations, a diagnostic measure for continuous,
absence or cross-over of interrupt must be implemented. The method of expected and
unexpected interrupt check is implemented at Application software level.

The guidelines for the implementation of the method are the following:
• The interrupts implemented on the MCU are well documented, also reporting, when

possible, the expected frequency of each request (for example, the interrupts related to
ADC conversion completion that come on a regular basis).

• Individual counters are maintained for each interrupt request served, in order to detect in
a given time frame the cases of a) no interrupt at all b) too many interrupt requests. The
control of the time frame duration must be regulated according to the individual interrupt
expected frequency.

• Interrupt vectors related to unused interrupt source point to a default handler that
reports, in case of triggering, a faulty condition (unexpected interrupt).

• In case an interrupt service routine is shared between different sources, a plausibility
check on the caller identity is implemented.

Important:
Interrupt requests generated by non-safety-related peripherals must be handled
using the same method as all safety related interupts outlined in the list above.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
The extension of the method to non-safety related peripherals (see last bullet in "Detailed
implementation" box above) is introduced to mitigate interferences between non-safety and
safety functions/hardware (FFI).

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 62/145

3.6.17 Cyclic redundancy-check calculation unit (CRC)

Table 72. CRC_SM_0

SM CODE CRC_SM_0

Description CRC self-coverage

Ownership ST

Detailed implementation

The CRC algorithm implemented in this module (CRC-32 Ethernet polynomial: 0x4C11DB7)
offers excellent features in terms of error detection in the message. Therefore permanent and
transient faults affecting CRC computations are easily detected by any operations using the
module to recompute an expected signature.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations None

3.6.18 Flexible static memory controller (FSMC)

Table 73. FSMC_SM_0

SM CODE FSMC_SM_0

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

If FSMC is used to connect an external memory containing software code to be executed by
the CPU, permanent and transient faults affecting the FSMC memory controller are able to
interfere with the access operation by the CPU, leading to wrong data or instruction fetches. A
strong control flow mechanism linked to a system watchdog is able to detect such failures, in
case they interfere with the expected flow of Application software.

The implementation of this method is identical to the one reported for CPUM7_SM_1,
CPUM4_SM_1, refer there for details.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration FSMC interface is available only on selected part numbers.

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations This mechanism must only be used if FSMC external memory is used to store executable
programs.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 63/145

Table 74. FSMC_SM_1

SM CODE FSMC_SM_1

Description Information redundancy on external memory connected to FSMC

Ownership End user

Detailed implementation

If FSMC interface is used to connect an external memory where safety-relevant data are
stored, information redundancy techniques for stored data are able to address faults affecting
the FSMC interface. The possible techniques are:
• using redundant copies of safety-relevant data and performing coherence check before

consuming
• organizing data in arrays and computing the checksum field to check before use

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration FSMC interface is available only on selected part numbers.

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

This mechanism must be used just if FSMC external memory is used to store safety-related
data.

This safety mechanism can overlap with information redundancy techniques implemented at
system level to address failure of physical device connected to FSMC port.

Table 75. FSMC_SM_2

SM CODE FSMC_SM_2

Description Periodic read-back of FSMC configuration registers

Ownership End user

Detailed implementation
This method must be applied to FSMC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration FSMC interface is available only on selected part numbers.

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 64/145

Table 76. FSMC_SM_3

SM CODE FSMC_SM_3

Description ECC engine on NAND interface in FSMC module

Ownership ST

Detailed implementation

The FMC NAND Card controller includes two error correction code computation hardware
blocks, one per memory bank. They reduce the host CPU workload when processing the ECC
by software.

ECC mechanism protects data integrity on the external memory connected to NAND port.

Error reporting Refer to functional documentation

Fault detection time ECC bits are checked during memory reading.

Addressed fault model Permanent/transient

Dependency on Device configuration FSMC interface is available only on selected part numbers.

Initialization None

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection FSMC_SM_2: Periodic read-back of FSMC configuration registers

Recommendations and known limitations
This method has negligible efficiency in detecting hardware random failures affecting the
FSMC interface. It can be part of End user safety concept because addressing memories
outside STM32H7 dual-core series MCU.

3.6.19 Quad-SPI interface (QUADSPI)
Note: For this document's scope, Octo-SPI interface includes the OCTOSPIM.

Table 77. QSPI_SM_0

SM CODE QSPI_SM_0

Description Periodic read-back of QUADSPI configuration registers

Ownership End user

Detailed implementation
This method must be applied to QUADSPI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 65/145

Table 78. QSPI_SM_1

SM CODE QSPI_SM_1

Description Protocol error signals including hardware CRC

Ownership ST

Detailed implementation

QUADSPI communication module embeds protocol error checks (like overrun, underrun,
timeout and so on), conceived to detect communication-related abnormal conditions. These
mechanisms are only able to detect a small fraction of hardware random failures affecting the
module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection QSPI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

Table 79. QSPI_SM_2

SM CODE QSPI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets (not commands) transferred by QUADSPI
interface a redundancy check (like a CRC check, or similar one) with encoding capability. The
checksum encoding capability must be robust enough to guarantee at least 90% probability of
detection for a single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

This safety mechanism can overlap with information redundancy techniques implemented at
system level to address failure of physical device connected to QUADSPI port.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 66/145

3.6.20 Delay block (DLYB)

Table 80. DLB_SM_0

SM CODE DLB_SM_0

Description Periodic read-back of DLYB configuration registers

Ownership End user

Detailed implementation
This method must be applied to DLYB configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Note: It is assumed that DLYB output, if used, will feed STM32H7 dual-core internal communication peripherals (like,
for instance, QUADSPI). It is also assumed that for the connected peripherals all prescript safety mechanisms
(rated as ++ and +) are correctly implemented.

3.6.21 Analog-to-digital converter (ADC)

Table 81. ADC_SM_0

SM CODE ADC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to the ADC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 67/145

Table 82. ADC_SM_1

SM CODE ADC_SM_1

Description Multiple acquisition by Application software

Ownership End user

Detailed implementation
This method implements a timing information redundancy by executing multiple acquisitions
on the same input signal. Multiple data acquisitions are then combined by a filter algorithm to
determine the signal correct value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

It is highly probable that this recommendation is satisfied by design by the End
userApplication software. Usage of multiple acquisitions followed by average operations is a
common technique in industrial applications exposed to electromagnetic interference on
sensor lines.

Table 83. ADC_SM_2

SM CODE ADC_SM_2

Description Range check by Application software

Ownership End user

Detailed implementation

The guidelines for the implementation of the method are the following:
• The expected range of the data to be acquired are investigated and adequately

documented. Note that in a well-designed application it is improbable that during normal
operation an input signal has a very near or over the upper and lower rail limit
(saturation in signal acquisition).

• If the Application software is aware of the state of the system, this information is to be
used in the range check implementation. For example, if the ADC value is the
measurement of a current through a power load, reading an abnormal value such as a
current flowing in opposite direction versus the load supply may indicate a fault in the
acquisition module.

• As the ADC module is shared between different possible external sources, the
combination of plausibility checks on the different signals acquired can help to cover the
whole input range in a very efficient way.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations The implementation and the related diagnostic efficiency of this safety mechanism are strongly
application-dependent.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 68/145

Table 84. ADC_SM_3

SM CODE ADC_SM_3

Description Periodic software test for ADC

Ownership End user

Detailed implementation

The method is implemented acquiring multiple signals and comparing the read value with the
expected one, supposed to be known. Method can be implemented with different level of
complexity:
• Basic complexity: acquisition and check of upper or lower rails (VDD or VSS) and

internal reference voltage
• High complexity: in addition to basic complexity tests, acquisition of a DAC output

connected to ADC input and checking all voltage excursion and linearity

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations Combination of two methods with different complexity can be used to better optimize test
frequency in high-demand safety functions.

Table 85. ADC_SM_4

SM CODE ADC_SM_4

Description 1oo2 scheme for ADC inputs

Ownership End user

Detailed implementation
This safety mechanism is implemented using two different SAR ADC channels belonging to
separate ADC modules to acquire the same input signal. The Application software checks the
coherence between the two readings.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection ADC_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations This method can be used in conjunction with ADC_SM_0 / ADC_SM_2 / ADC_SM_3 to
achieve highest level of ADC module diagnostic coverage.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 69/145

3.6.22 Digital-to-analog converter (DAC)

Table 86. DAC_SM_0

SM CODE DAC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DAC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 87. DAC_SM_1

SM CODE DAC_SM_1

Description DAC output loopback on ADC channel

Ownership End user

Detailed implementation Route the active DAC output to one ADC channel, and check the output current value against
the expected one.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous or on demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of DAC wrong signal permanence required to violate the related
safety function(s). Efficiency is maximized when execution test frequency is higher than 1/Tm.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 70/145

3.6.23 Voltage reference buffer (VREFBUF)

Table 88. VREF_SM_0

SM CODE VREF_SM_0

Description Periodic read-back of VREFBUF system configuration registers

Ownership End user

Detailed implementation
This method must be applied to VREFBUF configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations Refer to NVIC_SM_0

Table 89. VREF_SM_1

SM CODE VREF_SM_1

Description VREF cross-check by ADC reading

Ownership End user

Detailed implementation This method is based on ADC acquisition for VREF generated signal, to crosscheck with the
expected value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations Overlaps with ADC_SM_3 are possible.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 71/145

3.6.24 Comparator (COMP)

Table 90. COMP_SM_0

SM CODE COMP_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to COMP configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 91. COMP_SM_1

SM CODE COMP_SM_1

Description 1oo2 scheme for comparator

Ownership End user

Detailed implementation This safety mechanism is implemented using the two internal comparators to take the same
decision. It requires that the comparator voting is handled accordingly.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations This method is not compatible with window comparator feature.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 72/145

Table 92. COMP_SM_2

SM CODE COMP_SM_2

Description Plausibility check on inputs

Ownership End user

Detailed implementation
This method is used to redundantly acquire on dedicated ADC channels the analog inputs that
are subjected to comparator function, and to periodically check the coherence of the
comparator output on the measured values.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 93. COMP_SM_3

SM CODE COMP_SM_3

Description Multiple acquisition by Application software

Ownership End user

Detailed implementation
This method requires that Application software takes a decision not on the basis of a
comparator single-shot transition, but after multiple events or after the permanence of
comparator trigger conditions for a certain amount of time.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
It is highly probable that this recommendation is satisfied by design on End user application -
multiple acquisition is a common technique in industrial applications facing electromagnetic
interference on sensor lines.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 73/145

Table 94. COMP_SM_4

SM CODE COMP_SM_4

Description Comparator lock mechanism

Ownership ST

Detailed implementation This safety mechanism prevents configuration changes for comparator control and status
registers; it addresses therefore systematic faults in the software application.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model None (Fault avoidance)

Dependency on Device configuration None

Initialization Lock protection must be enabled through the COMPxLOCK bits of the COMP_CSR register.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations This method does not addresses comparator configuration changes due to soft errors.

3.6.25 Operational amplifiers (OPAMP)

Table 95. AMP_SM_0

SM CODE AMP_SM_0

Description Periodic read-back of OPAMP configuration registers

Ownership End user

Detailed implementation
This method must be applied to OPAMP configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Note: Because OPAMP modules are expected to be used in signal conditioning/amplification, their use in safety-
related functions lead to an application level scenario. End user is therefore responsible for the mitigation of
failure modes affecting the analog section of used OPAMP module(s).

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 74/145

3.6.26 Digital filter for sigma delta modulators (DFSDM)

Table 96. DFS_SM_0

SM CODE DFS_SM_0

Description Periodic read-back of DFSDM configuration registers

Ownership End user

Detailed implementation
This method must be applied to DFSDM configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 97. DFS_SM_1

SM CODE DFS_SM_1

Description Multiple acquisition by Application software

Ownership End user

Detailed implementation
This method implements a timing information redundancy by executing multiple acquisitions
on the same input signal. Multiple acquisition data are then combined by a filter algorithm to
determine the signal correct value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

It is highly probable that this recommendation is satisfied by design by End userApplication
software. Usage of multiple acquisitions followed by average operations is a common
technique in industrial applications where it is needed to survive with spurious EMI disturbs on
sensor lines.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 75/145

Table 98. DFS_SM_2

SM CODE DFS_SM_2

Description Range check by Application software

Ownership End user

Detailed implementation This method is implemented as described in ADC_SM_2: Range check by Application
software.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Not applicable

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations The implementation of this safety mechanism is strongly application-dependent.

Table 99. DFS_SM_3

SM CODE DFS_SM_3

Description 1oo2 scheme for DFSM inputs

Ownership End user

Detailed implementation This safety mechanism is implemented using two different DFSM modules to acquire the
same input signal. The Application software checks the coherence between the two readings.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection DFS_SM_0: Periodic read-back of DFSDM configuration registers

Recommendations and known limitations This method can be used in conjunction with DFS_SM_0 to achieve highest level of DFSM
module diagnostic coverage (as an alternative to DFS_SM_1 and DFS_SM_2).

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 76/145

3.6.27 Digital camera interface (DCMI)

Table 100. DCMI_SM_0

SM CODE DCMI_SM_0

Description Periodic read-back of DCMI configuration registers

Ownership End user

Detailed implementation
This method must be applied to DCMI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration DCMI interface is available only on selected part numbers.

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 101. DCMI_SM_1

SM CODE DCMI_SM_1

Description DCMI video input data synchronization

Ownership ST

Detailed implementation

According to the nature of video data stream received, DCMI module implements
synchronization controls, from the simplest one (hardware synchronization) to the most
complex (e.g. embedded data synchronization mode). DCMI internal failures leading to the
incapability of correcting synchronizing the data stream can be therefore detected.

