

UM3055

User manual

STSW-ONE graphical user interface

Introduction

This user manual describes the operation of the ST-ONE[®] Graphical User Interface, optionally associated with STEVAL-PCC020V2.1, the USB to UART interface board.

The STEVAL-PCC020V2.1 is an interface board used to connect a Windows[®] based PC with digital power supply controllers such as ST-ONE, STNRG012, or STNRG011. The layout and the behavior of the interface board are described in the ST-ONE datasheet.

The GUI allows to update the ST-ONE embedded firmware, calculate the main board's components, monitor in real time the status of the digital controller, and tune specific parameters according to customer needs.

GUI features

- Running on Windows XP (.NET 4.0 framework needed), Windows 7, 8, and 10
- Board components setup
- Real time monitor of the digital controller status
- Connection to ST-ONE using either direct standard COM port or through STEVAL-PCC020V2 board.

Figure 1. ST-ONE GUI main form

💯 Digital Supplies - ST-ON	IE GUI - V1.1				□ ×
۲۵۲۲ COM4	· 🔓 /	**	\bigcirc	5	Life.augmented
Platform Actions		Interfac	e management		
AskREADY Reset	Get Version	VCC	lisabled	Select UART speed 115200	
Rz Show Uart Trad	ces	1.61 ✓ Fore	e Boot-ROM State		
Traces					
	Command			V Hex Send	Clr
Bridge <->	15-53-44-26	generic	Reading 4 bytes at 0x00	0000024	•
Target <- PC	15:53:44:26	Targe	55 0D 80 04 24 00 00	0 00 15 11 21 20 FE E4	^
T Tomat a DC	15:53:44:27	generic	Asking FLASH Tag versi	ion	
✓ Target->PC	15:53:44:27	generic	Reading 4 bytes at 0x00	0010024	
ST-ONE logs	15:53:44:28	Targe	55 0D 80 04 24 00 0	1 00 23 08 22 20 FE DD	
Hexview	٢				>
COM4 (STM32 i/f) 921600bp	os Com	munication (OK BootVersion	: 2021-11-15 AppVersion: 2022-08-23	

1 GUI installation

The ST-ONE GUI installation is performed by a dedicated installer. The installer does <u>not</u> remove previous versions of the GUI: if an equivalent version is already installed on the PC, it is removed when the installer is launched, and a new installation is required.

Double-click on setup.exe to launch the installer. When the form below appears, select Next to continue.

Figure 2. ST-ONE installer – welcome page

	-One Got Setup wizar	u		6	
The installer will guide you computer.	u through the steps required to i	nstall ST-On	e GUI	on you	r
WARNING: This compute reaties. Unauthorized dup	r program is protected by copyr plication or distribution of this pro	ight law and gram, or any	intern / porti	ational on of it, imum e	may
WARNING: This compute reaties. Unauthorized dup result in severe civil or crin possible under the law.	r program is protected by copyr plication or distribution of this pro minal penalties, and will be pros	ight law and ogram, or any ecuted to the	intern / porti e max	ational on of it, imum e	ma xte

In order to move on with the installation, the license agreement has to be accepted.

Figure 3. ST-ONE installer – license agreement

🛃 ST-One GUI			_		×
License Agreement					
Please take a moment to read the licens click "I Agree", then "Next". Otherwise o	se agreement i slick "Cancel".	now. If you acc	ept the	e terms be	əlow,
LIMITED LICENSE AGREEM IMPORTANT-READ CAREFU (LLA) is made between you (legal entity, who will be re "Licensee") and STMicroelec incorporated under the laws of of this LLA through its Swiss b	ENT FOR S JLLY: This J either an in ferred to in tronics Inter the Netherl ranch 39, Cl	T MATERIA Limited Lice dividual person this LLA mational N ands acting to memin du Ch	ALS nse A son or as ' V, a for the amp o	greemen r a sing 'You" (compar e purpos les Fille	↑ nt le or ny se se ss, ↓
◯ I Do Not Agree ④	l Agree				
	< Back	Next >		Cance	۶l

