
Introduction

This user manual delineates the procedural framework for constructing a comprehensive AI project tailored for Stellar
microcontrollers within the Stellar Studio IDE environment. It encompasses a systematic approach to the automatic
transposition of pre-trained neural networks (NN) into an efficiently optimized library and delineates the integration process
within the project. The StellarStudio.AI module, a constituent fully compatible with the Stellar Studio suite, is the focal point of
this documentation.

The core of this manual is a practical tutorial that guides users through the configuration of the StellarStudio.AI module. It
provides detailed instructions on expediting the creation of a Stellar AI centric project. Users will learn to navigate the
StellarStudio.AI's features and leverage its capabilities to streamline project development.

StellarStudio.AI is built upon the widely recognized ST Edge AI Core command-line interface (CLI) technology, known as ST
Edge AI. This technology is specifically designed for deployment across various STMicroelectronics devices including STM32,
Stellar MCUs and MEMS. Comprehensive documentation on the ST Edge AI Core technology is included within the final
installation package for users seeking in-depth understanding and advanced operational guidance.

By following this manual, users will acquire the necessary knowledge to efficiently develop AI projects on Stellar
microcontrollers, from the inception to the completion, utilizing the StellarStudio.AI component as an integral tool within the
Stellar Studio ecosystem.

Figure 1. ST Edge AI Core CLI technology

Getting started with Stellar Studio AI plugin for Artificial Intelligence (AI)

UM3201

User manual

UM3201 - Rev 3 - November 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

1 Requirements

The StellarStudio.AI component requires the latest available Stellar Studio version (with the latest versions of the
SDKs and TOOLS packages installed) for Windows operating system and it is compatible with the Stellar
automotive Arm®-based device family.
In particular, the supported Stellar microcontrollers can be selected in the MCU target selection panel of the
StellarStudio.AI component.

UM3201
Requirements

UM3201 - Rev 3 page 2/29

2 Overview

The StellarStudio.AI component extends the Stellar Studio by providing an automatic NN library generator
optimized in computation and memory (RAM and flash memory) that converts pre-trained neural networks from
the most used DL frameworks (such as Keras, TensorFlow™ lite, and ONNX) into a library that is automatically
integrated in the final Stellar Studio software development kit (Stellar SDK). The project is automatically set up,
ready for compilation and execution on the Stellar microcontrollers.
The StellarStudio.AI component can be easily installed in few steps directly from the Stellar Studio tool:
1. From the menu, select [Help]>[Install new software…]

a. For external users, type https://contrib.srxstudio.org and press Next.

Figure 2. StellarStudio.AI external installation

b. For internal users, type the latest available installation link (for example, http:// lmecxd0438.lme.st.com/
stellarstudio/journey) and press Next.

Figure 3. StellarStudio.AI internal installation

2. Press Finish to start the installation.
3. At the end of the installation a Stellar Studio restart is required.

UM3201
Overview

UM3201 - Rev 3 page 3/29

https://contrib.srxstudio.org

Figure 4. StellarStudio.AI installation restart

The StellarStudio.AI component can generate two kinds of project:
• Validation project that validates incrementally the results returned by the NN, stimulated by either random

or user test data, for the Stellar device selected in the MCU target selection panel.
• Application template project allowing the building of AI-based applications.
It is based on a graphical user interface (GUI) that allows to define a neural network on which the SDK project is
based and the type of processing (analyze, generate, or validate) to execute. The project, after generating the
neural networks files, can be compiled and flashed on the board to validate the neural network. When the
validation on target is successful, the neural network files can be used in any user application to run inferences.
The StellarStudio.AI configuration is based on the following panels (MCU, mode, network, actions, and validate)
as shown in Figure 5. ST Edge AI Core - StellarStudio.AI GUI.

UM3201
Overview

UM3201 - Rev 3 page 4/29

Figure 5. ST Edge AI Core - StellarStudio.AI GUI

The next figure shows a typical workflow for developing a user-defined application based on neural networks
using the StellarStudio.AI component.

UM3201
Overview

UM3201 - Rev 3 page 5/29

Figure 6. ST Edge AI Core - StellarStudio.AI workflow

Start

Analyze

DL model MACC,
RAM, ROM report ok?

Validate

C-library validation error
ok?

Generate

Develop user project

YES

YES

NO

NO

UM3201
Overview

UM3201 - Rev 3 page 6/29

3 MCU parameters

The MCU panel allows to specify which target device of the Stellar family is used.
Stellar SR5E1 line and SR6P line devices can be selected and are fully supported.