Error reporting No explicit error signal/message generation is provided (*).

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration DCMI interface is available only on selected part numbers.

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection DCMI_SM_0: Periodic read-back of DCMI configuration registers

Recommendations and known limitations

(*) For its nature, the detection of an actual hardware failure by this safety mechanism can be
confused with functional-related scenarios (e.g. camera device disconnected or powered-off).
It is responsibility of Application software to discriminate, as far as it is technically possible,
among different events.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 77/145

3.6.28 LCD-TFT display controller (LTDC)

Table 102. LCD_SM_0

SM CODE LCD_SM_0

Description Periodic read-back of LTDC configuration registers and buffer memory

Ownership End user

Detailed implementation
This method must be applied to LTDC configuration registers and to the buffer memory.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 103. LCD_SM_1

SM CODE LCD_SM_1

Description LTDC acquisition by ADC channel

Ownership End user

Detailed implementation Correct generation of LTDC driving signals is checked by ADC reading versus expected
values

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
This method is conceived to mainly detect permanent failures affecting analog parts and
therefore the execution on periodic way is acceptable. Diagnostic coverage achievable
depends on the quantity of LTDC signals checked

Note: The above-described safety mechanism addresses the LTDC interface included in STM32 MCUs. Because
actual capability of correct image generation on LTDC is not addressed by this safety mechanism, in case such
feature is considered safety relevant, End user is warned to evaluate the adoption of adequate system-level
measures.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 78/145

3.6.29 DSI Host (DSI)

Table 104. DSI_SM_0

SM CODE DSI_SM_0

Description Periodic read-back of DSI configuration registers

Ownership End user

Detailed implementation
This method must be applied to DSI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 105. DSI_SM_1

SM CODE DSI_SM_1

Description Protocol error signals and information redundancy including hardware checksums

Ownership ST

Detailed implementation

DSI communication/command protocol is based on a packet handling concept, including
(where applicable) ECC and checksum capabilities. This mechanism, mainly implemented to
manage on field communication disturbance, is able to achieve a relevant diagnostic coverage
on several DSI module failure modes.

Error reporting Error conditions are reported by flag bits in related registers.

Fault detection time Depends on peripheral configuration and the type of violation detected. Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection DSI_SM_0: Periodic read-back of DSI configuration registers

Recommendations and known limitations None

Note: The above-described safety mechanisms addresses the DSI interface included in STM32 MCUs, including PHY.
Because actual capability of correct physical signal generation to drive the connected monitor is not addressed
by these safety mechanisms, in case such feature is considered safety relevant, End user is warned to evaluate
the adoption of adequate system-level measures.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 79/145

3.6.30 JPEG codec (JPEG)

Table 106. JPEG_SM_0

SM CODE JPEG_SM_0

Description Periodic read-back of JPEG codec configuration registers

Ownership End user

Detailed implementation
This method must be applied to JPEG codec configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 107. JPEG_SM_1

SM CODE JPEG_SM_1

Description Periodic test for JPEG encoding/decoding functions

Ownership End user

Detailed implementation

JPEG encoding/decoding functions performed by JPEG codec are tested by comparison,
executing the functions over a set of reference images stored in the flash memory and
checking the correctness of output images. The method diagnostic coverage depends on the
quantity and composition of image set used for the checks.

The comparison of output image with expected result can be executed bit-by-bit or even by
faster methods like CRC-seed (computed via DMA transactions) checks.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations If only one kind of function between encoding and decoding is used by Application software,
the method can be simplified restricting the test to the used function only.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 80/145

Table 108. JPEG_SM_2

SM CODE JPEG_SM_2

Description Application-level detection of failures affecting JPEG coding/encoding

Ownership End user

Detailed implementation

Several application-level methods can be used to detect failures affecting JPEG coding/
encoding; being no possible to give detailed information for its implementation, only high level
guidelines/hints are provided:
• Permanent and transient failures: Application software checks on expected output

image characteristics (for example, after the processing by image recognition
algorithms)

• Transient faults: Application software checks on images redundancy (in case of
sequence coming from video stream) possibly discarding wrongly-processed frames.
This rationale could be also used to derate a part of transient failure rate as no effect.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations These methods are strictly application-dependent; therefore, their implementation and any
related claims in terms of failure mitigations are End user’s responsibility.

Note: The use of the DMA feature inside this module requires the adoption of the set of safety mechanism defined for
the system DMA (refer to Section 3.6.14 Direct memory access controllers ((DMA, MDMA, BDMA and DMA
request multiplexer (DMAMUX)))).

3.6.31 HASH processor (HASH)

Table 109. HASH_SM_0

SM CODE HASH_SM_0

Description Periodic read-back of HASH configuration registers

Ownership End user

Detailed implementation
This method must be applied to HASH configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration HASH module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 81/145

Table 110. HASH_SM_1

SM CODE HASH_SM_1

Description HASH processing collateral detection

Ownership ST

Detailed implementation
Message digest computation performed by HASH module is composed by several data
manipulations and checks. A major part of the hardware random failures affecting HASH
module leads to algorithm violations/errors, and so to decoding errors on the receiver side.

Error reporting Several error condition can happens, check functional documentation.

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration HASH module available only on specific part numbers

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for HASH efficiency is not available. HASH run-time hardware failures
leading to disabling related collateral protection fall into multiple-fault scenario, from
IEC 61508 perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection HASH_SM_0: Periodic read-back of HASH configuration registersCPUM7_SM_0,
CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
This detection capability can be used to implement software-based tests (by processing a
predefined message and further checking the expected results) which can be executed
periodically to early detect HASH failures before its use by application software.

Note: Hardware random failures consequences on potential security features violations are not analyzed in this
manual.

3.6.32 True random number generator (RNG)

Table 111. RNG_SM_0

SM CODE RNG_SM_0

Description Periodic read-back of RNG configuration register

Ownership End user

Detailed implementation
This method must be applied to RNG configuration register RNG_CR.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration RNG module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 82/145

Table 112. RNG_SM_1

SM CODE RNG_SM_1

Description RNG module entropy on-line tests

Ownership ST and End user

Detailed implementation

RNG module include an internal diagnostic for the analog source entropy that can be used to
detect failures on the module itself. Furthermore, the required test on generated random
number difference between the previous one (as required by FIPS PUB 140-2) can be
exploited as well.

Implementation:
• Check for RNG error conditions.
• Check the difference between generated random number and the previous one.

Error reporting
CEIS, SEIS error bits of the RNG status register (RNG_SR)

Application software error for FIPS PUB 140-2 test fail

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration RNG module available only on specific part numbers

Initialization Permanent/transient

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations None

3.6.33 Cryptographic processor (CRYP)

Table 113. CRYP_SM_0

SM CODE CRYP_SM_0

Description Periodic read-back of CRYP configuration registers

Ownership End user

Detailed implementation
This method must be applied to CRYP configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration CRYP module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 83/145

Table 114. CRYP_SM_1

SM CODE CRYP_SM_1

Description Encryption/decryption collateral detection

Ownership ST

Detailed implementation

Encryption and decryption operations performed by CRYP module are composed by several
data manipulations and checks, with different level of complexity according to the selected
chaining algorithm. A major part of the hardware random failures affecting CRYP module
leads to algorithm violations/errors. Leading to decoding errors on the receiver side.

Error reporting Several error conditions can happen, check functional documentation.

Fault detection time Dependency on Device configuration

Addressed fault model Permanent/transient

Dependency on Device configuration CRYP module available only on specific part numbers

Initialization Dependency on Device configuration

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRYP efficiency is not available. CRYP run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection CRYP_SM_2: Information redundancy techniques on messages, including end-to-end
protection

Recommendations and known limitations None

Table 115. CRYP_SM_2

SM CODE CRYP_SM_2

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation

This method aim to protect the communication between a peripheral and his external
counterpart. It is used in CRYP local safety concept to address failures not detected by the
encryption/decryption features.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration CRYP module available only on specific part numbers

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
Important note: it is assumed that the remote counterpart has an equivalent capability of
performing the checks described.

Refer to UART_SM_3 for further notice.

Important:
Hardware random failure consequences on potential violations of Device security feature are not detailed in this manual.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 84/145

3.6.34 Advanced-control/General-purpose and Low-power timers
As the timers have multiple mutually independent channels possibly used for different functions, the safety
mechanism is selected individually for each channel.

Table 116. ATIM_SM_0

SM CODE ATIM_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to advanced, general-purpose and low-power timer configuration
registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 85/145

Table 117. ATIM_SM_1

SM CODE ATIM_SM_1

Description 1oo2 for counting timers

Ownership End user

Detailed implementation

This method implements via software a 1oo2 scheme between two counting resources.

The guidelines for the implementation of the method are the following:
• Two timers are programmed with same time base or frequency.
• In case of timer use as a time base: use in Application software one of the timer as time

base source, and the other one just for check. Coherence check for the 1oo2 is done at
application level, comparing two counter values each time the timer value is used to
affect safety function.

• In case of interrupt generation: use the first timer as main interrupt source for the service
routines, and the second timer as a “reference” to be checked at the initial of interrupt
routine.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

Tolerance implementation in timer checks is recommended to avoid false positive outcomes of
the diagnostic.

This method applies to timer channels merely used as elapsed time counters.

Events related to timers protected by the safety mechanisms must be monitored inside the
routine managing the external watchdog (CPU_SM_5) reset.

Note: One timer may act as a reference for multiple other timers.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 86/145

Table 118. ATIM_SM_2

SM CODE ATIM_SM_2

Description 1oo2 for input capture timers

Ownership End user

Detailed implementation

This method is conceived to protect timers used for acquisition and measurement of external
signals (input capture, encoder reading). The implementation consists in connecting the
external signals also to a redundant timer, and checking the coherence of the measured data
at application level.

Coherence check between timers is executed each time the reading is used by Application
software.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
To reduce the potential effect of common cause failures, it is suggested to use for redundant
check a channel belonging to a different timer module and mapped to non-adjacent pin on the
device package.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 87/145

Table 119. ATIM_SM_3

SM CODE ATIM_SM_3

Description Loopback scheme for pulse width modulation (PWM) outputs

Ownership End user

Detailed implementation

This method is implemented by connecting the PWM to a separate timer channel to acquire
the generated waveform characteristics.

The guidelines are the following:
• Both PWM frequency and duty cycle are measured and checked versus the expected

value.
• To reduce the potential effect of common cause failure, it is suggested to use for the

loopback check a channel belonging to a different timer module and mapped to non-
adjacent pins on the device package.

This measure can be replaced under the end-user responsibility by different loopback
schemes already in place in the final application and rated as equivalent. For example if the
PWM is used to drive an external power load, the reading of the on-line current value can be
used instead of the PWM duty cycle measurement.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of PWM wrong signal permanence (wrong frequency, wrong duty, or
both) required to violate the related safety function(s). Efficiency is maximized when execution
test frequency is higher than 1/Tm.

Table 120. ATIM_SM_4

SM CODE ATIM_SM_4

Description Lock bit protection for timers

Ownership ST

Detailed implementation
This safety mechanism allows End user to lock down specified configuration options, thus
avoiding unintended modifications by Application software. Therefore, it addresses software
development systematic faults.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model None (Fault avoidance)

Dependency on Device configuration None

Initialization Lock protection must be enabled using LOCK bits in the TIMx_BDTR register.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations This method does not address timer configuration changes due to soft errors.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 88/145

Note: IRTIM is not individually mentioned here as its implementation is mostly based on general-purpose timer
functions. Refer to related prescriptions.

3.6.35 Basic timers (TIM6/7)

Table 121. GTIM_SM_0

SM CODE GTIM_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to basic timer configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 89/145

Table 122. GTIM_SM_1

SM CODE GTIM_SM_1

Description 1oo2 for counting timers

Ownership End user

Detailed implementation

This method implements via software a 1oo2 scheme between two counting resources.

The guidelines for the implementation of the method are the following:
• Two timers are programmed with same time base or frequency.
• In case of timer use as a time base: use in Application software one of the timer as time

base source, and the other one just for check. Coherence check for the 1oo2 is done at
application level, comparing two counters values each time the timer value is used to
affect safety function.

• In case of interrupt generation usage: use the first timer as main interrupt source for the
service routines, and use the second timer as a “reference” to be checked at the initial of
interrupt routine.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

Tolerance implementation in timer checks is recommended to avoid false positive outcomes of
the diagnostic.

Events related to timers protected by the safety mechanisms must be monitored inside the
routine managing the external watchdog reset.

Note: One timer may act as a reference for multiple other timers.

3.6.36 Independent and system window watchdogs (IWDG and WWDG)

Table 123. WDG_SM_0

SM CODE WDG_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to IWDG/WWDG configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 90/145

Table 124. WDG_SM_1

SM CODE WDG_SM_1

Description Software test for watchdog at startup

Ownership End user

Detailed implementation

This safety mechanism ensures the right functionality of the internal watchdogs in use. The
test implementation allows the application software to induce a watchdog reset for a specific
purpose such as at startup, and to determine that the cause of the reset was the test
procedure itself, and not a software/hardware malfunction. This is confirmed by reading the
associated hardware flag in the RCC status register before and after the test and applying
specific SW flag, which stores nontrivial pattern at SRAM, just during the test execution. Both
the HW and SW flags must be cleared once the test is done. This is essential to avoid
repeating the test in a loop, and to correctly manage watchdog resets related to failures.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Startup

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
In a typical End user application, this test can be executed only at startup and during
maintenance or offline periods. It could be associated to IEC 61508 concept of “proof test” and
so it cannot be accounted for a diagnostic coverage contribution during operating time.

