r UM3148
’l life.augmented

User manual

Getting started with X-LINUX-MEMS1 package for developing MEMS
Applications on Linux

Introduction

The X-LINUX-MEMS1 is an STM32MPU OpenSTLinux software expansion package for the STM32MP157F-DK2 discovery kit,
used to demonstrate sensor fusion (STM32_MotionFX_Library) running on the Cortex® M4, and sensor data logging application
running on the Cortex® A7, of the STM32MP1.

The X-LINUX-MEMS1 software package is used with X-STM32MP-MSP01 multi-sensor board connected to a 40-pin GPIO
header of the STM32MP1 DK2 board. The motion FX library running on the Cortex® M4 uses MEMS sensors data
(ISM330DHCX: accelerometer and gyroscope. 1IS2MDC: magnetometer) and sends data over RPMsg (remote processor
messaging) to the Cortex® A7.

The firmware running on the Cortex® M4 is based on an X-CUBE-MEMS1 package.

Figure 1. X-LINUX software architecture diagram

Cortex M4 Cortex A7 ——
ogger
ation

. L Data L.
Application Data Generator Application Application Applic

MiddleWare m
[VIRGIEWEI-g MotionEX j§ OpenAMP

Hardware
Abstraction STM32Cube Hardware Abstraction Layer(HAL)
X-STM32MP-MSP01
Hardware

STM32MP1 Development Board(STM32MP157-DK2)

UM3148 - Rev 2 - June 2023 www.st.com

For further information contact your local STMicroelectronics sales office.

http://www.st.com/en/product/X-LINUX-MEMS1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
http://www.st.com/en/product/STM32MP157F-DK2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
http://www.st.com/en/product/X-LINUX-MEMS1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
https://www.st.com/content/st_com/en/search.html#q=X-STM32MP-MSP01-t=tools-page=1
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://www.st.com/en/embedded-software/x-cube-mems1.html

‘_ UM3148
,l X-LINUX-MEMS1 overview

1 X-LINUX-MEMS1 overview

The X-LINUX-MEMS1 software provides a user space application running on STM32MP157F-DK2 for the X-
STM32MP-MSP01 expansion board with multiple motion sensors. The X-LINUX-MEMS1 software package is
composed of 3 modules:

1. Data logger (C firmware running on Cortex® M4) containing firmware drivers for accelerometer, gyroscope
and magnetometer.
2. Sensor fusion (STM32_MotionFX_Library — running on Cortex® M4).

3. User application based on RPMsg (C application based on RPMsg running on Cortex® A7 and receiving
data from Cortex® M4).

1.1 Features
The main features of the X-LINUX-MEMS1 are as follows:
. Firmware for Cortex®M4 for running Motion FX
. C console application based on RPMsg running on Cortex A7 for data logging
. Compatible with STM32 ODE
. Environment sensors driver included
. Free, user-friendly license terms
1.2 Software configuration

Apart from other settings there are two main settings for the software configuration:
1. CRC2 enable for Motion_FX running on Cortex® M4
2. RPMSG for communication between Cortex® M4 and Cortex® A7

Figure 2. 10C File Settings

Clock Configuration Proj;

Vv Software Packs v Pinout

Security

Computing v

CRC2 for Motion_FX searon areso. [

v CRC1
[vcrez

Middieware

OPENAMP for RPMSG BootRom A7rsoL [N

TFBGA361 (Top view)

Utiities 2 @ 2K Q o =t i } s Q

UM3148 - Rev 2 page 2/15

http://www.st.com/en/product/X-LINUX-MEMS1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
http://www.st.com/en/product/STM32MP157F-DK2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
https://www.st.com/en/evaluation-tools/x-stm32mp-msp01.html
https://www.st.com/en/evaluation-tools/x-stm32mp-msp01.html
http://www.st.com/en/product/X-LINUX-MEMS1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
http://www.st.com/en/product/X-LINUX-MEMS1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview

‘,_l UM3148

Software package structure

1.3 Software package structure
The folder structure of the software package is below:

Figure 3. Release package structure Top Level

X-LINUX-MEMS1_V1.0.0

_htmresc | Cortex M4 Firmware and Binaries
Yocto Recipe for X-LINUX- Application
MEMS1 e Recipe

& en.DM00751078
G Package_license
§ Package_license

[Readme —— | Readme Documentation for
@ Release_Notes Quick start

Figure 4. Folder content overview

Pre-Built Binaries |

_htmresc
Application—l_ Binaries | I Cortex M4 Firmware.
Recipe Source

@ en.DM00751078
@ Package_license
g‘ Package_license
l:] Readme

@ Release_Notes

1.3.1 Cortex® M4 firmware

Cortex® M4 is firmware for MEMS data reading over I?C. The application is built for the below MEMS sensors:
1. ISM330DHCX: 3-axis accelerometer and 3-axis gyroscope.