It is recommended to install the ST-ONEGUI inside a dedicated *STMicroelectronics* folder on disk *C*:, as shown below. In case the user do not own the administration rights, it is recommended to install the ST-ONE GUI in a folder where administration rights are not requested

📸 ST-One GUI	_	
Select Installation Folder		
The installer will install ST-One GUI to the following folder.		
To install in this folder, click "Next". To install to a different folder, en "Browse".	ter it b	elow or click
Folder:		
C:\Program Files (x86)\STMicroelectronics\ST-One GUI\		Browse
		Disk Cost
Install ST-One GUI for yourself, or for anyone who uses this comput	er:	
⊖ Everyone		
● Just me		
<back next=""></back>		Cancel

Figure 4. ST-ONE installer – path selection

Once the installation is concluded, the tool can be launched.

2 GUI introduction

2.1 GUI features

The ST-ONE GUI is a tool developed to help a developer to set up and monitor the behavior of the ST-ONE. At a glance, it allows to:

- Program flash memory
- Calculate main board components
- Read event history data (for example, fault history).

2.2 GUI startup screen

The main form is shown in Figure 5.

The GUI is subdivided in 3 areas:

- Tool bar: it allows to select the desired actions to be performed on ST-ONE
- VCC control & basic actions: it contains UART controls
- Traces and status: Internal debug traces and status bar showing the current status of ST-ONE.

Figure 5. ST-ONE GUI startup screen

5	
_,	
RT speed 115200 V	
Hex Send	Cir
	^
21 20 FE E4	
22 20 FE DD	
	>
3 08	3 08 22 20 FE DD

2.3 Connection management

The communication between the PC and ST-ONE, through PCC020V2, can be implemented with two different configurations. Connect cable A between the PC and PCC020V2, cable B between PCC020V2 and ST-ONE:

Figure 6. Configuration 1

CC connection:

Figure 7. Configuration 2

Caution: AC voltage must always be disconnected during VCC generation, otherwise there would be a conflict between VCC generated by the interface board and the ST-ONE converter output.

GPIO connection:

The procedures below are recommended:

- For flash programming:
 - Disconnect AC source.
 - Connect the interface board and launch the GUI by pressing VCC button. The VCC button changes to VCC Enabled.

Interface management

VCC Enabled

- Perform operations.
- Disconnect VCC on the GUI by pressing VCC button. The VCC button changes to VCC Disabled.
 Interface management

VCC disabled

Connect AC source.

2.4 Establishing the communication link, boot modes

Before being able to perform any operation, the user must ensure a correct communication channel with the ST-ONE device.

First of all, the ST-ONE device must be supplied.

- If a direct UART connection is used, the ST-ONE chip must be powered externally.
- If the STEVAL-PCC020 is used, this is straight forward, the user has to just click on the VCC Enable button.

If the communication is successfully established:

The ST-ONE boot ROM sends a READY message

The status bar displays *Communication OK* and the boot and application versions are displayed in the task bar too.

Figure 8. Successful communication with ST-ONE

Warning	15:51:51:07 <	generic	Reading 4 t	pytes at 0x00010024		>	•	
COM4 (STM32 i/f) 921600bp	s Co	ommunicatio	n OK	BootVersion: 2021-11-15	AppVersion: 2021-08-30			

Note:

• The GUI forbids to Enable VCC if VCC is already detected (supply running).

Platform Actions	Interface management
AskREADY Reset Get Version	VCC forbidden
	5.15V
Rx Show Uart Traces	Force BootRom boot

 When VCC is engaged, if it goes down below a given threshold or above the OVP threshold, VCC is automatically disengaged to protect the interface board.

Boot modes:

At startup, the internal boot ROM checks the status of the Rx line.