3.6.37 Real-time clock module (RTC)

Table 125. RTC_SM_0

SM CODE RTC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to RTC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 91/145

Table 126. RTC_SM_1

SM CODE RTC_SM_1

Description Application check of running RTC

Ownership End user

Detailed implementation

The Application software implements some plausibility check on RTC calendar or timing data,
mainly after a power-up and further date reading by RTC.

The guidelines for the implementation of the method are the following:
• RTC backup registers are used to store coded information in order to detect the

absence of VBAT during power-off period.
• RTC backup registers are used to periodically store compressed information on current

date or time
• The Application software executes minimal consistence checks for date reading after

power-on (detecting “past” date or time retrieve).
• The Application software periodically checks that RTC is actually running, by reading

RTC timestamp progress and comparing with an elapsed time measurement based on
STM32 internal clock or timers.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

This method provides a limited diagnostic coverage for RTC failure modes. In case of End
user application where RTC timestamps accuracy can affect in severe way the safety function
(for example, medical data storage devices), it is strongly recommended to adopt more
efficient system-level measures.

Table 127. RTC_SM_2

SM CODE RTC_SM_2

Description Information redundancy on backup registers

Ownership End user

Detailed implementation

Data stored in RTC backup registers must be protected by a checksum with encoding
capability (for instance, CRC). Checksum must be checked by application software before
consuming stored data.

This method guarantees data versus erases due to backup battery failures.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 92/145

Table 128. RTC_SM_3

SM CODE RTC_SM_3

Description Application-level measures to detect failures in timestamps/event capture

Ownership End user

Detailed implementation
This method must detect failures affecting the RTC capability to correct execute the
timestamps/event capture functions. Due to the nature strictly application-dependent of this
solution, no detailed guidelines for its implementation are given here.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

This method must be used only if the timestamps/event capture function is used in the safety
function implementation. It is worth noting that the use of timestamp / event capture in safety-
related applications with the MCU in Sleep or Stop mode is prevented by the assumed
requirement ASR5 (refer to Safety requirement assumptions).

3.6.38 Inter-integrated circuit (I2C)

Table 129. IIC_SM_0

SM CODE IIC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to I2C configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 93/145

Table 130. IIC_SM_1

SM CODE IIC_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation
I2C communication module embeds protocol error checks (like overrun, underrun, packet
error etc.) conceived to detect network-related abnormal conditions. These mechanisms are
only able to detect a small fraction of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection IIC_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
Adoption of SMBus option grants the activation of more efficient protocol-level hardware
checks such as CRC-8 packet protection.

Enabling related interrupt generation on the detection of errors is highly recommended.

Table 131. IIC_SM_2

SM CODE IIC_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by I2C a redundancy check
(such as a CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote I2C counterpart has an equivalent capability of performing the
check described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

Important:
This method must be considered as a subset of IIC_SM_4. Therefore, the
implementation of IIC_SM_4 completely overlap this method. Refer to [4] for
additional details.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 94/145

Table 132. IIC_SM_3

SM CODE IIC_SM_3

Description CRC packet-level

Ownership ST

Detailed implementation I2C communication module allows to activate for specific mode of operation (SMBus) the
automatic insertion (and check) of CRC checksums to packet data.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection IIC_SM_2: Information redundancy techniques on messages

Recommendations and known limitations

This method can be part of the implementation for IIC_SM_2 or IIC_SM_4. In that case,
because of the warning issued in the Test for the diagnostic field, this mechanism can not be
the only one to guarantee message integrity.

Enabling related interrupt generation on the detection of errors is highly recommended.

Table 133. IIC_SM_4

SM CODE IIC_SM_4

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation
This method aims to protect the communication between a I2C peripheral and his external
counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
It is assumed that the remote I2C counterpart has an equivalent capability of performing the
checks described.

Refer to UART_SM_3 for further notice.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 95/145

3.6.39 Universal synchronous/asynchronous receiver/transmitter and low power universal
asychronous receiver/transmitter (USART, UART, LPUART)

Table 134. UART_SM_0

SM CODE UART_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to USART, UART, LPUART configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 135. UART_SM_1

SM CODE UART_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

USART, UART, LPUART communication module embeds protocol error checks (like additional
parity bit check, overrun, frame error) conceived to detect network-related abnormal
conditions. These mechanisms are only able to detect a small fraction of hardware random
failures affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection UART_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
USART, UART, LPUART communication module allows several different configurations. The
actual composition of communication error checks depends on the selected configuration.

Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 96/145

Table 136. UART_SM_2

SM CODE UART_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented by adding to data packets transferred by this peripheral a
redundancy check (such as a CRC check, or similar one) with encoding capability. The
checksum encoding capability must be robust enough to guarantee at least 90% probability of
detection for a single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote counterpart has an equivalent capability of performing the check
described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

Important:
This method must be considered as a subset of UART_SM_3. Therefore, the
implementation of UART_SM_3 completely overlap this method. Refer to [4] for
additional details.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 97/145

Table 137. UART_SM_3

SM CODE UART_SM_3

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation

This method aims to protect the communication between a peripheral and his external
counterpart establishing a kind of “protected” channel. The aim is to specifically address
communication failure modes as reported in IEC 61508-2, 7.4.11.1.

Implementation guidelines are as follows:
• Data packet must be protected (encapsulated) by an information redundancy check, like

for instance a CRC checksum computed over the packet and added to payload.
Checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single-bit flip in the data packet.

• Additional field added in payload reporting an unique identification of sender or receiver
and an unique increasing sequence packet number.

• Timing monitoring of the message exchange (for example check the message arrival
within the expected time window), detecting therefore missed message arrival
conditions.

• Application software must verify before consuming data packet its consistency (CRC
check), its legitimacy (sender or receiver) and the sequence correctness (sequence
number check, no packets lost).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

A major overlap between the requirements of this method and the implementation of complex
communication software protocols can exists. Due to large adoption of these protocols in
industrial applications, optimizations can be possible.

It is assumed that the remote counterpart has an equivalent capability of performing the
checks described.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 98/145

3.6.40 Serial peripheral interface (SPI)

Table 138. SPI_SM_0

SM CODE SPI_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to SPI configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 139. SPI_SM_1

SM CODE SPI_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation
SPI communication module embeds protocol error checks (like overrun, underrun, timeout
and so on) conceived to detect network-related abnormal conditions. These mechanisms are
only able to detect a small fraction of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection SPI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations None

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 99/145

Table 140. SPI_SM_2

SM CODE SPI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by SPI a redundancy check
(such as a CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote counterpart has an equivalent capability of performing the check
described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

Important:
This method must be considered as a subset of SPI_SM_4. Therefore, the
implementation of SPI_SM_4 completely overlap this method. Refer to [4] for
additional details.

Table 141. SPI_SM_3

SM CODE SPI_SM_3

Description CRC packet-level

Ownership ST

Detailed implementation SPI communication module allows to activate automatic insertion (and check) of CRC-8 or
CRC-18 checksums to packet data.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection SPI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
This method can be part of the implementation for SPI_SM_2 or SPI_SM_4. In that case,
because of the warning issued in the Test for the diagnostic field, this mechanism can not be
the only one to guarantee message integrity.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 100/145

Table 142. SPI_SM_4

SM CODE SPI_SM_4

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation
This method aims to protect the communication between SPI peripheral and his external
counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
Refer to UART_SM_3 for further notice.

It is assumed that the remote SPI counterpart has an equivalent capability of performing the
checks described.

3.6.41 Serial audio interface (SAI)

Table 143. SAI_SM_0

SM CODE SAI_SM_0

Description Periodic read-back of SAI configuration registers

Ownership End user

Detailed implementation
This method must be applied to SAI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 101/145

Table 144. SAI_SM_1

SM CODE SAI_SM_1

Description SAI output loopback scheme

Ownership End user

Detailed implementation

This method uses a loopback scheme to detect permanent and transient faults on the output
channel used for serial audio frame generation. It is implemented by connecting the second
serial audio interface as input for primary output generation. Application software is able
therefore to identify wrong or missing audio frame generation.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous/ On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of serial audio wrong signal permanence required to violate the
related safety function(s). Efficiency is maximized when execution test frequency is higher
than 1/Tm.

Method to be used when SAI interface safety-related use is audio stream generation.

Table 145. SAI_SM_2

SM CODE SAI_SM_2

Description 1oo2 scheme for SAI module

Ownership End user

Detailed implementation
This safety mechanism is implemented using the two SAI interfaces to decode/receive the
same input stream audio. Application software checks the coherence between the received
data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
The MCU performance overload and the implementation complexity associated to this method
can be relevant.

Method to be used when SAI interface safety-related use is audio stream receive.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 102/145

3.6.42 SPDIF receiver interface (SPDIFRX)

Table 146. SPDF_SM_0

SM CODE SPDF_SM_0

Description Periodic read-back of SPDIF configuration registers

Ownership End user

Detailed implementation
This method must be applied to SPDIF configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 147. SPDF_SM_1

SM CODE SPDF_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

IEC60598 S/PDIF data frame specification used in SPDIF interface embeds protocol error
checks (like overrun, underrun, bit timing violations, parity, etc.) conceived to detect
transmission-related abnormal conditions. These mechanisms are able anyway to detect a
marginal percentage of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection SPDF_SM_0: Periodic read-back of SPDIF configuration registers

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 103/145

Table 148. SPDF_SM_2

SM CODE SPDF_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation
This method is implemented adding to data S/PDIF data stream some form of information
redundancy, possibly including information repetition, to address failure modes affecting the
decoding section of the module.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
This method could be replaced by application-level alternative measures checking the
correctness of the audio stream received. One given example could be represented by a set
of plausibility checks executed after post-elaboration by voice recognition algorithms.

3.6.43 Single Wire Protocol Master Interface (SWPMI)

Table 149. SWPMI_SM_0

SM CODE SWPMI_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to SWPMI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 104/145

Table 150. SWPMI_SM_1

SM CODE SWPMI_SM_1

Description Protocol error signals and information redundancy including hardware CRC

Ownership ST

Detailed implementation

SWPMI communication is based on a frame handling concept, composed by a combination of
hardware synchronization signals, frame structure composition, hardware-computed CRC
filed. This mechanism, mainly implemented to manage on-field communication disturbance, is
able to achieve a relevant diagnostic coverage on several SWMPI module failure modes.

Error reporting Error conditions are reported by flag bits in related registers.

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection
SWPMI_SM_0: Periodic read-back of configuration registers

SWPMI_SM_2: SWMPI loopback test

Recommendations and known limitations
This method is unable to address all IEC 61508 failure modes related to time handshake
between parties (e.g. resequencing, repetition), leading to the introduction of SWPMI_SM_3.

Enabling related interrupt generation on the detection of errors is highly recommended.

Table 151. SWPMI_SM_2

SM CODE SWPMI_SM_2

Description SWMPI loopback test

Ownership End user

Detailed implementation By using the SWPMI module loopback function, it is possible to emulate the sending of SWPI
frames and cross-checking the expected result in reception.

Error reporting Error conditions are reported by flag bits in related registers

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Loopback mode must be enabled.

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection SWPMI_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations -

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 105/145

Table 152. SWPMI_SM_3

SM CODE SWPMI_SM_3

Description Information redundancy techniques on messages to implement full end-to-end operation

Ownership End user

Detailed implementation

This method aims to protect the communication between a peripheral and its external
counterpart establishing a kind of “protected” channel. The aim is to specifically address
communication failure modes as reported in IEC 61508-2, 7.4.11.1.

Implementation guidelines are the following:
• Additional field added in payload reporting an unique identification of sender/receiver

and an unique increasing sequence packet number
• Timing monitoring of the message exchange (for example check the message arrival

within the expected time window), detecting therefore missed message arrival
conditions

• Application software must verify before consuming data packet its consistency (CRC
check), its legitimacy (sender/receiver) and the correctness of sequence (sequence
number check, no packets lost)

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote SWMPI counterpart has an equivalent capability of performing
the checks described. This method is simplified by the existence of SWPMI_SM_1.

A major overlap between the requirements of this method and the implementation of security
protection on the transaction is possible.

3.6.44 Management data input/output (MDIOS)

Table 153. MDIO_SM_0

SM CODE MDIO_SM_0

Description Periodic read-back of MDIO slave configuration registers

Ownership End user

Detailed implementation
This method must be applied to MDIO slave configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 106/145

Table 154. MDIO_SM_1

SM CODE MDIO_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

MDIO communication protocol is based on a packet handling concept, including preamble/
start/stop correct conditions checks. This mechanism, mainly implemented to manage on field
communication disturbance, is able to achieve a relevant diagnostic coverage on several
MDIO module failure modes.

Error reporting Error conditions are reported by flag bits in related registers, and interrupt generation.

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Permanent/transient

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection DSI_SM_0: Periodic read-back of DSI configuration registers

Recommendations and known limitations Not applicable

Table 155. MDIO_SM_2

SM CODE MDIO_SM_2

Description Information redundancy techniques on MDIO registers contents, including register update
awareness

Ownership End user

Detailed implementation

Information provided by external parties by MDIO communication must be protected by
redundancy schemes (encoded data values and possibly the definition of a checksum
register).