2. 1IS2MDC: 3-axis digital magnetometer.

3. 1IS2DLPC: 3-axis accelerometer for industrial applications.

It uses the motion_FX sensor fusion library to show the sensor fusion data such as heading and quaternion on the
console C — application

Figure 5. MotionFX Library for Cortex M4

|] MotionFX_CM4F wc16_ota
|| MotionFX_CM4F wc32 ota
|] MotionFX_CM4F_wc32 ot hard.a

UM3148 - Rev 2 page 3/15

Software package structure

Cortex® A7 application
The RPMsg is a console C application based on the RPMsg framework used to receive the data from the Cortex®

M4 at regular intervals. A high level application (QT, GTK or Python) can be made on top of this data, as shown

below, and is sent at regular intervals.

Sensor data logging application

5870 235 46 59 187 25 98 67 219 15 73 64 74 2 B 8 248

7758 191 168 54 2 186 B 36 86

218 55 191 54

valueZ =
value!

46
8453
valued
v valuei -
=r|,:nr 451
ctor val 4503 Sensorfusion Data
r 818
- ana9?

avity Uectar v
Linear Acceleration
Linear Accelerati.

Lincar Accelerati
e = 22689
eading Er 3.141593
lapsed time = 586
254 255 256 116 256 255 255 203 254 255 2
64 16 164 236 58

A7 : read successfully 128 bytes to Bx26200. [@1-Bxi
S8 8 @ 565413 OB OB 0606080 48 253 255 255 231 255 255 185 2 @ 9 148 8 @ 8 22 2
fid6 162 88 63 67 211 186 62 176 25 98 67 159 177 55 194 247 13 188 191 22 26 261 60 154 219 55 191 86 6 5@ 191 64 161 236 185 @

fcceleroneter fix
fcceleroneter

https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview

‘_ UM3148
,’ Hardware setup

2 Hardware setup

The X-LINUX-MEMS1 software works with the X-STM32MP-MSP01 board, which is plugged on the 40-pin GPIO
connector present on the STM32MP157F-DK2 platform.

Figure 7. X-STM32MP-MSP01 expansion board

UM3148 - Rev 2 page 5/15

http://www.st.com/en/product/X-LINUX-MEMS1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
http://www.st.com/en/product/STM32MP157F-DK2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148

‘_ UM3148
,’ Software setup

3 Software setup

This section describes the software setup, which is required for building, flashing, transferring, and running the
MEMS application.

3.1 Recommended PC prerequisites
A Linux® PC running under Ubuntu® 20.04 is to be used. The developer can follow the link below:
https://wiki.st.com/stm32mpu/wiki/PC_prerequisites

3.2 Installing the SDK

This software package is built for the STM32 MPU ecosystem 4.1. This is required to build the application
package. The package contains the binaries which can be transferred using the scp command or zmodem. In
case customization is needed in the application, installing the SDK helps in building it. The developer can follow
the link below:

STM32MPU SDK Installation.
Once the SDK is installed, export the tool chain using the below command to build any Cortex® A7 application:

$source . /<path to SDK Installation Directory>/environment-setup-cortexa7t2hf-neon-vfpv4-ost
1-linux-gnueabi

3.3 Downloading and running the package

This is required to build the X-LINUX-MEMS1 Yocto recipe for the distribution package and for creating the
STM32MP1 SD card flashable images, which has the MEMS application (elf, rpmsg, Python) embedded.