If it has asserted to ground, the MCU does not start the application. This mode is called the "**rescue**" **mode** and it is used to update the application firmware

Figure 9. VCC generation forbidden

• Otherwise, if there is a valid application firmware image stored in flash, the MCU branches to the application, which is the **normal mode** of operation.

Note:

- If the STEVAL-PCC020 interface board is not used, the user must apply the following sequence:
- VCC off, tied UART_RX line to ground in order to select rescue mode.
- Apply VCC
- Release UART_RX line
- Press AskReady button to check if the link has been successfully established.

If the STEVAL-PCC020 board is attached, boot mode can be selected (rescue mode or normal mode).

Сом4	- 12	× ×.	Ø			
atform Actions	/	Interfac	ce management		-,,	lite, augmi
skREADY Rese	t Get Version	VCC	Enabled	Select UART speed 115200		
		1.60	W	110200		
P+		4.00	v			
Show Uart	Traces	✓ For	ce Boot-ROM State			
aces						
Ganaria	Command			V Hex Send	Cir	
Bridge <->	15:53:44:26	generic	Reading 4 bytes at 0	x00000024		^
Target<-PC	15:53:44:26	Targe	55 0D 80 04 24 00	00 00 15 11 21 20 FE E4		
	15:53:44:27	generic	Asking FLASH Tag v	ersion		
Tarrat > PC	15:53:44:27	generic	Reading 4 bytes at 0	x00010024		
✓ Target->PC		Targe	55 0D 80 04 24 00	01 00 23 08 22 20 FE DD		
✓ Target->PC ✓ ST-ONE logs	15:53:44:28					~
☑ Target->PC ☑ ST-ONE logs ☑ Hexview	15:53:44:28					

Note that in this case, the application firmware detected that the ST-ONE chip is powered from the secondary side (so by the STEVAL-PCC020 interface in our case).

At startup, **the GUI automatically detects the COM port to be used** (the GUI selects the CP2102 based VCP). In case of multiple CP2102, the user has to manually select the right COM port through the COM port menu.

It is possible to open/close the COM port using the dedicated icon:

Figure 12. COM port open and close

Figure 10. Rescue mode boot: the MCU remains in boot ROM state

Some sections of the GUI can operate even without a connected ST-ONE board, but real time monitoring is not available.

Once the right COM port is selected, the GUI tries to communicate with the interface board microcontroller with the selected speed, see Figure 2. In case the connection is not correctly established, modify the UART speed or switch between the interface connection selected (for example, from GPIO to CC or from CC to GPIO).

Figure 13. Traces during GUI connection

15:23:36:42	generic	HW:STM32 - HVDPS interface	
15:23:36:42	generic	FW:3.6.14835 Date:Feb 14 2020 17:59:06	
15:23:36:44	generic	Requesting READY message @ 115200 bps	
15:23:36:50	error	unable to find Uart Speed	
15:26:08:64	generic	HW:STM32 - HVDPS interface	
15:26:08:64	generic	FW:3.6.14835 Date:Feb 14 2020 17:59:06	
15:26:08:65	generic	Requesting READY message @ 115200 bps	
15:26:08:73	error	unable to find Uart Speed	

Note:

If the GUI does not find a SiLabs based VCP, an error message pops up.

Check in the Device Manager that the SiLabs VCP is correctly recognized. (see Figure 14).

Figure 14. SiLabs VCP in the device manager

📩 Device Manager	-		×
File Action View Help			
	× ●		
V A RNSCWD0093			
> Audio inputs and outputs			- 1
> Computer			
> Disk drives			
> C Display adapters			
> PVD/CD-ROM drives			
> 🔜 Human Interface Devices			
> TIDE ATA/ATAPI controllers			
> III Keyboards			
> Mice and other pointing dev	ices		
> Monitors			
> 😅 Network adapters			
> 🏋 NI GPIB Interfaces			
> D Other devices			
V Dorts (COM & LPT)			
Intel(R) Active Managem	ent Technology - S	OL (COM	(3)
Silicon Labs CP210x USB	to UART Bridge (C	OM25)	
USB Serial Port (COM20)	18		
USB Serial Port (COM9)			
> 🚝 Print queues			
> Processors			- 1
> By Security devices			
> E Sensors			
> F Software components			
> Software devices			
El Cound video and name con	trollers		

2.5 Settings

57

The GUI settings are accessible by clicking the **Settings** icon.