Application software must be aware of any register value update executed by external parties,
so it is needed the implementation of a validate/invalidate mechanism to:
• report to external party that updated data have been consumed
• mark as invalidated any data already consumed
• allow external party to inform Application software that new data are available

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not required

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations
It is assumed that the external entity responsible to update/send data to Application software
by the MDIO communication link is able to contribute to the MDIO failure mitigation, by
detecting missing or incomplete data consumption.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 107/145

3.6.45 SD/SDIO/MMC card host interface (SDMMC)

Table 156. SDIO_SM_0

SM CODE SDIO_SM_0

Description Periodic read-back of SDIO/SMMC configuration registers

Ownership End user

Detailed implementation
This method must be applied to SDIO/SMMC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 157. SDIO_SM_1

SM CODE SDIO_SM_1

Description Protocol error signals including hardware CRC

Ownership ST

Detailed implementation

SDIO/SMMC communication module embeds protocol error checks (like overrun, underrun,
timeout etc.) and CRC-packet checks as well, conceived to detect network-related abnormal
conditions. These mechanisms are only able to detect a small fraction of hardware random
failures affecting the module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection SDIO_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 108/145

Table 158. SDIO_SM_2

SM CODE SDIO_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by SDIO/SMMC a redundancy
check (like a CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

This safety mechanism can overlap with information redundancy techniques implemented at
system level to address failure of physical device connected to SDIO/SMMMC port.

Note: The safety mechanisms mentioned above are addressing the SDIO/SMMC interface included in STM32 MCUs.
No claims are done in this Safety Manual about the mitigation of hardware random faults affecting the external
memory connected to SDIO/SMMC port.

3.6.46 Controller area network (FDCAN)

Table 159. CAN_SM_0

SM CODE CAN_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to FDCAN configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 109/145

Table 160. CAN_SM_1

SM CODE CAN_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

CAN communication module embeds protocol error checks (like error counters) conceived to
detect network-related abnormal conditions. These mechanisms are only able to detect a
small fraction of hardware random failures affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Several error condition are reported by flag bits in related CAN registers.

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CAN_SM_2: Information redundancy techniques on messages, including end-to-end
protection.

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 110/145

Table 161. CAN_SM_2

SM CODE CAN_SM_2

Description Information redundancy techniques on messages, including end-to-end protection.

Ownership End user

Detailed implementation

This method aims to protect the communication between a peripheral and his external
counterpart establishing a kind of “protected” channel. The aim is to specifically address
communication failure modes as reported in IEC 61508-2, 7.4.11.1.

Implementation guidelines are as follows:
• Data packet must be protected (encapsulated) by an information redundancy check, like

for instance a CRC checksum computed over the packet and added to payload.
Checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single-bit flip in the data packet.

• Additional field added in payload reporting an unique identification of sender or receiver
and an unique increasing sequence packet number.

• Timing monitoring of the message exchange (for example check the message arrival
within the expected time window), detecting therefore missed message arrival
conditions.

• Application software must verify before consuming data packet its consistency (CRC
check), its legitimacy (sender or receiver) and the sequence correctness (sequence
number check, no packets lost).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

A major overlap between the requirements of this method and the implementation of complex
communication software protocols can exists. Due to large adoption of these protocols in
industrial applications, optimizations can be possible.

It is assumed that the remote counterpart has an equivalent capability of performing the
checks described.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 111/145

3.6.47 USB on-the-go high-speed (OTG_HS)

Table 162. USB_SM_0

SM CODE USB_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to USB configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 163. USB_SM_1

SM CODE USB_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation
USB communication module embeds protocol error checks (like overrun, underrun, NRZI, bit
stuffing etc.) conceived to detect network-related abnormal conditions. These mechanisms are
only able to detect a small fraction of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection USB_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 112/145

Table 164. USB_SM_2

SM CODE USB_SM_2

Description Information redundancy techniques on messages

Ownership End user or ST

Detailed implementation
The implementation of required information redundancy on messages, USB communication
module is fitted by hardware capability. It basically allows to activate the automatic insertion
(and check) of CRC checksums to packet data.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Error reporting configuration, if interrupt events are planned

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

Important:
This method must be considered as a subset of USB_SM_3. Therefore, the
implementation of USB_SM_3 completely overlap this method. Refer to [4] for
additional details.

Table 165. USB_SM_3

SM CODE USB_SM_3

Description Information redundancy techniques on messages, including end-to-end protection.

Ownership End user

Detailed implementation
This method aims to protect the communication between the USB OTG_HS peripheral and its
external counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
This method applies in case USB bulk or isochronous transfers are used. For other transfers
modes the USB hardware protocol already implements several features of this requirement.

Refer to UART_SM_3 for further notice.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 113/145

3.6.48 Ethernet (ETH): media access control (MAC) with DMA controller

Table 166. ETH_SM_0

SM CODE ETH_SM_0

Description Periodic read-back of Ethernet configuration registers

Ownership End user

Detailed implementation
This method must be applied to Ethernet configuration registers (including those relate to
unused module features). Detailed information on the implementation of this method can be
found in Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 167. ETH_SM_1

SM CODE ETH_SM_1

Description Protocol error signals including hardware CRC

Ownership ST

Detailed implementation

Ethernet communication module embeds protocol error checks (like overrun, underrun,
timeout, packet composition violation etc.) and CRC-packet checks as well, conceived to
detect network-related abnormal conditions. These mechanisms are able anyway to detect a
percentage of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection ETH_SM_2: Information redundancy techniques on messages, including end-to-end
protection

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 114/145

Table 168. ETH_SM_2

SM CODE ETH_SM_2

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation

This method aim to protect the communication between a peripheral and its external
counterpart. It is used in Ethernet local safety concept to address failures not detected by
ETH_SM_1 and to increase its associated diagnostic coverage.

Refer to UART_SM_3 description for detailed information.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations The implementation on Application software of complex Ethernet-based communication
stacks (like TCP/IP) is able to satisfy the requirements of this method.

Note: The use of the DMA feature inside Ethernet module requires the adoption of the set of safety mechanisms
defined for DMA (refer to Section 3.6.14 Direct memory access controllers ((DMA, MDMA, BDMA and DMA
request multiplexer (DMAMUX)))).

3.6.49 HDMI-CEC (CEC)

Table 169. HDMI_SM_0

SM CODE HDMI_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to CEC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 115/145

Table 170. HDMI_SM_1

SM CODE HDMI_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

CEC communication module embeds protocol error checks (such as additional parity bit
check, overrun, frame error) conceived to detect network-related abnormal conditions. These
mechanisms are able anyway to detect a marginal percentage of hardware random failures
affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for instance baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection HDMI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

Table 171. HDMI_SM_2

SM CODE HDMI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by CEC a redundancy check
(such as CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote HDMI-CEC counterpart has an equivalent capability of
performing the check described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
inappropriate.

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 116/145

3.6.50 Disable and periodic cross-check of unintentional activation of unused peripherals
This section reports safety mechanisms that address peripherals not used by the safety application, or not used at
all.

Table 172. FFI_SM_0

SM CODE FFI_SM_0

Description Disable of unused peripherals

Ownership End user

Detailed implementation

This method contributes to the reduction of the probability of cross-interferences caused by
peripherals not used by the software application, in case a hardware failure causes an
unintentional activation.

After the system boot, Application software must disable all unused peripherals with this
procedure:
• Enable reset flag on AHB and APB peripheral reset register.
• Disable clock distribution on AHB and APB peripheral clock enable register.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model Not applicable

Dependency on Device configuration None

Initialization Not applicable

Periodicity Startup

Test for the diagnostic Not applicable

Multiple-fault protection FFI_SM_1: Periodic read-back of interference avoidance registers

Recommendations and known limitations None

Table 173. FFI_SM_1

SM CODE FFI_SM_1

Description Periodic read-back of interference avoidance registers

Ownership End user

Detailed implementation

This method contributes to the reduction of the probability of cross-interferences between
peripherals that can potentially conflict on the same input/output pins, including for instance
unused peripherals. This diagnostic measure must be applied to following registers:
• clock enable and disable registers
• alternate function programming registers

Detailed information on the implementation of this method can be found in
Section 3.6.16 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM2840
Hardware and software diagnostics

UM2840 - Rev 2 page 117/145

3.6.51 System

Table 174. DUAL_SM_0

SM CODE DUAL_SM_0

Description Cross-check between two STM32 devices

Ownership End user

Detailed implementation

This method is implemented in the spirit of technique described in IEC 61508-7, A.3.5 “Reciprocal comparison
by software”, which is rated in IEC 61508-2 Table A.4 as capable to achieve high level of diagnostic coverage.

The two processing units exchange data reciprocally, and a fail in the comparison is considered as a detection
of a failure in one of the two unit. The guidelines for the implementation are the following:
• Data exchanged include output results, intermediate results(1) and the results (pass/fail) of each software-

implemented safety mechanisms executed on periodical basis on both MCUs (for example M7)
• Software routines devoted to data exchange/comparison must be logically separated from the software

implementing the safety function(s).
• Systematic capability of software implementing this method must be equal or above the one of the

software implementing the safety function(s).
• Independence and lack of interference between the software implementing the data exchange/

comparison and the one implementing the safety function(s) must be proven.
• Frequency of data exchange/comparison is imposed by the system PST (refer to related timing

constraints for periodic safety mechanisms), except for output results which needs to be exchanged/
compared at the same rate they are potentially updated.

Error reporting -

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device
configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPUM7_SM_0, CPUM4_SM_0: Periodic core self-test software (individually executed on both processing
units)

Recommendations and
known limitations

This method is usually rated as optional because it is not strictly needed in the framework of 1oo2 architecture
described in Section 3.2.4 Reference safety architectures - 1oo2. Anyway, it is included here only for its use in
such an architecture.

This method can provide additional safety margin for systems that need further protection against fault
accumulation.

Because this method could be a potential source of common cause failure between the two 1oo2 channels (in
case of incorrect implementation), End user is recommended to closely follow the Detailed implementation
guidelines in this table.

1. the value of each variable able to directly influence the final individual channel output, such as:
– variables included in computation of the final result; for example, of a PWM rate
– variables involved in a decision determining the final result; for example, two variables used in a

comparison which determines if a GPIO output is set high or low.

3.7 Conditions of use
The table below provides a summary of the safety concept recommendations reported in Section 3.6 Hardware
and software diagnostics. The conditions of use to be applied to STM32H7 dual-core series devices are reported
in form of safety mechanism requirements. Exception is represented by some conditions of use introduced by
FMEA analysis in order to correctly address specific failure modes. These conditions of use are reported at the
end of the table presented in this section.

 UM2840
Conditions of use

UM2840 - Rev 2 page 118/145

Rank column reports how related safety mechanism has been considered during the analysis, with following
meaning:

++ The safety mechanism is highly recommended as common practice. It is considered in this document for the
computation of safety metrics to allow the use of Device in systems implementing safety functions up to SIL2 with
a single MCU or up to SIL3 with two MCUs in 1oo2 scheme. Missing implementation may lead to invalidate any
safety feature claimed in this manual and must be supported by adequate arguments under end user responsibility
(refer to Section 4.1.1 for guidance).

+ The safety mechanism is recommended as additional safety measure, but not considered in this document for the
computation of safety metrics. The End user can skip the implementation in case it is in contradiction with
functional requirements or overlapped by another mechanism ranked ++.

o The safety mechanism is optional. It is not strictly required for the implementation of safety functions up to SIL2, or
it is related to a specific MCU configuration.

The X marker in the Perm and Trans table columns indicates that the related safety mechanism is effective for
such fault model. The X marker in Separation column indicates that related recommendation is effective for the
correct implementation of the separation concept described in Section 3.2.5 The separation concept.

Table 175. List of safety recommendations

Diagnostic Description Rank Perm Trans Separation

Arm® Cortex®-M7

CPUM7_SM_0 Periodic core self-test software for Arm® Cortex®-M7 CPU ++ X - X

CPUM7_SM_1 Control flow monitoring in Application software ++ X X -

CPUM7_SM_2 Double computation in Application software ++ - X -

CPUM7_SM_3 Arm® Cortex®-M7 HardFault exceptions ++ X X -

CPUM7_SM_4 Stack hardening for Application software ++ X X X

CPUM7_SM_7 Memory protection unit (MPU) ++(1) X X X

CPUM7_SM_9 Periodic self-test software for Arm® Cortex® -M7 caches ++ X - -

CPUM7_SM_10 ECC on Arm® Cortex®-M7 - L1 caches ++ X X -

MPUM7_SM_0 Periodic read-back of Arm® Cortex®-M7 configuration registers ++(1) X X X

MPUM7_SM_1 Arm® Cortex®-M7 MPU software test. ++ X - X

Arm® Cortex®-M4

CPUM4_SM_0 Periodic core self-test software for Arm® Cortex®-M4 CPU ++ X - X

CPUM4_SM_1 Control flow monitoring in Application software ++ X X -

CPUM4_SM_2 Double computation in Application software ++ - X -

CPUM4_SM_3 Arm® Cortex®-M4 HardFault exceptions ++ X X -

CPUM4_SM_4 Stack hardening for Application software ++ X X X

CPUM4_SM_7 Memory protection unit (MPU) ++(1) X X X

MPUM4_SM_0 Periodic read-back of Arm® Cortex®-M4 MPU configuration registers ++(1) X X X

MPUM4_SM_1 Arm® Cortex®-M4 MPU software test. ++ X - X

CPUs-shared safety mechanisms

CPU_SM_5 External watchdog ++ X X X

CPU_SM_6 Internal watchdogs IWDG/WWDG ++ X X X

CPU_SM_11 Cross-CPU safety information exchange ++ - - X

 UM2840
Conditions of use

UM2840 - Rev 2 page 119/145

Diagnostic Description Rank Perm Trans Separation

System bus architecture/BusMatrix

BUS_SM_0 Periodic software test for interconnections ++ X - -

BUS_SM_1 Information redundancy in intra-chip data exchanges ++ X X -

LOCK_SM_0 Lock mechanism for configuration options + - - -

Embedded SRAM

RAM_SM_0 Periodic software test for static random access memory (SRAM) ++ X - -

RAM_SM_2 Stack hardening for Application software + X X -

RAM_SM_3 Information redundancy for safety-related variables in the Application
software ++ X X -