The developer can follow the given link to download the Distribution Package:

3.4 Connecting to the board and transferring files

This is required to transfer the built binaries (application, elf, Python) to the STM32MP157F-DK2 board from the
development PC. The developer can transfer the binaries either by a:

1. a hotspot method
2. or setting up a Wi-Fi connection in the Board: How to setup a WLAN connection - stm32mpu
3. or using any serial protocol (like zmodem from Tera Term)

UM3148 - Rev 2 page 6/15

https://wiki.st.com/stm32mpu/wiki/PC_prerequisites
https://wiki.st.com/stm32mpu/wiki/STM32_MPU_ecosystem_release_note
https://wiki.st.com/stm32mpu/wiki/Getting_started/STM32MP1_boards/STM32MP157x-DK2/Develop_on_Arm%C2%AE_Cortex%C2%AE-A7/Install_the_SDK
http://www.st.com/en/product/X-LINUX-MEMS1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3148
https://wiki.st.com/stm32mpu/wiki/STM32MP1_Distribution_Package
https://wiki.st.com/stm32mpu/wiki/How_to_configure_a_wlan_interface_on_hotspot_mode
https://wiki.st.com/stm32mpu/wiki/How_to_setup_a_WLAN_connection

‘_ UM3148
,’ Building the application

4 Building the application

The Cortex® M4 firmware is built using STM32CubelDE, while the rmpsg application is built using the tool chain
provided in the STM32MP1 SDK.

4.1 Starter Packages
Download or clone the package (X-LINUX-MEMS1_V1.0.0.tar.xz) from www.st.com and extract it.

Star xvf X-LINUX-MEMS1 V1.0.0.tar.xz

You get the X-LINUX-MEMS1_V1.0.0 folder as shown in Figure 4. Folder content overview.

4.2 Cortex® M4 firmware
The firmware workspace is built using STM32CubelDE:

Figure 9. X-LINUX-MEMS1 Cortex® M4 folder structure

X-LINUX-MEMS1.V1.00 > Application > Source > X-LINUX-MEMST »

CA7

— ———{ STM32CubelDE Workspace

Common

Drivers
Middlewares
Utilities
D .mxproject
E .project
LICENSE
@ readme
E readme

m X-LINUX-MEMS-FUSION1

UM3148 - Rev 2 page 7/15

http://www.st.com

UM3148

Cortex® A7 application

4.3

4.4

UM3148 - Rev 2

Figure 10. STM32CubelDE Cortex® M4 workspace

[X_UNUX-MEMS? - %-LINUX-MEMS-FUSION1_CMd/Core/Src/main.c - STM32CubelDE
File Edit Source Refactor Navigate Search Project Run Window Help
= Bry{vg @ v dv@ v BvOvrQvin Gd®y

L Project Explorer X EST § =0 [Emainc x

AU BRI R TR A = e

* I X-LINUX-MEMS-FUSIONT (in X-LINU as1) A 1 /* USER CODE BEGIN Header */
= Common 28 /"
i 3 EEEEEEEEEEEREERR R EEAEEEREEEEEIRIEERIIEEEITEEIRIEIEEIIIEEXIERRTEERERRLE
£ Drivers . 3
i 4 = gfile : main.c
3 5 = @brief : Main program body
» & Utilities § sesmEmszsEssssEssssesxsasxs -iialen S— PR — F—
~ [X-LINUX-MEMS-FUSIONT_CAT (in CAT 7 * @attention
(> DeviceTree g *

& manifest prop 92 * Copyright (c) 2022 STMicroelectronics.

+ [X-LINUX-MEMS-FUSION1_CM4 (in CH4 16 * All rights reserved.
» . .2
Binaries : R s
o i 12 * This software is licensed under terms that can be found in the LICENSE
I Inchdes 13 * in the root directory of this software component.
& Common 14 * If no LICENSE file comps with this softwsre, it is provided AS-TS.
- @& Core 15 =
s @ inc e A S P
~ @ Sic 17 =
> [2 app_memsce 18 /* USER CODE END Header */
B 19 /* Includes --=--=n-nxsscssssoas
- 20 #include "main.h"
= demsmle 21 #include “app_mems.h"
> (@ iksD1a3 mems_control_exc 22 #include "stm32mplxx_hal.h"
> [& iksO1a3_mems_control.c 23 #include "virt_uart.h”
@ lock resource.c 24 #include "serial protocol.h”
> |2 maing 25 #include "com.h"
B moon e 268 /% Private INClUdEs -=-===-m-m oo e
= 27 /* USER CODE BEGIN Includes */
& serial_protecole %
> B st o s 29 /* USER CODE END Includes */
5 8 stm32mp15odisco.c 2]