Figure 15. Availa	able settings panels
Сома 🗸	🔓 🎤 🛠 · C
Settings	
COM port (main) Paths GUI	
default Port COM COM4 Use current □ Log UART messages on a txt file UART Tx Delay (ms) 5 ÷	ST-ONE Communication Interface Direct Serial Connection UART mode IC mode I2C address (0x) 38 🜲
AutoDetect SiLabs Port	UART Rx<->Tx swap
Settings	- D >
COM port (main) Paths GUI	
Editor path C:\Program Files (x86)\Notepad++	\notepad++.exe
Default Flash C:\ST-ONE\GUI\ExamplePath	
Default Param C:\ST-ONE\GUI\ExamplePath	
Default Paran C:\ST-ONE\GUI\ExamplePath	
	Save Settings

Settings		<u>~</u>		>
COM port (main) Paths GUI				
Application Device	ST-ONE ~			
VCC Voltage	5.2 V 🗸			
VCC polling				
VCC SoftStart Offtime (µs)	300 🜩			
Check Flash Size CRC				
			Sava Sattin	

The Save Settings button allows to save the settings into the config.xml file, located in: ".\\xml\\config.xml", maintaining the same choices for the next time the GUI is opened.

Table 1. GUI settings

All the options configurable through the Settings form are listed below:

COM port (main)	
Default port COM	The UART COM port used by default if autodetection is not enabled.
Direct serial connection	Check this box to use the GUI without the STEVAL-PCC020V2 board (using a standard USB 2 serial cable), otherwise VCC cannot be supplied.
AutoDetect SiLabs port	Autodetect SiLabs COM port.
UART Tx open drain	If checked, Tx is open drain (then a pull-up resistor is needed on the ST-ONE Rx line).
Log UART messages from STNRG	Option to log the UART exchange on a file (uart_trace.txt on the GUI executable directory).
Default paths	
Editor path	Default path for the text editor.
Flash	Default path for the application firmware.
Parameters	Default path for the flash parameters.
Flash + parameters	Default path for the complete file to set up both application firmware and flash parameters.
GUI settings	
Application device	Select the target device (ST-ONE, ST-ONE MP or ST-ONE HP); this choice automatically configures the correct .xml files package.
VCC voltage	Select the VCC voltage
VCC polling	Enable or disable VCC polling
VCC SoftStart off-time	PWM off-time used during VCC startup. The longer this value is, the smoother the VCC. The default value may be fine with most of the ST-ONE applications.
Check flash size CRC	Check the correctness of the CRC computed from the flash content.

3 GUI features

57/

3.1 Application flash parameters editor

Figure 16. Application flash parameters editor

In applicative mode or rescue mode, this feature is used to update persistent application parameters:

- read and write the application flash parameters
- store and recall the parameters to disk
- edit the parameters in a convenient way.

There are various sections for the parameters:

- App setup: defines the behavior of the application boot
- App code parameters: configures traces, default voltage settings, and protection
- USB PD: related to USB PD compliance and parameters as per specification
- Power: firmware parameters of the power section.