RAM_SM_4 Control flow monitoring in Application software o(2) X X -

RAM_SM_5 Periodic integrity test for Application software in RAM o(2) X X -

RAM_SM_6 Read protection (RDP) and write protection (WRP) + - - -

RAM_SM_7 ECC on SRAM ++ X X -

RAM_SM_8 Periodic test by software for SRAM address decoder ++ X - -

Embedded flash memory

FLASH_SM_0 Periodic software test for flash memory ++ X - -

FLASH_SM_1 Control flow monitoring in Application software ++ X X -

FLASH_SM_2 Arm®Cortex®-M7 and M4 HardFault exceptions ++ X X -

FLASH_SM_3 Option byte write protection ++ - - -

FLASH_SM_4 Static data encapsulation + X X -

FLASH_SM_6 Flash memory unused area filling code + - - -

FLASH_SM_7 ECC on flash memory ++ X X -

FLASH_SM_8 Read protection (RDP), write protection (WRP) + - - -

FLASH_SM_9 Periodic test by software for flash memory address decoder ++ X - -

Power controller (PWR)

VSUP_SM_0 Periodic read-back of configuration registers ++ X X -

VSUP_SM_1 Supply voltage internal monitoring (PVD) ++ X - -

VSUP_SM_2 Independent watchdog ++ X - -

VSUP_SM_3 Internal temperature sensor check ++ - - X

VSUP_SM_5 System-level power supply management ++ - - -

Reset and clock controller (RCC)

CLK_SM_0 Periodic read-back of configuration registers ++ X X -

CLK_SM_1 Clock security system (CSS) + X - -

CLK_SM_3 Internal clock cross-measurement + X - -

CLK_SM_5 External watchdog ++ X - -

Hardware semaphore (HSEM)

HSEM_SM_0 Periodic read-back of configuration registers ++ X X -

HSEM_SM_1 Periodic read-back of configuration registers ++ X X -

General-purpose input/output (GPIO)

GPIO_SM_0 Periodic read-back of configuration registers ++ X X -

GPIO_SM_1 1oo2 for input GPIO lines ++ X X -

 UM2840
Conditions of use

UM2840 - Rev 2 page 120/145

Diagnostic Description Rank Perm Trans Separation

GPIO_SM_2 Loopback scheme for output GPIO lines ++ X X -

GPIO_SM_3 GPIO port configuration lock register + - - -

Debug system or peripheral control

DBG_SM_0 Watchdog protection ++ X X -

System configuration controller (SYSCFG)

SYSCFG_SM_0 Periodic read-back of configuration registers ++ X X -

DIAG_SM_0 Periodic read-back of hardware diagnostics configuration registers ++ X X -

Direct memory access controllers ((DMA, MDMA, BDMA and DMA request multiplexer (DMAMUX)))

DMA_SM_0 Periodic read-back of configuration registers ++ X X -

DMA_SM_1 Information redundancy on data packet transferred via DMA ++ X X -

DMA_SM_2 Information redundancy by including sender or receiver identifier on
data packet transferred via DMA ++ X X -

DMA_SM_3 Periodic software test for DMA ++ X - -

DMA_SM_4 DMA transaction awareness ++ X X -

Chrom-Art Accelerator controller (DMA2D)

DMA2D_SM_0 Periodic read-back of configuration registers ++ X X -

DMA2D_SM_1 Periodic software test for DMA2D functions ++ X - -

DMA2D_SM_2 DMA processing and interrupt awareness ++ X X -

Extended interrupt and events controller (EXTI)

NVIC_SM_0 Periodic read-back of configuration registers ++ X X -

NVIC_SM_1 Expected and unexpected interrupt check ++ X X -

Cyclic redundancy-check calculation unit (CRC)

CRC_SM_0 CRC self-coverage ++ X X -

Flexible static memory controller (FSMC)

FSMC_SM_0 Control flow monitoring in Application software ++ X X -

FSMC_SM_1 Information redundancy on external memory connected to FSMC ++ X X -

FSMC_SM_2 Periodic read-back of FSMC configuration registers ++ X X -

FSMC_SM_3 ECC engine on NAND interface in FSMC module ++ - X -

Quad-SPI interface (QUADSPI)

QSPI_SM_0 Periodic read-back of QUADSPI configuration registers ++ X X -

QSPI_SM_1 Protocol error signals including hardware CRC ++ X X -

QSPI_SM_2 Information redundancy techniques on messages ++ X X -

Delay block (DLYB)

DLB_SM_0 Periodic read-back of DLYB configuration registers ++ X X -

Analog-to-digital converter (ADC)

ADC_SM_0 Periodic read-back of configuration registers ++ X X -

ADC_SM_1 Multiple acquisition by Application software ++ - X -

ADC_SM_2 Range check by Application software ++ X X -

ADC_SM_3 Periodic software test for ADC ++ X - -

ADC_SM_4 1oo2 scheme for ADC inputs + X X -

 UM2840
Conditions of use

UM2840 - Rev 2 page 121/145

Diagnostic Description Rank Perm Trans Separation

Digital-to-analog converter (DAC)

DAC_SM_0 Periodic read-back of configuration registers ++ X X -

DAC_SM_1 DAC output loopback on ADC channel ++ X X -

Voltage reference buffer (VREFBUF)

VREF_SM_0 Periodic read-back of VREFBUF system configuration registers ++ X X -

VREF_SM_1 VREF cross-check by ADC reading + X - -

Comparator (COMP)

COMP_SM_0 Periodic read-back of configuration registers ++ X X -

COMP_SM_1 1oo2 scheme for comparator ++ X X -

COMP_SM_2 Plausibility check on inputs + X - -

COMP_SM_3 Multiple acquisition by Application software + - X -

COMP_SM_4 Comparator lock mechanism + - - -

Operational amplifiers (OPAMP)

AMP_SM_0 Periodic read-back of OPAMP configuration registers ++ X X -

Digital filter for sigma delta modulators (DFSDM)

DFS_SM_0 Periodic read-back of DFSDM configuration registers ++ X X -

DFS_SM_1 Multiple acquisition by Application software ++ - X -

DFS_SM_2 Range check by Application software ++ X X -

DFS_SM_3 1oo2 scheme for DFSM inputs + X X -

Digital camera interface (DCMI)

DCMI_SM_0 Periodic read-back of DCMI configuration registers ++ X X -

DCMI_SM_1 DCMI video input data synchronization ++ X X -

LCD-TFT display controller (LTDC)

LCD_SM_0 Periodic read-back of LTDC configuration registers and buffer
memory ++ X X -

LCD_SM_1 LTDC acquisition by ADC channel ++ X - -

DSI Host (DSI)

DSI_SM_0 Periodic read-back of DSI configuration registers ++ X X -

DSI_SM_1 Protocol error signals and information redundancy including
hardware checksums ++ X X -

JPEG codec (JPEG)

JPEG_SM_0 Periodic read-back of JPEG codec configuration registers ++ X X -

JPEG_SM_1 Periodic test for JPEG encoding/decoding functions ++ X - -

JPEG_SM_2 Application-level detection of failures affecting JPEG coding/
encoding ++ X X -

True random number generator (RNG)

RNG_SM_0 Periodic read-back of RNG configuration register ++ X X -

RNG_SM_1 RNG module entropy on-line tests ++ X - -

Cryptographic processor (CRYP)

CRYP_SM_0 Periodic read-back of CRYP configuration registers ++ X X -

CRYP_SM_1 Encryption/decryption collateral detection ++ X X -

 UM2840
Conditions of use

UM2840 - Rev 2 page 122/145

Diagnostic Description Rank Perm Trans Separation

CRYP_SM_2 Information redundancy techniques on messages, including end-to-
end protection ++ X X -

HASH processor (HASH)

HASH_SM_0 Periodic read-back of HASH configuration registers ++ X X -

HASH_SM_1 HASH processing collateral detection ++ X X -

Advanced-control/General-purpose and Low-power timers

ATIM_SM_0 Periodic read-back of configuration registers ++ X X -

ATIM_SM_1 1oo2 for counting timers ++ X X -

ATIM_SM_2 1oo2 for input capture timers ++ X X -

ATIM_SM_3 Loopback scheme for pulse width modulation (PWM) outputs ++ X X -

ATIM_SM_4 Lock bit protection for timers + - - -

Basic timers (TIM6/7)

GTIM_SM_0 Periodic read-back of configuration registers ++ X X -

GTIM_SM_1 1oo2 for counting timers ++ X X -

Independent and system window watchdogs (IWDG and WWDG)

WDG_SM_0 Periodic read-back of configuration registers ++ X X -

WDG_SM_1 Software test for watchdog at startup o X - -

Real-time clock module (RTC)

RTC_SM_0 Periodic read-back of configuration registers ++ X X -

RTC_SM_1 Application check of running RTC ++ X X -

RTC_SM_2 Information redundancy on backup registers o X X -

RTC_SM_3 Application-level measures to detect failures in timestamps/event
capture o X X -

Inter-integrated circuit (I2C)

IIC_SM_0 Periodic read-back of configuration registers ++ X X -

IIC_SM_1 Protocol error signals ++ X X -

IIC_SM_2 Information redundancy techniques on messages ++ X X -

IIC_SM_3 CRC packet-level + X X -

IIC_SM_4 Information redundancy techniques on messages, including end-to-
end protection + X X -

Universal synchronous/asynchronous receiver/transmitter and low power universal asychronous receiver/transmitter (USART,
UART, LPUART)

UART_SM_0 Periodic read-back of configuration registers ++ X X -

UART_SM_1 Protocol error signals ++ X X -

UART_SM_2 Information redundancy techniques on messages ++ X X -

UART_SM_3 Information redundancy techniques on messages, including end-to-
end protection ++ X X -

Serial peripheral interface (SPI)

SPI_SM_0 Periodic read-back of configuration registers ++ X X -

SPI_SM_1 Protocol error signals ++ X X -

SPI_SM_2 Information redundancy techniques on messages ++ X X -

SPI_SM_3 CRC packet-level + X X -

 UM2840
Conditions of use

UM2840 - Rev 2 page 123/145

Diagnostic Description Rank Perm Trans Separation

SPI_SM_4 Information redundancy techniques on messages, including end-to-
end protection + X X -

Serial audio interface (SAI)

SAI_SM_0 Periodic read-back of SAI configuration registers ++ X X -

SAI_SM_1 SAI output loopback scheme ++ X X -

SAI_SM_2 1oo2 scheme for SAI module ++ X X -

SPDIF receiver interface (SPDIFRX)

SPDF_SM_0 Periodic read-back of SPDIF configuration registers ++ X X -

SPDF_SM_1 Protocol error signals ++ X X -

SPDF_SM_2 Information redundancy techniques on messages ++ X X -

Single Wire Protocol Master Interface (SWPMI)

SWPMI_SM_0 Periodic read-back of configuration registers ++ X X -

SWPMI_SM_1 Protocol error signals and information redundancy including
hardware CRC ++ X X -

SWPMI_SM_2 SWMPI loopback test + X - -

SWPMI_SM_3 Information redundancy techniques on messages to implement full
end-to-end operation ++ X X -

Management data input/output (MDIOS)

MDIO_SM_0 Periodic read-back of MDIO slave configuration registers ++ X X -

MDIO_SM_1 Protocol error signals ++ X X -

MDIO_SM_2 Information redundancy techniques on MDIO registers contents,
including register update awareness ++ X - -

SD/SDIO/MMC card host interface (SDMMC)

SDIO_SM_0 Periodic read-back of SDIO/SMMC configuration registers ++ X X -

SDIO_SM_1 Protocol error signals including hardware CRC ++ X X -

SDIO_SM_2 Information redundancy techniques on messages ++ X X -

Controller area network (FDCAN)

CAN_SM_0 Periodic read-back of configuration registers ++ X X -

CAN_SM_1 Protocol error signals ++ X X -

CAN_SM_2 Information redundancy techniques on messages, including end-to-
end protection. ++ X X -

USB on-the-go high-speed (OTG_HS)

USB_SM_0 Periodic read-back of configuration registers ++ X X -

USB_SM_1 Protocol error signals ++ X X -

USB_SM_2 Information redundancy techniques on messages ++ X X -

USB_SM_3 Information redundancy techniques on messages, including end-to-
end protection. + X X -

Ethernet (ETH): media access control (MAC) with DMA controller

ETH_SM_0 Periodic read-back of Ethernet configuration registers ++ X X -

ETH_SM_1 Protocol error signals including hardware CRC ++ X X -

ETH_SM_2 Information redundancy techniques on messages, including end-to-
end protection ++ X X -

 UM2840
Conditions of use

UM2840 - Rev 2 page 124/145

Diagnostic Description Rank Perm Trans Separation

HDMI-CEC (CEC)

HDMI_SM_0 Periodic read-back of configuration registers ++ X X -

HDMI_SM_1 Protocol error signals + X X -

HDMI_SM_2 Information redundancy techniques on messages ++ X X -

Disable and periodic cross-check of unintentional activation of unused peripherals

FFI_SM_0 Disable of unused peripherals ++ - - -

FFI_SM_1 Periodic read-back of interference avoidance registers ++ - - X

Arm®Cortex®-M7 and M4 CPU

CoU_1 The reset condition of Arm® Cortex®- M7 and Arm® Cortex®- M4
CPUs must be compatible as valid safe state at system level

++ - - -

Debug

CoU_2 Device debug features must not be used in safety function(s)
implementation. ++ - - -

Arm®Cortex®-M7 and M4 / Supply system

CoU_3 Low-power mode state must not be used in safety function(s)
implementation. ++ - - -

Device peripherals

CoU_4
End user must implement the required combination of safety
mechanism/CoUs for each STM32 peripheral used in
implementation of safety function(s).