315 /% Private typedef
/* USER CODE BEGIN PTD */

» (@ stm32mpliechal_msp.c
> [stm32mplx_ite
» |dl syscalls.c
[& sysmem.c
» & Startup
> 8 Drivers
> & Middlewares
& OPENAMP
> (= Debug
& RemoteProc
i STM32MP157FACK_RAM.Id
E LICENSE.ba
@ readme.htm|

¥ Problems x & Tasks E Comsole [Properties
0 errors, 14 wamings, 0 others
Description &
& Warnings (14 items)

Resource Path

After building the application, X-LINUX-MEMS-FUSION1_CM4.elf is formed at X-LINUX-MEMS1\X-LINUX-
MEMS\CM4\Debug.

Cortex® A7 application

The rpmsg can be built using the makefile provided via the make command. Before building using the make
command, tool chain for STM32MP1SDK needs to be exported using source command mentioned in
Section 3.2 Installing the SDK.

Makefile and the rpmsg source are present at: X-LINUX-MEMS1_V1.0.0\Application\Source\X-LINUX-
MEMS 1\Utilities\C\rpmsg.

Distribution package

This is required to build the Yocto recipes and create STM32MP1 images which has x-linux-mems1 application
embedded in them.

Step 1. Create a directory for the distribution package and initialize repo in the current directory
PC $> repo init -u https://github.com/STMicroelectronics/oe-manifest.git -b refs/tag

s/openstlinux-5.15-yocto-kirkstone-mpl-v22.11.23

PC $> repo sync

Initializing the OpenEmbedded build environment for STM32MP1

PC $> DISTRO=openstlinux-weston MACHINE=stm32mpl source layers/meta-st/scripts/envse
tup.sh

Step 2.

Download the X-LINUX-MEMS1 application package
PC $> cp -rf X-LINUX-MEMS1 V1.0.0/Recipe/meta-st-memsl/

Step 3.
../layers/meta-st/

copy it into the layers/meta-st folder inside the build directory

page 8/15

https://github.com/STMicroelectronics/oe-manifest.git%A0-b%20refs/tags/openstlinux-5.15-yocto-kirkstone-mp1-v22.11.23
https://github.com/STMicroelectronics/oe-manifest.git%A0-b%20refs/tags/openstlinux-5.15-yocto-kirkstone-mp1-v22.11.23

‘_ UM3148
,’ Running the application

Step 4. Add meta-st-mems1 layer

PC $> bitbake-layers add-layer ../layers/meta-st/meta-st-memsl

Step 5. Update the configuration to add new components in the image

PC $> echo 'IMAGE INSTALL:append = "memsl"' >> ../layers/meta-st/meta-st-openstlinux
/conf/layer.conf

or
PC $>vi ../layers/meta-st/meta-st-openstlinux/conf/layer.conf
IMAGE INSTALL: append = "memsl"
Step 6. Build the image
PC $> bitbake st-image-weston

New Images are formed in the tmp-glibc/deploy/images/stm32mp1/ directory

PC $> 1s -1 tmp-glibc/deploy/images/stm32mpl/FlashLayout sdcard stm32mpl57f-dk2-trus
ted.tsv

and FlashLayout_sdcard_stm32mp157f-dk2-trusted are created besides other images.
Follow the "link" to flash the binary.

Step 7. Check if the file below is present on the discovery kit

$ 1s -1 /lib/firmware

EIf file and rpmsg utility will be present.

4.5 Running the application
4.51 Using rpmsg utility
4.5.1.1 Starter package

The .elf and rpmsg can be built as explained in the above section. There are prebuilt binaries which can be
pushed to the discovery kit at /lib/firmware.

Change the permission of rpmsg and run the application

Schmod a+x rpmsg

$./rpmsg

45.2 Using Python utility
Transfer X-LINUX-MEMS1_V1.0.0\Application\Source\X-LINUX-MEMS 1\Utilities\sensor.py utility to /lib/firmware

Run the below command in the terminal of the STM32MPU and Python GUI will be launched on the STM32MPU
LCD Screen.