The parameters description is outside the scope of this document, and they are subject to change with the application firmware evolution, so a dedicated document is available. ST-ONE

Figure 17.	Application	flash	parameters	editor	window
------------	-------------	-------	------------	--------	--------

ata read from Target									
ppSetup AppCodeParameter	USB PD	Power							
CONFIG section a Show All parameters Parameters	address=0	×0001F800							
Name	offset	RawValue	Value						
BCMode	0	0xFD02	BMC2						
USART_enable	4	0xFE01	see details						
Internal PULL-UP on GPIOX	6	0xFFFF	see details						
ACP_protection	8	0x0000	No pages protect						
APPL_SETUP	16	0xFB04	USBPD						
PWD_SETUP	18	0xFE01	Immediate						
Vout default	24	0xEC771388	5000 mV						
lout default	28	0xF1590EA6	3750 mA						
APP_ExT	32	0xFF00	Themistor not us						
APP_MV_Add2_Init	36	0x7A85	see details						
BCMode									
BootMode : BMC1=Jump to Apr	olication if	present ; BMC2=	Power from 2nd(no iur	mp); BCM	3=BCM1+S	VC enabled			

Note:

- In order to Read or Write parameters, the ST-ONE chip must be supplied (otherwise an error message pops up)
- It is also possible to update the flash parameters in application mode but this is not recommended, furthermore, some parameters might not be taken into account before reset.

3.2 Setup board – wizard

This module has been designed to guide the user during the first approach to the board's electrical components and ST-ONE behavior.

It is required to fill the first table, Figure 18, with the theoretical desired values of the application under analysis; a brief description of each parameter is reported inside the *Info Box*. If the inserted value exceeds the range an error message is reported. The inserted values are automatically implemented in the mathematical model after the *start* button is pressed. If values are not consistent with each other (for example, a minimum greater than a maximum), an error box is displayed.

Note: No further modifications of these parameters are considered after the simulation steps have started. In order to make changes effective, a new simulation has to be performed by pressing the start button again.

		Power s	ection	des	gn
Name	Value	Range	Unit	^	la cida a fala de lla cida a castina a de ancia
Vin_Min	90	40-400	V		electrical components of the board will b
Vin_Max	265	40-400	V		determined step by step, starting from the
Vin_low	115	40-400	V		fundamental quantities within the table
Vin_high	230	40-400	V		beside.
lout_Max	3	1-10	Α		please modify
Vsurge	300	40-400	V		piecee meany.
Pout_Max	65	20-200	W		
Vout Min	5	3-50	V	~	01-1

Figure 18. Power section design table

3.2.1 Bulk capacitor

This tab allows to compute the valley voltage and to obtain the capacitor's behavior curves, selecting:

- The mains frequency, choosing between 50 Hz or 60 Hz basing the application
- The bulk capacitor (capacitance and tolerance)
- The maximum output power (the default value is imported from the power section design table, but the value can be modified to analyze changes in the graph).

Press Compute to obtain the results.

The valley voltage box assumes a red background color if the result cannot be accepted, otherwise a green background confirms that the choice is correct.

In order to create a readable chart, <u>current values have been modified</u> before plotting with a stretching factor (*20) and an offset (+ 20). Thus, the values reported on the Y axis have to be considered valid for voltages only. All the raw results for both voltages and currents, to perform a partial plotting, are contained inside \output\ST-ONE_CapResults.txt.

Figure 19. Capacitor computations form

3.2.2 Clamping capacitor and transformer

This tab allows to compute fundamental quantities related to the transformer. The mains voltage and the output voltage may be defined directly inserting the value with the correspondent box or selecting an operating condition among the choices in the ComboBox.

Cap Cclamp and Transfo ZCD PID Waveform ACF	design		
Clamping capacit	or and transformer design		
Operating condition Max Vine - Max Vout			
Line Voltage 230 V	Transformer turns ratio	6	
Output voltage 20 V	Switching node parasitic capacitance	0.1	nF
DIRECT COMPUTATION			
Primary inductance (i) 140 µH	Tbump	506	ns
	Switching frequency	297	kHz
Leakage inductance (i) 3 µH	Suggested clamp capacitance	8.63	nF
REVERSE COMPUTATION	Clamp capacitance		nF
Switching frequency (Max) kHz	Primary inductance		μΗ
Lp / Lk (i) %	Leakage inductance		μН
	Tbump		ns
Compute		Next	

Figure 20. Clamping capacitor and transformer design form

The user can choose a direct or a reverse approach through the CheckBox, depending on which parameters are essential. The direct one starts from the primary and leakage inductances to obtain the switching frequency. On the contrary, the reverse approach computes the leakage and the primary inductances and from the primary-leakage ratio and the switching frequency.