++ X X -

Flash memory subsystem

CoU_5 During flash memory bank mass erase and reprogramming there
must not be safety functions(s) executed by Device. ++ - - -

CoU_6
On‑field Application software live update by dual‑bank Flash memory
system must include the execution of code/data integrity check
through methods such as FLASH_SM_0

++ X X -

CPU subsystem

CoU_7 In case of multiple safety functions implementations, methods to
guarantee their mutual independence must include MPU use. ++ - - -

Clock recovery system (CRS)

CoU_8 CRS features must not be used in safety function(s) implementation. ++ - - -

Error management

CoU_9.1

Any security violation event must be considered equivalent to the
detection of a non-controllable hardware random failure; accordingly,
it must lead to the transition to a safe state (de-energize) at system
level.

++ X X -

CoU_9.2

For each implemented safety mechanisms, related error/fault
detection signal(s)/message(s) must be processed by the application
software for the correct management of SS1 safe state. Related
software routines must be considered as safety related in the
framework of the overall policy for software systematic capability in
the final system.(3)

++ X X X

Embedded SRAM

CoU_10
RAM space used by each Device CPU for safety function(4)

implementation (including stacks space) must be kept separated,
except the area specified by CoU_11. Allocation must be static.

++ - - X

CoU_11 Data exchanges between the two CPUs of the Device must use a
dedicated shared memory space defined in SRAM. ++ - - X

 UM2840
Conditions of use

UM2840 - Rev 2 page 125/145

Diagnostic Description Rank Perm Trans Separation

CoU_12 Memory Protection Units (MPU) of each Device CPU must be used
to enforce the implementation of CoU_10, CoU_11. ++ - - X

Watchdog

CoU_13 The external watchdog must supervise the correct behavior of both
Device CPUs. Communication schemes are ruled by CoU_14. ++ X X X

CoU_14

CPUs communications with the external watchdog must be
managed either:
1. Both CPUs can communicate with the external watchdog. In

this case the watchdog must be able to identify which CPU is
sending the message, or

2. Only one CPU drives the external watchdog and acts as
supervisor for the other CPU. In this case the first CPU must
be able to request a reset in case the second CPU is
unresponsive or reporting a failure detection.

++ - - X

CoU_15 In the Device, each of the two internal watchdogs IWDG and WWDG
must be statically allocated to only one CPU ++ - - X

CoU_16

External and internal watchdog management software routines
(implementing requirements of CoU_13, CoU_14, CoU_15) must be
developed with software systematic capability (SC) not lower than
the highest available on the system, and in any case at least equal
to SC2

++ - - X

Part separation (no interference)

CoU_17

During system boot, a combination of the external watchdog and
system-level measures must guarantee the overall safe state in case
of missed correct application software start on each CPU. Exit from
this power-up safe state must be linked also to the successful
execution (before the application software start) of following safety
measures:
• CPUM7_SM_0
• MPUM7_SM_0
• MPUM7_SM_1
• CPUM4_SM_0
• MPUM4_SM_0
• MPUM4_SM_1
• FLASH_SM_0

++ - - X

1oo2 architecture

CoU_18

In 1oo2 architecture, the PEv must keep the final system in safe
state after the power-up until both of the STM32H7 dual-core dvices
have performed their exit from the power-up safe state ruled by
CoU_17

++ - - X

System

DUAL_SM_0 Cross-check between two STM32 devices o X X -

1. Can be considered ranked as “+” if only one safety function is implemented and the presence of non-safety-
related software is excluded.

2. Must be considered ranked as “++” if Application software is executed on RAM.
3. To provide an example, safety recommendation "CPU_SM_3 Arm® Cortex®- M7 HardFault exceptions"

cannot be considered correctly satisfied if related exception handler is not implemented in software.
4. A reminder that any software-based safety mechanisms like CPUM7_SM_0, CPUM4_SM_0 must be

considered “safety functions” and so they must comply to this CoU.
5. Therefore, trigger action on each internal watchdog must be allowed to only one CPU, statically selected at

software design time.

The above-described safety mechanism or conditions of use are conceived with different levels of abstraction
depending on their nature: the more a safety mechanism is implemented as application-independent, the wider is
its possible use on a large range of End user applications.

 UM2840
Conditions of use

UM2840 - Rev 2 page 126/145

The safety analysis highlights two major partitions inside the MCU:
• System-critical MCU modules

Every End user application is affected, from safety point of view, by a failure on these modules. Because
they are used by every End user application, related methods or safety mechanism are mainly conceived to
be application-independent. The system-critical modules on Device are: CPU, RCC, PWR, bus matrix and
interconnect, and flash memory and RAM (including their interfaces).

• Peripheral modules
Such modules could be not used by the end-user application, or they could be used for non-safety related
tasks. Related safety methods are therefore implemented mainly at application level, as Application software
solutions or architectural solutions.

 UM2840
Conditions of use

UM2840 - Rev 2 page 127/145

4 Safety results

This section reports the results of the safety analysis of the STM32H7 dual-core series devices, according to
IEC 61508 and to ST methodology flow, related to the hardware random and dependent failures.

4.1 Random hardware failure safety results
The analysis for random hardware failures of STM32H7 dual-core series devices reported in this safety manual is
executed according to STMicroelectronics methodology flow for safety analysis of semiconductor devices in
compliance with IEC 61508 (refer to [4] for more details). The accuracy of results obtained are guaranteed by
three factors:
• STMicroelectronics methodology flow strict adherence to IEC 61508 requirements and prescriptions
• the use, during the analysis, of detailed and reliable information on microcontroller design
• the use, for specific diagnostic coverage evaluation, of state-of-the-art fault injection methods and tools for

safety metrics verification

The Device safety analysis explored the overall and exhaustive list of Device failure modes, to individuate for
each of them an adequate mitigation measure (safety mechanism). The overall list of Device failure modes is
maintained in the related FMEA document [1], provided on demand by local STMicroelectronics sales office.
In summary, with the adoption of the safety mechanisms and conditions of use reported in Conditions of use, it is
possible to achieve the integrity levels summarized in the following table.

Table 176. Overall achievable safety integrity levels
Note that the achievable integrity levels are the same regardless of the individual or collaborative scheme applied.

Number of
Devices used

Safety
architecture Target Safety analysis result

1 1oo1
SIL2 LD Achievable

SIL2 HD/CM Achievable with potential performance impact (1)

2 1oo2
SIL3 LD Achievable

SIL3 HD/CM Achievable with potential performance impact

1. Note that the potential performance impact related to some above-reported target achievements is mainly related to the
need of execution of periodical software-based diagnostics (refer to safety mechanism description for details). The impact is
therefore strictly related to how much “aggressive” the system level PST is (see Section 3.3.1 Safety requirement
assumptions).

The resulting relative safety metrics (diagnostic coverage (DC) and safe failure fraction (SFF)) and absolute
safety metrics (probability of failure per hour (PFH), probability of dangerous failure on demand (PFD)) are not
reported in this section but in the failure mode effect diagnostic analysis (FMEDA) snapshot [2], due to:
• a large number of different STM32H7 dual-core series parts,
• a possibility to declare non-safety-relevant unused peripherals, and
• a possibility to enable or not the different available safety mechanisms.

The FMEDA snapshot [2] is a static document reporting the safety metrics computed at different detail levels (at
microcontroller level and for microcontroller basic functions) for a given combination of safety mechanisms and for
a given part number. If FMEDA document is needed, contact the local STMicroelectronics sales representative as
early as possible, in order to receive information on expected delivery dates for specific Device target part
numbers.

Note: Safety metrics computations are restricted to STM32H7 dual-core series boundary, hence they do not include
the WDTe, PEv, and VMONe processes described in Section 3.3.1 Safety requirement assumptions).

 UM2840
Safety results

UM2840 - Rev 2 page 128/145

4.1.1 Safety analysis result customization
The safety analysis executed for STM32H7 dual-core series devices documented in this safety manual considers
all microcontroller modules to be safety-related, thus able to interfere with the safety function, with no exclusion.
This is in line with the conservative approach to be followed during the analysis of a general-purpose
microcontroller, in order to be agnostic versus the final application. This means that no microcontroller module
has been declared safe as per IEC 61508-4, 3.6.8. Therefore, all microcontroller modules are included in SFF
computations.
In actual End user applications, not all the STM32H7 dual-core series parts or modules implement a safety
function. That happens if:
• The part is not used at all (disabled), or
• The part implements functions that are not safety-related (for example, a GPIO line driving a power-on

signaling light on an electronic board).

Note: Implementation of non-safety-related functions is in principle forbidden by the assumed safety requirement
ASR4.4 (see Section 3.3.1 Safety requirement assumptions), hence under End user's entire responsibility. As
any other derogation from safety requirements included in this manual, it is End user's responsibility to provide
consistent rationales and evidences that the function does not bring additional risks, by following the procedure
described in this section. Therefore, it is strongly recommended to reserve such derogation to very simple
functions (as the one provided in the example).

Implementing safety mechanisms on such parts would be a useless effort for End user. The safety analysis
results can therefore be customized.
End user can define a STM32H7 dual-core series part as non-safety-related based on:
• Collecting rationales and evidences that the part does not contribute to safety function.
• Collecting rationales and evidences that the part does not interfere with the safety function during normal

operation, due to final system design decisions. Mitigation of unused modules is exhaustively addressed in
Section 4.1.2 General requirements for freedom from interferences (FFI).

• Fulfilling the general condition for the mitigation of intra-MCU interferences (see Section 4.1.2 General
requirements for freedom from interferences (FFI)).

For a non-safety-related part, End user is allowed to:
• Exclude the part from computing metrics to report in FMEDA, and
• Not implement safety mechanisms as listed in Table 175. List of safety recommendations.

With regard to SFF computation, this section complies with the no part / no effect definition as per IEC 61508‑4,
3.6.13 / 3.6.14.

4.1.2 General requirements for freedom from interferences (FFI)
A dedicated analysis has highlighted a list of general requirements to be followed in order to mitigate potential
interferences between Device internal modules in case of internal failures (freedom from interferences, FFI).
These precautions are integral part of the Device safety concept and they can play a relevant role when multiple
microcontroller modules are declared as non-safety-related by End user as per Section 4.1.1 Safety analysis
result customization.
End user must implement the safety mechanisms listed in Table 177 (implementation details in
Section 3.6 Hardware and software diagnostics) regardless any evaluation of their contribution to safety metrics.

Table 177. List of general requirements for FFI

Diagnostic Description

BUS_SM_0 Periodic software test for interconnections

GPIO_SM_0 Periodic read-back of configuration registers

DMA_SM_0 Periodic read-back of configuration registers

DMA_SM_2 Information redundancy by including sender or receiver identifier on data packet transferred via DMA(1)

DMA_SM_4 DMA transaction awareness(1)

NVIC_SM_0 Periodic read-back of configuration registers

 UM2840
Random hardware failure safety results

UM2840 - Rev 2 page 129/145

Diagnostic Description

NVIC_SM_1 Expected and unexpected interrupt check

FFI_SM_0 Disable of unused peripherals

FFI_SM_1 Periodic read-back of interference avoidance registers

1. To be implemented only if DMA is actually used.

4.1.3 Notes on multiple-fault scenario
According to the requirements of IEC 61508, the safety analysis for STM32H7 dual-core series devices
considered multiple-fault scenarios. Furthermore, following the spirit of ISO26262 (the reference and state-of-the-
art standard norm for integrated circuit safety analysis), the analysis investigated possible causes preventing the
implemented safety mechanisms from being effective, in order to determine appropriate counter-measures. In the
Multiple-fault protection field, the tables in Section 3.6 Hardware and software diagnostics report the safety
mechanisms required to properly manage a multiple-fault scenario, including mitigation measures against failures
making safety mechanisms ineffective. It is strongly recommended that the safety concept includes such
mitigation measures, and in particular for systems operating during long periods, as they tend to accumulate
errors. Indeed, fault accumulation issue has been taken into account during STM32H7 dual-core series devices
safety analysis.
Another potential source of multiple error condition is the accumulation of permanent failures during power-off
periods. Indeed, if the end system is not powered, no safety mechanism are active and so able to early detect the
insurgence of such failures. To mitigate this potential issue, it is strongly recommended to execute all periodic
safety mechanism at each system power-up; this measure guarantees a fresh system start with a fault-free
hardware. This recommendation is given for periodic safety mechanisms rated as "++" (highly recommended) in
the Device safety concept, and mainly for the most relevant ones in term of failure distribution: CPUM7_SM_0,
CPUM4_SM_0, FLASH_SM_0, RAM_SM_0. This startup execution is strongly recommended regardless the
safety functions mode of operations and/or the value of PST.

4.2 Analysis of dependent failures
The analysis of dependent failures is important for microcontroller and microprocessor devices. The main
subclasses of dependent failures are CCFs. Their analysis is ruled by IEC 61508-2 annex E, which lists the
design requirements to be verified to allow the use of on-chip redundancy for integrated circuits with one common
semiconductor substrate.
As there is no on-chip redundancy on STM32H7 dual-core series devices, the CCF quantification through the βIC
computation method - as described in Annex E.1, item i - is not required. Note that, in the case of 1oo2 safety
architecture implementation, End user is required to evaluate the β and βD parameters (used in PFH
computation) that reflect the common cause factors between the two channels.
The Device architecture and structures can be potential sources of dependent failures. These are analyzed in the
following sections. The safety mechanisms referred to are described in Section 3.6 Hardware and software
diagnostics.