PC $python3 sensor.py

UM3148 - Rev 2 page 9/15

https://wiki.st.com/stm32mpu/wiki/STM32MP15_Discovery_kits_-_Starter_Package#Image_flashing

Temperature (STTS22HH)
Pressure (LPS22HH)
Accelerometer (ISM330DHCX)
Gyroscope (ISM330DHCX)
Magnetometer (11S2ZMDC)
Quaternion (MotionFX)
Rotation Vector (MotionFX)
Gravity Vector (MotionFX)
Linear Acceleration (MotionFX)
Heading (MotionFX)

Heading Error (MotionFX)

Elapsed time

*

Distribution package

Running the application

Running Python GUI

Wayland Terminal —|[O] %

Thu Mar 39, 12:32 P
Sensor.py Python GUI
X-STM32MP-MSP01 Sensors - o x
31.37deg C
988.97 Pa

[27, -3, 1005] mg

[70, -490, -210] deg/s

[—36641, -80385, 67071] mgauss
[0.01, -0.76, 0.65]

[98.61, 1.51, -0.13]

[0.00, 0.03, -1.00]

[-0.00, -0.00, 0.01] m/s"2

98.61

3.14

561

Thu Apr 28, 67161 P

Once flashed using STM32CubeProgrammer, these files (.elf, rpomsg, sensor.py) can be found at the "/lib/firmware'

location.

m UM3148

Revision history

Table 1. Document revision history

05-May-2023 1 Initial release.

08-Jun-2023 2 Watermark has been removed.

UM3148 - Rev 2 page 11/15

‘_ UM3148
,’ Contents

Contents
1 X-LINUX-MEMST OVeIrVIeWottt et teee st eiasa s nnaaaeannnasannnnnns 2
1.1 Features 2
1.2 Software configuration 2
1.3 Software package structure 3
1.31 Cortex® M4 firmware 3
1.3.2 Cortex® A7 application 4
Hardware setup.cooiiiiiii i it ie et tan s ansnansnansnnnsnnnsnnnsnnnns 5
Software setUP ... i e r e e 6
3.1 Recommended PC prerequisites i 6
3.2 Installing the SDK 6
3.3 Downloading and runningthe package i 6
3.4 Connecting to the board and transferring files. L. 6
4 Building the application. i it ee e 7
4.1 Starter Packages. 7
4.2 Cortex® M4 firmware 7
4.3 Cortex® A7 application. 8
44 Distribution package 8
4.5 Running the application 9
4.51 Using rpmsg Utility. 9
4.5.2 Using Python utility. 9
453 Distribution package 10
ReVISiON RisStory i it 1"

UM3148 - Rev 2 page 12/15

‘_ UM3148
,’ List of tables

List of tables

Table 1. Document revision history 11

UM3148 - Rev 2 page 13/15

‘,_l UM3148

List of figures

List of figures

Figure 1. X-LINUX software architecture diagram 1
Figure 2. IOC File Settings. oo 2
Figure 3. Release package structure Top Level 3
Figure 4. Folder content overview. 3
Figure 5. MotionFX Library for Cortex M4 3
Figure 6. Sensor data logging application 4
Figure 7. X-STM32MP-MSPO1 expansion board. 5
Figure 8. X-STM32MP-MSPO01 expansion board on STM32MP1 board e 5
Figure 9. X-LINUX-MEMS1 Cortex® M4 folder structure 7
Figure 10. STM32CubelDE Cortex® M4 WOrkSpaceot e e e e e 8
Figure 11. Running Python GUI 10
Figure 12. Sensor.py Python GUI 10

UM3148 - Rev 2 page 14/15

‘,_l UM3148

IMPORTANT NOTICE — READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics — All rights reserved

UM3148 - Rev 2 page 15/15

http://www.st.com/trademarks

	UM3148
	Introduction
	1 X-LINUX-MEMS1 overview
	1.1 Features
	1.2 Software configuration
	1.3 Software package structure
	1.3.1 Cortex® M4 firmware
	1.3.2 Cortex® A7 application

	2 Hardware setup
	3 Software setup
	3.1 Recommended PC prerequisites
	3.2 Installing the SDK
	3.3 Downloading and running the package
	3.4 Connecting to the board and transferring files

	4 Building the application
	4.1 Starter Packages
	4.2 Cortex® M4 firmware
	4.3 Cortex® A7 application
	4.4 Distribution package
	4.5 Running the application
	4.5.1 Using rpmsg utility
	4.5.1.1 Starter package

	4.5.2 Using Python utility
	4.5.3 Distribution package

	Revision history
	Contents