Press Compute to obtain the results.

For both cases, the width of the bump and the clamping capacitance are calculated.

3.2.3 Zero current detector

This tab allows to compute the zero current detection (ZCD) advance time.

Basing on the value suggested by the previous tab, a clamping capacitance has to be selected, satisfying the constraints on Tbump: it has to be kept between a range of (12-18) % of the switching period. If this requirement is not satisfied an error box is shown when the *next* button is pressed.

Press Compute to obtain the results.

Figure	21.	ZCD	design	form

💀 Board Setup	-		×
Bulk Cap Colamp and Transfo ZCD PID Waveform ACF design			
Advanced ZCD network design			
Suggested ZCD advance time Selected Colamp 8.63 nF 397 ns			
Rds_on_SR (i) 15 mΩ Suggested R_ZCD			
235 Ω R_ZCDpu 100 kΩ Updated Tbump			
Low mains voltage 115 V (i) 505 ns			
Compute	Nex	t	

3.2.4 Loop

This tab allows to compute the loop gains at constant current and constant voltage, starting from the fundamental loop parameters.

Press Compute to obtain the results.

Figure 22. Loop parameters design form

Board Setu	up	700	PID					-	>
вик Сар С	clamp and Transfo	200	rio	Com	ALF design				
				Com		loop gains			
P-C	Compensation CV				2742 Hz				
I-C	Compensation CV				53 Hz				
I-Ci	ompensation CC				3839 Hz	Proportional gain	206		
Mir	nimum output voltage	•			5 V	Integral CV/ gain	2		
Ou	tput capacitance				700 µF	integral C v gain	2		
Rs	sns_lout secondary				5 mΩ	Integral CC gain	21		
Rs	sns_lout primary				155 mΩ				
Vf	fsr Max			(i)	24 V				
				Сотри	ite				
								Next	

3.2.5 Waveforms

This tab allows to generate the waveforms representing the device's behavior. When pressing the *Compute* button, all the simulation results are saved on a file *GeneralWave_wizard_x_.txt* and summarized inside the table. The second column of the table is based on the current-voltage conditions specified within the boxes. From the third to the last column simulation results on the four fundamental corners are reported, respectively:

- Maximum line voltage, maximum output voltage
- Minimum line voltage, maximum output voltage
- Maximum line voltage, minimum output voltage
- Minimum line voltage, minimum output voltage

Press *Compute* to obtain the results. The *expand chart* button shows a larger version of the computed graph. The data represented within the chart are the ones related to the *Actual* conditions. In order to update the graph starting from the new conditions, press again *Compute*, then *Expand Chart*.

oard Setup				-		3
k Cap Cclamp and Transfo ZCD	PID Waveform	ACF de	esign			
Ch	art simulations	of the	e device's electrical behav	vior		
Parameters	Actual (230-20)	^				
Switching time (us)	3.19					
Max primary side FET stress (V)	476		Operating condition	×	-	
High side FET peak voltage (V)	474					
Low side FET peak voltage (V)	474					
Primary side RMS current (A)	0.789		Line Voltage	230	v	
High side RMS current (A)	0.639		O david uniteres	20		
<		>	Output voltage	20		
1000			Application current	3	A	
- 800		n ec	Selected ZCD advance time	397		
2 600		uri n	Selected 200 davance ame	557	110	
				Compute		
				compute		
-200 0.49 1.49	2.49					
0.99 1.99	2.99 Emped (The set		Neut		

3.2.6 ACF design

This form exploits a recap of the design parameters selected or obtained through previous computations. When *Calculate Flash parameters* is pressed, the power parameters section of the application flash form is updated with the new values.