4.2.1 Power supply
Power supply is a potential source of dependent failures, because any alteration can simultaneously affect many
modules, leading to not-independent failures. The following safety mechanisms address and mitigate those
dependent failures:
• VSUP_SM_1: detection of abnormal value of supply voltage;
• VSUP_SM_2: the independent watchdog is different from the digital core of the MCU, and this diversity

helps to mitigate dependent failures related to the main supply alterations. As reported in VSUP_SM_2
description, separate power supply for IWDG or/and the adoption of an external watchdog (CPU_SM_5)
increase such diversity.

• VSUP_SM_5: power supply stability (guaranteed by system level measures) is an important mitigation factor

The adoption of such safety mechanisms is therefore highly recommended despite their minor contribution to the
safety metrics to reach the required safety integrity level. Refer to Section 3.6.7 Power controller (PWR) for the
detailed safety mechanism descriptions.

 UM2840
Analysis of dependent failures

UM2840 - Rev 2 page 130/145

4.2.2 Clock
System clocks are a potential source of dependent failures, because alterations in the clock characteristics
(frequency, jitter) can affect many parts, leading to not-independent failures. The following safety mechanisms
address and mitigate such dependent failures:
• CLK_SM_1: the clock security system is able to detect hard alterations (stop) of system clock and activate

the adequate recovery actions.

The adoption of such safety mechanism is therefore highly recommended despite their minor contribution to the
safety metrics to reach the required safety integrity level. Refer to Section 3.6.8 Reset and clock controller
(RCC) for detailed safety mechanisms description.

4.2.3 DMA
The DMA function can be involved in data transfers operated by most of the peripherals. Failures of DMA can
interfere with the behavior of the system peripherals or Application software, leading to dependent failures. The
adoption of the following safety mechanisms is therefore highly recommended (refer to Section 3.6.14 Direct
memory access controllers ((DMA, MDMA, BDMA and DMA request multiplexer (DMAMUX))) for description):
• DMA_SM_0
• DMA_SM_1
• DMA_SM_2

Note: Only DMA_SM_0 must be implemented if DMA is not used for data transfer.

4.2.4 Internal temperature
The abnormal increase of the internal temperature is a potential source of dependent failures, as it can affect
many MCU parts. The following safety mechanism mitigates this potential effect (refer to Section 3.6.7 Power
controller (PWR) for description):
VSUP_SM_3: the internal temperature read and check allows the user to quickly detect potential risky conditions
before they lead to a series of internal failures.

 UM2840
Analysis of dependent failures

UM2840 - Rev 2 page 131/145

5 List of evidences

A safety case database stores all the information related to the safety analysis performed to derive the results and
conclusions reported in this safety manual.
The safety case database is composed of the following:
• safety case with the full list of all safety-analysis-related documents
• STMicroelectronics' internal FMEDA tool database for the computation of safety metrics, including estimated

and measured values
• safety report, a document that describes in detail the safety analysis executed on STM32H7 dual-core series

devices and the compliance to IEC 61508 applicable clauses
• STMicroelectronics' internal fault injection campaign database including tool configuration and settings, fault

injection logs and results, related to the MCU modules for which fault injection is adopted as verification
method.

As these resources contain STMicroelectronics confidential information, they are only available for the purpose of
audit and inspection by authorized bodies, without being published, which conforms to Note 2 of IEC 61508-2,
7.4.9.7.

Important:
The combination of this document (safety manual), the [1] and [2] documents, the [4] provides per se an exhaustive view of the
rationales for the compliance to IEC 61508 requirements of the whole STM32 safety concept. All these documents are
available under NDA and they can be shared with certification entities (refer to applicable NDA for details).

 UM2840
List of evidences

UM2840 - Rev 2 page 132/145

Appendix A X-CUBE-STL self-test software library
The X-CUBE-STL (also referred as "STL" in this document) is a Software-based diagnostic library designed to
detect random hardware failures in STM32 safety-critical core components (CPU + SRAM + flash memory). It is
provided by STMicroelectronics to simplify the implementation of STM32 MCU safety concept, by offering a pre-
certified brick addressing the most challenging MCU functions.

X-CUBE-STL implements a set of of key safety mechanisms described in this Safety Manual:
• Periodic core self-test software for CPU.
• FLASH_SM_0 Periodic software test for flash memory
• RAM_SM_0 Periodic software test for static random access memory (SRAM)

Figure 8. STL architecture

D
T6

74
12

V1

STL User
parameters

STL
User
APIs

STL scheduler

Function return value
Test result value

User application

HAL/LL

STL
CPU Arm® core

test modules

STL
Flash memory

test module

STL
SRAM

test module

STM32 microcontroller

Legend:
STL
User

X-CUBE-STL characteristics:
• Partitioned into Test Modules to ease its coexistence with end user application software
• Provided with a Scheduler function to simplify the periodic execution of the tests
• Flash and SRAM test area can be partitioned in programmable sections to reduce the time for the execution

of atomic test sections
• Application independent: can be used in potentially any end-user application.
• It can be interrupted at practically any time by the end user application; the few critical sections are

automatically protected by an interrupt disable function.
• Compiler independent: delivered as object code.
• Independence: designed as HAL-, BSP- and CMSIS-agnostic (there are no dependencies from these

software packages).
• Compatible with most popular safe RTOS (white papers/application notes on integration with safe RTOS are

available)
• Portability: the X-CUBE-STL shares the same APIs set across all the STM32 MCU Series, so projects

portability across STM32 portfolio is guaranteed
• Provided with exhaustive end user documentation: safety manual and user guide

 UM2840
X-CUBE-STL self-test software library

UM2840 - Rev 2 page 133/145

• Diagnostic coverage verified by state-of-the-art ST proprietary fault injection methodology
• Development flow compliant to SC3 systematic capability requirements from IEC 61508
• Certified by TÜV Rheinland (certification covers claims related to achieved DC and SC3 development flow)

X-CUBE-STL is available on demand under NDA agreement (contact your local ST representative).

 UM2840
X-CUBE-STL self-test software library

UM2840 - Rev 2 page 134/145

Revision history

Table 178. Document revision history

Date Revision Changes

05-Jul-2021 1 Initial release.

10-Aug-2023 2

Added:
• Section Appendix A X-CUBE-STL self-test software library

Updated:
• Section 1.3 Reference documents
• Arm® Cortex®-M7 CPU CPU_SM_0.
• Section 3.6.31 HASH processor (HASH) HASH_SM_1.
• Section 3.6.37 Real-time clock module (RTC) RTC_SM_2.
• Update the naming convention of IEC 61508-2 throughout the document
• Section 3.1 Safety architecture introduction
• Section 3.2.4 Reference safety architectures - 1oo2
• Section 3.7 Conditions of use

 UM2840

UM2840 - Rev 2 page 135/145

Glossary
 Application software within the software executed by
Device, the part that ensures functionality of End user's
application and integrates safety functions

ASR assumed safety requirement

CCF common cause failure

CM continuous mode

Compliant item any item subject to claim with respect
to the clauses of IEC 61508 series of standards

COTS commercial off-the-shelf

CoU conditions of use

CPU central processing unit

CRC cyclic redundancy check

DC diagnostic coverage

Device depending on context, any single or all of the
STM32H7 dual-core silicon products

DMA direct memory access

DTI diagnostic test interval

End user individual person or company who
integrates Device in their application, such as an
electronic control board

EUC equipment under control

FIT failure in time

FMEA failure mode effect analysis

FMEDA failure mode effect diagnostic analysis

HD high-demand

HFT hardware fault tolerance

HW hardware

ITRS international technology roadmap for
semiconductors

LD low-demand

MCU microcontroller unit

MPU memory protection unit

MTBF mean time between failures

MTTFd mean time to dangerous failure

NDA non disclosure agreement

PEc computation processing elements

PEi input processing elements

PEo output processing elements

PEv voting processing element

PFD probability of dangerous failure on demand

PFH probability of failure per hour

PL performance level

PST process safety time

SFF safe failure fraction

SIL safety integrity level

SoC system on chip

VMONe voltage monitors

WDTe watchdog

 UM2840
Glossary

UM2840 - Rev 2 page 136/145

Contents

1 About this document .2

1.1 Purpose and scope . 2

1.2 Normative references . 2

1.3 Reference documents. 3

2 Device development process .4

3 Reference safety architecture .5

3.1 Safety architecture introduction . 5

3.2 Compliant item. 5

3.2.1 Definition of Compliant item . 5

3.2.2 Safety functions performed by Compliant item . 6

3.2.3 Reference safety architectures - 1oo1. 7

3.2.4 Reference safety architectures - 1oo2. 9

3.2.5 The separation concept. 9

3.3 Safety analysis assumptions . 11

3.3.1 Safety requirement assumptions . 11

3.4 Electrical specifications and environment limits . 13

3.5 Systematic safety integrity . 13

3.6 Hardware and software diagnostics . 13

3.6.1 Arm® Cortex®-M7 CPU . 15

3.6.2 Arm® Cortex®-M4 CPU . 23

3.6.3 CPUs-shared safety mechanisms . 29

3.6.4 System bus architecture/BusMatrix . 32

3.6.5 Embedded SRAM . 33

3.6.6 Embedded flash memory . 40

3.6.7 Power controller (PWR) . 46

3.6.8 Reset and clock controller (RCC) . 48

3.6.9 Clock recovery system (CRS) . 50

3.6.10 Hardware semaphore (HSEM) . 50

3.6.11 General-purpose input/output (GPIO) . 51

3.6.12 Debug system or peripheral control. 54

 UM2840
Contents

UM2840 - Rev 2 page 137/145

3.6.13 System configuration controller (SYSCFG) . 55

3.6.14 Direct memory access controllers ((DMA, MDMA, BDMA and DMA request multiplexer
(DMAMUX))) . 56

3.6.15 Chrom-Art Accelerator controller (DMA2D) . 59

3.6.16 Extended interrupt and events controller (EXTI) . 61

3.6.17 Cyclic redundancy-check calculation unit (CRC) . 63

3.6.18 Flexible static memory controller (FSMC) . 63

3.6.19 Quad-SPI interface (QUADSPI) . 65

3.6.20 Delay block (DLYB) . 67

3.6.21 Analog-to-digital converter (ADC) . 67

3.6.22 Digital-to-analog converter (DAC) . 70

3.6.23 Voltage reference buffer (VREFBUF) . 71

3.6.24 Comparator (COMP) . 72

3.6.25 Operational amplifiers (OPAMP) . 74

3.6.26 Digital filter for sigma delta modulators (DFSDM) . 75

3.6.27 Digital camera interface (DCMI) . 77

3.6.28 LCD-TFT display controller (LTDC) . 78

3.6.29 DSI Host (DSI) . 79

3.6.30 JPEG codec (JPEG) . 80

3.6.31 HASH processor (HASH) . 81

3.6.32 True random number generator (RNG) . 82

3.6.33 Cryptographic processor (CRYP) . 83

3.6.34 Advanced-control/General-purpose and Low-power timers . 85

3.6.35 Basic timers (TIM6/7) . 89

3.6.36 Independent and system window watchdogs (IWDG and WWDG) 90

3.6.37 Real-time clock module (RTC) . 91

3.6.38 Inter-integrated circuit (I2C). 93

3.6.39 Universal synchronous/asynchronous receiver/transmitter and low power universal
asychronous receiver/transmitter (USART, UART, LPUART). 96

3.6.40 Serial peripheral interface (SPI) . 99

3.6.41 Serial audio interface (SAI) . 101

3.6.42 SPDIF receiver interface (SPDIFRX) . 103

3.6.43 Single Wire Protocol Master Interface (SWPMI) . 104

 UM2840
Contents

UM2840 - Rev 2 page 138/145

3.6.44 Management data input/output (MDIOS). 106

3.6.45 SD/SDIO/MMC card host interface (SDMMC) . 108

3.6.46 Controller area network (FDCAN) . 109

3.6.47 USB on-the-go high-speed (OTG_HS) . 112

3.6.48 Ethernet (ETH): media access control (MAC) with DMA controller 114

3.6.49 HDMI-CEC (CEC) . 115

3.6.50 Disable and periodic cross-check of unintentional activation of unused peripherals 117

3.6.51 System . 118

3.7 Conditions of use. 118

4 Safety results. 128

4.1 Random hardware failure safety results .128

4.1.1 Safety analysis result customization . 129

4.1.2 General requirements for freedom from interferences (FFI) . 129

4.1.3 Notes on multiple-fault scenario . 130

4.2 Analysis of dependent failures. .130

4.2.1 Power supply . 130

4.2.2 Clock. 131

4.2.3 DMA . 131

4.2.4 Internal temperature . 131

5 List of evidences . 132

Appendix A X-CUBE-STL self-test software library . 133

Revision history . 135

Glossary . 136

 UM2840
Contents

UM2840 - Rev 2 page 139/145

List of tables
Table 1. Document sections versus IEC 61508-2 Annex D safety requirements . 2
Table 2. SS1 and SS2 safe state details . 12
Table 3. CPUM7_SM_0 . 15
Table 4. CPUM7_SM_1 . 16
Table 5. CPUM7_SM_2 . 17
Table 6. CPUM7_SM_3 . 17
Table 7. CPUM7_SM_4 . 18
Table 8. CPUM7_SM_7 . 19
Table 9. CPUM7_SM_9 . 20
Table 10. CPUM7_SM_10. 21
Table 11. MPUM7_SM_0 . 22
Table 12. MPUM7_SM_1 . 22
Table 13. CPUM4_SM_0 . 23
Table 14. CPUM4_SM_1 . 24
Table 15. CPUM4_SM_2 . 25
Table 16. CPUM4_SM_3 . 25
Table 17. CPUM4_SM_4 . 26
Table 18. CPUM4_SM_7 . 27
Table 19. MPUM4_SM_0 . 27
Table 20. MPUM4_SM_1 . 28
Table 21. CPU_SM_5. 29
Table 22. CPU_SM_6. 30
Table 23. CPU_SM_11 . 31
Table 24. BUS_SM_0. 32
Table 25. BUS_SM_1. 32
Table 26. LOCK_SM_0. 33
Table 27. RAM_SM_0 . 33
Table 28. RAM_SM_2 . 34
Table 29. RAM_SM_3 . 35
Table 30. RAM_SM_4 . 36
Table 31. RAM_SM_5 . 36
Table 32. RAM_SM_6 . 37
Table 33. RAM_SM_7 . 38
Table 34. RAM_SM_8 . 39
Table 35. FLASH_SM_0 . 40
Table 36. FLASH_SM_1 . 41
Table 37. FLASH_SM_2 . 41
Table 38. FLASH_SM_3 . 42
Table 39. FLASH_SM_4 . 42
Table 40. FLASH_SM_6 . 43
Table 41. FLASH_SM_7 . 44
Table 42. FLASH_SM_8 . 45
Table 43. FLASH_SM_9 . 45
Table 44. VSUP_SM_0. 46
Table 45. VSUP_SM_1. 46
Table 46. VSUP_SM_2. 47
Table 47. VSUP_SM_3. 47
Table 48. VSUP_SM_5. 48
Table 49. CLK_SM_0 . 48
Table 50. CLK_SM_1 . 49
Table 51. CLK_SM_3 . 49
Table 52. CLK_SM_5 . 50

 UM2840
List of tables

UM2840 - Rev 2 page 140/145

Table 53. HSEM_SM_0 . 50
Table 54. HSEM_SM_1 . 51
Table 55. GPIO_SM_0 . 51
Table 56. GPIO_SM_1 . 52
Table 57. GPIO_SM_2 . 53
Table 58. GPIO_SM_3 . 54
Table 59. DBG_SM_0. 54
Table 60. SYSCFG_SM_0 . 55
Table 61. DIAG_SM_0 . 55
Table 62. DMA_SM_0 . 56
Table 63. DMA_SM_1 . 56
Table 64. DMA_SM_2 . 57
Table 65. DMA_SM_3 . 58
Table 66. DMA_SM_4 . 58
Table 67. DMA2D_SM_0 . 59
Table 68. DMA2D_SM_1 . 59
Table 69. DMA2D_SM_2 . 60
Table 70. NVIC_SM_0 . 61
Table 71. NVIC_SM_1 . 62
Table 72. CRC_SM_0. 63
Table 73. FSMC_SM_0 . 63
Table 74. FSMC_SM_1 . 64
Table 75. FSMC_SM_2 . 64
Table 76. FSMC_SM_3 . 65
Table 77. QSPI_SM_0 . 65
Table 78. QSPI_SM_1 . 66
Table 79. QSPI_SM_2 . 66
Table 80. DLB_SM_0 . 67
Table 81. ADC_SM_0. 67
Table 82. ADC_SM_1. 68
Table 83. ADC_SM_2. 68
Table 84. ADC_SM_3. 69
Table 85. ADC_SM_4. 69
Table 86. DAC_SM_0. 70
Table 87. DAC_SM_1. 70
Table 88. VREF_SM_0 . 71
Table 89. VREF_SM_1 . 71
Table 90. COMP_SM_0 . 72
Table 91. COMP_SM_1 . 72
Table 92. COMP_SM_2 . 73
Table 93. COMP_SM_3 . 73
Table 94. COMP_SM_4 . 74
Table 95. AMP_SM_0. 74
Table 96. DFS_SM_0 . 75
Table 97. DFS_SM_1 . 75
Table 98. DFS_SM_2 . 76
Table 99. DFS_SM_3 . 76
Table 100. DCMI_SM_0 . 77
Table 101. DCMI_SM_1 . 77
Table 102. LCD_SM_0 . 78
Table 103. LCD_SM_1 . 78
Table 104. DSI_SM_0 . 79
Table 105. DSI_SM_1 . 79
Table 106. JPEG_SM_0 . 80

 UM2840
List of tables

UM2840 - Rev 2 page 141/145

Table 107. JPEG_SM_1 . 80
Table 108. JPEG_SM_2 . 81
Table 109. HASH_SM_0. 81
Table 110. HASH_SM_1. 82
Table 111. RNG_SM_0 . 82
Table 112. RNG_SM_1 . 83
Table 113. CRYP_SM_0. 83
Table 114. CRYP_SM_1. 84
Table 115. CRYP_SM_2. 84
Table 116. ATIM_SM_0 . 85
Table 117. ATIM_SM_1 . 86
Table 118. ATIM_SM_2 . 87
Table 119. ATIM_SM_3 . 88
Table 120. ATIM_SM_4 . 88
Table 121. GTIM_SM_0 . 89
Table 122. GTIM_SM_1 . 90
Table 123. WDG_SM_0 . 90
Table 124. WDG_SM_1 . 91
Table 125. RTC_SM_0 . 91
Table 126. RTC_SM_1 . 92
Table 127. RTC_SM_2 . 92
Table 128. RTC_SM_3 . 93
Table 129. IIC_SM_0 . 93
Table 130. IIC_SM_1 . 94
Table 131. IIC_SM_2 . 94
Table 132. IIC_SM_3 . 95
Table 133. IIC_SM_4 . 95
Table 134. UART_SM_0. 96
Table 135. UART_SM_1. 96
Table 136. UART_SM_2. 97
Table 137. UART_SM_3. 98
Table 138. SPI_SM_0 . 99
Table 139. SPI_SM_1 . 99
Table 140. SPI_SM_2 . 100
Table 141. SPI_SM_3 . 100
Table 142. SPI_SM_4 . 101
Table 143. SAI_SM_0 . 101
Table 144. SAI_SM_1 . 102
Table 145. SAI_SM_2 . 102
Table 146. SPDF_SM_0 . 103
Table 147. SPDF_SM_1 . 103
Table 148. SPDF_SM_2 . 104
Table 149. SWPMI_SM_0. 104
Table 150. SWPMI_SM_1. 105
Table 151. SWPMI_SM_2. 105
Table 152. SWPMI_SM_3. 106
Table 153. MDIO_SM_0 . 106
Table 154. MDIO_SM_1 . 107
Table 155. MDIO_SM_2 . 107
Table 156. SDIO_SM_0 . 108
Table 157. SDIO_SM_1 . 108
Table 158. SDIO_SM_2 . 109
Table 159. CAN_SM_0. 109
Table 160. CAN_SM_1. .110

 UM2840
List of tables

UM2840 - Rev 2 page 142/145

Table 161. CAN_SM_2. .111
Table 162. USB_SM_0. .112
Table 163. USB_SM_1. .112
Table 164. USB_SM_2. .113
Table 165. USB_SM_3. .113
Table 166. ETH_SM_0 .114
Table 167. ETH_SM_1 .114
Table 168. ETH_SM_2 .115
Table 169. HDMI_SM_0 .115
Table 170. HDMI_SM_1 .116
Table 171. HDMI_SM_2 .116
Table 172. FFI_SM_0. .117
Table 173. FFI_SM_1. .117
Table 174. DUAL_SM_0 .118
Table 175. List of safety recommendations .119
Table 176. Overall achievable safety integrity levels . 128
Table 177. List of general requirements for FFI . 129
Table 178. Document revision history . 135

 UM2840
List of tables

UM2840 - Rev 2 page 143/145

List of figures
Figure 1. STMicroelectronics product development process . 4
Figure 2. STM32 as Compliant item . 5
Figure 3. Individual and collaborative schemes. 7
Figure 4. 1oo1 reference architecture - individual scheme . 8
Figure 5. 1oo1 reference architecture - collaborative scheme . 8
Figure 6. 1oo2 reference architecture . 9
Figure 7. Allocation and target for STM32 PST . 11
Figure 8. STL architecture . 133

 UM2840
List of figures

UM2840 - Rev 2 page 144/145

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics International NV and its affiliates (“ST”) reserve the right to make changes corrections, enhancements, modifications, and improvements to
ST products and/or to this document any time without notice.

This document is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this
document solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this document may not be
used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any
action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this document shall not be
construed as an admission, acknowledgment or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or
any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not
promise that this document is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information
contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental,
punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this document.

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of
sale in place at the time of order acknowledgment, including, without limitation, the warranty provisions thereunder.

In that respect, note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and
conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for
any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is
granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

 UM2840

UM2840 - Rev 2 page 145/145

http://www.st.com/trademarks

	1 About this document
	1.1 Purpose and scope
	1.2 Normative references
	1.3 Reference documents

	2 Device development process
	3 Reference safety architecture
	3.1 Safety architecture introduction
	3.2 Compliant item
	3.2.1 Definition of Compliant item
	3.2.2 Safety functions performed by Compliant item
	3.2.3 Reference safety architectures - 1oo1
	3.2.3.1 Individual scheme
	3.2.3.2 Collaborative scheme

	3.2.4 Reference safety architectures - 1oo2
	3.2.5 The separation concept

	3.3 Safety analysis assumptions
	3.3.1 Safety requirement assumptions

	3.4 Electrical specifications and environment limits
	3.5 Systematic safety integrity
	3.6 Hardware and software diagnostics
	3.6.1 Arm® Cortex®-M7 CPU
	3.6.2 Arm(R) Cortex(R)-M4 CPU
	3.6.3 CPUs-shared safety mechanisms
	3.6.4 System bus architecture/BusMatrix
	3.6.5 Embedded SRAM
	3.6.6 Embedded flash memory
	3.6.7 Power controller (PWR)
	3.6.8 Reset and clock controller (RCC)
	3.6.9 Clock recovery system (CRS)
	3.6.10 Hardware semaphore (HSEM)
	3.6.11 General-purpose input/output (GPIO)
	3.6.12 Debug system or peripheral control
	3.6.13 System configuration controller (SYSCFG)
	3.6.14 Direct memory access controllers ((DMA, MDMA, BDMA and DMA request multiplexer (DMAMUX)))
	3.6.15 Chrom-Art Accelerator controller (DMA2D)
	3.6.16 Extended interrupt and events controller (EXTI)
	3.6.17 Cyclic redundancy-check calculation unit (CRC)
	3.6.18 Flexible static memory controller (FSMC)
	3.6.19 Quad-SPI interface (QUADSPI)
	3.6.20 Delay block (DLYB)
	3.6.21 Analog-to-digital converter (ADC)
	3.6.22 Digital-to-analog converter (DAC)
	3.6.23 Voltage reference buffer (VREFBUF)
	3.6.24 Comparator (COMP)
	3.6.25 Operational amplifiers (OPAMP)
	3.6.26 Digital filter for sigma delta modulators (DFSDM)
	3.6.27 Digital camera interface (DCMI)
	3.6.28 LCD-TFT display controller (LTDC)
	3.6.29 DSI Host (DSI)
	3.6.30 JPEG codec (JPEG)
	3.6.31 HASH processor (HASH)
	3.6.32 True random number generator (RNG)
	3.6.33 Cryptographic processor (CRYP)
	3.6.34 Advanced-control/General-purpose and Low-power timers
	3.6.35 Basic timers (TIM6/7)
	3.6.36 Independent and system window watchdogs (IWDG and WWDG)
	3.6.37 Real-time clock module (RTC)
	3.6.38 Inter-integrated circuit (I2C)
	3.6.39 Universal synchronous/asynchronous receiver/transmitter and low power universal asychronous receiver/transmitter (USART, UART, LPUART)
	3.6.40 Serial peripheral interface (SPI)
	3.6.41 Serial audio interface (SAI)
	3.6.42 SPDIF receiver interface (SPDIFRX)
	3.6.43 Single Wire Protocol Master Interface (SWPMI)
	3.6.44 Management data input/output (MDIOS)
	3.6.45 SD/SDIO/MMC card host interface (SDMMC)
	3.6.46 Controller area network (FDCAN)
	3.6.47 USB on-the-go high-speed (OTG_HS)
	3.6.48 Ethernet (ETH): media access control (MAC) with DMA controller
	3.6.49 HDMI-CEC (CEC)
	3.6.50 Disable and periodic cross-check of unintentional activation of unused peripherals
	3.6.51 System

	3.7 Conditions of use

	4 Safety results
	4.1 Random hardware failure safety results
	4.1.1 Safety analysis result customization
	4.1.2 General requirements for freedom from interferences (FFI)
	4.1.3 Notes on multiple-fault scenario

	4.2 Analysis of dependent failures
	4.2.1 Power supply
	4.2.2 Clock
	4.2.3 DMA
	4.2.4 Internal temperature

	5 List of evidences
	Appendix A X-CUBE-STL self-test software library
	Revision history
	Glossary
	Application software
	ASR
	CCF
	CM
	Compliant item
	COTS
	CoU
	CPU
	CRC
	DC
	Device
	DMA
	DTI
	End user
	EUC
	FIT
	FMEA
	FMEDA
	HD
	HFT
	HW
	ITRS
	LD
	MCU
	MPU
	MTBF
	MTTFd
	NDA
	PEc
	PEi
	PEo
	PEv
	PFD
	PFH
	PL
	PST
	SFF
	SIL
	SoC
	VMONe
	WDTe