Figure 7. MCU parameters

UM3201
MCU parameters

UM3201 - Rev 3 page 7/29

4 Mode parameters

The Mode panel allows to specify which embedded public C-API is generated at runtime: standard legacy vs st-ai.
By default, legacy mode is used.
Depending on this value, the files generated are different.
For a full description of this CLI option (--c-api), you can refer to the ST Edge AI Core technology documentation.

Figure 8. Mode parameters

UM3201
Mode parameters

UM3201 - Rev 3 page 8/29

5 Network parameters

The network panel allows specifying one or more networks on which the StellarStudio.AI component is based on
each network defined in the network panel and it can be enabled or disabled. When a network is disabled, it is not
processed. In this way the user can temporarily remove one or more networks from the StellarStudio.AI process.
But at least one network in the network panel must be enabled anytime.
For each new entry in the network panel, it is possible to specify the following options:
• Enabled: the flag to enable or disable the neural network.
• Name: the name of the neural network. Two or more networks with the same name can be defined in the

network list, but only one can be enabled. If more networks with the same name are enabled at the same
time, an error is shown. Please note that two names that differ only for the lower case/upper case of one or
more characters are considered identical.
This name is used to generate the C neural networks file names and functions.
For a full description of this CLI option (-n/--name), you can refer to the ST Edge AI Core technology
documentation.

• Type: the type of the deep learning (DL) framework. The following types are supported in the
StellarStudio.AI component:
– Keras
– TensorFlow lite
– ONNX

For a list of the layers supported, you can refer to the ST Edge AI Core technology documentation.
• Compression: the expected global factor of compression to reduce the size of the deployed c-model. Only

the weights for the floating-point dense or fully connected layers are considered.
Supported values are:
– None: no compression, default value.
– Lossless: applied algorithms ensuring the accuracy (structural compression).
– Low: applied algorithms trying to reduce the size of the parameters with a minimum of accuracy loss.
– Medium: more aggressive algorithms, the final accuracy loss can be more important.
– High: extreme aggressive algorithms (not used).

For a full description of this CLI option (-c/--compression), you can refer to the STMicroelectronics
Edge AI Core technology documentation.

• Optimization: it is used to indicate the objective of the optimization passes, which are applied to deploy
the c-model. Note that the accuracy/precision of the generated model is not impacted. By default, a trade-
off (balanced value) is considered.
Supported values are:
– Time: applied the optimization passes to reduce the inference time (or latency). In this case, the size

of the used RAM (activation buffer) can be impacted.
– Ram: applied the optimization passes to reduce the RAM used for the activations. In this case, the

inference time can be impacted.
– Balanced: trade-off between the 'Time' and the 'Ram' objectives.

For a full description of this CLI option (-O/--optimization), you can refer to the ST Edge AI Core
technology documentation.

• File path: the path in which the model files must be stored. If the model file path is not valid or the folder
does not contain any valid model file, the StellarStudio.AI processing is stopped, and an error is returned.
For a full description of this CLI option (-m/--model), you can refer to the ST Edge AI Core technology
documentation.

• Allocate inputs: it's enabled by default in the ST Edge AI Core CLI command line and it indicates that the
activation buffer is also used to handle the input buffers, else, they should be allocated separately in the
user memory space. Depending on the size of the input data, the activation buffer may be bigger but
overall less than the sum of the activation buffer plus the input buffer.
For a full description of this CLI option, you can refer to the ST Edge AI Core technology documentation.

• Allocate outputs: it's enabled by default in the ST Edge AI Core CLI command line and it indicates that
the activation buffer is also used to handle the output buffers, else, they should be allocated separately in
the user memory space.
For a full description of this CLI option, you can refer to the ST Edge AI Core technology documentation.

UM3201
Network parameters

UM3201 - Rev 3 page 9/29

• Split weights: if enabled, this flag indicates that one c-array is generated by the weights/bias data tensor
instead of having a unique C-array (weights buffer) for the whole.
For a full description of this CLI option (--split-weights), you can refer to the ST Edge AI Core technology
documentation.

• Allocate activations: if enabled, this flag allocates the activation buffers (to store the intermediate results)
in the generated code (used only when the st-ai mode is selected). Moreover, in case of default behavior,
they should be allocated separately in the user memory space.
For a full description of this CLI option (--allocate-activations), you can refer to the ST Edge AI Core
technology documentation.

• Classifier: if enabled, this flag indicates that the provided model should be considered as a classifier vs
regressor. This implies that the computation of the “CM” and “ACC” metrics are evaluated, and an
autodetection mechanism is used to evaluate if the model is a classifier or not.
For a full description of this CLI option (--classifier), you can refer to the ST Edge AI Core technology
documentation.

• Extra options: This field must be used when running the ST Edge AI Core CLI commands.
For a full list of all CLI options, you can refer to the ST Edge AI Core technology documentation.

• Custom Layer
– Enabled: to enable a custom layer (json file format).
– Custom layer Json file: the path of the configuration file (.json file) to support the custom layers. The

new .c file is automatically generated during the generation phase and built during the compilation
phase.

For a full description of this CLI option (--custom), you can refer to the ST Edge AI Core technology
documentation.
The figure below shows the network panel parameters.

Figure 9. Neural networks parameters

The table below summarizes the model file extensions for the different network types.

Table 1. Neural network model file extensions

DL framework Type File extension

Keras Keras .h5 or .hdf5 and .json

TensorFlow lite TFLite .tflite

ONNX Onnx .onnx

UM3201
Network parameters

UM3201 - Rev 3 page 10/29

6 AI commands

The StellarStudio.AI component supports the following commands (refer to the ST Edge AI Core CLI technology
documentation):
• Version

– Get the version of all AI tools
• Analyze

– Import the model.
– Map, render, and optimize internally the model.
– Log and display a report.

• Generate
– Import the model.
– Map, render, and optimize internally the model.
– Export the specialized C-files.
– Log and display a report.

• Validate
– Import the model.
– Map, render, and optimize internally the model.
– Execute the generated C-model (on a target).
– Execute the original model using the original deep learning runtime framework for x86.
– Evaluate the metrics.
– Log and display a report.

Pushing the version command, the ST Edge AI Core tools versions are returned.
For the other commands, the same preliminary steps are applied. A report (.txt file) is systematically created and
fully or partially displayed. Additional JSON files (dictionary based) are generated in the workspace directory to be
parsed by the StellarStudio.AI component to retrieve the results. Note that they can also be used in a non-
regression environment. The format of these files is out of the scope of this document.
<workspace-directory-path>\<network_name>_report.json, <network_name>_c_graph.json

<output-directory-path>\<network_name>_<cmd>_report.txt

Version, Analyze and Generate commands are inside the actions panel, see Figure 10. Version, analyze, and
generate commands.
The Validate command is inside the validate panel, see Figure 11. Validate command.
The Analyze command is the primary command to import, parse, check, and render an uploaded pre-trained
model. A detailed report provides the main system metrics to know if the generated code can be deployed on the
target Stellar device. It also includes rendering information by layer or/and operator. After completion, the user
can be fully confident of the imported model in terms of supported layer/operators.
The Generate command is used to generate specialized networks and data C-files. They are generated in the
specified output directory. The files generated depend on the embedded public C-API selected in the mode
parameter, see Figure 8. Mode parameters. The name of the files generated depends on the neural network
name parameter chosen in the network panel.
The Validate command allows to import, render, and validate the generated C-files. For the validation on target,
the target board must be flashed with a valid validation firmware.
When the validation on target is performed, the DL model is compared with the C model that runs on the targeted
device. It requires a special StellarStudio.AI test application that embeds the generated neural networks libraries
and the COM agent to communicate with the host system.
Be aware, that the main purpose of the underlying validation process is to test the generated C files with the
associated network runtime library by comparison with the imported DL model.
Subsequently, only a representative and limited part of a whole validation or test dataset can be used. It has not
been designed to validate the pre-trained model as during a training/test phase.

UM3201
AI commands

UM3201 - Rev 3 page 11/29

Figure 10. Version, analyze, and generate commands

Figure 11. Validate command

UM3201
AI commands

UM3201 - Rev 3 page 12/29

6.1 Version
The Version command returns the information of the ST Edge AI Core tools version and is displayed on the AI
console, as the figure below.
For a full description of this CLI option (--tools-version), you can refer to the ST Edge AI Core technology
documentation.

Figure 12. Version process

6.2 Analyze
The Analyze command is used to check a DL model. For each of the enabled networks in the network panel it
generates a report that is shown in the Stellar Studio console during the command execution and is also stored in
a .txt file within the project folder <prj>/<ai_component_name>/cfg/. The name of the report is
<network_name>_analyze_report.txt.
For a full description of the CLI Analyze command, you can refer to the ST Edge AI Core technology
documentation.
The report allows us to check the imported models in terms of supported layers/operators. To run the analyze
command, select the actions panel and click on the analyze button (see the figure below).

Figure 13. Analyze process

UM3201
AI commands

UM3201 - Rev 3 page 13/29

Figure 14. Example of the analyze report

UM3201
AI commands

UM3201 - Rev 3 page 14/29

6.3 Generate
The Generate command is used to generate the C-library files for all the enabled networks within the network
panel. Then users can design and develop specific applications based on the APIs of these C-libraries. For each
of the enabled networks, the generate command creates the specific neural network files starting with the name of
the neural network chosen within the project folder <prj>/<ai_component_name>/cfg/ and generates a report that
is shown in the AI console during the command execution and it is also stored in a .txt file within the same folder.
The name of the report will be <network_name>_generate_report.txt.
For a full description of the CLI Generate command, you can refer to the ST Edge AI Core technology
documentation.
If an error occurs during the generation process of one of the enabled networks, the generate command
continues to process the other enabled networks.
To run the generate command, select the actions panel and click on the generate button (see the figure below). A
list of all available networks enabled and ready for the generation is also shown.

Figure 15. Generate process

The Figure 16. Example of the generate report is an example of the generated generate report.

UM3201
AI commands

UM3201 - Rev 3 page 15/29

Figure 16. Example of the generate report

6.4 Validate
The Validate command allows to import, render, and validate the C-libraries related to the enabled networks in the
network panel. To execute the validate command, the validate procedure must be enabled by selecting the
validate panel and setting the enabled flag (see Figure 17. Validate enable flag).
For a full description of the CLI Validate command, you can refer to the ST Edge AI Core technology
documentation.

Figure 17. Validate enable flag

A simple and quick validation mechanism is provided to compare the accuracy of a generated model and the
uploaded DL model from a numerical standpoint. Both models are fed with the same input tensors (fixed random
inputs or custom dataset). To be more accurate, additional metrics are reported to evaluate the generated C
model.

UM3201
AI commands

UM3201 - Rev 3 page 16/29

Figure 18. Validate flow overview

Reference ‘

Predict

Reference {optional}

original model
execution

C-model
execution

Performance
metrics
computation

<network>_val_io.npz file

Cycles/MACC
ACC/CM/
RMSE/MAE
L2r

Pre-processed
data set

{optional}

original
model

code
generator

MACC
ROM/RAM

<<use>>

Not developed by
STMicroelectronics

Input
or

random data

Only the validation on target is provided to compare the DL model with the C model that runs on the targeted
device. It requires a special AI test application that embeds the generated NN libraries and the COM agent to
communicate with the host system.

Figure 19. Validate on target

Input
or

random data

Reference ‘

Predict

COM bridge
(serial)

original model
execution

Reference {optional}

Pre-processed
data set

{optional}

original
model

<<use>>

AI Validation firmware
embedding the tested
c-model

Cycles/MACC
ACC/CM/
RMSE/MAE
L2r

Not developed by
STMicroelectronics

Performance
metrics
computation

The Validate procedure is based on the communication via serial port between the host (that sends the validation
data to the target) and the target (that processes the received data).
For this reason, within the validate panel of the StellarStudio.AI component a validate serial port must be
selected. It is possible to select as validate serial one of the UART available for the Stellar device selected in the
MCU Target selection panel. If no validate serial port is selected an error is returned during the compilation phase.
The network to validate must also be selected from a list that contains the names of all enabled networks. Only
one network at a time can be validated. It must be chosen before running the generating process. If no network is
selected (for example, NONE) as the network to validate, an error is returned during the compilation of the
validate project.
The Figure 20. Validate settings shows the section validate settings of the validate panel of the StellarStudio.AI
component in which it is possible to select the network to validate and the validate serial.

UM3201
AI commands

UM3201 - Rev 3 page 17/29

Figure 20. Validate settings

To validate the C-libraries, the following steps are required:
• The C-libraries of all enabled networks must be generated and included in a validate project.

– Some configuration files, depending on the selected network to validate, are generated too. Because
of that, it is needed to select the right network to validate (if more than one is present and enabled) in
the validate settings before the generation command execution.

• The validate project must be compiled, downloaded on the target, and executed.
– A makefile is also automatically generated to build the necessary files.

• The validate procedure must be run from the StellarStudio.AI component pushing the validate button.
The first step is the same as the generate command with the validation enabled flag set in the validate panel and
the StellarStudio.AI component generation is run (button generate in Figure 15. Generate process).

Note: For each new network to validate (if more than one has been loaded and enabled in the network panel), a new
generation phase is needed, after having selected the right network to validate in the validate settings. If NONE
is selected, a compilation error is generated when building the validate project.

When the generation of the neural network C-libraries is completed, the next step is to create and build (using one
of the SDK C-compilers supported) a Stellar SDK validate project including the neural network C-libraries
generated. Inside the main application, after the platform setup, it is enough to invoke the API AIValidateStart().
The code below shows a typical main source code of a Stellar SR5E1 line SDK validate project to start the
validation of a neural network C-model.
#include <test_env.h>
#include <uart.h>
#include <io.h>
#include <irq.h>
#include <stdio.h>

#include "stellar_ai_cfg.h"

#if (STELLAR_AI_VALIDATE == TRUE)
#include "stellar_ai.h"
#endif /* #if (STELLAR_AI_VALIDATE == TRUE) */

/*
 * Example of system initialization function for SR5E1-EVB3000D board
 */
void SystemInit(void)
{
 /* Enable interrupts.*/
 osal_sys_unlock();

 test_env_init((TestInit_t)

UM3201
AI commands

UM3201 - Rev 3 page 18/29

 (TEST_INIT_CLOCK |
 TEST_INIT_GPIO |
 TEST_INIT_BOARD |
 TEST_INIT_IRQ |
 TEST_INIT_OSAL));

 gpio_set_pin_mode(UART1_RX, UART1_RX_CFG);
 gpio_set_pin_mode(UART1_TX, UART1_TX_CFG);

 /* Initialize UART driver instance used for IO redirection.*/
 uart_init(&DRV_UART1);

 /* Configure UART driver instance used for IO redirection.*/
 (void)uart_set_prio(&DRV_UART1, IRQ_PRIORITY_5);
 (void)uart_set_rx_drv_mode(&DRV_UART1, UART_RX_DRV_MODE_INT_SYNC);
 (void)uart_set_tx_drv_mode(&DRV_UART1, UART_TX_DRV_MODE_INT_SYNC);
 (void)uart_set_baud(&DRV_UART1, UART_BAUDRATE_115200);
 (void)uart_set_presc(&DRV_UART1, UART_PRESCALER_DIV1);
 (void)uart_set_parity(&DRV_UART1, UART_PARITY_NONE);
 (void)uart_set_over(&DRV_UART1, UART_OVERSAMPLING_16);
 (void)uart_set_sbit(&DRV_UART1, UART_STOPBIT_1);

 /* Initialize Runtime IO module.*/
 io_init(&DRV_UART1);

 /* Start Runtime IO module.*/
 io_start();

 /* Enabling the Data Cache when validation is disabled.*/
 SCB_EnableDCache();
}

#if (STELLAR_AI_VALIDATE == TRUE)
/*
 * Application entry point for validation process
 */
\ main(void) {

 /* System initialization.*/
 SystemInit();

 /* Run the validate procedure.*/
 aiValidateStart();

 /* never here...*/
 while (true) {
 }
}
#else
/*
 * Application entry point for inference run
 */
int main(void) {

 /* System initialization.*/
 SystemInit();

 printf("#### AI application to run inference.\r\n");

 /* Run user application based on the AI neural network. */
 ai_application();

 /* never here...*/
 while (true) {
 }
}
#endif /* #if (STELLAR_AI_VALIDATE == TRUE) */

UM3201
AI commands

UM3201 - Rev 3 page 19/29

After compiling, the validate project must be flashed on a target Stellar board using one of the available tools (via
USB Stellar link or JTAG interface). The procedure of flashing depends on the target board used. For example,
using a discovery SR5E1-EVB3000D revision B board it can be done simply by using the OpenOCD software
under Stellar studio environment and the StellarLINK hardware interface of the board.

Figure 21. SR5E1-EVB3000D revision B board

After power-on the SR5E1-EVB3000D revision B board with a USB cable (attached to the PC), the command to
flash and download the validation binary code with the OpenOCD software is:
C:\StellarStudio-5.0\openocd\bin\openocd.exe -d0 -s C:\StellarStudio-5.0\openocd\scripts -f board\sr5e1_evb.cfg
-c "program "C:/StellarStudio-5.0/workspace/HAR/build/sr5e1/evbe3000d/core1/Release/HAR.elf" reset exit" and
can be simply executed under a command prompt:

Figure 22. How to flash the code on a target board using OpenOCD

The messages ** Programming started ** and ** Programming finished ** show the result of the command.
For more details about how to install StellarLINK drivers and how to use OpenOCD software you can refer to the
Stellar Studio documentation.
After the flash programming is completed successfully, the code is automatically executed on the target board,
and it waits in a loop for the incoming data to validate the model under evaluation.
The next step is to select the validate parameters in the section validate parameters of the validate panel (see
Figure 23. Validate parameters):

UM3201
AI commands

UM3201 - Rev 3 page 20/29

Figure 23. Validate parameters

The figure below shows the flowchart of the validate procedure.

Figure 24. Validate flowchart

TARGETHOST

Start

Start validate
procedure

Compile validate
project

Download validate
project on the target

Validate panel is
opened

Push validate from
the validate panel

Data processing
host/target

Validate results

Data processing
host/target

Data from
host?

Execute validate
project on target

SI

NO

Data exchange on
 validate serial

The validate parameters to set are:
• Com port: it is the HOST COM on which the target is connected on. It can be selected manually between

one of the COM ports available in the list or if "Auto" (default choice) is selected an automatic detection will
start looking for the available COM ports in the system.

UM3201
AI commands

UM3201 - Rev 3 page 21/29

• Validate type: it is the type of custom test data used by the validate procedure. The user can select
among:
– Random: an internal self-generated random dataset is used (default value).
– Custom input data: a custom dataset is used. In this case the user has to provide a single file

containing the dataset. The supported file extensions are:
◦ .npz: in this case the file can contain both inputs and expected outputs or the only inputs. If the

only inputs are provided, the expected outputs are automatically obtained by the model files
using the l2r metric.

◦ .npy or .csv: in this case the file contains only the inputs. The expected outputs are
automatically obtained by the model files using the l2r metric.

– Custom input/Output data: a custom dataset is used. In this case the user has to provide both the
custom input data and expected custom output data. The supported file extensions are.npz, .npy
or .cvs for both custom input and expected output data. Note that if an .npz file containing both input
and expected output is provided as custom input data, the custom output data file is ignored.

• Input path: it is the custom input data file (.npz, .npy or .csv).
• Output path: it is the custom output data file (.npz, .npy or .csv).
For a full description of these CLI options (-vi/valinput and -vo/valoutput), you can refer to the ST Edge AI Core
technology documentation.
When all the validate parameters are correctly selected, the validate procedure can be started by clicking the
validate button in the validate panel. See the figure below.

Figure 25. Validate process

The validate procedure will generate for the selected network validated a report that is shown in the Stellar Studio
console during the command execution and is also stored in a .txt file within the project folder <prj>/
<ai_component_name>/cfg/. The name of the validation report generated will be
<network_name>_validate_report.txt.
Please, before starting the validate procedure, verify that the COM related to the UART selected as validate serial
is not busy on another task, otherwise the communication between the host and the target fails and the validation
procedure returns an error. The communication is done @ 115200 bps.

UM3201
AI commands

UM3201 - Rev 3 page 22/29

When a validate procedure is completed, a new one with different parameters can be started from the validate
panel. But if the user wants to add new networks to the validate project or wants to enable/disable some networks
already defined in the network panel, it is recommended to restart the validate procedure doing a manual code
generation file cleaning and then a new code generation.
The validate procedure can also be stopped during its execution. Note, if the validate procedure is stopped, it
could be necessary to disconnect and then reconnect the target to the host before starting a new validate
procedure.
When a validate procedure has been completed, a new one with different parameters can be started from the
validate panel.
But if the user wants to add new networks or wants to enable/disable some networks already defined, it is
recommended to restart the validate procedure by doing a manual code generation file cleaning and then a new
code generation. The validate procedure can also be stopped during its execution. If the validate procedure is
stopped, it could be necessary to disconnect and then reconnect the target to the host before starting a new
procedure. If in the validate project, the RuntimeIO driver has been also added, the information about the
networks added is printed on the serial port. To see them, just open a terminal emulator on that serial port.
Note, if the user configures the same serial in both RuntimeIO driver and in the StellarStudio.AI component, it will
be mandatory to disconnect the terminal emulator before starting the validate procedure to avoid a
communication failure.
The Figure 26. Neural network runtime information shows the typical information of the networks included in the
Stellar Studio SDK validation project printed on the serial console when the RuntimeIO driver is included in the
validate project.

Figure 26. Neural network runtime information

UM3201
AI commands

UM3201 - Rev 3 page 23/29

7 Supported compilers

The StellarStudio.AI component is fully working with the following Arm compilers:
• GNU Arm embedded toolchain 10.3-2021.10
• HighTec clang version 8.1.0
• IAR ANSI C/C++ compiler V9.30.1.335/W64
• ARMCLANG Arm compiler for embedded 6.21
The Stellar Studio ecosystem with both StellarStudio.AI component and SDKs installed already contain some AI
demo applications for some specific boards, to be used as reference.

UM3201
Supported compilers

UM3201 - Rev 3 page 24/29

Revision history

Table 2. Document revision history

Date Version Changes

04-Sep-2023 1 Initial release.

14-Jun-2024 2

Document status changed from ST Restricted to public.
Updated Section Introduction, Section 1: Requirements and Section 2:
Overview.

Added Section 3: MCU parameters and Section 4: Mode parameters..

Updated Section 5: Network parameters and Section 6: AI commands..

Added Section 6.1: Version.

Updated Section 6.2: Analyze, Section 6.3: Generate and Section 6.4:
Validate

Removed "Embedded inference client API" and all subsection.

Updated Section 7: Supported compilers.

Removed "Supported deep learning toolboxes and layers" and all subsection.

Removed "How to run a c-model locally".

Removed "Key metrics" and all subsection.

18-Nov-2024 3
Updated Section 1: Requirements, Section 2: Overview, Section 3: MCU
parameters, Section 5: Network parameters, Section 6.4: Validate and
Section 7: Supported compilers.

UM3201

UM3201 - Rev 3 page 25/29

Contents

1 Requirements .2
2 Overview .3
3 MCU parameters. .7
4 Mode parameters .8
5 Network parameters .9
6 AI commands. .11

6.1 Version . 13

6.2 Analyze. 13

6.3 Generate . 15

6.4 Validate. 16

7 Supported compilers .24
Revision history .25
List of tables .27
List of figures. .28

UM3201
Contents

UM3201 - Rev 3 page 26/29

List of tables
Table 1. Neural network model file extensions . 10
Table 2. Document revision history . 25

UM3201
List of tables

UM3201 - Rev 3 page 27/29

List of figures
Figure 1. ST Edge AI Core CLI technology . 1
Figure 2. StellarStudio.AI external installation. 3
Figure 3. StellarStudio.AI internal installation . 3
Figure 4. StellarStudio.AI installation restart . 4
Figure 5. ST Edge AI Core - StellarStudio.AI GUI . 5
Figure 6. ST Edge AI Core - StellarStudio.AI workflow. 6
Figure 7. MCU parameters . 7
Figure 8. Mode parameters . 8
Figure 9. Neural networks parameters. 10
Figure 10. Version, analyze, and generate commands . 12
Figure 11. Validate command . 12
Figure 12. Version process . 13
Figure 13. Analyze process . 13
Figure 14. Example of the analyze report . 14
Figure 15. Generate process . 15
Figure 16. Example of the generate report. 16
Figure 17. Validate enable flag. 16
Figure 18. Validate flow overview . 17
Figure 19. Validate on target . 17
Figure 20. Validate settings . 18
Figure 21. SR5E1-EVB3000D revision B board . 20
Figure 22. How to flash the code on a target board using OpenOCD. 20
Figure 23. Validate parameters . 21
Figure 24. Validate flowchart . 21
Figure 25. Validate process . 22
Figure 26. Neural network runtime information . 23

UM3201
List of figures

UM3201 - Rev 3 page 28/29

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

UM3201

UM3201 - Rev 3 page 29/29

http://www.st.com/trademarks

	UM3201
	Introduction
	1 Requirements
	2 Overview
	3 MCU parameters
	4 Mode parameters
	5 Network parameters
	6 AI commands
	6.1 Version
	6.2 Analyze
	6.3 Generate
	6.4 Validate

	7 Supported compilers
	Revision history
	Contents
	List of tables
	List of figures