Figure 24. Active clamp flyback design recap

c	Chart simulations of t	he device'	s electrical	behavior		
	RealName	Value	Unit	^		
	Line input RMS voltage	230	V			
	Valley Voltage	72	V			
	Vin_low	115	V			
	lout_Max	10	A			
	Vin_high	230	V	8		
	Vout_Max	20	V			
	Pout_Max	65	W			
	lsec	4.073	A			
	lprimary	0.789	A			
	Cout	700	uF			
	Nominal bulk capacitance	88	uF			
	Bulk capacitor tolerance	20	%	~		
	L					
	Calcul	late Each naram	eters			

Note: In order to be effective, the application flash update has to be saved before closing the form.

3.3 Firmware update

7/

Figure 25. Firmware update menu and window

The onboard STM32 firmware can also be updated from the GUI; the last firmware version associated with the GUI is always provided inside the GUI delivery. When the GUI boots, it tries to locate the interface board and then identifies the firmware version: if too old, to obtain a correct setup an update is required.

Figure 26. Firmware update confirmation window

STM32 FW Update	\times
Are you sure you want to update the Interface Board Firmware ?	
Yes No	

- If the embedded firmware version is later than or equal to the v. 2.4, **the process is automatic**, no user action (for example, jumper connection) is required.
- On the other hand, if the embedded firmware has been corrupted or there is no firmware at all, it is necessary to connect a jumper on J2 and hit the Reset button (user has to follow up instructions).
- Once the firmware has been updated, the GUI reboots the board and the new firmware can be used.

Revision history

Table 2. Document revision history

Date	Version	Changes
28-Jun-2023	1	Initial release.
16-Sep-2024	2	Changed title; updated Section 2.5.

Contents

1	GUI	installa	ition	2		
2	GUI introduction					
	2.1	GUI fe	atures			
	2.2	GUI startup screen				
	2.3	Connection management				
	2.4	Establishing the communication link, boot modes				
	2.5	Settings				
3	GUI features					
	3.1	Applic	ation flash parameters editor			
	3.2	2 Setup board – wizard				
		3.2.1	Bulk capacitor			
		3.2.2	Clamping capacitor and transformer	13		
		3.2.3	Zero current detector			
		3.2.4	Loop			
		3.2.5	Waveforms			
		3.2.6	ACF design	15		
	3.3	Firmw	are update			
Rev	ision	history	,			
List	of tal	oles				
List	of fig	ures				

List of tables

Table 1.	GUI settings	10
Table 2.	Document revision history	17

List of figures

Figure 1.	ST-ONE GUI main form	1
Figure 2.	ST-ONE installer – welcome page.	2
Figure 3.	ST-ONE installer – license agreement	2
Figure 4.	ST-ONE installer – path selection	3
Figure 5.	ST-ONE GUI startup screen	4
Figure 6.	Configuration 1	5
Figure 7.	Configuration 2	5
Figure 8.	Successful communication with ST-ONE	6
Figure 9.	VCC generation forbidden	6
Figure 10.	Rescue mode boot: the MCU remains in boot ROM state	7
Figure 11.	COM port selection	7
Figure 12.	COM port open and close	7
Figure 13.	Traces during GUI connection	8
Figure 14.	SiLabs VCP in the device manager	8
Figure 15.	Available settings panels	9
Figure 16.	Application flash parameters editor	1
Figure 17.	Application flash parameters editor window 1	1
Figure 18.	Power section design table	2
Figure 19.	Capacitor computations form	3
Figure 20.	Clamping capacitor and transformer design form	3
Figure 21.	ZCD design form	4
Figure 22.	Loop parameters design form	4
Figure 23.	Waveform parameters simulation form	5
Figure 24.	Active clamp flyback design recap	5
Figure 25.	Firmware update menu and window 1	6
Figure 26.	Firmware update confirmation window	6

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved