
Introduction

This document must be read along with the technical documentation such as reference manual(s) and datasheets for the
STM32H7Rx/7Sx microcontroller devices, available on www.st.com.

It describes how to use the devices in the context of a safety-related system, specifying the user's responsibilities for installation
and operation in order to reach the targeted safety integrity level. It also pertains to the X-CUBE-STL software product.

It provides the essential information pertaining to the applicable functional safety standards, which allows system designers to
avoid going into unnecessary details.

The document is written in compliance with IEC 61508.

The safety analysis in this manual takes into account the device variation in terms of memory size, available peripherals, and
package.

STM32H7Rx/7Sx lines safety manual

 UM3266

User manual

UM3266 - Rev 1 - February 2025
For further information, contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com
https://www.st.com/en/product/x-cube-stl?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3266

1 About this document

1.1 Purpose and scope
This document describes how to use Arm® Cortex®‑M7 -based STM32H7Rx/7Sx microcontroller unit (MCU)
devices (further also referred to as Device(s)) in the context of a safety‑related system, specifying the user's
responsibilities for installation and operation, in order to reach the desired safety integrity level.
It is useful to system designers willing to evaluate the safety of their solution embedding one or more Device(s).
For terms used, refer to the glossary at the end of the document.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.2 Normative references
This document is written in compliance with the IEC 61508 international norm for functional safety of electrical,
electronic and programmable electronic safety-related systems, version IEC 61508-1-7 © IEC:2010. The
compliance to other functional safety standards is considered in reference document [3].
The following table maps the document content with respect to the IEC 61508-2 Annex D requirements.

Table 1. Document sections versus IEC 61508-2 Annex D safety requirements

Safety
requirement Section number

D2.1 a) Section 3: Reference safety architecture

D2.1 b) Section 3.2: Compliant item

D2.1 c) Section 3.2: Compliant item

D2.2 a)

General information are provided in Section 4.1: Random hardware failure safety results.

Detailed information on failure modes and related failure rates are included in other reference documents
[1], [2] referred in Section 1.3: Reference documents.

D2.2 b)

D2.2 c)

D2.2 d)

D2.2 e)

D2.2 f)
Useful information for DTI of each safety mechanisms are provided in related specification tables (filed
“Periodicity”) of Section 3.6: Hardware and software diagnostics. General guidance on DTI is included in
Section 3.3.1: Safety requirement assumptions.

D2.2 g)
Because of the software-based nature of Device safety concept, the outputs of the Compliant Item
triggered by internal diagnostics are decided at application software level, and so they cannot be
described in this manual.

D2.2 h) Periodic proof test is excluded by specific ASR3.1 in Section 3.3.1: Safety requirement assumptions

D2.2 i) Section 3.7: Conditions of use

D2.2 j) Section 3.2.3: Reference safety architectures - 1oo1, Section 3.2.4: Reference safety architectures -
1oo2

D2.2 k) Section 3.2.2: Safety functions performed by Compliant item

1.3 Reference documents

[1] AN6041: Results of FMEA on microcontrollers of the STM32H7R3/S3 and STM32H7R7/S7 lines

[2] AN6038: Results of FMEDA on microcontrollers of the STM32H7R3/S3 and STM32H7R7/S7 lines

[3] AN5689: Adapting the X-CUBE-STL functional safety package for STM32 (IEC 61508 compliant) to other safety
standards

[4] AN5936 X-CUBE-STL: advanced topics

 UM3266
About this document

UM3266 - Rev 1 page 2/137

2 Device development process

STM32 series product development process (see Figure 1), compliant with the IATF 16949 standard, is a set of
interrelated activities dedicated to transform customer specification and market or industry domain requirements
into a semiconductor device and all its associated elements (package, module, sub-system, hardware, software,
and documentation), qualified with ST internal procedures and fitting ST internal or subcontracted manufacturing
technologies.

Figure 1. STMicroelectronics product development process

·Key characteristics and
requirements related to future
uses of the device

·Industry domain(s), specific
customer requirements and
definition of controls and tests
needed for compliance

·Product target specification
and strategy

·Project manager
appointment to drive product
development

·Evaluation of the
technologies, design tools
and IPs to be used

·Design objective
specification and product
validation strategy

·Design for quality
techniques (DFD, DFT, DFR,
DFM, …) definition

·Architecture and positioning
to make sure the software
and hardware system
solutions meet the target
specification

·Product approval strategy
and project plan

·Semiconductor design
development

·Hardware development
·Software development
·Analysis of new product

specification to forecast
reliability performance

·Reliability plan, reliability
design rules, prediction of
failure rates for operating life
test using Arrhenius’s law and
other applicable models

·Use of tools and
methodologies such as
APQP, DFM, DFT, DFMEA

·Detection of potential
reliability issues and solution
to overcome them

·Assessment of Engineering
Samples (ES) to identify the
main potential failure
mechanisms

·Statistical analysis of
electrical parameter drifts for
early warning in case of fast
parametric degradation (such
as retention tests)

·Failure analysis on failed
parts to clarify failure modes
and mechanisms and identify
the root causes

·Physical destructive
analysis on good parts after
reliability tests when required

·Electrostatic discharge
(ESD) and latch-up sensitivity
measurement

·Successful completion of
the product qualification
plan

·Secure product deliveries
on advanced technologies
using stress methodologies
to detect potential weak
parts

·Successful completion of
electrical characterization

·Global evaluation of new
product performance to
guarantee reliability of
customer manufacturing
process and final application
of use (mission profile)

·Final disposition for
product test, control and
monitoring

1 Conception 3 Qualification2 Design and
validation

 UM3266
Device development process

UM3266 - Rev 1 page 3/137

3 Reference safety architecture

This section reports details of the STM32H7Rx/7Sx safety architecture.

3.1 Safety architecture introduction
The Device(s) analyzed in this document can be used as Compliant item(s) within different safety applications.
The aim of this section is to identify such Compliant item(s), that is, to define the context of the analysis with
respect to a reference concept definition. The concept definition contains reference safety requirements, including
design aspects which are outside of the defined Compliant item.
As a consequence of a Compliant item approach, the goal is to list the system-related information considered
during the analysis, rather than to provide an exhaustive hazard and risk analysis of the system around Device.
Such information includes, among others, application-related assumptions for danger factors, frequency of
failures and diagnostic coverage guaranteed by the application.

3.2 Compliant item
This section defines the Compliant item term and provides information on its usage in different safety architecture
schemes.

3.2.1 Definition of Compliant item
According to IEC 61508-1 clause 8.2.12, a Compliant item is any item (for example an element) on which a claim
is being made with respect to the clauses of the IEC 61508 series. Any mature Compliant item must be described
in a safety manual available to the End user.
In this document, Compliant item is defined as a system including one or two STM32 devices (see Figure 2). The
communication bus is directly or indirectly connected to sensors and actuators.

Figure 2. STM32 as Compliant item

Remote
controller

Remote
controller

Remote
controller

Remote
controller

Sensor
Actuator

S

S

A

A

Processing element

Compliant item

STM32
device(s)

Other components might be related to the Compliant item, like the external HW components needed to guarantee
either the functionality of the Device (external memory, clock quartz and so on) or its safety (for example, the
external watchdog or voltage supervisors).
A defined Compliant item can be classified as element according to IEC 61508-4, 3.4.5.
In summary, claims related to this Compliant item are related to the possible use of a Device for the
implementation of any safety function up to SIL2 (for a single Device) and up to SIL3 (for two destinct Devices),
with specific architectures and observing all the requirements and indications provided in this manual.

3.2.2 Safety functions performed by Compliant item
In essence, Compliant item architecture encompasses the following processes performing the safety function or a
part of it:
• input processing elements (PEi) reading safety related data from the remote controller connected to the

sensor(s) and transferring them to the following computation elements
• computation processing elements (PEc) performing the algorithm required by the safety function and

transferring the results to the following output elements

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 4/137

• output processing elements (PEo) transferring safety related data to the remote controller connected to the
actuator

• in 1oo2 architecture, potentially a further voting processing element (PEv)
• the computation processing elements can be involved (to the extent depending on the target safety

integrity) in the implementation of local software-based diagnostic functions; this is represented by the
block PEd

• processes external to Compliant item ensuring safety integrity, such as watchdog (WDTe) and voltage
monitors (VMONe)

The role of the PEv process is clarified in Section 3.2.4: Reference safety architectures - 1oo2. The role of the
WDTe and VMONe external processes is clarified under Section 3.6: Hardware and software diagnostics:
• WDTe: refer to External watchdog – CPU_SM_5 and Control flow monitoring in Application software –

CPU_SM_1,
• VMONe: refer to Supply voltage internal monitoring (PVD) – VSUP_SM_1 and System-level power supply

management - VSUP_SM_5.
In summary, Devices support the implementation of End user safety functions consisting of three operations:
• safe acquisition of safety-related data from input peripheral(s)
• safe execution of Application software program and safe computation of related data
• safe transfer of results or decisions to output peripheral(s)
Claims on Compliant item and computation of safety metrics are done with respect to these three basic
operations.

Caution: Due to the general purpose nature of the Device, its safety concept is mainly software-based. Accordingly, any
following claim related to the possibility of Device itself to support the implementation of safety functions up to a
certain SIL is strongly correlated to the observance of CoUs as requested in Section 3.7: Conditions of use.

According to the definition for implemented safety functions, Compliant item (element) can be regarded as type B
(as per IEC 61508-2, 7.4.4.1.3 definition). Despite accurate, exhaustive, and detailed failure analysis, Device has
to be considered as intrinsically complex. This implies its type B classification.
Two main safety architectures are identified: 1oo1 (using one Device) and 1oo2 (using two Devices).

3.2.3 Reference safety architectures - 1oo1
1oo1 reference architecture (Figure 3) ensures safety integrity of Compliant item through combining Device
internal processes (implemented safety mechanisms) with external processes WDTe and VMONe.
1oo1 reference architecture targets safety integrity level (SIL) SIL2.

Figure 3. 1oo1 reference architecture

PEc Actuators

WDTe

Sensors

VMONe

PEoPEi

PEd

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 5/137

3.2.4 Reference safety architectures - 1oo2
The 1oo2 reference architecture (Figure 4) contains two separate channels, either implemented as a 1oo1
reference architecture ensuring safety integrity of the Compliant item through combining Device internal
processes (implemented safety mechanisms) with external processes: WDTe and VMONe. The overall safety
integrity is then ensured by the external voter PEv, which allows claiming hardware fault tolerance (HFT) equal to
1. The PEv role is indeed to facilitate the safety function processing by each of the two individual channels, to
allow the correct execution of the safety function even in case one channel is faulty. The complexity of the PEv
implementation strongly depends on the nature of the safety function and safe state definitions. Achievement of
higher safety integrity levels as per IEC 61508-2 Table 3 is therefore possible. Appropriate separation between
the two channels (including power supply separation) must be implemented in order to avoid huge impact of
common-cause failures (refer to Section 4.2: Analysis of dependent failures). However, β and βD parameters
computation is required.
This architecture targets SIL3, under the assumption that each channel follows all requirements indicated for SIL2
in this manual.

Attention: According the clause 7.4.3.2 in IEC 61508-2, this architectural scheme may provide benefits to the software
applications systematic capability (SC) only in case diverse software is adopted on the two channels.

Figure 4. 1oo2 reference architecture

ActuatorsSensors

VMONe

PEc PEoPEi

PEd

WDTeVMONe

PEv

PEc PEoPEi

PEd

WDTe

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 6/137

3.3 Safety analysis assumptions
This section collects all assumptions made during the safety analysis of the Devices.

3.3.1 Safety requirement assumptions
The safety concept specification, the overall safety requirement specification and the consequent allocation
determine the assumed requirements for Compliant item as further listed. ASR stands for assumed safety
requirement.

Caution: It is End user’s responsibility to check the compliance of the final application with these assumptions.

ASR1: Compliant item can be used to implement four kinds of safety function modes of operation according to
IEC 61508-4, 3.5.16:
• a continuous mode (CM) or high-demand (HD) SIL3 safety function (CM3), or
• a low-demand (LD) SIL3 safety function (LD3), or
• a CM or HD SIL2 safety function (CM2), or
• a LD SIL2 safety function (LD2).
ASR2: Compliant item is used to implement safety function(s) allowing a specific worst-case time budget (see
note below) for the STM32 MCU to detect and react to a failure. That time corresponds to the portion of the
process safety time (PST) allocated to Device (STM32xx Series duty in Figure 5) in error reaction chain at system
level.

Note: The computation for time budget mainly depends on the execution speed for periodic tests implemented by
software. Such duration might depends on the actual amount of hardware resources (RAM memory, flash
memory, peripherals) actually declared as safety-related. Further constraints and requirements from
IEC 61508-2, 7.4.5.3 must be considered.

Figure 5. Allocation and target for STM32 PST

System-level PST

MCU detection FW reaction SW reaction Actuator reaction

STM32xx Series duty End user duty
….

ASR3.1: Compliant item is assumed to be operating at constant failure rate and does not intrinsically require any
proof tests.
ASR3.2: It is assumed that the Device operates within specified electrical specifications and environment limits.
The End user is responsible for the compliance to this assumption.
ASR4: It is assumed that only one safety function is performed or if many, all functions are classified with the
same SIL and therefore they are not distinguishable in terms of their safety requirements.
ASR5: In case of multiple safety function implementations, it is assumed that End user is responsible to duly
ensure their mutual independence.
ASR6: It is assumed that there are no non-safety-related functions implemented in Application software,
coexisting with safety functions.

Note: This assumption is stated due to the lack of hardware-based mechanisms able to completely isolate non-safety
related software. Software-based isolation solutions are not forbidden.

ASR7: It is assumed that the implemented safety function(s) does (do) not depend on transition of Device to and
from a low-power state.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 7/137

ASR8: After the emergence of a fault, the local safe state of Compliant item is the one in which either:
• SS1: Application software is informed by the presence of a fault and a reaction by Application software

itself is possible.
• SS2: Application software cannot be informed by the presence of a fault or Application software is not able

to execute a reaction.

Note: For a correct implementation of fault reaction, the End user must be aware that random hardware failures
affecting the Device can compromise its operation (for example failure modes affecting the program
counter may prevent the correct execution of the software). Accordingly, software-based transitions to a
safe state must be carefully evaluated. Refer to [4] for additional details.

The following table provides details on the SS1 and SS2 safe states.

Table 2. SS1 and SS2 safe state details

Safe
state Condition Compliant item

action
System transition to safe
state – 1oo1 architecture

System transition to safe
state – 1oo2 architecture

SS1

Application software is informed
by the presence of a fault and a
reaction by Application software
itself is possible.

Fault reporting to
Application
software

Application software drives
the overall system in its safe
state

Application software in one of
the two channels drives the
overall system in its safe state

SS2

Application software cannot be
informed by the presence of a
fault or Application software is not
able to execute a reaction.

Reset signal
issued by WDTe

WDTe drives the overall
system in its safe state (“safe
shut-down”) (1)

PEv drives the overall system
in its safe state

1. Safe state achievement intended here is compliant to Note on IEC 61508-2, 7.4.8.1

ASR9: It is assumed that the safe state defined at system level by End user is compatible with the assumed local
safe state (SS1, SS2) for Compliant item.
ASR10: Compliant item is assumed to be analyzed according to routes 1H and 1S of IEC 61508-2.

Note: Refer to Section 3.5: Systematic safety integrity and Section 3.6: Hardware and software diagnostics.

ASR11: Compliant item is assumed to be regarded as type B, as per IEC 61508-2, 7.4.4.1.3.
ASR13: It is assumed that the evaluation of hazards related to human factors (like misuse or security issues)
related to the use of the Compliant item is under the full responsibility of the End user.
ASR14: It is assumed that if external flash memories are used to store safety related executable code and/or
data, then it is the responsibility of the End User to include such memories in the perimeter of the Compliant item
(as defined in 3.2.1) and therefore to include related safety metrics in the computations for the integrity of the
safety function(s).
ASR15: It is the responsibility of the End User to guarantee the safety integrity of the application software
(including diagnostics) object code stored in SRAM by the used bootloader.

Note: This assumption implies the use of a safety-related bootloader or the adoption of specific countermeasures at
system level. Guidance is provided in Table 187. List of safety recommendations, section System boot and in .
Refer to [4] for further clarifications.

3.4 Electrical specifications and environment limits
To ensure safety integrity, the user must operate Device(s) within its (their) specified:
• absolute maximum rating
• capacity
• operating conditions
For electrical specifications and environmental limits of Device(s), refer to its (their) technical documentation such
as datasheet(s) and reference manual(s) available on www.st.com.

Note: The device operation within specified limits is a prerequisite for the correct implementation of any safety
function. This is explicitly assumed within the assumptions (refer to above ASR3.2).

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 8/137

http://www.st.com

3.5 Systematic safety integrity
According to the requirements of the IEC 61508-2, 7.4.2.2 clause, the Route 1S is considered in the safety
analysis of Device(s). As authorized by the IEC 61508-2, 7.4.6.1 clause, the STM32 MCU products can be
considered as standard, mass-produced electronic integrated devices, for which stringent development
procedures, rigorous testing and extensive experience of use minimize the likelihood of design faults. However,
ST internally assesses the compliance of the Device development flow, through techniques and measures
suggested in the IEC 61508-2 Annex F. As highly confidential information on ST processes are concerned within
the evaluation activity, the safety case database (see Section 5: List of evidences) keeps evidences of the current
compliance level to the standard.

3.6 Hardware and software diagnostics
This section lists all the safety mechanisms (hardware, software and application-level) considered in the Device
safety analysis. It is expected that users are familiar with the architecture of Device, and that this document is
used in conjunction with the related Device datasheet, user manual and reference information. To avoid
inconsistency and redundancy, this document does not report device functional details. In the following
descriptions, the words safety mechanism, method, and requirement are used as synonyms.
As the document provides information relative to the superset of peripherals available on the devices it covers
(not all devices have all peripherals), users are supposed to disregard any recommendations not applicable to
their Device part number of interest.
Information provided for a function or peripheral applies to all instances of such function or peripheral on Device.
Refer to its reference manual or/and datasheet for related information.
The implementation guidelines reported in the following section are for reference only. The safety verification
executed by ST during the Device safety analysis and related diagnostic coverage figures reported in this manual
(or related documents) are based on such guidelines. For clarity, safety mechanisms are grouped by Device
function.
Information is organized in form of tables, one per safety mechanism, with the following fields:

SM CODE Unique safety mechanism code/identifier used also in FMEA document. Identifiers use the scheme
mmm_SM_x where mmm is a 3- or 4-letter module (function, peripheral) short name, and x is a
number. It is possible that the numbering is not sequential (although usually incremental) and/or that
the module short name is different from that used in other documents.

Description Short mnemonic description

Ownership ST: method is available on silicon.

End user: method must be implemented by End user through Application software modification,
hardware solutions, or both.

Detailed
implementation

Detailed implementation sometimes including notes about the safety concept behind the introduction
of the safety mechanism.

Error reporting Describes how the fault detection is reported to Application software.

Fault detection time Time that the safety mechanism needs to detect the hardware failure.

Addressed fault
model

Reports fault model(s) addressed by the diagnostic (permanent, transient, or both), and other
information:
• If ranked for Fault avoidance: method contributes to lower the probability of occurrence of a

failure
• If ranked for Systematic: method is conceived to mitigate systematic errors (bugs) in

Application software design

Dependency on
Device configuration

Reports if safety mechanism implementation or characteristics change among different Device part
numbers.

Initialization Specific operation to be executed to activate the contribution of the safety mechanism

Periodicity Continuous : safety mechanism is active in continuous mode.

Periodic: safety mechanism is executed periodically(1).

On-demand: safety mechanism is activated in correspondence to a specified event (for instance,
reception of a data message).

Startup: safety mechanism to be executed only at power-up or during off-line maintenance periods.
This is due to functional-only aspects or due to the poor compatibility with the correct execution of
the safety function.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 9/137

Test for the
diagnostic

Reports specific procedure (if any and recommended) to allow on-line tests of safety mechanism
efficiency. If no specific procedure applies (as for the majority of safety mechanisms), the field
indicates Not applicable.

Multiple-fault
protection

Reports the safety mechanism(s) associated in order to correctly manage a multiple-fault scenario
(refer to Section 4.1.3: Notes on multiple-fault scenario).

Recommendations
and known limitations

Additional recommendations or limitations (if any) not reported in other fields.

1. In CM systems, safety mechanism can be accounted for diagnostic coverage contribution only if it is executed at least once
per PST. For LD and HD systems, constraints from IEC 61508-2, 7.4.5.3 must be applied.

3.6.1 Arm® Cortex®-M7 CPU

Table 3. CPU_SM_0

SM CODE CPU_SM_0

Description Periodic core self-test software for Arm® Cortex®-M7 CPU.

Ownership End user or ST (X-CUBE-STL, see X-CUBE-STL self-test software library)

Detailed implementation

The software test is built around well-known techniques already addressed by IEC 61508-7,
A.3.2 (Self-test by software: walking bit one-channel). To reach the required values of
coverage, the self-test software is specified by means of a detailed analysis of all the CPU
failure modes and related failure modes distribution.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic
Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen. The adoption of checksum protection on results
variables and defensive programming are recommended.

Multiple-fault protection CPU_SM_5: External watchdog

Recommendations and known limitations

This method is the main asset in STM32H7Rx/7Sx safety concept. Hardware integrity of the
CPU is a key factor, given that the defined diagnostics for MCU peripherals are to major part
software-based.

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3: Notes on multiple-fault scenario for details.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 10/137

Table 4. CPU_SM_1

SM CODE CPU_SM_1

Description Control flow monitoring in Application software.

Ownership End user

Detailed implementation

A significant part of the failure distribution of CPU core for permanent faults is related to failure
modes directly related to program counter loss of control or hang-up. Due to their intrinsic
nature, such failure modes are not addressed by a standard software test method like
SM_CPU_0. Therefore, it is necessary to implement a run-time control of Application software
flow in order to monitor and detect deviation from the expected behavior due to such faults.
Linking this mechanism to watchdog firing assures that severe loss of control (or, in the worst
case, a program counter hang-up) is detected.

The guidelines for the implementation of the method are the following:
• Different internal states of Application software are well documented and described (the

use of a dynamic state transition graph is encouraged).
• Monitoring of the correctness of each transition between different states of Application

software is implemented.
• Transition through all expected states during the normal Application software program

loop is checked.
• A function in charge of triggering the system watchdog is implemented in order to

constrain the triggering (preventing the issue of CPU reset by watchdog) also to the
correct execution of the above-described method for program flow monitoring. The use
of window feature available on internal window watchdog (WWDG) is recommended.

• The use of the independent watchdog (IWDG), or an external one, helps to implement a
more robust control flow mechanism fed by a different clock source.

In any case, safety metrics do not depend on the kind of watchdog in use (the adoption of
independent or external watchdog contributes to the mitigation of dependent failures, see
Section 4.2.2: Clock).

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 11/137

Table 5. CPU_SM_2

SM CODE CPU_SM_2

Description Double computation in Application software

Ownership End user

Detailed implementation

A timing redundancy for safety-related computation is considered to detect transient faults
affecting the Arm®Cortex®-M7 CPU subparts devoted to mathematical computations and data
access.

The guidelines for the implementation of the method are the following:
• The requirement needs be applied only to safety-relevant computation, which in case of

wrong result could interfere with the system safety functions. Such computation must be
therefore carefully identified in the original Application software source code

• Both mathematical operation and comparison are intended as computation.
• The redundant computation for mathematical computation is implemented by using

copies of the original data for second computation, and by using an equivalent formula
if possible

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

End user is responsible to carefully avoid that the intervention of optimization features of the
used compiler removes timing redundancies introduced according to this condition of use.

Reduction to the application scope for this method is achieved by executing an accurate
safety analysis of the software. Refer to [4] for details. However, the scope reduction may not
be possible nor desirable.

Table 6. CPU_SM_3

SM CODE CPU_SM_3

Description Arm®Cortex®-M7 HardFault exceptions

Ownership ST

Detailed implementation

HardFault exception raise is an intrinsic safety mechanism implemented in Arm®Cortex®-M7
core, mainly dedicated to intercept systematic faults due to software limitations or error in
software design (causing for example execution of undefined operations, unaligned address
access). This safety mechanism is also able to detect hardware random faults inside the CPU
bringing to such described abnormal operations.

Error reporting High-priority interrupt event

Fault detection time Depends on implementation. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic
It is possible to write a test procedure to verify the generation of the HardFault exception;
anyway, given the expected minor contribution in terms of hardware random-failure detection,
such implementation is optional.

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 12/137

Table 7. CPU_SM_4

SM CODE CPU_SM_4

Description Stack hardening for Application software

Ownership End user

Detailed implementation

The stack hardening method is required to address faults (mainly transient) affecting M7 CPU
register bank. This method is based on source code modification, introducing information
redundancy in register-passed information to called functions.

The guidelines for the implementation of the method are the following:
• To pass also a redundant copy of the passed parameters values (possibly inverted) and

to execute a coherence check in the function.
• To pass also a redundant copy of the passed pointers and to execute a coherence

check in the function.
• For parameters that are not protected by redundancy, to implement defensive

programming techniques (plausibility check of passed values). For example
enumerated fields are to be checked for consistency.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
This method partially overlaps with defensive programming techniques required by IEC 61508
for software development. Therefore in presence of Application software qualified for safety
integrity greater or equal to SC2, optimizations are possible.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 13/137

Table 8. CPU_SM_5

SM CODE CPU_SM_5

Description External watchdog

Ownership End user

Detailed implementation

Using an external watchdog linked to control flow monitoring method (refer to CPU_SM_1)
addresses failure mode of program counter or control structures of the M7 CPU.

External watchdog can be designed to be able to generate the combination of signals needed
on the final system to achieve the safe state. It is recommended to carefully check the
assumed requirements about system safe state reported in Section 3.3.1: Safety requirement
assumptions.

Compared to the MCU internal watchdogs, it is not affected by potential common cause
failures, because the external watchdog is clocked and supplied independently of Device.

Error reporting Depends on implementation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic To be defined at system level (outside the scope of Compliant item analysis).

Multiple-fault protection CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations

In case of usage of windowed watchdog, End user must consider possible tolerance in
Application software execution to avoid false error reports (affecting system availability).

It is worth noting that the use of an external watchdog is needed when Device is used to
trigger final elements, in order to comply at system level with requirements from
IEC 61508-2:2010 Table A.1/Table A.14.

Table 9. CPU_SM_6

SM CODE CPU_SM_6

Description Independent watchdog

Ownership ST

Detailed implementation Using the IWDG watchdog linked to control flow monitoring method (refer to CPU_SM_1)
addresses failure mode of program counter or control structures of M7 CPU.

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization IWDG activation. It is recommended to use hardware watchdog in option byte settings (IWDG
is automatically enabled after reset).

Periodicity Continuous

Test for the diagnostic WDG_SM_1: Software test for watchdog at startup

Multiple-fault protection
CPU_SM_1: Control flow monitoring in Application software

WDG_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations

The IWDG intervention is able to achieve a potentially “incomplete” local safe state because it
can only guarantee that CPU is reset. No guarantee that Application software can be still
executed to generate combinations of output signals that might be needed by the external
system to achieve the final safe state. If this limitation turn out in a blocking point, End user
must adopt CPU_SM_5.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 14/137

Table 10. CPU_SM_7

SM CODE CPU_SM_7

Description Memory protection unit (MPU).

Ownership ST

Detailed implementation The CPU memory protection unit is able to detect illegal access to protected memory areas,
according to criteria set by End user.

Error reporting Exception raise (MemManage).

Fault detection time Refer to functional documentation

Addressed fault model
Systematic (software errors)

Permanent/transient (only program counter and memory access failures)

Dependency on Device configuration None

Initialization MPU registers must be programmed at start-up.

Periodicity On line

Test for the diagnostic MPU_SM_1: MPU software test

Multiple-fault protection MPU_SM_0: Periodic read-back of MPU configuration registers

Recommendations and known limitations

The use of memory partitioning and protection by MPU functions is highly recommended
when multiple safety functions are implemented in Application software. The MPU can be
indeed used to
• enforce privilege rules
• separate processes
• enforce access rules

Hardware random-failure detection capability for MPU is restricted to well-selected failure
modes, mainly affecting program counter and memory access CPU functions. The associated
diagnostic coverage is therefore not expected to be relevant for the safety concept of Device.

Table 11. CPU_SM_9

SM CODE CPU_SM_9

Description Periodic self-test software for Arm®Cortex® -M7 caches

Ownership End user or ST

Detailed implementation

The software test is built around well-known techniques already addressed by IEC 61508-7,
A.3.2 (Self-test by software: walking bit one-channel).The scope of the software test are
failure modes affecting Arm®Cortex® -M7 L1 caches controllers.

The achieved diagnostic coverage strongly depends on the complexity of the test
implementation, and on the percentage of caches failure modes addressed.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_5: External watchdog

Recommendations and known limitations

End user waiver of cache features, disabling it by software, leads to the following
simplifications in STM32H7Rx/7Sx safety concept:
• No need to implement this method (CPU_SM_9)
• Decrease of Arm®Cortex® -M7 overall failure rate.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 15/137

Table 12. CPU_SM_10

SM CODE CPU_SM_10

Description ECC on Arm®Cortex® -M7 caches

Ownership ST

Detailed implementation

ECC on Arm®Cortex® -M7 L1 cache memories (data and instructions) are protected by an
ECC (error correction code) redundancy, implementing a protection feature at double-word (64
bit) level:
• one-bit fault: correction
• two-bit fault: detection

Error reporting Error correction/detection is reported in IEBR0/1 and DEBR0/1 registers.Refer to Arm®

documentation.

Fault detection time ECC bits are checked during cache usage

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic

Direct test procedure for ECC efficiency is not available. ECC run-time hardware failures
leading to the disable of such protection, or to wrong corrections, fall into a “multiple fault
scenario” from IEC 61508 perspective. Related failures are adequately mitigated by the
combination of safety mechanisms reported in this table, field Multiple-fault protection.

Refer to [1] for details on ECC failure mitigation strategy. Read also the note on
Recommendations and known limitations field.

Multiple-fault protection

CPU_SM_1: Control flow monitoring in Application software

CPU_SM_3: Arm®Cortex®-M7 HardFault exceptions

CPU_SM_4: Stack hardening for Application software

RAM_SM_3: Information redundancy for safety-related variables in the Application software

Recommendations and known limitations None

Table 13. MPU_SM_0

SM CODE MPU_SM_0

Description Periodic read-back of MPU configuration registers

Ownership End user

Detailed implementation

This method must be applied to MPU configuration registers (also unused by End user
Application software).

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 16/137

Table 14. MPU_SM_1

SM CODE MPU_SM_1

Description MPU software test

Ownership End user

Detailed implementation

This method tests MPU capability to detect and report memory accesses violating the policy
enforcement implemented by the MPU itself.

The implementation is based on intentionally performing read and write accesses outside the
memory areas allowed by the MPU region programming, and collecting and verifying related
generated error exceptions.

Test can be executed with the final MPU region programming or with a dedicated one.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3: Notes on multiple-fault scenario.

3.6.2 System bus architecture/BusMatrix

Table 15. BUS_SM_0

SM CODE BUS_SM_0

Description Periodic software test for interconnections

Ownership End user

Detailed implementation

The intra-chip connection resources (Bus Matrix, AHB or APB bridges) needs to be
periodically tested for permanent faults detection. Note that STM32H7Rx/7Sx devices have no
hardware safety mechanism to protect these structures. The test executes a connectivity test
of these shared resources, including the testing of the arbitration mechanisms between
peripherals.

According to IEC 61508-2 Table A.8, A.7.4 the method is considered able to achieve high
levels of coverage.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Implementation can be considered in large part as overlapping with the widely used Periodic
read-back of configuration registers required for several peripherals.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 17/137

Table 16. BUS_SM_1

SM CODE BUS_SM_1

Description Information redundancy in intra-chip data exchanges

Ownership End user

Detailed implementation

This method requires to add some kind of redundancy (for example a CRC checksum at
packet level) to each data message exchanged inside Device.

Message integrity is verified using the checksum by the Application software, before
consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Implementation can be in large part overlapping with other safety mechanisms requiring
information redundancy on data messages for communication peripherals. Optimizations are
therefore possible.

3.6.3 Embedded SRAM

Table 17. RAM_SM_0

SM CODE RAM_SM_0

Description Periodic software test for static random access memory (SRAM)

Ownership End user or ST (X-CUBE-STL, see X-CUBE-STL self-test software library)

Detailed implementation

To enhance the coverage on SRAM data cells and to ensure adequate coverage for
permanent faults affecting the address decoder it is required to execute a periodic software
test on the system RAM memory. The selection of the algorithm must ensure the target SFF
coverage for both the RAM cells and the address decoder. Evidences of the effectiveness of
the coverage of the selected method must also be collected

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration RAM size can change according to the part number.

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Usage of a March test C- is recommended.

Because the nature of this test can be destructive, RAM contents restore must be
implemented. Possible interferences with interrupt-serving routines fired during test execution
must be also considered (such routines can access to RAM invalid contents).

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3: Notes on multiple-fault scenario.

Unused RAM section can be excluded by the testing, under End user responsibility on actual
RAM usage by final Application software.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 18/137

Table 18. RAM_SM_2

SM CODE RAM_SM_2

Description Stack hardening for Application software

Ownership End user

Detailed implementation

The stack hardening method is used to enhance the Application software robustness to SRAM
faults that affect the address decoder. The method is based on source code modification,
introducing information redundancy in the stack-passed information to the called functions.
Method contribution is relevant in case the combination between the final Application software
structure and the compiler settings requires a significant use of the stack for passing function
parameters.

Implementation is the same as method CPU_SM_4.

Error reporting Refer to CPU_SM_4

Fault detection time Refer to CPU_SM_4

Addressed fault model Refer to CPU_SM_4

Dependency on Device configuration Refer to CPU_SM_4

Initialization Refer to CPU_SM_4

Periodicity Refer to CPU_SM_4

Test for the diagnostic Refer to CPU_SM_4

Multiple-fault protection Refer to CPU_SM_4

Recommendations and known limitations Refer to CPU_SM_4

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 19/137

Table 19. RAM_SM_3

SM CODE RAM_SM_3

Description Information redundancy for safety-related variables in the Application software

Ownership End user

Detailed implementation

To address transient faults affecting the SRAM controller and memory cells, it is required to
implement information redundancy on the safety-related system variables stored in the SRAM.

The guidelines for the implementation of this method are the following:
• The system variables that are safety-related (in the sense that a wrong value due to a

failure in reading on the RAM affects the safety functions) are well-identified and
documented.

• The arithmetic computation or decision based on such variables are executed twice and
the two final results are compared.

• Safety-related variables are stored and updated in two redundant locations, and
comparison is checked before consuming data.

• Enumerated fields must use non-trivial values, checked for coherence with the same
frequency as for periodically executed diagnostics (see (1) in Section 3.6: Hardware and
software diagnostics).

• Data vectors stored in SRAM must be protected by an encoding checksum (such as
CRC).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Implementation of this safety method shows a partial overlap with an already foreseen method
for Arm® Cortex®-M7 (CPU_SM_2) ; optimizations in implementing both methods are
therefore possible.

Reduction to the application scope for this method is achieved by executing an accurate
safety analysis of the software. Refer to [4] for details. However, the scope reduction may not
be possible nor desirable.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 20/137

Table 20. RAM_SM_4

SM CODE RAM_SM_4

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

In case End user Application software is executed from SRAM, permanent and transient faults
affecting the memory (cells and address decoder) can interfere with the program execution.

The implementation of this method is required to address such failures.

For more details on the implementation, refer to CPU_SM_1 description.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Needed only in case of Application software execution from SRAM.

CPU_SM_1 correct implementation supersedes this requirement.

Table 21. RAM_SM_5

SM CODE RAM_SM_5

Description Periodic integrity test for Application software in RAM

Ownership End user

Detailed implementation

In case Application software or diagnostic libraries are executed in RAM, it is needed to
protect the integrity of the code itself against soft-error corruptions and related code
mutations. This method must check the integrity of the stored code by checksum computation
techniques, on a periodic basis. For implementation details, refer to similar method
FLASH_SM_0.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection
CPU_SM_0: Periodic core self-test software

CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 21/137

Table 22. RAM_SM_6

SM CODE RAM_SM_6

Description Read protection (RDP) and write protection (WRP)

Ownership ST

Detailed implementation
SRAM can be protected against illegal reads or erase/write by using these protection features.
The combination of these techniques and the related different protection level allows End user
to build an effective access protection policy.

Error reporting Refer to functional documentation - in some cases a HardFault error is generated.

Fault detection time Refer to functional documentation

Addressed fault model Systematic

Dependency on Device configuration Not applicable

Initialization Not required

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations

Hardware random-failure detection capability for SRAM2 access policy is restricted to well-
selected marginal failure modes, mainly affecting program counter and SRAM2 interface
functions. The associated diagnostic coverage is therefore expected to be irrelevant in the
framework of STM32H7Rx/7Sx safety concept.

Table 23. RAM_SM_7

SM CODE RAM_SM_7

Description ECC on SRAM

Ownership ST

Detailed implementation

Internal SRAM is protected by an ECC (error correction code) redundancy implementing a
protection feature at 32-bit word and 64-bit word level:
• one-bit fault: correction
• two-bit fault: detection

Error reporting Refer to functional documentation

Fault detection time ECC bits are checked during a memory reading.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic RAM_SM_10: Software for ECC diagnostic on RAM

Multiple-fault protection
• RAM_SM_0: Periodic software test for static random access memory (SRAM)
• RAM_SM_5: Periodic integrity test for application software in RAM
• DIAG_SM_0: Periodic read-back of hardware diagnostics configuration registers

Recommendations and known limitations

Note that because the ECC is checked during memory reads, RAM locations occupied by the
safety related data which are rarely accessed (for instance, variables and/or code related to
failures/errors management) are potentially exposed to the risk of error accumulation. In such
a case, it is recommended to periodically check those locations by a memory scrubbing (by
simply reading memory to reveal error correction or detection).

The single error correction performed by the ECC is done just on the data read from the
memory, but the value stored in the memory cells is not automatically corrected. To completely
remove the error, a rewrite on the memory location with correct data is needed.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 22/137

Table 24. RAM_SM_8

SM CODE RAM_SM_8

Description Periodic test by software for SRAM address decoder

Ownership End user or ST

Detailed implementation Permanent faults affecting the SRAM interfaces address decoder are addressed through a
dedicated software test that checks the memory cells contents versus the expected value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration SRAM size depends on the part number

Initialization Not required

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Overlaps with RAM_SM_0 implementation are possible.

Table 25. RAM_SM_10

SM CODE RAM_SM_10

Description Software for ECC diagnostic on RAM

Ownership End user

Detailed implementation
This method tests by software the capability of the ECC on RAM (RAM_SM_7) to correct and
report RAM single failures detect, and to detect and report dual failures in the same RAM
word.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3: Notes on multiple-fault scenario.

The test can be implemented by reading data patterns including 1 bit error or 2 bit errors and
by verifying the correct correction/detection by the ECC handler. Data patterns can be
prepared by using the ECC disable option, allowing the storage of the desired patterns in
RAM; a further activation of the ECC allows the excecution of the tests.

Note: • use two different memory address for correction and detection tests
• the expected data read from test locations (corrected or with the error)

must be verified
• test procedure must include the verification of the correct reporting for

memory failing address in related register
• test procedure must include the verification of the correct interrupt

generation

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 23/137

3.6.4 Embedded flash memory
The device embedded flash memory includes an area for end user program and data, and an area from which the
device can boot securely (but not available for user code). Not all the safety mechanisms described in this
subsection apply to both areas. Refer to document [1] to understand safety mechanisms' role.

Table 26. FLASH_SM_0

SM CODE FLASH_SM_0

Description Periodic software test for flash memory

Ownership End user

Detailed implementation

Permanent faults affecting the system flash memory, memory cells, and address decoder are
addressed through a dedicated software test that checks the memory cells contents versus
the expected value, using signature-based techniques. According to IEC 61508-2 Table A.5,
the effective diagnostic coverage of such techniques depends on the width of the signature in
relation to the block length of the information to be protected - therefore the signature
computation method is to be carefully selected. Note that the simple signature method
(IEC 61508-7 - A.4.2 modified checksum) is inadequate as it only achieves a low value of
coverage.

The information block does not need to be addressed with this test as it is not used during
normal operation (no data or program fetch).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration Flash memory size changes according to the part number.

Initialization Memory signatures must be stored in flash memory as well.

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection
CPU_SM_0: Periodic core self-test software

CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations

This test is expected to have a relevant time duration–test integration must therefore consider
the impact on Application software execution.

The use of internal cyclic redundancy check (CRC) module is recommended. In principle
direct memory access (DMA) feature for data transfer can be used.

Unused flash memory sections can be excluded from testing.

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3: Notes on multiple-fault scenario for details.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 24/137

Table 27. FLASH_SM_1

SM CODE FLASH_SM_1

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

Permanent and transient faults affecting the system flash memory, memory cells and address
decoder, can interfere with the access operation by the CPU, leading to wrong data or
instruction fetches.

Such failures can be detected by control flow monitoring techniques implemented in
Application software loaded from flash memory.

For more details on the implementation, refer to description CPU_SM_1.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations CPU_SM_1 correct implementation supersedes this requirement.

Table 28. FLASH_SM_2

SM CODE FLASH_SM_2

Description Arm®Cortex®-M7 HardFault exceptions

Ownership ST

Detailed implementation

Hardware random faults (both permanent and transient) affecting system flash memory
(memory cells, address decoder) can lead to wrong instruction codes fetches, and eventually
to the intervention of the Arm®Cortex®-M7 HardFault exceptions. Refer to CPU_SM_3 for
detailed description.

Error reporting Refer to CPU_SM_3

Fault detection time Refer to CPU_SM_3

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Refer to CPU_SM_3

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_3

Multiple-fault protection Refer to CPU_SM_3

Recommendations and known limitations Refer to CPU_SM_3

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 25/137

Table 29. FLASH_SM_3

SM CODE FLASH_SM_3

Description Option byte write protection

Ownership ST

Detailed implementation This safety mechanism prevents unintended writes of the option byte. The use of this method
is encouraged to enhance the end application robustness with respect to systematic faults.

Error reporting Write protection exception

Fault detection time Not applicable

Addressed fault model None (systematic only)

Dependency on Device configuration None

Initialization Not required (enabled by default)

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations This method addresses systematic faults in software applications. It is inefficient for hardware
random faults affecting the option byte value in run time. No DC value is therefore associated.

Table 30. FLASH_SM_4

SM CODE FLASH_SM_4

Description Static data encapsulation

Ownership End user

Detailed implementation
If static data are stored in flash memory, encapsulation by a checksum field with encoding
capability (such as CRC) must be implemented.

Checksum validity is checked by Application software before static data consuming.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 26/137

Table 31. FLASH_SM_6

SM CODE FLASH_SM_6

Description Flash memory unused area-filling code

Ownership End user

Detailed implementation
Unused flash memory area must be filled with deterministic data. This way in case that the
program counter jumps outside the application program area due to a transient fault affecting
CPU, the system evolves in a deterministic way.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model None (fault avoidance)

Dependency on Device configuration None

Initialization Not applicable

Periodicity Not applicable

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations Filling code can be made of NOP instructions, or an illegal code that leads to a HardFault
exception raise.

Table 32. FLASH_SM_7

SM CODE FLASH_SM_7

Description ECC on flash memory

Ownership ST

Detailed implementation

Internal Flash memory is protected by ECC (error correction code) redundancy,implementing
a protection feature at 128-bit word level (using 9 ECC bits):
• one-bit fault: correction
• two-bit fault: detection

Error reporting
Single error correction and double error detection are signaled to the application software by
related flags in the flash register, and possibly by interrrupt raise. Refer to the functional
documentation (Reference Manual) for details.

Fault detection time ECC bits are checked during a memory reading.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization None

Periodicity Continuous

Test for the diagnostic

Direct test procedure for ECC efficiency is not available. ECC run-time hardware failures
leading to disabling the diagnostic, or leading to wrong corrections, fall into multiple-fault
scenario, from IEC 61508 perspective. Related failures are adequately mitigated by the
combination of safety mechanisms reported in this table, field Multiple-fault protection.

Refer to [1] for details on ECC failure mitigation strategy.

Multiple-fault protection

FLASH_SM_0: Periodic software test for flash memory

DIAG_SM_0: Periodic read-back of hardware diagnostics configuration registers

CPU_SM_3: Arm®Cortex®-M7 HardFault exceptions

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 27/137

Table 33. FLASH_SM_8

SM CODE FLASH_SM_8

Description Read protection (RDP), write protection (WRP), and proprietary code readout protection
(PCROP)

Ownership ST

Detailed implementation
Flash memory can be protected against illegal read or erase/write accesses by using these
protection features. The combination of these techniques and the related different protection
levels allows End user to build an effective access protection policy.

Error reporting
Refer to functional documentation.

In some cases, a HardFault error is generated.

Fault detection time Refer to functional documentation.

Addressed fault model Systematic

Dependency on Device configuration None

Initialization Not required

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations

Hardware random-failure detection capability for Flash memory access policy is restricted to
well-selected marginal failure modes, mainly affecting program counter and Flash memory
interface functions. The associated diagnostic coverage is therefore expected to be irrelevant
in the framework of STM32H7Rx/7Sx safety concept.

Table 34. FLASH_SM_9

SM CODE FLASH_SM_9

Description Periodic test by software for flash memory address decoder

Ownership End user

Detailed implementation
Permanent faults affecting the system flash memory interface address decoder are addressed
through a dedicated software test that checks the memory cells contents versus the expected
value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration flash memory size depends on part number.

Initialization Not required

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Overlaps with FLASH_SM_0 implementation are possible.

3.6.5 External flash memory
Note: This section describes the possible set of safety mechanisms applicable to external flash memories connected

to STM32H7Rx/Sx through FSMC or OCTOSPI ports and including safety-related executable code and/or data.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 28/137

Table 35. EXTMEM_SM_0

SM CODE EXTMEM_SM_0

Description Periodic software test external for flash memory

Ownership End user

Detailed implementation

Permanent faults affecting the external flash memory, memory cells, and its internal address
decoder are addressed through a dedicated software test that checks the memory cells
contents versus the expected value, using signature-based techniques. According to
IEC 61508-2 Table A.5, the effective diagnostic coverage of such techniques depends on the
width of the signature in relation to the block length of the information to be protected -
therefore the signature computation method is to be carefully selected. Note that the simple
signature method (IEC 61508-7 - A.4.2 Modified checksum) is inadequate as it only achieves
a low value of coverage.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration Not applicable

Initialization Memory signatures must be stored in flash memory as well.

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection
CPU_SM_0: Periodic core self-test software

CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations

This test is expected to have a relevant time duration – test integration must therefore
consider the impact on Application software execution.

The use of internal CRC module is recommended. In principle DMA feature for data transfer
can be used.

Unused flash memory sections can be excluded from testing.

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3: Notes on multiple-fault scenario for details.

Table 36. EXTMEM_SM_1

SM CODE EXTMEM_SM_1

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation Refer to FLASH_SM_1

Error reporting Refer to FLASH_SM_1

Fault detection time Refer to FLASH_SM_1.

Addressed fault model Refer to FLASH_SM_1

Dependency on Device configuration Refer to FLASH_SM_1

Initialization Refer to FLASH_SM_1

Periodicity Refer to FLASH_SM_1

Test for the diagnostic Refer to FLASH_SM_1

Multiple-fault protection Refer to FLASH_SM_1

Recommendations and known limitations Refer to FLASH_SM_1

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 29/137

Table 37. EXTMEM_SM_2

SM CODE EXTMEM_SM_2

Description Arm®Cortex®-M7 HardFault exceptions

Ownership ST

Detailed implementation

Hardware random faults (both permanent and transient) affecting external flash memory
(memory cells, address decoder) can lead to wrong instruction codes fetches, and eventually
to the intervention of the Arm®Cortex®-M7 HardFault exceptions. Refer to CPU_SM_3 for
detailed description.

Error reporting Refer to CPU_SM_3

Fault detection time Refer to CPU_SM_3

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Refer to CPU_SM_3

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_3

Multiple-fault protection Refer to CPU_SM_3

Recommendations and known limitations Refer to CPU_SM_3

Table 38. EXTMEM_SM_4

SM CODE EXTMEM_SM_4

Description Static data encapsulation

Ownership End user

Detailed implementation Refer to FLASH_SM_4

Error reporting Refer to FLASH_SM_4

Fault detection time Refer to FLASH_SM_4

Addressed fault model Refer to FLASH_SM_4

Dependency on Device configuration Refer to FLASH_SM_4

Initialization Refer to FLASH_SM_4

Periodicity Refer to FLASH_SM_4

Test for the diagnostic Refer to FLASH_SM_4

Multiple-fault protection Refer to FLASH_SM_4

Recommendations and known limitations Refer to FLASH_SM_4

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 30/137

Table 39. EXTMEM_SM_6

SM CODE EXTMEM_SM_6

Description Flash memory unused area filling code

Ownership End user

Detailed implementation Refer to FLASH_SM_6

Error reporting Refer to FLASH_SM_6

Fault detection time Refer to FLASH_SM_6

Addressed fault model Refer to FLASH_SM_6

Dependency on Device configuration Refer to FLASH_SM_6

Initialization Refer to FLASH_SM_6

Periodicity Refer to FLASH_SM_6

Test for the diagnostic Refer to FLASH_SM_6

Multiple-fault protection Refer to FLASH_SM_6

Recommendations and known limitations Refer to FLASH_SM_6

Table 40. EXTMEM_SM_9

SM CODE EXTMEM_SM_9

Description Periodic test by software for flash memory address decoder

Ownership End user

Detailed implementation
Permanent faults affecting the system external flash memory interface address decoder are
addressed through a dedicated software test that checks the memory cells contents versus
the expected value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration Not applicable

Initialization Not required

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Overlaps with EXTMEM_SM_0 implementation are possible.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 31/137

3.6.6 Memory cipher engine (MCE)

Table 41. MCE_SM_0

SM CODE MCE_SM_0

Description Periodic read‑back of MCE configuration registers

Ownership End user

Detailed implementation
This method must be applied to MCE configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 42. MCE_SM_1

SM CODE MCE_SM_1

Description MCE encryption/decryption collateral detection

Ownership ST

Detailed implementation

Decryption operations performed by MCE module are composed by several data
manipulations and checks, with different level of complexity according to the selected chaining
algorithm. Part of the hardware random failures affecting MCE module leads to the raise of
error flags.

Error reporting Several error conditions are possible, check functional documentation.

Fault detection time Depends on peripheral configuration. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Dependency on Device configuration

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection MCE_SM_2: Arm®Cortex®-M7 HardFault exceptions

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 32/137

Table 43. MCE_SM_2

SM CODE MCE_SM_1

Description Arm®Cortex®-M7 HardFault exceptions

Ownership ST

Detailed implementation

Permanent and transient faults affecting the MCE logic and registers may lead to application
software or firmware decryption errors and, therefore, to the execution of incorrect instruction
codes, and eventually to the intervention of the Arm®Cortex®-M7 HardFault exceptions. Refer
to CPU_SM_3 for detailed description.

Error reporting Refer to CPU_SM_3

Fault detection time Refer to CPU_SM_3

Addressed fault model Refer to CPU_SM_3

Dependency on Device configuration Refer to CPU_SM_3

Initialization Refer to CPU_SM_3

Periodicity Refer to CPU_SM_3

Test for the diagnostic Refer to CPU_SM_3

Multiple-fault protection Refer to CPU_SM_3

Recommendations and known limitations This method is efficient only when MCE is used for executable code decryption.

3.6.7 Power controller (PWR)

Table 44. VSUP_SM_0

SM CODE VSUP_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 33/137

Table 45. VSUP_SM_1

SM CODE VSUP_SM_1

Description Supply voltage internal monitoring (PVD)

Ownership ST

Detailed implementation
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when
VDD drops below the VPVD threshold or when VDD is higher than the VPVD threshold.

Error reporting Interrupt event generation

Fault detection time Depends on threshold programming. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Protection enable by the PVDE bit and the threshold setting in the Power control register
(PWR_CR)

Periodicity Continuous

Test for the diagnostic

Direct test procedure for PVD efficiency is not available. PVD run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection DIAG_SM_0: Periodic read-back of hardware diagnostics configuration registers

Recommendations and known limitations

Internal monitoring PVD has limited capability to address failures affecting STM32H7Rx/7Sx
internal voltage regulator. Refer to [1] for details.

In case the hardware option is not available on the chosen partnumbers, its contribution to the
overall safety concept is supported by other overlapping methods indicated for the mitigation
of failures affecting internal power.

Table 46. VSUP_SM_2

SM CODE VSUP_SM_2

Description Independent watchdog

Ownership ST

Detailed implementation

Failures in the power supplies for digital logic (core or peripherals) may lead to alteration of
Application software timing, which can be detected by IWDG as safety mechanism introduced
to monitor the Application software control flow. Refer to CPU_SM_1 and CPU_SM_6 for
further information.

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization IWDG activation. It is recommended to use Hardware watchdog in Option byte settings (IWDG
is automatically enabled after reset).

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_6.

Multiple-fault protection CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations

In specific part numbers, IWDG can be fed by a power supply independent from the one used
for CPU core and main peripherals. Such diversity helps to increase the protection guaranteed
by IWDG from main power supply anomalies.

The adoption of an external watchdog (refer to CPU_SM_5) adds further diversity.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 34/137

Table 47. VSUP_SM_3

SM CODE VSUP_SM_3

Description Internal temperature sensor check

Ownership End user

Detailed implementation
The internal temperature sensor must be periodically tested in order to detect abnormal
increase of the die temperature – hardware faults in supply voltage system may cause
excessive power consumption and consequent temperature rise.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
This method also mitigates the probability of common-cause failure due to excessive
temperature, affecting the Device.

Refer to the Device datasheet to set the threshold temperature.

Table 48. VSUP_SM_5

SM CODE VSUP_SM_5

Description System-level power supply management

Ownership End user

Detailed implementation

This method is implemented at system level in order to guarantee the stability of power supply
value over time. It can include a combination of different overlapped solutions, some listed
here below (but not limited to):
• additional voltage monitoring by external components
• passive electronics devices able to mitigate overvoltage
• specific design of power regulator in order to avoid power supply disturbance in

presence of a single failure

Error reporting Depends on implementation

Fault detection time Fault avoidance

Addressed fault model None

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations Usually, this method is already required/implemented to guarantee the stability of each
component of the final electronic board.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 35/137

3.6.8 Reset and clock controller (RCC)

Table 49. CLK_SM_0

SM CODE CLK_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to configuration registers for clock and reset system (refer to
RCC register map).

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 50. CLK_SM_1

SM CODE CLK_SM_1

Description Clock security system (CSS)

Ownership ST

Detailed implementation

The clock security system (CSS) detects the loss of high-speed external (HSE) oscillator clock
activity and executes the corresponding recovery action, such as:
• switch-off HSE
• commutation on the HSI
• generation of related NMI

Error reporting NMI

Fault detection time Depends on implementation (clock frequency value)

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization CSS protection must be enabled through Clock interrupt register (RCC_CIR) after boot.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection
CPU_SM_5: External watchdog

CLK_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations

It is recommended to carefully read reference manual instruction on NMI generation, in order
to correctly managing the faulty situation by Application software.

As the test of the diagnostic is not available in the hardware, it must be done at system level
during startup or maintenance period. The use of this method to implement fail operational
schemes is not recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 36/137

Table 51. CLK_SM_2

SM CODE CLK_SM_2

Description Independent watchdog

Ownership ST

Detailed implementation The independent watchdog IWDG is able to detect failures in internal main MCU clock (lower
frequency).

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization IWDG activation. It is recommended to use the hardware watchdog in Option byte settings
(IWDG is automatically enabled after reset).

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_6.

Multiple-fault protection CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations The adoption of an external watchdog (refer to CPU_SM_5) adds further diversity.

Table 52. CLK_SM_3

SM CODE CLK_SM_3

Description Internal clock cross-measurement

Ownership End user

Detailed implementation

This method is implemented using general-purpose timers capabilities to be fed by the 32 KHz
RTC clock or an external clock source (if available). Timer counter progress is compared with
another counter (fed by internal clock). Abnormal values of oscillator frequency can therefore
be detected.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection
CPU_SM_1: Control flow monitoring in Application software

CPU_SM_5: External watchdog

Recommendations and known limitations Efficiency versus transient faults is negligible. It provides only medium efficiency in permanent
clock-related failure mode coverage.

3.6.9 System configuration, boot, and security (SBS)
SBS failures are addressed by the combination of methods indicated in CoU_10.1 and CoU_10.2 (refer to
Section 3.7: Conditions of use).

3.6.10 Clock recovery system (CRS)
No safety mechanisms are defined for CRS because of the consequences of CoU_8 (refer to
Section 3.7: Conditions of use). CRS deactivation is guaranteed by Section 3.6.57: Disable and periodic cross-
check of unintentional activation of unused peripherals.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 37/137

3.6.11 General-purpose input/output (GPIO)

Table 53. GPIO_SM_0

SM CODE GPIO_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to GPIO configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration GPIO availability can differ according to part number

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations
The execution of the method before any update on GPIO registers helps to mitigate the
possibility of unintended glitches on outputs due to soft errors. For more information refer to
[4].

Table 54. GPIO_SM_1

SM CODE GPIO_SM_1

Description 1oo2 for input GPIO lines

Ownership End user

Detailed implementation

This method addresses GPIO lines used as inputs. Implementation is done by connecting the
external safety-related signal to two independent GPIO lines. Comparison between the two
GPIO values is executed by the Application software each time the signal is used to affect
Application software behavior. This method applies to the single GPIO line used as input.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Permanent/transient

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

To reduce the potential impact of common cause failure, it is recommended to use GPIO lines:
• belonging to different I/O ports (for instance port A and B)
• with different bit port number (for instance PA1 and PB5)
• mapped to non-adjacent pins on the device package

As GPIO pins are shared with other MCU functions, this method must not be applied to pin
connections already used by another peripheral and addressed by related safety
mechanisms.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 38/137

Table 55. GPIO_SM_2

SM CODE GPIO_SM_2

Description Loopback scheme for output GPIO lines

Ownership End user

Detailed implementation

This method addresses GPIO lines used as outputs. Implementation is done by a loopback
scheme, connecting the output to a different GPIO line programmed as input and by using the
input line to check the expected value on output port. Comparison is executed by the
Application software periodically and each time output is updated. This method applies to the
single GPIO line used as output.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

To reduce the potential impact of common cause failure, it is recommended to use GPIO lines:
• belonging to different I/O ports (for instance port A and B)
• with different bit port number (for instance PA1 and PB5)
• mapped to non-adjacent pins on the device package

Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of GPIO output wrong signal permanence required to violate the
related safety function(s). Efficiency is maximized when execution test frequency is higher
than 1/Tm.

As GPIO pins are shared with other MCU functions, this method must not be applied to pin
connections already used by another peripheral and addressed by related safety
mechanisms.

Table 56. GPIO_SM_3

SM CODE GPIO_SM_3

Description GPIO port configuration lock register

Ownership ST

Detailed implementation

This safety mechanism prevents configuration changes for GPIO registers; it addresses
therefore systematic faults in software application.

The use of this method is encouraged to enhance the end-application robustness for
systematic faults.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model None (Systematic only)

Dependency on Device configuration None

Initialization Application software must apply a correct locking write sequence after writing the final GPIO
configuration.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations This method does not address transient faults (soft errors) that can possibly cause bit-flips on
GPIO registers at running time.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 39/137

3.6.12 Debug system or peripheral control

Table 57. DBG_SM_0

SM CODE DBG_SM_0

Description Watchdog protection

Ownership ST

Detailed implementation
The debug unintentional activation due to hardware random fault results in the massive
disturbance of CPU operations, leading to an intervention of the independent watchdog or,
alternatively, the other system watchdog WWDG or the external one (CPU_SM_5).

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval).

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_6.

Multiple-fault protection CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations None

Table 58. LOCK_SM_0

SM CODE LOCK_SM_0

Description Lock mechanism for configuration options

Ownership ST

Detailed implementation

The STM32H7Rx/7Sx devices feature spread protection to prevent unintended configuration
changes for some peripherals and system registers. The spread protection detects systematic
faults in software application. The use of this method is encouraged to enhance the end
application robustness to systematic faults.

Error reporting Not generated (when locked, register overwrites are simply ignored).

Fault detection time Not applicable

Addressed fault model None (systematic only)

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations No DC associated because this test addresses systematic faults.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 40/137

3.6.13 System configuration controller (SYSCFG)

Table 59. SYSCFG_SM_0

SM CODE SYSCFG_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to system configuration controller configuration registers.

This method is strongly recommended to protect registers related to hardware diagnostics
activation and error reporting chain related features.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations This method is mainly overlapped by several other configuration register read-backs required
for other MCU peripherals. It is reported here for the sake of completeness.

Table 60. DIAG_SM_0

SM CODE DIAG_SM_0

Description Periodic read-back of hardware diagnostics configuration registers

Ownership End user

Detailed implementation

In STM32H7Rx/7Sx, several hardware-based safety mechanisms are available (those with the
Ownership field set to ST). This method must be applied to any configuration register related
to diagnostic measure operations, including error reporting. End user must therefore
individuate configuration registers related to:
• hardware diagnostic enable
• interrupt/NMI enable (if used for diagnostic error management)

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 41/137

3.6.14 General purpose and high-performance direct memory access controller (GPDMA, HPDMA)

Table 61. DMA_SM_0

SM CODE DMA_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DMA configuration register and channel address register.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 62. DMA_SM_1

SM CODE DMA_SM_1

Description Information redundancy on data packet transferred via DMA

Ownership End user

Detailed implementation

This method is implemented by adding, to data packets transferred by DMA, a redundancy
check (such as CRC check or similar one) with encoding capability. Full data packet
redundancy would be an overkill.

The checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations To give an example about checksum encoding capability, using just a bit-by-bit addition is
inappropriate.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 42/137

Table 63. DMA_SM_2

SM CODE DMA_SM_2

Description Information redundancy by including sender or receiver identifier on data packet transferred
via DMA

Ownership End user

Detailed implementation

This method helps to identify inside the MCU the source and the originator of the message
exchanged by DMA.

Implementation is realized by adding an additional field to protected message, with a coding
convention for message type identification fixed at Device level. Guidelines for the
identification fields are:
• Identification field value must be different for each possible couple of sender or receiver

on DMA transactions.
• Values chosen must be enumerated and non-trivial.
• Coherence between the identification field value and the message type is checked by

the Application software before consuming data.

This method, when implemented in combination with DMA_SM_4, makes available a kind of
virtual channel between source and destinations entities.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 64. DMA_SM_3

SM CODE DMA_SM_3

Description Periodic software test for DMA

Ownership End user

Detailed implementation

This method requires the periodic testing of the DMA basic functionality, implemented through
a deterministic transfer of a data packet from one source to another (for example from
memory to memory) and the checking of the correct transfer of the message on the target.
Data packets are composed by non-trivial patterns (avoid the use of 0x0000, 0xFFFF values)
and organized in order to allow the detection during the check of the following failures:
• incomplete packed transfer
• errors in single transferred word
• wrong order in packed transmitted data

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 43/137

Table 65. DMA_SM_4

SM CODE DMA_SM_4

Description DMA transaction awareness

Ownership End user

Detailed implementation

DMA transactions are non-deterministic by nature, because typically driven by external events
like communication messages reception. Anyway, well-designed safety systems should keep
much control as possible of events – refer for instance to IEC 61508-3 Table 2 item 13
requirements for software architecture.

This method is based on system knowledge of frequency and type of expected DMA
transaction. For instance, an externally connected sensor supposed to send periodically some
messages to a STM32 peripheral. Monitoring DMA transaction by a dedicated state machine
allows the detection of missing or unexpected DMA activities.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Because DMA transaction termination is often linked to an interrupt generation,
implementation of this method can be merged with the safety mechanism NVIC_SM_1:
Expected and unexpected interrupt check.

3.6.15 Chrom-Art Accelerator controller (DMA2D)

Table 66. DMA2D_SM_0

SM CODE DMA2D_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DMA2D configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 44/137

Table 67. DMA2D_SM_1

SM CODE DMA2D_SM_1

Description Periodic software test for DMA2D functions

Ownership End user

Detailed implementation

This method requires the periodic testing of the DMA2D basic functionality, implemented
through a deterministic transfer and processing of a set of test images from memory to
memory and the checking of the correct execution (output image must be generated as per
specifications). Output image correctness can be performed by fast methods like CRC
fingerprint computation.

Test definition must be able to cover following DMA2D basic functions:
• full image copy
• image filling with a specific color
• copy of part of the image
• pixel format conversion
• blending of two different images

Achieved diagnostic coverage on the module depends on the quantity and variance of tests
performed.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations In principle, DMA2D basic functions not used in the safety application can be excluded from
this test suite implementation.

Table 68. DMA2D_SM_2

SM CODE DMA2D_SM_2

Description DMA processing and interrupt awareness

Ownership End user

Detailed implementation

This method is based on system knowledge of frequency and type of DMA2D transaction
expected. In general, image processing systems are based on a deterministic timing for image
framing arrival and processing.

Therefore, this method requires to monitor the expected execution of image processing and,
in case interrupt generation is used, their correct timing and sequence.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Implementation of this method can be merged with the safety mechanism NVIC_SM_1:
Expected and unexpected interrupt check

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 45/137

Note: If image processing performed by DMA2D is used for the implementation of a safety function, system level
considerations (as consistency checks on objects recognition results) may guarantee additional diagnostic
coverage. Similarly, system level data redundancy schemes (as for instance algorithms based on processing for
sequences of multiple image frames) may result in a relevant derating for transient failure rate.

3.6.16 Chrom-GRC™ , Neo-Chrom graphic processor, ICACHE (GFXMMU, GPU2D)

Table 69. GFX_SM_0

SM CODE GFX_SM_0

Description Periodic read-back of GFXMMU, GPU2D, ICACHE configuration registers

Ownership End user

Detailed implementation
This method must be applied to DSI Host configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Note: If image processing performed by these peripherals is used for the implementation of a safety function, system
level measures must guarantee the required additional diagnostic coverage.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 46/137

3.6.17 Extended interrupt and events controller (EXTI)

Table 70. NVIC_SM_0

SM CODE NVIC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This test is implemented by executing a periodic check of the configuration registers for a
system peripheral against its expected value. Expected values are previously stored in RAM
and adequately updated after each configuration change. The method mainly addresses
transient faults affecting the configuration registers, by detecting bit flips in the registers
contents. It addresses also permanent faults on registers because it is executed at least once
per PST (or another timing constraint; refer to (1) in Section 3.6: Hardware and software
diagnostics) after an update of the peripheral.

Method must be implemented to any configuration register whose contents are able to
interfere with NVIC or EXTI behavior in case of incorrect settings. Check includes NVIC vector
table.

According to the state-of-the-art automotive safety standard ISO26262, this method can
achieve high levels of diagnostic coverage (DC) (refer to ISO26262-5:2018, Table D.4).

An alternative valid implementation requiring less space in SRAM can be realized on the basis
of signature concept:
• Peripheral registers to be checked are read in a row, computing a CRC checksum (use

of hardware CRC is encouraged).
• Obtained signature is compared with the golden value (computed in the same way after

each register update, and stored in SRAM).
• Coherence between signatures is checked by Application software – signature

mismatch is considered as failure detection.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

This method addresses only failures affecting configuration registers, and not peripheral core
logic or external interface.

Attention must be paid to registers containing mixed combination of configuration and status
bits. Mask must be used before saving register contents affecting signature, and related
checks done, to avoid false positive detections.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 47/137

Table 71. NVIC_SM_1

SM CODE NVIC_SM_1

Description Expected and unexpected interrupt check

Ownership End user

Detailed implementation

According to IEC 61508-2 Table A.1 recommendations, a diagnostic measure for continuous,
absence or cross-over of interrupt must be implemented. The method of expected and
unexpected interrupt check is implemented at Application software level.

The guidelines for the implementation of the method are the following:
• The interrupts implemented on the MCU are well documented, also reporting, when

possible, the expected frequency of each request (for example, the interrupts related to
ADC conversion completion that come on a regular basis).

• Individual counters are maintained for each interrupt request served, in order to detect
in a given time frame the cases of a) no interrupt at all b) too many interrupt requests.
The control of the time frame duration must be regulated according to the individual
interrupt expected frequency.

• Interrupt vectors related to unused interrupt source point to a default handler that
reports, in case of triggering, a faulty condition (unexpected interrupt).

• In case an interrupt service routine is shared between different sources, a plausibility
check on the caller identity is implemented.

Important: Interrupt requests generated by non-safety-related peripherals must be
handled using the same method as all safety related interupts outlined in the
list above.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
The extension of the method to non-safety related peripherals (see last bullet in "Detailed
implementation" box above) is introduced to mitigate interferences between non-safety and
safety functions/hardware (FFI).

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 48/137

Table 72. NVIC_SM_2

SM CODE NVIC_SM_2

Description Interrupt vectors periodic check

Ownership End user

Detailed implementation

This method must be applied to periodically check the integrity of interrupt vector table
contents.

Test can be implemented either:
• By checking interrupt table contents with a copy stored elsewhere (in the same memory

hosting the table, ot other one) or
• By calculating a CRC-like checksum on table contents and to compare with the

expected result

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations This method can be overlapped by the implementation of FLASH_SM_0 or RAM_SM_5
depending on the memory (Flash or SRAM) where the vector table is stored.

3.6.18 Cyclic redundancy-check calculation unit (CRC)

Table 73. CRC_SM_0

SM CODE CRC_SM_0

Description CRC self-coverage

Ownership ST

Detailed implementation

The CRC algorithm implemented in this module (CRC-32 Ethernet polynomial: 0x4C11DB7)
offers excellent features in terms of error detection in the message. Therefore permanent and
transient faults affecting CRC computations are easily detected by any operations using the
module to recompute an expected signature.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 49/137

3.6.19 CORDIC co-processor (CORDIC)

Table 74. CORD_SM_0

SM CODE CORD_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to CORDIC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 75. CORD_SM_1

SM CODE CORD_SM_1

Description Periodic software test for CORDIC functions

Ownership End user

Detailed implementation

This method requires the periodic testing of the CORDIC basic computation functionalities,
implemented through a set of individual stress test. The software test must be built around
well-known techniques already addressed by IEC 61508-7, A.3.2 (Self-test by software:
walking bit one-channel).

Achieved diagnostic coverage on the module depends on the quantity and variance of tests
performed.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 50/137

Table 76. CORD_SM_2

SM CODE CORD_SM_2

Description CORDIC /Arm® Cortex®‑M7 periodic reciprocal comparison by software

Ownership End user

Detailed implementation

This method is based on the technique “Reciprocal comparison by software” (IEC 61508-7,
A.3.5). The computations executed on CORDIC during Application software cycle are
periodically executed by software implementation in Arm® Cortex®‑M7 CPU, and results are
compared. Being CPU integrity guaranteed by other safety mechanisms, any mismatch
between results must be considered as a detection information for CORDIC failure(s).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity None/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
The implementation of this method is possible only when the DTI fixed at system for periodic
tests level is compatible with the execution of the CORDIC computations on a slower
processing unit (Cortex®‑M7).

Table 77. CORD_SM_3

SM CODE CORD_SM_3

Description Double computation for CORDIC functions

Ownership End user

Detailed implementation

A timing redundancy for safety-related computation performed by the CORDIC is considered
to detect transient faults affecting the module itself.

The requirement needs be applied only to safety-relevant computation, which in case of wrong
result could interfere with the system safety functions.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 51/137

3.6.20 Filter math accelerator (FMAC)

Table 78. FMAC_SM_0

SM CODE FMAC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to FMAC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 79. FMAC_SM_1

SM CODE FMAC_SM_1

Description Periodic software test for FMAC functions

Ownership End user

Detailed implementation

This method requires the periodic testing of the FMAC basic computation and data
management functionalities, implemented through a set of individual stress test. The software
test must be built around well-known techniques already addressed by IEC 61508-7, A.3.2
(Self-test by software: walking bit one-channel).

Achieved diagnostic coverage on the module depends on the quantity and variance of tests
performed.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 52/137

Table 80. FMAC_SM_2

SM CODE FMAC_SM_2

Description FMAC/Arm Cortex-M7 periodic reciprocal comparison by software

Ownership End user

Detailed implementation

This method is based on the technique “Reciprocal comparison by software” (IEC 61508-7,
A.3.5). The computations executed on FMAC during Application software cycle are
periodically executed by software implementation in Arm Cortex-M7 CPU, and results are
compared. Being CPU integrity guaranteed by other safety mechanisms, any mismatch
between results must be considered as a detection information for FMAC failure(s).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
The implementation of this method is possible only when the DTI fixed at system for periodic
tests level is compatible with the execution of the FMAC computations on a slower processing
unit (Cortex-M7).

Table 81. FMAC_SM_3

SM CODE FMAC_SM_3

Description Double computation for FMAC functions

Ownership End user

Detailed implementation

A timing redundancy for safety-related computation performed by the FMAC is considered to
detect transient faults affecting the module itself.

The requirement needs be applied only to safety-relevant computation, which in case of wrong
result could interfere with the system safety functions.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 53/137

3.6.21 Flexible static memory controller (FSMC)

Table 82. FSMC_SM_0

SM CODE FSMC_SM_0

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

If FSMC is used to connect an external memory containing software code to be executed by
the CPU, permanent and transient faults affecting the FSMC memory controller are able to
interfere with the access operation by the CPU, leading to wrong data or instruction fetches. A
strong control flow mechanism linked to a system watchdog is able to detect such failures, in
case they interfere with the expected flow of Application software.

The implementation of this method is identical to the one reported for CPU_SM_1, refer there
for details.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration FSMC interface is available only on selected part numbers.

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations This mechanism must only be used if FSMC external memory is used to store executable
programs.

Table 83. FSMC_SM_1

SM CODE FSMC_SM_1

Description Information redundancy on external memory connected to FSMC

Ownership End user

Detailed implementation

If FSMC interface is used to connect an external memory where safety-relevant data are
stored, information redundancy techniques for stored data are able to address faults affecting
the FSMC interface. The possible techniques are:
• using redundant copies of safety-relevant data and performing coherence check before

consuming
• organizing data in arrays and computing the checksum field to check before use

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration FSMC interface is available only on selected part numbers.

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

This mechanism must be used just if FSMC external memory is used to store safety-related
data.

This safety mechanism can overlap with information redundancy techniques implemented at
system level to address failure of physical device connected to FSMC port.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 54/137

Table 84. FSMC_SM_2

SM CODE FSMC_SM_2

Description Periodic read-back of FSMC configuration registers

Ownership End user

Detailed implementation
This method must be applied to FSMC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration FSMC interface is available only on selected part numbers.

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 85. FSMC_SM_3

SM CODE FSMC_SM_3

Description ECC engine on NAND interface in FSMC module

Ownership ST

Detailed implementation

The FMC NAND Card controller includes two error correction code computation hardware
blocks, one per memory bank. They reduce the host CPU workload when processing the ECC
by software.

ECC mechanism protects data integrity on the external memory connected to NAND port.

Error reporting Refer to functional documentation

Fault detection time ECC bits are checked during memory reading.

Addressed fault model Permanent/transient

Dependency on Device configuration FSMC interface is available only on selected part numbers.

Initialization None

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection FSMC_SM_2: Periodic read-back of FSMC configuration registers

Recommendations and known limitations
This method has negligible efficiency in detecting hardware random failures affecting the
FSMC interface. It can be part of End user safety concept because addressing memories
outside STM32H7Rx/7Sx MCU.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 55/137

3.6.22 Octo-SPI interface (OCTOSPI)

Table 86. QSPI_SM_0

SM CODE QSPI_SM_0

Description Periodic read-back of OCTOSPI configuration registers

Ownership End user

Detailed implementation
This method must be applied to OCTOSPI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 87. QSPI_SM_1

SM CODE QSPI_SM_1

Description Protocol error signals including hardware CRC

Ownership ST

Detailed implementation

OCTOSPI communication module embeds protocol error checks (like overrun, underrun,
timeout and so on), conceived to detect communication-related abnormal conditions. These
mechanisms are only able to detect a small fraction of hardware random failures affecting the
module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection QSPI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 56/137

Table 88. QSPI_SM_2

SM CODE QSPI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets (not commands) transferred by OCTOSPI
interface a redundancy check (like a CRC check, or similar one) with encoding capability. The
checksum encoding capability must be robust enough to guarantee at least 90% probability of
detection for a single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

This safety mechanism can overlap with information redundancy techniques implemented at
system level to address failure of physical device connected to OCTOSPI port.

3.6.23 Delay block (DLYB)

Table 89. DLB_SM_0

SM CODE DLB_SM_0

Description Periodic read-back of DLYB configuration registers

Ownership End user

Detailed implementation
This method must be applied to DLYB configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Note: It is assumed that DLYB output, if used, supplies STM32H7Rx/Sx internal communication peripherals. It is also
assumed that for the connected peripherals all recommended safety mechanisms (rated as ++ and +) are
correctly implemented.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 57/137

3.6.24 Analog-to-digital converter (ADC)

Table 90. ADC_SM_0

SM CODE ADC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to the ADC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 91. ADC_SM_1

SM CODE ADC_SM_1

Description Multiple acquisition by Application software

Ownership End user

Detailed implementation
This method implements a timing information redundancy by executing multiple acquisitions
on the same input signal. Multiple data acquisitions are then combined by a filter algorithm to
determine the signal correct value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is highly probable that this recommendation is satisfied by design by the End
userApplication software. Usage of multiple acquisitions followed by average operations is a
common technique in industrial applications exposed to electromagnetic interference on
sensor lines.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 58/137

Table 92. ADC_SM_2

SM CODE ADC_SM_2

Description Range check by Application software

Ownership End user

Detailed implementation

The guidelines for the implementation of the method are the following:
• The expected range of the data to be acquired are investigated and adequately

documented. Note that in a well-designed application it is improbable that during normal
operation an input signal has a very near or over the upper and lower rail limit
(saturation in signal acquisition).

• If the Application software is aware of the state of the system, this information is to be
used in the range check implementation. For example, if the ADC value is the
measurement of a current through a power load, reading an abnormal value such as a
current flowing in opposite direction versus the load supply may indicate a fault in the
acquisition module.

• As the ADC module is shared between different possible external sources, the
combination of plausibility checks on the different signals acquired can help to cover the
whole input range in a very efficient way.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations The implementation and the related diagnostic efficiency of this safety mechanism are strongly
application-dependent.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 59/137

Table 93. ADC_SM_3

SM CODE ADC_SM_3

Description Periodic software test for ADC

Ownership End user

Detailed implementation

The method is implemented acquiring multiple signals and comparing the read value with the
expected one, supposed to be known. Method can be implemented with different level of
complexity:
• Basic complexity: acquisition and check of upper or lower rails used in conversion (for

example, VDD or VSS) and internal reference voltage (for example VREFINT) as
intermediate value.

• High complexity: in addition to basic complexity tests, acquisition of a DAC output
connected to ADC input and checking all voltage excursion and linearity

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Documents [2] and [3] assume that the above Basic complexity method is implemented.

The above High complexity method can be used to add a safety margin to the local safety
concept for ADC, allowing to claim medium DC values for permanent failures (refer to
IEC61508-2 (table A.3–Electronic components/Tests by redundant hardware).

Table 94. ADC_SM_4

SM CODE ADC_SM_4

Description 1oo2 scheme for ADC inputs

Ownership End user

Detailed implementation
This safety mechanism is implemented using two different SAR ADC channels belonging to
separate ADC modules to acquire the same input signal. The Application software checks the
coherence between the two readings.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection ADC_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations

This method can be used in conjunction with ADC_SM_0 / ADC_SM_2 / ADC_SM_3 to
achieve highest level of ADC module diagnostic coverage (if ADC_SM_4 is implemented,
ADC_SM_2 and ADCV_SM_3 implementation can be limited to only one ADC used in the
scheme).

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 60/137

3.6.25 Digital temperature sensor (DTS)

Table 95. DTS_SM_0

SM CODE DTS_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DTS configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Note: The use of DTS for the implementation of safety functions where DTS may act as single point of failure is not
recommended.

3.6.26 Voltage reference buffer (VREFBUF)

Table 96. VREF_SM_0

SM CODE VREF_SM_0

Description Periodic read-back of VREFBUF system configuration registers

Ownership End user

Detailed implementation
This method must be applied to VREFBUF configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 61/137

Table 97. VREF_SM_1

SM CODE VREF_SM_1

Description VREF cross-check by ADC reading

Ownership End user

Detailed implementation This method is based on ADC acquisition for VREF generated signal, to crosscheck with the
expected value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Overlaps with ADC_SM_3 are possible.

3.6.27 Multi-function digital filter (MDF), Audio digital filter (ADF)

Table 98. MDF_SM_0

SM CODE MDF_SM_0

Description Periodic read‑back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to MDF/ADF configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 99. MDF_SM_1

SM CODE MDF_SM_1

Description 1oo2 scheme for MDF/ADF module

Ownership End user

Detailed implementation

This safety mechanism is implemented using two separated instances of digital filter
conditioning chain (SITFx+DFLTx+RXFIFOx, SITFy+DFLTy+RXFIFOy) to process the same
input data stream. The Application software checks periodically the coherence between the
processed data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 62/137

SM CODE MDF_SM_1

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations The MCU performance overload and the implementation complexity associated to this method
can be relevant.

Table 100. MDF_SM_2

SM CODE MDF_SM_2

Description Plausibility check on inputs data stream

Ownership End user

Detailed implementation

This method periodically checks the coherence of the contents of the data stream received
with the expected one. The aim is to detect failures affecting the shared hardware not
protected by the other relevant method MDF_SM_1, at least intercepting permanent failures
leading a “no data” or “fixed data” conditions.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 63/137

3.6.28 Digital camera interface pixel pipeline (DCMIPP)

Table 101. DCMI_SM_0

SM CODE DCMI_SM_0

Description Periodic read-back of DCMI configuration registers

Ownership End user

Detailed implementation
This method must be applied to DCMI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration DCMI interface is available only on selected part numbers.

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 102. DCMI_SM_1

SM CODE DCMI_SM_1

Description DCMI video input data synchronization

Ownership ST

Detailed implementation

According to the nature of video data stream received, DCMI module implements
synchronization controls, from the simplest one (hardware synchronization) to the most
complex (e.g. embedded data synchronization mode). DCMI internal failures leading to the
incapability of correcting synchronizing the data stream can be therefore detected.

Error reporting No explicit error signal/message generation is provided (*).

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration DCMI interface is available only on selected part numbers.

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection DCMI_SM_0: Periodic read-back of DCMI configuration registers

Recommendations and known limitations

(*) For its nature, the detection of an actual hardware failure by this safety mechanism can be
confused with functional-related scenarios (e.g. camera device disconnected or powered-off).
It is responsibility of Application software to discriminate, as far as it is technically possible,
among different events.

3.6.29 Parallel synchronous slave interface (PSSI)

Table 103. PSSI_SM_0

SM CODE PSSI_SM_0

Description Periodic read‑back of PSSI configuration registers

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 64/137

SM CODE PSSI_SM_0

Ownership End user

Detailed implementation
This method must be applied to PSSI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 104. PSSI_SM_1

SM CODE PSSI_SM_1

Description Information redundancy techniques on data stream, including end-to-end protection

Ownership End user

Detailed implementation

This method aims to protect the datastream communication between a peripheral and its
external counterpart establishing a kind of “protected” channel. The aim is to specifically
address applicable communication failure modes as reported in IEC 61508-2, 7.4.11.1.

Implementation guidelines are as follows:
• Data must be protected by an information redundancy check, like for instance a CRC

checksum computed each a specific number of data and added to the stream.
Checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single-bit flip in the protected data packet. The added CRC
should be paired by a sequence incremental number, to allow receiver to exclude the
repetition of the loss of entire sections of the stream.

• Timing monitoring of the data stream (data continuity) is recommended.
• Application software must verify above checks during data consumption and in any

case with a frequency higher than PST.
In case PSSI module is used to operate message-based exchanges, the
implementation guidelines reported in this manual for method UART_SM_3 should be
applied.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations In case of bi-directional communications, it is assumed that the remote counterpart has an
equivalent capability of performing the checks described.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 65/137

3.6.30 LCD-TFT display controller (LTDC)

Table 105. LCD_SM_0

SM CODE LCD_SM_0

Description Periodic read-back of LTDC configuration registers and buffer memory

Ownership End user

Detailed implementation
This method must be applied to LTDC configuration registers and to the buffer memory.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 106. LCD_SM_1

SM CODE LCD_SM_1

Description LTDC acquisition by ADC channel

Ownership End user

Detailed implementation Correct generation of LTDC driving signals is checked by ADC reading versus expected
values

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
This method is conceived to mainly detect permanent failures affecting analog parts and
therefore the execution on periodic way is acceptable. Diagnostic coverage achievable
depends on the quantity of LTDC signals checked

Note: The above-described safety mechanism addresses the LTDC interface included in STM32 MCUs. Because
actual capability of correct image generation on LTDC is not addressed by this safety mechanism, in case such
feature is considered safety relevant, End user is warned to evaluate the adoption of adequate system-level
measures.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 66/137

3.6.31 JPEG codec (JPEG)

Table 107. JPEG_SM_0

SM CODE JPEG_SM_0

Description Periodic read-back of JPEG codec configuration registers

Ownership End user

Detailed implementation
This method must be applied to JPEG codec configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple faults protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 108. JPEG_SM_1

SM CODE JPEG_SM_1

Description Periodic test for JPEG encoding/decoding functions

Ownership End user

Detailed implementation

JPEG encoding/decoding functions performed by JPEG codec are tested by comparison,
executing the functions over a set of reference images stored in the flash memory and
checking the correctness of output images. The method diagnostic coverage depends on the
quantity and composition of image set used for the checks.

The comparison of output image with expected result can be executed bit-by-bit or even by
faster methods like CRC-seed (computed via DMA transactions) checks.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations If only one kind of function between encoding and decoding is used by Application software,
the method can be simplified restricting the test to the used function only.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 67/137

Table 109. JPEG_SM_2

SM CODE JPEG_SM_2

Description Application-level detection of failures affecting JPEG coding/encoding

Ownership End user

Detailed implementation

Several application-level methods can be used to detect failures affecting JPEG coding/
encoding; being no possible to give detailed information for its implementation, only high level
guidelines/hints are provided:
• Permanent and transient failures: Application software checks on expected output

image characteristics (for example, after the processing by image recognition
algorithms)

• Transient faults: Application software checks on images redundancy (in case of
sequence coming from video stream) possibly discarding wrongly-processed frames.
This rationale could be also used to derate a part of transient failure rate as no effect.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations These methods are strictly application-dependent; therefore, their implementation and any
related claims in terms of failure mitigations are End user’s responsibility.

Note: The use of the DMA feature inside this module requires the adoption of the set of safety mechanism defined for
the system DMA (refer to Section 3.6.14: General purpose and high-performance direct memory access
controller (GPDMA, HPDMA)).

3.6.32 HASH processor (HASH)

Table 110. HASH_SM_0

SM CODE HASH_SM_0

Description Periodic read-back of HASH configuration registers

Ownership End user

Detailed implementation
This method must be applied to HASH configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration HASH module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 68/137

Table 111. HASH_SM_1

SM CODE HASH_SM_1

Description HASH processing collateral detection

Ownership ST

Detailed implementation
Message digest computation performed by HASH module is composed by several data
manipulations and checks. A major part of the hardware random failures affecting HASH
module leads to algorithm violations/errors, and so to decoding errors on the receiver side.

Error reporting Several error condition can happens, check functional documentation.

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration HASH module available only on specific part numbers

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for HASH efficiency is not available. HASH run-time hardware failures
leading to disabling related collateral protection fall into multiple-fault scenario, from
IEC 61508 perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection HASH_SM_0: Periodic read-back of HASH configuration registersCPU_SM_0: Periodic core
self-test software

Recommendations and known limitations
This detection capability can be used to implement software-based tests (by processing a
predefined message and further checking the expected results) which can be executed
periodically to early detect HASH failures before its use by application software.

Note: Hardware random failures consequences on potential security features violations are not analyzed in this
manual.

3.6.33 On-the-fly decryption engine (OTFDEC)

Table 112. OTFDEC_SM_0

SM CODE OTFDEC_SM_0

Description Periodic read‑back of OTFDEC configuration registers

Ownership End user

Detailed implementation
This method must be applied to OTFDEC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 69/137

Table 113. OTFDEC_SM_1

SM CODE OTFDEC_SM_1

Description OTFDEC encryption/decryption collateral detection

Ownership ST

Detailed implementation

Decryption operations performed by OTFDEC module are composed by several data
manipulations and checks, with different level of complexity according to the selected chaining
algorithm. Part of the hardware random failures affecting OTFDEC module leads to the raise
of error flags.

Error reporting Several error conditions can happen, check functional documentation.

Fault detection time Depends on peripheral configuration. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Dependency on Device configuration

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection
OTFDEC_SM_2: Arm® Cortex®M7 HardFault exceptions

OTFDEC_SM_3: Static data encapsulation

Recommendations and known limitations None

Table 114. OTFDEC_SM_2

SM CODE OTFDEC_SM_2

Description Arm® Cortex®-M7 HardFault exceptions

Ownership ST

Detailed implementation

Permanent and transient faults affecting the OTFDEC logic and registers may lead to
application software or firmware decryption errors and so to the execution of incorrect
instruction codes, and eventually to the intervention of the Arm® Cortex®M7 HardFault
exceptions. Refer to CPU_SM_3 for detailed description.

Error reporting Refer to CPU_SM_3

Fault detection time Refer to CPU_SM_3

Addressed fault model Refer to CPU_SM_3

Dependency on Device configuration Refer to CPU_SM_3

Initialization Refer to CPU_SM_3

Periodicity Refer to CPU_SM_3

Test for the diagnostic Refer to CPU_SM_3

Multiple-fault protection Refer to CPU_SM_3

Recommendations and known limitations This method is efficient only when OTFDEC is used for executable code decryption

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 70/137

Table 115. OTFDEC_SM_3

SM CODE OTFDEC_SM_3

Description Static data encapsulation

Ownership End user

Detailed implementation
If static data stored in flash memory need to be decrypted by OTFDEC, then an encapsulation
by a checksum field with encoding capability (such as CRC) must be implemented. Checksum
validity is checked by Application software before static data consuming.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations This method is efficient only when OTFDEC is used for data decryption

3.6.34 Public key accelerator (PKA)

Table 116. PKA_SM_0

SM CODE PKA_SM_0

Description Periodic read‑back of PKA configuration registers

Ownership End user

Detailed implementation
This method must be applied to PKA configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 117. PKA_SM_1

SM CODE PKA_SM_1

Description PKA key computation collateral detection

Ownership ST

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 71/137

SM CODE PKA_SM_1

Detailed implementation

Key and/or signature computation performed by PKA module is composed by several data
manipulations, with different level of complexity according to the selected algorithm. A large
part of the hardware random failures affecting PKA module or its private RAM bank leads to
wrong key/signature computation. As per CoU_9, security violations must be considered as
non-controllable hardware random failures; accordingly, detection of a wrong key/signature
must be considered as a valid hardware failure detection by the Application software.

Error reporting Depends on peripheral configuration. Refer to functional documentation.

Fault detection time Depends on peripheral configuration. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

3.6.35 True random number generator (RNG)

Table 118. RNG_SM_0

SM CODE RNG_SM_0

Description Periodic read-back of RNG configuration register

Ownership End user

Detailed implementation
This method must be applied to RNG configuration register RNG_CR.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration RNG module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 72/137

Table 119. RNG_SM_1

SM CODE RNG_SM_1

Description RNG module entropy on-line tests

Ownership ST and End user

Detailed implementation

RNG module include an internal diagnostic for the analog source entropy that can be used to
detect failures on the module itself. Furthermore, the required test on generated random
number difference between the previous one (as required by FIPS PUB 140-2) can be
exploited as well.

Implementation:
• Check for RNG error conditions.
• Check the difference between generated random number and the previous one.

Error reporting
CEIS, SEIS error bits of the RNG status register (RNG_SR)

Application software error for FIPS PUB 140-2 test fail

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration RNG module available only on specific part numbers

Initialization Permanent/transient

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

3.6.36 Advanced encryption standard hardware accelerator/Secure AES coprocessor (AES/SAES)

Table 120. AES_SM_0

SM CODE AES_SM_0

Description Periodic read-back of AES configuration registers

Ownership End user

Detailed implementation
This method must be applied to AES configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration AES module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 73/137

Table 121. AES_SM_1

SM CODE AES_SM_1

Description Encryption/decryption collateral detection

Ownership ST

Detailed implementation

Encryption and decryption operations performed by AES module are composed by several
data manipulations and checks, with different level of complexity according to the selected
chaining algorithm. A major part of the hardware random failures affecting AES module leads
to algorithm violations/errors. Leading to decoding errors on the receiver side.

Error reporting Several error conditions can happen, check functional documentation.

Fault detection time Dependency on Device configuration

Addressed fault model Permanent/transient

Dependency on Device configuration AES module available only on specific part numbers

Initialization Dependency on Device configuration

Periodicity Continuous

Test for the diagnostic

Direct test procedure for AES efficiency is not available. AES run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection AES_SM_2: Information redundancy techniques on messages, including end-to-end
protection

Recommendations and known limitations
This detection capability can be used to implement software-based tests (by processing a
predefined message and further checking the expected results) which can be executed
periodically to early detect AES failures before its use by application software.

Table 122. AES_SM_2

SM CODE AES_SM_2

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation

This method aim to protect the communication between a peripheral and his external
counterpart. It is used in AES local safety concept to address failures not detected by the
encryption/decryption features.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration AES module available only on specific part numbers

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
Important note: it is assumed that the remote counterpart has an equivalent capability of
performing the checks described.

Refer to UART_SM_3 for further notice.

Important: Hardware random failure consequences on potential violations of Device security feature are not detailed in this
manual.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 74/137

3.6.37 Cryptographic processor (CRYP)

Table 123. CRYP_SM_0

SM CODE CRYP_SM_0

Description Periodic read-back of CRYP configuration registers

Ownership End user

Detailed implementation
This method must be applied to CRYP configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration CRYP module available only on specific part numbers

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 124. CRYP_SM_1

SM CODE CRYP_SM_1

Description Encryption/decryption collateral detection

Ownership ST

Detailed implementation

Encryption and decryption operations performed by CRYP module are composed by several
data manipulations and checks, with different level of complexity according to the selected
chaining algorithm. A major part of the hardware random failures affecting CRYP module
leads to algorithm violations/errors. Leading to decoding errors on the receiver side.

Error reporting Several error conditions can happen, check functional documentation.

Fault detection time Dependency on Device configuration

Addressed fault model Permanent/transient

Dependency on Device configuration CRYP module available only on specific part numbers

Initialization Dependency on Device configuration

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRYP efficiency is not available. CRYP run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection CRYP_SM_2: Information redundancy techniques on messages, including end-to-end
protection

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 75/137

Table 125. CRYP_SM_2

SM CODE CRYP_SM_2

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation

This method aim to protect the communication between a peripheral and his external
counterpart. It is used in CRYP local safety concept to address failures not detected by the
encryption/decryption features.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration CRYP module available only on specific part numbers

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
Important note: it is assumed that the remote counterpart has an equivalent capability of
performing the checks described.

Refer to UART_SM_3 for further notice.

Important: Hardware random failure consequences on potential violations of Device security feature are not detailed in this
manual.

3.6.38 Advanced-control/General-purpose/High resolution and low-power timers
As the timers have multiple mutually independent channels possibly used for different functions, the safety
mechanism is selected individually for each channel.

Table 126. ATIM_SM_0

SM CODE ATIM_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to advanced, general-purpose and low-power timer configuration
registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 76/137

Table 127. ATIM_SM_1

SM CODE ATIM_SM_1

Description 1oo2 for counting timers

Ownership End user

Detailed implementation

This method implements via software a 1oo2 scheme between two counting resources.

The guidelines for the implementation of the method are the following:
• Two timers are programmed with same time base or frequency.
• In case of timer use as a time base: use in Application software one of the timer as time

base source, and the other one just for check. Coherence check for the 1oo2 is done at
application level, comparing two counter values each time the timer value is used to
affect safety function.

• In case of interrupt generation: use the first timer as main interrupt source for the
service routines, and the second timer as a “reference” to be checked at the initial of
interrupt routine.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Tolerance implementation in timer checks is recommended to avoid false positive outcomes of
the diagnostic.

This method applies to timer channels merely used as elapsed time counters.

Events related to timers protected by the safety mechanisms must be monitored inside the
routine managing the external watchdog (CPU_SM_5) reset.

Note: One timer may act as a reference for multiple other timers.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 77/137

Table 128. ATIM_SM_2

SM CODE ATIM_SM_2

Description 1oo2 for input capture timers

Ownership End user

Detailed implementation

This method is conceived to protect timers used for acquisition and measurement of external
signals (input capture, encoder reading). The implementation consists in connecting the
external signals also to a redundant timer, and checking the coherence of the measured data
at application level.

Coherence check between timers is executed each time the reading is used by Application
software.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
To reduce the potential effect of common cause failures, it is suggested to use for redundant
check a channel belonging to a different timer module and mapped to non-adjacent pin on the
device package.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 78/137

Table 129. ATIM_SM_3

SM CODE ATIM_SM_3

Description Loopback scheme for pulse width modulation (PWM) outputs

Ownership End user

Detailed implementation

This method is implemented by connecting the PWM to a separate timer channel to acquire
the generated waveform characteristics.

The guidelines are the following:
• Both PWM frequency and duty cycle are measured and checked versus the expected

value.
• To reduce the potential effect of common cause failure, it is suggested to use for the

loopback check a channel belonging to a different timer module and mapped to non-
adjacent pins on the device package.

This measure can be replaced under the end-user responsibility by different loopback
schemes already in place in the final application and rated as equivalent. For example if the
PWM is used to drive an external power load, the reading of the on-line current value can be
used instead of the PWM duty cycle measurement.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of PWM wrong signal permanence (wrong frequency, wrong duty, or
both) required to violate the related safety function(s). Efficiency is maximized when execution
test frequency is higher than 1/Tm.

Table 130. ATIM_SM_4

SM CODE ATIM_SM_4

Description Lock bit protection for timers

Ownership ST

Detailed implementation
This safety mechanism allows End user to lock down specified configuration options, thus
avoiding unintended modifications by Application software. Therefore, it addresses software
development systematic faults.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model None (Fault avoidance)

Dependency on Device configuration None

Initialization Lock protection must be enabled using LOCK bits in the TIMx_BDTR register.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations This method does not address timer configuration changes due to soft errors.

Note: IRTIM is not individually mentioned here as its implementation is mostly based on general-purpose timer
functions. Refer to related prescriptions.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 79/137

3.6.39 Basic timers

Table 131. GTIM_SM_0

SM CODE GTIM_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to basic timer configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 132. GTIM_SM_1

SM CODE GTIM_SM_1

Description 1oo2 for counting timers

Ownership End user

Detailed implementation

This method implements via software a 1oo2 scheme between two counting resources.

The guidelines for the implementation of the method are the following:
• Two timers are programmed with same time base or frequency.
• In case of timer use as a time base: use in Application software one of the timer as time

base source, and the other one just for check. Coherence check for the 1oo2 is done at
application level, comparing two counters values each time the timer value is used to
affect safety function.

• In case of interrupt generation usage: use the first timer as main interrupt source for the
service routines, and use the second timer as a “reference” to be checked at the initial
of interrupt routine.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Tolerance implementation in timer checks is recommended to avoid false positive outcomes of
the diagnostic.

Events related to timers protected by the safety mechanisms must be monitored inside the
routine managing the external watchdog reset.

Note: One timer may act as a reference for multiple other timers.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 80/137

3.6.40 Independent and system window watchdogs (IWDG and WWDG)

Table 133. WDG_SM_0

SM CODE WDG_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to IWDG/WWDG configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 134. WDG_SM_1

SM CODE WDG_SM_1

Description Software test for watchdog at startup

Ownership End user

Detailed implementation

This safety mechanism ensures the right functionality of the internal watchdogs in use. The
test implementation allows the application software to induce a watchdog reset for a specific
purpose such as at startup, and to determine that the cause of the reset was the test
procedure itself, and not a software/hardware malfunction. This is confirmed by reading the
associated hardware flag in the RCC status register before and after the test and applying
specific SW flag, which stores nontrivial pattern at SRAM, just during the test execution. Both
the HW and SW flags must be cleared once the test is done. This is essential to avoid
repeating the test in a loop, and to correctly manage watchdog resets related to failures.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Startup

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
In a typical End user application, this test can be executed only at startup and during
maintenance or offline periods. It could be associated to IEC 61508 concept of “proof test” and
so it cannot be accounted for a diagnostic coverage contribution during operating time.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 81/137

3.6.41 Real-time clock module (RTC)

Table 135. RTC_SM_0

SM CODE RTC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to RTC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 136. RTC_SM_1

SM CODE RTC_SM_1

Description Application check of running RTC

Ownership End user

Detailed implementation

The Application software implements some plausibility check on RTC calendar or timing data,
mainly after a power-up and further date reading by RTC.

The guidelines for the implementation of the method are the following:
• RTC backup registers are used to store coded information in order to detect the

absence of VBAT during power-off period.
• RTC backup registers are used to periodically store compressed information on current

date or time
• The Application software executes minimal consistence checks for date reading after

power-on (detecting “past” date or time retrieve).
• The Application software periodically checks that RTC is actually running, by reading

RTC timestamp progress and comparing with an elapsed time measurement based on
STM32 internal clock or timers.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

This method provides a limited diagnostic coverage for RTC failure modes. In case of End
user application where RTC timestamps accuracy can affect in severe way the safety function
(for example, medical data storage devices), it is strongly recommended to adopt more
efficient system-level measures.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 82/137

Table 137. RTC_SM_2

SM CODE RTC_SM_2

Description Information redundancy on backup registers

Ownership End user

Detailed implementation

Data stored in RTC backup registers must be protected by a checksum with encoding
capability (for instance, CRC). Checksum must be checked by application software before
consuming stored data.

This method guarantees data versus erases due to backup battery failures.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 138. RTC_SM_3

SM CODE RTC_SM_3

Description Application-level measures to detect failures in timestamps/event capture

Ownership End user

Detailed implementation
This method must detect failures affecting the RTC capability to correct execute the
timestamps/event capture functions. Due to the nature strictly application-dependent of this
solution, no detailed guidelines for its implementation are given here.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

This method must be used only if the timestamps/event capture function is used in the safety
function implementation. It is worth noting that the use of timestamp / event capture in safety-
related applications with the MCU in Sleep or Stop mode is prevented by the assumed
requirement ASR7 (refer to Section 3.3.1: Safety requirement assumptions).

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 83/137

3.6.42 Tamper and backup registers (TAMP)

Table 139. TAMP_SM_0

SM CODE TAMP_SM_0

Description Information redundancy on tamper backup registers

Ownership End user

Detailed implementation

Data stored in tamper backup registers must be protected by a checksum with encoding
capability (for instance, CRC). Checksum must be checked by Application software before
consuming stored data.

This method guarantees data versus erases due to backup battery failures.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

3.6.43 Inter-integrated circuit (I2C, I3C)

Table 140. IIC_SM_0

SM CODE IIC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to I2C configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 84/137

Table 141. IIC_SM_1

SM CODE IIC_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation
I2C communication module embeds protocol error checks (like overrun, underrun, packet
error etc.) conceived to detect network-related abnormal conditions. These mechanisms are
only able to detect a small fraction of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection IIC_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
Adoption of SMBus option grants the activation of more efficient protocol-level hardware
checks such as CRC-8 packet protection.

Enabling related interrupt generation on the detection of errors is highly recommended.

Table 142. IIC_SM_2

SM CODE IIC_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by I2C a redundancy check
(such as a CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote I2C counterpart has an equivalent capability of performing the
check described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

Important: This method must be considered as a subset of IIC_SM_4. Therefore, the
implementation of IIC_SM_4 completely overlap this method. Refer to [4] for
additional details.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 85/137

Table 143. IIC_SM_3

SM CODE IIC_SM_3

Description CRC packet-level

Ownership ST

Detailed implementation I2C communication module allows to activate for specific mode of operation (SMBus) the
automatic insertion (and check) of CRC checksums to packet data.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection IIC_SM_2: Information redundancy techniques on messages

Recommendations and known limitations

This method can be part of the implementation for IIC_SM_2 or IIC_SM_4. In that case,
because of the warning issued in the Test for the diagnostic field, this mechanism can not be
the only one to guarantee message integrity.

Enabling related interrupt generation on the detection of errors is highly recommended.

This safety mechanism is not applicable to I3C

Table 144. IIC_SM_4

SM CODE IIC_SM_4

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation
This method aims to protect the communication between a I2C peripheral and his external
counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
It is assumed that the remote I2C counterpart has an equivalent capability of performing the
checks described.

Refer to UART_SM_3 for further notice.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 86/137

3.6.44 Universal synchronous/asynchronous receiver/transmitter and low power universal
asynchronous receiver/transmitter (USART, UART, LPUART)

Table 145. UART_SM_0

SM CODE UART_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to USART, UART, LPUART configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 146. UART_SM_1

SM CODE UART_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

USART, UART, LPUART communication module embeds protocol error checks (like additional
parity bit check, overrun, frame error) conceived to detect network-related abnormal
conditions. These mechanisms are only able to detect a small fraction of hardware random
failures affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection UART_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
USART, UART, LPUART communication module allows several different configurations. The
actual composition of communication error checks depends on the selected configuration.

Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 87/137

Table 147. UART_SM_2

SM CODE UART_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented by adding to data packets transferred by this peripheral a
redundancy check (such as a CRC check, or similar one) with encoding capability. The
checksum encoding capability must be robust enough to guarantee at least 90% probability of
detection for a single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote counterpart has an equivalent capability of performing the check
described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

Important: This method must be considered as a subset of UART_SM_3. Therefore,
the implementation of UART_SM_3 completely overlap this method. Refer to
[4] for additional details.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 88/137

Table 148. UART_SM_3

SM CODE UART_SM_3

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation

This method aims to protect the communication between a peripheral and his external
counterpart establishing a kind of “protected” channel. The aim is to specifically address
communication failure modes as reported in IEC 61508-2, 7.4.11.1.

Implementation guidelines are as follows:
• Data packet must be protected (encapsulated) by an information redundancy check,

like for instance a CRC checksum computed over the packet and added to payload.
Checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single-bit flip in the data packet.

• Additional field added in payload reporting an unique identification of sender or receiver
and an unique increasing sequence packet number.

• Timing monitoring of the message exchange (for example check the message arrival
within the expected time window), detecting therefore missed message arrival
conditions.

• Application software must verify before consuming data packet its consistency (CRC
check), its legitimacy (sender or receiver) and the sequence correctness (sequence
number check, no packets lost).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

A major overlap between the requirements of this method and the implementation of complex
communication software protocols can exists. Due to large adoption of these protocols in
industrial applications, optimizations can be possible.

It is assumed that the remote counterpart has an equivalent capability of performing the
checks described.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 89/137

3.6.45 Serial peripheral interface (SPI)

Table 149. SPI_SM_0

SM CODE SPI_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to SPI configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 150. SPI_SM_1

SM CODE SPI_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation
SPI communication module embeds protocol error checks (like overrun, underrun, timeout
and so on) conceived to detect network-related abnormal conditions. These mechanisms are
only able to detect a small fraction of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection SPI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 90/137

Table 151. SPI_SM_2

SM CODE SPI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by SPI a redundancy check
(such as a CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote counterpart has an equivalent capability of performing the check
described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

Important: This method must be considered as a subset of SPI_SM_4. Therefore, the
implementation of SPI_SM_4 completely overlap this method. Refer to [4]
for additional details.

Table 152. SPI_SM_3

SM CODE SPI_SM_3

Description CRC packet-level

Ownership ST

Detailed implementation SPI communication module allows to activate automatic insertion (and check) of CRC-8 or
CRC-18 checksums to packet data.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection SPI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
This method can be part of the implementation for SPI_SM_2 or SPI_SM_4. In that case,
because of the warning issued in the Test for the diagnostic field, this mechanism can not be
the only one to guarantee message integrity.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 91/137

Table 153. SPI_SM_4

SM CODE SPI_SM_4

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation
This method aims to protect the communication between SPI peripheral and his external
counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
Refer to UART_SM_3 for further notice.

It is assumed that the remote SPI counterpart has an equivalent capability of performing the
checks described.

3.6.46 Serial audio interface (SAI)

Table 154. SAI_SM_0

SM CODE SAI_SM_0

Description Periodic read-back of SAI configuration registers

Ownership End user

Detailed implementation
This method must be applied to SAI configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 92/137

Table 155. SAI_SM_1

SM CODE SAI_SM_1

Description SAI output loopback scheme

Ownership End user

Detailed implementation

This method uses a loopback scheme to detect permanent and transient faults on the output
channel used for serial audio frame generation. It is implemented by connecting the second
serial audio interface as input for primary output generation. Application software is able
therefore to identify wrong or missing audio frame generation.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous/ On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of serial audio wrong signal permanence required to violate the
related safety function(s). Efficiency is maximized when execution test frequency is higher
than 1/Tm.

Method to be used when SAI interface safety-related use is audio stream generation.

Table 156. SAI_SM_2

SM CODE SAI_SM_2

Description 1oo2 scheme for SAI module

Ownership End user

Detailed implementation
This safety mechanism is implemented using the two SAI interfaces to decode/receive the
same input stream audio. Application software checks the coherence between the received
data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
The MCU performance overload and the implementation complexity associated to this method
can be relevant.

Method to be used when SAI interface safety-related use is audio stream receive.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 93/137

3.6.47 SPDIF receiver interface (SPDIFRX)

Table 157. SPDF_SM_0

SM CODE SPDF_SM_0

Description Periodic read-back of SPDIF configuration registers

Ownership End user

Detailed implementation
This method must be applied to SPDIF configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 158. SPDF_SM_1

SM CODE SPDF_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

IEC60598 S/PDIF data frame specification used in SPDIF interface embeds protocol error
checks (like overrun, underrun, bit timing violations, parity, etc.) conceived to detect
transmission-related abnormal conditions. These mechanisms are able anyway to detect a
marginal percentage of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection SPDF_SM_0: Periodic read-back of SPDIF configuration registers

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 94/137

Table 159. SPDF_SM_2

SM CODE SPDF_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation
This method is implemented adding to data S/PDIF data stream some form of information
redundancy, possibly including information repetition, to address failure modes affecting the
decoding section of the module.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
This method could be replaced by application-level alternative measures checking the
correctness of the audio stream received. One given example could be represented by a set
of plausibility checks executed after post-elaboration by voice recognition algorithms.

3.6.48 Management data input/output (MDIOS)

Table 160. MDIO_SM_0

SM CODE MDIO_SM_0

Description Periodic read-back of MDIO slave configuration registers

Ownership End user

Detailed implementation
This method must be applied to MDIO slave configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 161. MDIO_SM_1

SM CODE MDIO_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

MDIO communication protocol is based on a packet handling concept, including preamble/
start/stop correct conditions checks. This mechanism, mainly implemented to manage on field
communication disturbance, is able to achieve a relevant diagnostic coverage on several
MDIO module failure modes.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 95/137

SM CODE MDIO_SM_1

Error reporting Error conditions are reported by flag bits in related registers, and interrupt generation.

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Permanent/transient

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection DSI_SM_0: Periodic read-back of DSI configuration registers

Recommendations and known limitations Not applicable

Table 162. MDIO_SM_2

SM CODE MDIO_SM_2

Description Information redundancy techniques on MDIO registers contents, including register update
awareness

Ownership End user

Detailed implementation

Information provided by external parties by MDIO communication must be protected by
redundancy schemes (encoded data values and possibly the definition of a checksum
register).

Application software must be aware of any register value update executed by external parties,
so it is needed the implementation of a validate/invalidate mechanism to:
• report to external party that updated data have been consumed
• mark as invalidated any data already consumed
• allow external party to inform Application software that new data are available

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not required

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
It is assumed that the external entity responsible to update/send data to Application software
by the MDIO communication link is able to contribute to the MDIO failure mitigation, by
detecting missing or incomplete data consumption.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 96/137

3.6.49 Secure digital input/output MultiMediaCard interface (SDMMC)

Table 163. SDIO_SM_0

SM CODE SDIO_SM_0

Description Periodic read-back of SDIO/SMMC configuration registers

Ownership End user

Detailed implementation
This method must be applied to SDIO/SMMC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 164. SDIO_SM_1

SM CODE SDIO_SM_1

Description Protocol error signals including hardware CRC

Ownership ST

Detailed implementation

SDIO/SMMC communication module embeds protocol error checks (like overrun, underrun,
timeout etc.) and CRC-packet checks as well, conceived to detect network-related abnormal
conditions. These mechanisms are only able to detect a small fraction of hardware random
failures affecting the module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection SDIO_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 97/137

Table 165. SDIO_SM_2

SM CODE SDIO_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by SDIO/SMMC a redundancy
check (like a CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

This safety mechanism can overlap with information redundancy techniques implemented at
system level to address failure of physical device connected to SDIO/SMMMC port.

Note: The safety mechanisms mentioned above are addressing the SDIO/SMMC interface included in STM32 MCUs.
No claims are done in this Safety Manual about the mitigation of hardware random faults affecting the external
memory connected to SDIO/SMMC port.

3.6.50 Controller area network (FDCAN)

Table 166. CAN_SM_0

SM CODE CAN_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to FDCAN configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 98/137

Table 167. CAN_SM_1

SM CODE CAN_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

CAN communication module embeds protocol error checks (like error counters) conceived to
detect network-related abnormal conditions. These mechanisms are only able to detect a
small fraction of hardware random failures affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Several error condition are reported by flag bits in related CAN registers.

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CAN_SM_2: Information redundancy techniques on messages, including end-to-end
protection.

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 99/137

Table 168. CAN_SM_2

SM CODE CAN_SM_2

Description Information redundancy techniques on messages, including end-to-end protection.

Ownership End user

Detailed implementation

This method aims to protect the communication between a peripheral and his external
counterpart establishing a kind of “protected” channel. The aim is to specifically address
communication failure modes as reported in IEC 61508-2, 7.4.11.1.

Implementation guidelines are as follows:
• Data packet must be protected (encapsulated) by an information redundancy check,

like for instance a CRC checksum computed over the packet and added to payload.
Checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single-bit flip in the data packet.

• Additional field added in payload reporting an unique identification of sender or receiver
and an unique increasing sequence packet number.

• Timing monitoring of the message exchange (for example check the message arrival
within the expected time window), detecting therefore missed message arrival
conditions.

• Application software must verify before consuming data packet its consistency (CRC
check), its legitimacy (sender or receiver) and the sequence correctness (sequence
number check, no packets lost).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

A major overlap between the requirements of this method and the implementation of complex
communication software protocols can exists. Due to large adoption of these protocols in
industrial applications, optimizations can be possible.

It is assumed that the remote counterpart has an equivalent capability of performing the
checks described.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 100/137

3.6.51 USB on-the-go full-speed, USB on-the-go high-speed (OTG_FS, OTG_HS)

Table 169. USB_SM_0

SM CODE USB_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to USB configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 170. USB_SM_1

SM CODE USB_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation
USB communication module embeds protocol error checks (like overrun, underrun, NRZI, bit
stuffing etc.) conceived to detect network-related abnormal conditions. These mechanisms are
only able to detect a small fraction of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection USB_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 101/137

Table 171. USB_SM_2

SM CODE USB_SM_2

Description Information redundancy techniques on messages

Ownership End user or ST

Detailed implementation
The implementation of required information redundancy on messages, USB communication
module is fitted by hardware capability. It basically allows to activate the automatic insertion
(and check) of CRC checksums to packet data.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Error reporting configuration, if interrupt events are planned

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Important: This method must be considered as a subset of USB_SM_3. Therefore, the

implementation of USB_SM_3 completely overlap this method. Refer to [4]
for additional details.

Table 172. USB_SM_3

SM CODE USB_SM_3

Description Information redundancy techniques on messages, including end-to-end protection.

Ownership End user

Detailed implementation
This method aims to protect the communication between the OTG_FS, OTG_HS peripheral
and its external counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
This method applies in case USB bulk or isochronous transfers are used. For other transfers
modes the USB hardware protocol already implements several features of this requirement.

Refer to UART_SM_3 for further notice.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 102/137

3.6.52 USB Type-C® / USB Power Delivery interface (UCPD)

Table 173. UCPD_SM_0

SM CODE UCPD_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to UCPD configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 174. UCPD_SM_1

SM CODE UCPD_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

UCPD communication module embeds protocol error checks (including CRC encoding at
packet level) conceived to detect network-related abnormal conditions. These mechanisms
are able anyway to detect a marginal percentage of hardware random failures affecting the
module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection UCPD_SM_3: Information redundancy techniques on messages, including end-to-end
protection

Recommendations and known limitations None

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 103/137

Table 175. UCPD_SM_2

SM CODE UCPD_SM_2

Description UCPD state machine monitoring

Ownership End user

Detailed implementation

The time evolution of the state machine associated to the status of the external peer(s)
connected to UCPD peripheral must be monitored. Deviation between the current peer status
and the expected one must be considered as effect of hardware random failure, leading to an
error raise to Application software.

Error reporting Depends on implementation

Fault detection time Depends on implementation. The relationship between maximum allowed time drift for remote
peer status transition and overall PST must be considered.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 176. UCPD_SM_3

SM CODE UCPD_SM_3

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation
This method aims to protect the communication between the UCPD peripheral and its external
counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations Refer to UART_SM_3 for further notice.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 104/137

3.6.53 Ethernet (ETH): media access control (MAC) with DMA controller

Table 177. ETH_SM_0

SM CODE ETH_SM_0

Description Periodic read-back of Ethernet configuration registers

Ownership End user

Detailed implementation
This method must be applied to Ethernet configuration registers (including those relate to
unused module features). Detailed information on the implementation of this method can be
found in Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 178. ETH_SM_1

SM CODE ETH_SM_1

Description Protocol error signals including hardware CRC

Ownership ST

Detailed implementation

Ethernet communication module embeds protocol error checks (like overrun, underrun,
timeout, packet composition violation etc.) and CRC-packet checks as well, conceived to
detect network-related abnormal conditions. These mechanisms are able anyway to detect a
percentage of hardware random failures affecting the module itself.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC 61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection ETH_SM_2: Information redundancy techniques on messages, including end-to-end
protection

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 105/137

Table 179. ETH_SM_2

SM CODE ETH_SM_2

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation

This method aim to protect the communication between a peripheral and its external
counterpart. It is used in Ethernet local safety concept to address failures not detected by
ETH_SM_1 and to increase its associated diagnostic coverage.

Refer to UART_SM_3 description for detailed information.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations The implementation on Application software of complex Ethernet-based communication
stacks (like TCP/IP) is able to satisfy the requirements of this method.

Note: The use of the DMA feature inside Ethernet module requires the adoption of the set of safety mechanisms
defined for DMA (refer to Section 3.6.14: General purpose and high-performance direct memory access
controller (GPDMA, HPDMA)).

3.6.54 Extended-SPI interface (XSPI), XSPI I/O manager (XSPIM)

Table 180. XSPI_SM_0

SM CODE XSPI_SM_0

Description Periodic read-back of XSPI, XSPIM configuration registers

Ownership End user

Detailed implementation

This method must be applied to XSPI, XSPIM configuration registers (including those relate to
unused module features).

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Note: Failures of XSPI, XSPIM modules are addressed by the combination of safety measures needed to protect the
integrity of data stored in the external memories connected through XSPI, XSPIM. The combination of safety
mechanisms depends on the nature of stored data.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 106/137

3.6.55 HDMI-CEC (CEC)

Table 181. HDMI_SM_0

SM CODE HDMI_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to CEC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 182. HDMI_SM_1

SM CODE HDMI_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

CEC communication module embeds protocol error checks (such as additional parity bit
check, overrun, frame error) conceived to detect network-related abnormal conditions. These
mechanisms are able anyway to detect a marginal percentage of hardware random failures
affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for instance baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection HDMI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 107/137

Table 183. HDMI_SM_2

SM CODE HDMI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by CEC a redundancy check
(such as CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote HDMI-CEC counterpart has an equivalent capability of
performing the check described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
inappropriate.

3.6.56 Graphic timer (GFXTIM)
If GFXTIM timer features are used within graphic modules, its failures are assumed to be addressed by related
application-dependent safety concepts. If, instead, the GFXTIM timer is used as a standard timer, refer to
guidance provided for general-purpose timers (Section 3.6.39: Basic timers).

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 108/137

3.6.57 Disable and periodic cross-check of unintentional activation of unused peripherals
This section reports safety mechanisms that address peripherals not used by the safety application, or not used at
all.

Table 184. FFI_SM_0

SM CODE FFI_SM_0

Description Disable of unused peripherals

Ownership End user

Detailed implementation

This method contributes to the reduction of the probability of cross-interferences caused by
peripherals not used by the software application, in case a hardware failure causes an
unintentional activation.

After the system boot, Application software must disable all unused peripherals with this
procedure:
• Enable reset flag on AHB and APB peripheral reset register.
• Disable clock distribution on AHB and APB peripheral clock enable register.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model Not applicable

Dependency on Device configuration None

Initialization Not applicable

Periodicity Startup

Test for the diagnostic Not applicable

Multiple-fault protection FFI_SM_1: Periodic read-back of interference avoidance registers

Recommendations and known limitations None

Table 185. FFI_SM_1

SM CODE FFI_SM_1

Description Periodic read-back of interference avoidance registers

Ownership End user

Detailed implementation

This method contributes to the reduction of the probability of cross-interferences between
peripherals that can potentially conflict on the same input/output pins, including for instance
unused peripherals. This diagnostic measure must be applied to following registers:
• clock enable and disable registers
• alternate function programming registers

Detailed information on the implementation of this method can be found in
Section 3.6.17: Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 109/137

3.6.58 System

Table 186. DUAL_SM_0

SM CODE DUAL_SM_0

Description Cross-check between two STM32 devices

Ownership End user

Detailed implementation

This method is implemented in the spirit of technique described in IEC 61508-7, A.3.5 “Reciprocal comparison
by software”, which is rated in IEC 61508-2 Table A.4 as capable to achieve high level of diagnostic coverage.

The two processing units exchange data reciprocally, and a fail in the comparison is considered as a detection
of a failure in one of the two unit. The guidelines for the implementation are the following:

• Data exchanged include output results, intermediate results(1) and the results (pass/fail) of each software-
implemented safety mechanisms executed on periodic basis on both MCUs (for example CPU_SM_0)

• Software routines devoted to data exchange/comparison must be logically separated from the software
implementing the safety function(s).

• Systematic capability of software implementing this method must be equal or above the one of the
software implementing the safety function(s).

• Independence and lack of interference between the software implementing the data exchange/
comparison and the one implementing the safety function(s) must be proven.

• Frequency of data exchange/comparison is imposed by the system PST (refer to related timing
constraints for periodic safety mechanisms), except for output results which needs to be exchanged/
compared at the same rate they are potentially updated.

Error reporting -

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device
configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software (individually executed on both processing units)

Recommendations and
known limitations

This method is usually rated as optional because it is not strictly needed in the framework of 1oo2 architecture
described in Section 3.2.4: Reference safety architectures - 1oo2. Anyway, it is included here only for its use in
such an architecture.

This method can provide additional safety margin for systems that need further protection against fault
accumulation.

Because this method could be a potential source of common cause failure between the two 1oo2 channels (in
case of incorrect implementation), End user is recommended to closely follow the Detailed implementation
guidelines in this table.

1. the value of each variable able to directly influence the final individual channel output, such as:
– variables included in computation of the final result; for example, of a PWM rate
– variables involved in a decision determining the final result; for example, two variables used in a comparison which determines if a

GPIO output is set high or low.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 110/137

3.7 Conditions of use
The table below provides a summary of the safety concept recommendations reported in Section 3.6: Hardware
and software diagnostics. The conditions of use to be applied to STM32H7Rx/7Sx devices are reported in form of
safety mechanism requirements. Exception is represented by some conditions of use introduced by FMEA
analysis in order to correctly address specific failure modes. These conditions of use are reported at the end of
the table presented in this section.
Rank column reports how related safety mechanism has been considered during the analysis, with following
meaning:

++ The safety mechanism is highly recommended as common practice. It is considered in this document for the
computation of safety metrics to allow the use of Device in systems implementing safety functions up to SIL2 with
a single MCU or up to SIL3 with two MCUs in 1oo2 scheme. Missing implementation may lead to invalidate any
safety feature claimed in this manual and must be supported by adequate arguments under end user responsibility
(refer to Section 4.1.1 for guidance).

+ The safety mechanism is recommended as additional safety measure, but not considered in this document for the
computation of safety metrics. The End user can skip the implementation in case it is in contradiction with
functional requirements or overlapped by another mechanism ranked ++.

o The safety mechanism is optional. It is not strictly required for the implementation of safety functions up to SIL2, or
it is related to a specific MCU configuration.

The X marker in the Perm and Trans table columns indicates that the related safety mechanism is effective for
such fault model.

Table 187. List of safety recommendations

Diagnostic Description Rank Perm Trans

Arm® Cortex®-M7

CPU_SM_0 Periodic core self-test software for Arm® Cortex®-
M7 CPU.

++ X -

CPU_SM_1 Control flow monitoring in Application software. ++ X X

CPU_SM_2 Double computation in Application software ++ - X

CPU_SM_3 Arm®Cortex®-M7 HardFault exceptions ++ X X

CPU_SM_4 Stack hardening for Application software + X X

CPU_SM_5 External watchdog ++(1) X X

CPU_SM_6 Independent watchdog ++(1) X X

CPU_SM_7 Memory protection unit (MPU). ++(2) X X

CPU_SM_9 Periodic self-test software for Arm®Cortex® -M7 caches ++(3) X -

CPU_SM_10 ECC on Arm®Cortex® -M7 caches ++(3) X X

MPU_SM_0 Periodic read-back of MPU configuration registers ++(2) X X

MPU_SM_1 MPU software test o X -

System bus architecture/BusMatrix

BUS_SM_0 Periodic software test for interconnections ++ X -

BUS_SM_1 Information redundancy in intra-chip data exchanges ++ X X

Embedded SRAM

RAM_SM_0 Periodic software test for static random access memory
(SRAM) +(4) X -

RAM_SM_2 Stack hardening for Application software + X X

RAM_SM_3 Information redundancy for safety-related variables in the
Application software ++ X X

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 111/137

Diagnostic Description Rank Perm Trans

RAM_SM_4 Control flow monitoring in Application software o(5) X X

RAM_SM_5 Periodic integrity test for Application software in RAM o(5) X X

RAM_SM_6 Read protection (RDP) and write protection (WRP) + - -

RAM_SM_7 ECC on SRAM ++ X X

RAM_SM_8 Periodic test by software for SRAM address decoder ++ X -

RAM_SM_10 Software for ECC diagnostic on RAM ++(6) X -

Embedded flash memory

FLASH_SM_0 Periodic software test for flash memory +(7) X -

FLASH_SM_1 Control flow monitoring in Application software ++(7) X X

FLASH_SM_2 Arm®Cortex®-M7 HardFault exceptions ++ X X

FLASH_SM_3 Option byte write protection ++ - -

FLASH_SM_4 Static data encapsulation +(7) X X

FLASH_SM_6 Flash memory unused area-filling code + - -

FLASH_SM_7 ECC on flash memory ++ X X

FLASH_SM_8 Read protection (RDP), write protection (WRP), and
proprietary code readout protection (PCROP) + - -

FLASH_SM_9 Periodic test by software for flash memory address
decoder ++(7) X -

External flash memory

EXTMEM_SM_0 Periodic software test external for flash memory ++ X -

EXTMEM_SM_1 Control flow monitoring in Application software ++ X X

EXTMEM_SM_2 Arm®Cortex®-M7 HardFault exceptions ++ X X

EXTMEM_SM_4 Static data encapsulation + X X

EXTMEM_SM_6 Flash memory unused area filling code + - -

EXTMEM_SM_9 Periodic test by software for flash memory address
decoder ++ X -

Memory cipher engine (MCE)

MCE_SM_0 Periodic read‑back of MCE configuration registers ++ X X

MCE_SM_1 MCE encryption/decryption collateral detection ++ X X

MCE_SM_2 Arm®Cortex®-M7 HardFault exceptions ++ X X

Power controller (PWR)

VSUP_SM_0 Periodic read-back of configuration registers ++ X X

VSUP_SM_1 Supply voltage internal monitoring (PVD) ++ X -

VSUP_SM_2 Independent watchdog ++ X -

VSUP_SM_3 Internal temperature sensor check - -

VSUP_SM_5 System-level power supply management ++ - -

Reset and clock controller (RCC)

CLK_SM_0 Periodic read-back of configuration registers ++ X X

CLK_SM_1 Clock security system (CSS) + X -

CLK_SM_2 Independent watchdog ++ X -

CLK_SM_3 Internal clock cross-measurement + X -

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 112/137

Diagnostic Description Rank Perm Trans

General-purpose input/output (GPIO)

GPIO_SM_0 Periodic read-back of configuration registers ++ X X

GPIO_SM_1 1oo2 for input GPIO lines ++ X X

GPIO_SM_2 Loopback scheme for output GPIO lines ++ X X

GPIO_SM_3 GPIO port configuration lock register + - -

Debug system or peripheral control

DBG_SM_0 Watchdog protection ++ X X

LOCK_SM_0 Lock mechanism for configuration options + - -

System configuration controller (SYSCFG)

SYSCFG_SM_0 Periodic read-back of configuration registers ++ X X

DIAG_SM_0 Periodic read-back of hardware diagnostics configuration
registers ++ X X

General purpose and high-performance direct memory access controller (GPDMA, HPDMA)

DMA_SM_0 Periodic read-back of configuration registers ++ X X

DMA_SM_1 Information redundancy on data packet transferred via
DMA ++ X X

DMA_SM_2 Information redundancy by including sender or receiver
identifier on data packet transferred via DMA ++ X X

DMA_SM_3 Periodic software test for DMA ++ X -

DMA_SM_4 DMA transaction awareness ++ X X

Chrom-Art Accelerator controller (DMA2D)

DMA2D_SM_0 Periodic read-back of configuration registers ++ X X

DMA2D_SM_1 Periodic software test for DMA2D functions ++ X -

DMA2D_SM_2 DMA processing and interrupt awareness ++ X X

Chrom-GRC™ , Neo-Chrom graphic processor, ICACHE (GFXMMU, GPU2D)

GFX_SM_0 Periodic read-back of GFXMMU, GPU2D, ICACHE
configuration registers ++ X X

Extended interrupt and events controller (EXTI)

NVIC_SM_0 Periodic read-back of configuration registers ++ X X

NVIC_SM_1 Expected and unexpected interrupt check ++ X X

NVIC_SM_2 Interrupt vectors periodic check ++ X X

Cyclic redundancy-check calculation unit (CRC)

CRC_SM_0 CRC self-coverage ++ X X

CORDIC co-processor (CORDIC)

CORD_SM_0 Periodic read-back of configuration registers ++ X -

CORD_SM_1 Periodic software test for CORDIC functions ++(8) X -

CORD_SM_2 CORDIC /Arm® Cortex®‑M7 periodic reciprocal
comparison by software ++(8) X -

CORD_SM_3 Double computation for CORDIC functions ++ - X

Filter math accelerator (FMAC)

FMAC_SM_0 Periodic read-back of configuration registers ++ X -

FMAC_SM_1 Periodic software test for FMAC functions ++(9) X -

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 113/137

Diagnostic Description Rank Perm Trans

FMAC_SM_2 FMAC/Arm Cortex-M7 periodic reciprocal comparison by
software ++(9) X -

FMAC_SM_3 Double computation for FMAC functions ++ - X

Flexible static memory controller (FSMC)

FSMC_SM_0 Control flow monitoring in Application software ++(10) X X

FSMC_SM_1 Information redundancy on external memory connected
to FSMC ++(10) X X

FSMC_SM_2 Periodic read-back of FSMC configuration registers ++ X X

FSMC_SM_3 ECC engine on NAND interface in FSMC module ++ - X

Octo-SPI interface (OCTOSPI)

QSPI_SM_0 Periodic read-back of OCTOSPI configuration registers ++ X X

QSPI_SM_1 Protocol error signals including hardware CRC ++ X X

QSPI_SM_2 Information redundancy techniques on messages ++ X X

Delay block (DLYB)

DLB_SM_0 Periodic read-back of DLYB configuration registers ++ X X

Analog-to-digital converter (ADC)

ADC_SM_0 Periodic read-back of configuration registers ++ X X

ADC_SM_1 Multiple acquisition by Application software ++ - X

ADC_SM_2 Range check by Application software ++ X X

ADC_SM_3 Periodic software test for ADC ++ X -

ADC_SM_4 1oo2 scheme for ADC inputs + X X

Digital temperature sensor (DTS)

DTS_SM_0 Periodic read-back of configuration registers ++ X X

Voltage reference buffer (VREFBUF)

VREF_SM_0 Periodic read-back of VREFBUF system configuration
registers ++ X X

VREF_SM_1 VREF cross-check by ADC reading + X -

Multi-function digital filter (MDF), Audio digital filter (ADF)

MDF_SM_0 Periodic read‑back of configuration registers ++ X X

MDF_SM_1 1oo2 scheme for MDF/ADF module ++ X X

MDF_SM_2 Plausibility check on inputs data stream ++ X X

Digital camera interface pixel pipeline (DCMIPP)

DCMI_SM_0 Periodic read-back of DCMI configuration registers ++ X X

DCMI_SM_1 DCMI video input data synchronization ++ X X

Parallel synchronous slave interface (PSSI)

PSSI_SM_0 Periodic read‑back of PSSI configuration registers ++ X X

PSSI_SM_1 Information redundancy techniques on data stream,
including end-to-end protection ++ X X

LCD-TFT display controller (LTDC)

LCD_SM_0 Periodic read-back of LTDC configuration registers and
buffer memory ++ X X

LCD_SM_1 LTDC acquisition by ADC channel ++ X -

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 114/137

Diagnostic Description Rank Perm Trans

JPEG codec (JPEG)

JPEG_SM_0 Periodic read-back of JPEG codec configuration registers ++ X X

JPEG_SM_1 Periodic test for JPEG encoding/decoding functions ++ X -

JPEG_SM_2 Application-level detection of failures affecting JPEG
coding/encoding ++ X X

True random number generator (RNG)

RNG_SM_0 Periodic read-back of RNG configuration register ++ X X

RNG_SM_1 RNG module entropy on-line tests ++ X -

Advanced encryption standard hardware accelerator/Secure AES coprocessor (AES/SAES)

AES_SM_0 Periodic read-back of AES configuration registers ++ X X

AES_SM_1 Encryption/decryption collateral detection ++ X X

AES_SM_2 Information redundancy techniques on messages,
including end-to-end protection ++ X X

Cryptographic processor (CRYP)

CRYP_SM_0 Periodic read-back of CRYP configuration registers ++ X X

CRYP_SM_1 Encryption/decryption collateral detection ++ X X

CRYP_SM_2 Information redundancy techniques on messages,
including end-to-end protection ++ X X

HASH processor (HASH)

HASH_SM_0 Periodic read-back of HASH configuration registers ++ X X

HASH_SM_1 HASH processing collateral detection ++ X X

On-the-fly decryption engine (OTFDEC)

OTFDEC_SM_0 Periodic read‑back of OTFDEC configuration registers ++ X X

OTFDEC_SM_1 OTFDEC encryption/decryption collateral detection ++ X X

OTFDEC_SM_2 Arm® Cortex®-M7 HardFault exceptions ++ X X

OTFDEC_SM_3 Static data encapsulation ++ X X

Public key accelerator (PKA)

PKA_SM_0 Periodic read‑back of PKA configuration registers ++ X X

PKA_SM_1 PKA key computation collateral detection ++ X X

Advanced-control/General-purpose/High resolution and low-power timers

ATIM_SM_0 Periodic read-back of configuration registers ++ X X

ATIM_SM_1 1oo2 for counting timers ++ X X

ATIM_SM_2 1oo2 for input capture timers ++ X X

ATIM_SM_3 Loopback scheme for pulse width modulation (PWM)
outputs ++ X X

ATIM_SM_4 Lock bit protection for timers + - -

Basic timers

GTIM_SM_0 Periodic read-back of configuration registers ++ X X

GTIM_SM_1 1oo2 for counting timers ++ X X

Independent and system window watchdogs (IWDG and WWDG)

WDG_SM_0 Periodic read-back of configuration registers ++ X X

WDG_SM_1 Software test for watchdog at startup o X -

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 115/137

Diagnostic Description Rank Perm Trans

Real-time clock module (RTC)

RTC_SM_0 Periodic read-back of configuration registers ++ X X

RTC_SM_1 Application check of running RTC ++ X X

RTC_SM_2 Information redundancy on backup registers o X X

RTC_SM_3 Application-level measures to detect failures in
timestamps/event capture o X X

Tamper and backup registers (TAMP)

TAMP_SM_0 Information redundancy on tamper backup registers + X X

Inter-integrated circuit (I2C, I3C)

IIC_SM_0 Periodic read-back of configuration registers ++ X X

IIC_SM_1 Protocol error signals ++ X X

IIC_SM_2 Information redundancy techniques on messages ++ X X

IIC_SM_3 CRC packet-level + X X

IIC_SM_4 Information redundancy techniques on messages,
including end-to-end protection + X X

Universal synchronous/asynchronous receiver/transmitter and low power universal asynchronous receiver/transmitter (USART,
UART, LPUART)

UART_SM_0 Periodic read-back of configuration registers ++ X X

UART_SM_1 Protocol error signals ++ X X

UART_SM_2 Information redundancy techniques on messages ++ X X

UART_SM_3 Information redundancy techniques on messages,
including end-to-end protection ++ X X

Serial peripheral interface (SPI)

SPI_SM_0 Periodic read-back of configuration registers ++ X X

SPI_SM_1 Protocol error signals ++ X X

SPI_SM_2 Information redundancy techniques on messages ++ X X

SPI_SM_3 CRC packet-level + X X

SPI_SM_4 Information redundancy techniques on messages,
including end-to-end protection + X X

Serial audio interface (SAI)

SAI_SM_0 Periodic read-back of SAI configuration registers ++ X X

SAI_SM_1 SAI output loopback scheme ++ X X

SAI_SM_2 1oo2 scheme for SAI module ++ X X

SPDIF receiver interface (SPDIFRX)

SPDF_SM_0 Periodic read-back of SPDIF configuration registers ++ X X

SPDF_SM_1 Protocol error signals ++ X X

SPDF_SM_2 Information redundancy techniques on messages ++ X X

Management data input/output (MDIOS)

MDIO_SM_0 Periodic read-back of MDIO slave configuration registers ++ X X

MDIO_SM_1 Protocol error signals ++ X X

MDIO_SM_2 Information redundancy techniques on MDIO registers
contents, including register update awareness ++ X X

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 116/137

Diagnostic Description Rank Perm Trans

Secure digital input/output MultiMediaCard interface (SDMMC)

SDIO_SM_0 Periodic read-back of SDIO/SMMC configuration
registers ++ X X

SDIO_SM_1 Protocol error signals including hardware CRC ++ X X

SDIO_SM_2 Information redundancy techniques on messages ++ X X

Controller area network (FDCAN)

CAN_SM_0 Periodic read-back of configuration registers ++ X X

CAN_SM_1 Protocol error signals ++ X X

CAN_SM_2 Information redundancy techniques on messages,
including end-to-end protection. ++ X X

USB on-the-go full-speed, USB on-the-go high-speed (OTG_FS, OTG_HS)

USB_SM_0 Periodic read-back of configuration registers ++ X X

USB_SM_1 Protocol error signals ++ X X

USB_SM_2 Information redundancy techniques on messages ++ X X

USB_SM_3 Information redundancy techniques on messages,
including end-to-end protection. + X X

USB Type-C® / USB Power Delivery interface (UCPD)

UCPD_SM_0 Periodic read-back of configuration registers ++ X X

UCPD_SM_1 Protocol error signals ++ X X

UCPD_SM_2 UCPD state machine monitoring ++ X X

UCPD_SM_3 Information redundancy techniques on messages,
including end-to-end protection ++ X X

Ethernet (ETH): media access control (MAC) with DMA controller

ETH_SM_0 Periodic read-back of Ethernet configuration registers ++ X X

ETH_SM_1 Protocol error signals including hardware CRC ++ X X

ETH_SM_2 Information redundancy techniques on messages,
including end-to-end protection ++ X X

Extended-SPI interface (XSPI), XSPI I/O manager (XSPIM)

XSPI_SM_0 Periodic read-back of XSPI, XSPIM configuration
registers ++ X X

HDMI-CEC (CEC)

HDMI_SM_0 Periodic read-back of configuration registers ++ X X

HDMI_SM_1 Protocol error signals + X X

HDMI_SM_2 Information redundancy techniques on messages ++ X X

Disable and periodic cross-check of unintentional activation of unused peripherals

FFI_SM_0 Disable of unused peripherals ++ - -

FFI_SM_1 Periodic read-back of interference avoidance registers ++ - -

Arm®Cortex®-M7 CPU

CoU_1 The reset condition of Arm® Cortex®- M7 CPU must be
compatible as valid safe state at system level

++ - -

Debug

CoU_2 Device debug features must not be used in safety
function(s) implementation. ++ - -

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 117/137

Diagnostic Description Rank Perm Trans

Arm®Cortex®-M7 / Supply system

CoU_3 Low-power mode state must not be used in safety
function(s) implementation. ++ - -

Device peripherals

CoU_4
End user must implement the required combination of
safety mechanism/CoUs for each STM32 peripheral used
in implementation of safety function(s).

++ X X

CPU subsystem

CoU_7
In case of multiple safety functions implementations,
methods to guarantee their mutual independence must
include MPU use.

++ - -

CoU_9.1

Any security violation event must be considered
equivalent to the detection of a noncontrollable hardware
random failure; accordingly, it must lead to the transition
to a safe state (de-energize) at system level.

++ X X

CoU_9.2

For each implemented safety mechanisms, related error/
fault detection signal(s)/message(s) must be processed
by the application software for the correct management
of SS1 safe state. Related software routines must be
considered as safety related in the framework of the
overall policy for software systematic capability in the
final system.

++ X X

System boot (SBS)

CoU_10.1
A combination of external watchdog and system-level
measures must guarantee that the overall safe state is
maintained during the boot procedure.(11)

++ X X

CoU_10.2

The End User application software can be started just
after the successful execution of the following methods at
the end of the boot procedure: CPU_SM_0/CPU_SM_9,
MPU_SM_0, RAM_SM_5, CLK_SM_0, VSUP_SM_0,
GPIO_SM_0, SYSCFG_SM_0, DIAG_SM_0,
NVIC_SM_0/NVIC_SM_2. (11)

++ X X

Clock recovery system (CRS)

CoU_8 CRS features must not be used in safety function(s)
implementation. ++ - -

System

DUAL_SM_0 Cross-check between two STM32 devices o X X

1. To achieve on the single MCU local safety metrics compatible with SIL2 target , method CPU_SM_6 could be sufficient. Anyway, to
understand the rationale behind "++" classification for both methods, refer to the “Recommendations” row of related description in
Section 3.6: Hardware and software diagnostics for more details.

2. Can be considered ranked as “+” if only one safety function is implemented and the presence of non-safety-related software is excluded.
3. In case L1 caches are permanently disabled during end user application software execution, these methods can be considered ranked as

"-" (no need to be executed).
4. Ranking must be considered "++" for SRAM banks where no ECC is available and, therefore, RAM_SM_7 cannot be implemented.
5. Must be considered ranked as “++” if Application software is executed on RAM.
6. The hardware features supporting this method may be not available on each memory bank; in that case the method can be replaced by

alternative measures. Refer to RAM_SM_10 description, field "Recommendations and known limitations" for further information .
7. Must be applied only to embedded flash memory area hosting end user safety-related program/data.
8. CORD_SM_1 and CORD_SM_2 can be considered mutually exclusive – to achieve SIL2 safety metrics, the end user must implement either

CORD_SM_1 or CORD_SM_2.
9. FMAC_SM_1 and FMAC_SM_2 can be considered as mutually exclusive. To achieve SIL2 safety metrics, the End user must implement

either FMAC_SM_1 or FMAC_SM_2.
10. Can be considered ranked as “o” depending on the intended use of external memory connected to FSMC.
11. That is, in the time period between the system power-up and the application software correct start (after CoU_10.2 is satisfied).

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 118/137

The above-described safety mechanism or conditions of use are conceived with different levels of abstraction
depending on their nature: the more a safety mechanism is implemented as application-independent, the wider is
its possible use on a large range of End user applications.
The safety analysis highlights two major partitions inside the MCU:
• System-critical MCU modules

Every End user application is affected, from safety point of view, by a failure on these modules. Because
they are used by every End user application, related methods or safety mechanism are mainly conceived
to be application-independent. The system-critical modules on Device are: CPU, RCC, PWR, bus matrix
and interconnect, flash memory and RAM (including their interfaces).

• Peripheral modules
Such modules could be not used by the end-user application, or they could be used for non-safety related
tasks. Related safety methods are therefore implemented mainly at application level, as Application
software solutions or architectural solutions.

 UM3266
Reference safety architecture

UM3266 - Rev 1 page 119/137

4 Safety results

This section reports the results of the safety analysis of the STM32H7Rx/7Sx devices, according to IEC 61508
and to ST methodology flow, related to the hardware random and dependent failures.

4.1 Random hardware failure safety results
The analysis for random hardware failures of STM32H7Rx/7Sx devices reported in this safety manual is executed
according to STMicroelectronics methodology flow for safety analysis of semiconductor devices in compliance
with IEC 61508 (refer to [4] for more details). The accuracy of results obtained are guaranteed by three factors:
• STMicroelectronics methodology flow strict adherence to IEC 61508 requirements and prescriptions
• the use, during the analysis, of detailed and reliable information on microcontroller design
• the use, for specific diagnostic coverage evaluation, of state-of-the-art fault injection methods and tools for

safety metrics verification
The Device safety analysis explored the overall and exhaustive list of Device failure modes, to individuate for
each of them an adequate mitigation measure (safety mechanism). The overall list of Device failure modes is
maintained in the related FMEA document [1], provided on demand by local STMicroelectronics sales office.
In summary, with the adoption of the safety mechanisms and conditions of use reported in Section 3.7: Conditions
of use, it is possible to achieve the integrity levels summarized in the following table.

Table 188. Overall achievable safety integrity levels

Number of
Devices used

Safety
architecture Target Safety analysis result

1 1oo1
SIL2 LD Achievable

SIL2 HD/CM Achievable with potential performance impact (1)

2 1oo2
SIL3 LD Achievable

SIL3 HD/CM Achievable with potential performance impact

1. Note that the potential performance impact related to some above-reported target achievements is mainly related to the
need of execution of periodic software-based diagnostics (refer to safety mechanism description for details). The impact is
therefore strictly related to how much “aggressive” the system level PST is (see Section 3.3.1: Safety requirement
assumptions).

The resulting relative safety metrics (DC and safe failure fraction (SFF)) and absolute safety metrics (probability of
failure per hour (PFH), probability of dangerous failure on demand (PFD)) are not reported in this section but in
the failure mode effect diagnostic analysis (FMEDA) snapshot [2], due to:
• a large number of different STM32H7Rx/7Sx parts,
• a possibility to declare non-safety-relevant unused peripherals, and
• a possibility to enable or not the different available safety mechanisms.
The FMEDA snapshot [2] is a static document reporting the safety metrics computed at different detail levels (at
microcontroller level and for microcontroller basic functions) for a given combination of safety mechanisms and for
a given part number. If FMEDA document is needed, contact the local STMicroelectronics sales representative as
early as possible, in order to receive information on expected delivery dates for specific Device target part
numbers.

Note: Safety metrics computations are restricted to STM32H7Rx/7Sx boundary, hence they do not include the WDTe,
PEv, and VMONe processes described in Section 3.3.1: Safety requirement assumptions).

4.1.1 Safety analysis result customization
The safety analysis executed for STM32H7Rx/7Sx devices documented in this safety manual considers all
microcontroller modules to be safety-related, thus able to interfere with the safety function, with no exclusion. This
is in line with the conservative approach to be followed during the analysis of a general-purpose microcontroller,
in order to be agnostic versus the final application. This means that no microcontroller module has been declared
safe as per IEC 61508-4, 3.6.8. Therefore, all microcontroller modules are included in SFF computations.
In actual End user applications, not all the STM32H7Rx/7Sx parts or modules implement a safety function. That
happens if:

 UM3266
Safety results

UM3266 - Rev 1 page 120/137

• The part is not used at all (disabled), or
• The part implements functions that are not safety-related (for example, a GPIO line driving a power-on

signaling light on an electronic board).

Note: Implementation of non-safety-related functions is in principle forbidden by the assumed safety
requirement ASR6 (see Section 3.3.1: Safety requirement assumptions), hence under End user's entire
responsibility. As any other derogation from safety requirements included in this manual, it is End user's
responsibility to provide consistent rationales and evidences that the function does not bring additional
risks, by following the procedure described in this section. Therefore, it is strongly recommended to
reserve such derogation to very simple functions (as the one provided in the example).

Implementing safety mechanisms on such parts would be a useless effort for End user. The safety analysis
results can therefore be customized.
End user can define a STM32H7Rx/7Sx part as non-safety-related based on:
• Collecting rationales and evidences that the part does not contribute to safety function.
• Collecting rationales and evidences that the part does not interfere with the safety function during normal

operation, due to final system design decisions. Mitigation of unused modules is exhaustively addressed in
Section 4.1.2: General requirements for freedom from interferences (FFI).

• Fulfilling the general condition for the mitigation of intra-MCU interferences (see Section 4.1.2: General
requirements for freedom from interferences (FFI)).

For a non-safety-related part, End user is allowed to:
• Exclude the part from computing metrics to report in FMEDA, and
• Not implement safety mechanisms as listed in Table 187. List of safety recommendations.
With regard to SFF computation, this section complies with the no part / no effect definition as per IEC 61508‑4,
3.6.13 / 3.6.14.

4.1.2 General requirements for freedom from interferences (FFI)
A dedicated analysis has highlighted a list of general requirements to be followed in order to mitigate potential
interferences between Device internal modules in case of internal failures (freedom from interferences, FFI).
These precautions are integral part of the Device safety concept and they can play a relevant role when multiple
microcontroller modules are declared as non-safety-related by End user as per Section 4.1.1: Safety analysis
result customization.
End user must implement the safety mechanisms listed in Table 189 (implementation details in
Section 3.6: Hardware and software diagnostics) regardless any evaluation of their contribution to safety metrics.

Table 189. List of general requirements for FFI

Diagnostic Description

BUS_SM_0 Periodic software test for interconnections

GPIO_SM_0 Periodic read-back of configuration registers

DMA_SM_0 Periodic read-back of configuration registers

DMA_SM_2 Information redundancy by including sender or receiver identifier on data packet transferred via DMA(1)

DMA_SM_4 DMA transaction awareness(1)

NVIC_SM_0 Periodic read-back of configuration registers

NVIC_SM_1 Expected and unexpected interrupt check

FFI_SM_0 Disable of unused peripherals

FFI_SM_1 Periodic read-back of interference avoidance registers

1. To be implemented only if DMA is actually used.

 UM3266
Safety results

UM3266 - Rev 1 page 121/137

4.1.3 Notes on multiple-fault scenario
According to the requirements of IEC 61508, the safety analysis for STM32H7Rx/7Sx devices considered
multiple-fault scenarios. Furthermore, following the spirit of ISO26262 (the reference and state-of-the-art standard
norm for integrated circuit safety analysis), the analysis investigated possible causes preventing the implemented
safety mechanisms from being effective, in order to determine appropriate counter-measures. In the Multiple-fault
protection field, the tables in Section 3.6: Hardware and software diagnostics report the safety mechanisms
required to properly manage a multiple-fault scenario, including mitigation measures against failures making
safety mechanisms ineffective. It is strongly recommended that the safety concept includes such mitigation
measures, and in particular for systems operating during long periods, as they tend to accumulate errors. Indeed,
fault accumulation issue has been taken into account during STM32H7Rx/7Sx devices safety analysis.
Another potential source of multiple error condition is the accumulation of permanent failures during power-off
periods. Indeed, if the end system is not powered, no safety mechanism are active and so able to early detect the
insurgence of such failures. To mitigate this potential issue, it is strongly recommended to execute all periodic
safety mechanism at each system power-up; this measure guarantees a fresh system start with a fault-free
hardware. This recommendation is given for periodic safety mechanisms rated as "++" (highly recommended) in
the Device safety concept, and mainly for the most relevant ones in term of failure distribution: CPU_SM_0,
FLASH_SM_0, RAM_SM_0. This startup execution is strongly recommended regardless the safety functions
mode of operations and/or the value of PST.

4.2 Analysis of dependent failures
The analysis of dependent failures is important for microcontroller and microprocessor devices. The main
subclasses of dependent failures are CCFs. Their analysis is ruled by IEC 61508-2 annex E, which lists the
design requirements to be verified to allow the use of on-chip redundancy for integrated circuits with one common
semiconductor substrate.
As there is no on-chip redundancy on STM32H7Rx/7Sx devices, the CCF quantification through the βIC
computation method - as described in Annex E.1, item i - is not required. Note that, in the case of 1oo2 safety
architecture implementation, End user is required to evaluate the β and βD parameters (used in PFH
computation) that reflect the common cause factors between the two channels.
The Device architecture and structures can be potential sources of dependent failures. These are analyzed in the
following sections. The safety mechanisms referred to are described in Section 3.6: Hardware and software
diagnostics.

4.2.1 Power supply
Power supply is a potential source of dependent failures, because any alteration can simultaneously affect many
modules, leading to not-independent failures. The following safety mechanisms address and mitigate those
dependent failures:
• VSUP_SM_1: detection of abnormal value of supply voltage;
• VSUP_SM_2: the independent watchdog is different from the digital core of the MCU, and this diversity

helps to mitigate dependent failures related to the main supply alterations. As reported in VSUP_SM_2
description, separate power supply for IWDG or/and the adoption of an external watchdog (CPU_SM_5)
increase such diversity.

• VSUP_SM_5: power supply stability (guaranteed by system level measures) is an important mitigation
factor

The adoption of such safety mechanisms is therefore highly recommended despite their minor contribution to the
safety metrics to reach the required safety integrity level. Refer to Section 3.6.7: Power controller (PWR) for the
detailed safety mechanism descriptions.

4.2.2 Clock
System clocks are a potential source of dependent failures, because alterations in the clock characteristics
(frequency, jitter) can affect many parts, leading to not-independent failures. The following safety mechanisms
address and mitigate such dependent failures:
• CLK_SM_1: the clock security system is able to detect hard alterations (stop) of system clock and activate

the adequate recovery actions.
• CLK_SM_2: the independent watchdog has a dedicated clock source. The frequency alteration of the

system clock leads to the watchdog window violations by the triggering routine on Application software,
leading to the MCU reset by watchdog. The adoption of external watchdog (CPU_SM_5) provides
additional diversity and so further mitigation of clock-related common cause failures.

 UM3266
Safety results

UM3266 - Rev 1 page 122/137

The adoption of such safety mechanism is therefore highly recommended despite their minor contribution to the
safety metrics to reach the required safety integrity level. Refer to Section 3.6.8: Reset and clock controller (RCC)
for detailed safety mechanisms description.

4.2.3 DMA
The DMA function can be involved in data transfers operated by most of the peripherals. Failures of DMA can
interfere with the behavior of the system peripherals or Application software, leading to dependent failures. The
adoption of the following safety mechanisms is therefore highly recommended (refer to Section 3.6.14: General
purpose and high-performance direct memory access controller (GPDMA, HPDMA) for description):
• DMA_SM_0
• DMA_SM_1
• DMA_SM_2

Note: Only DMA_SM_0 must be implemented if DMA is not used for data transfer.

4.2.4 Internal temperature
The abnormal increase of the internal temperature is a potential source of dependent failures, as it can affect
many MCU parts. The following safety mechanism mitigates this potential effect (refer to Section 3.6.7: Power
controller (PWR) for description):
VSUP_SM_3: the internal temperature read and check allows the user to quickly detect potential risky conditions
before they lead to a series of internal failures.

 UM3266
Safety results

UM3266 - Rev 1 page 123/137

5 List of evidences

A safety case database stores all the information related to the safety analysis performed to derive the results and
conclusions reported in this safety manual.
The safety case database is composed of the following:
• safety case with the full list of all safety-analysis-related documents
• STMicroelectronics' internal FMEDA tool database for the computation of safety metrics, including

estimated and measured values
• safety report, a document that describes in detail the safety analysis executed on STM32H7Rx/7Sx

devices and the compliance to IEC 61508 applicable clauses
• STMicroelectronics' internal fault injection campaign database including tool configuration and settings,

fault injection logs and results, related to the MCU modules for which fault injection is adopted as
verification method.

As these resources contain STMicroelectronics confidential information, they are only available for the purpose of
audit and inspection by authorized bodies, without being published, which conforms to Note 2 of IEC 61508-2,
7.4.9.7.

Important: The combination of this document (safety manual), the [1] and [2] documents, the [4] provides per se an
exhaustive view of the rationales for the compliance to IEC 61508 requirements of the whole STM32 safety
concept. All these documents are available under NDA and they can be shared with certification entities (refer to
applicable NDA for details).

 UM3266
List of evidences

UM3266 - Rev 1 page 124/137

Appendix A X-CUBE-STL self-test software library
The X-CUBE-STL (also referred as "STL" in this document) is a Software-based diagnostic library designed to
detect random hardware failures in STM32 safety-critical core components (CPU + SRAM). It is provided by
STMicroelectronics to simplify the implementation of STM32 MCU safety concept, by offering a pre-certified brick
addressing the most challenging MCU functions.
X-CUBE-STL implements a set of of key safety mechanisms described in this Safety Manual:
• CPU_SM_0 Periodic core self-test software for CPU.
• RAM_SM_5 Periodic integrity test for application software in RAM
• RAM_SM_0 Periodic software test for static random access memory (SRAM)

Figure 6. STL architecture

D
T7

22
87

V1

STL User
parameters

STL
User
APIs

STL scheduler

Function return value
Test result value

User application

HAL/LL

STL
CPU Arm® core

test modules

STL
program

integrity test
module

STL
SRAM

test module

STM32 microcontroller

Legend:
STL
User

X-CUBE-STL characteristics:
• Partitioned into Test Modules to ease its coexistence with end user application software
• Provided with a Scheduler function to simplify the periodic execution of the tests
• SRAM test area can be partitioned in programmable sections to reduce the time for the execution of atomic

test sections
• Application independent: can be used in potentially any end-user application
• It can be interrupted at practically any time by the end user application; the few critical sections are

automatically protected by an interrupt disable function
• Compiler independent: delivered as object code
• Independence: designed as HAL-, BSP- and CMSIS-agnostic (there are no dependencies from these

software packages)
• Compatible with most popular safe RTOS (white papers/application notes on integration with safe RTOS

are available)
• Portability: the X-CUBE-STL shares the same APIs set across all the STM32 MCU Series, so projects

portability across STM32 portfolio is guaranteed
• Provided with exhaustive end user documentation: safety manual and user guide

 UM3266
X-CUBE-STL self-test software library

UM3266 - Rev 1 page 125/137

• Diagnostic coverage verified by state-of-the-art ST proprietary fault injection methodology
• Development flow compliant to SC3 systematic capability requirements from IEC 61508
• Certified by TÜV Rheinland (certification covers claims related to achieved DC and SC3 development flow)
X-CUBE-STL is available on demand under NDA agreement (contact your local ST representative).

 UM3266
X-CUBE-STL self-test software library

UM3266 - Rev 1 page 126/137

Revision history

Table 190. Document revision history

Date Revision Changes

06-Feb-2025 1 Initial release.

 UM3266

UM3266 - Rev 1 page 127/137

Glossary
 Application software within the software executed by
Device, the part that ensures functionality of End user's
application and integrates safety functions

ASR assumed safety requirement

CCF common cause failure

CM continuous mode

Compliant item any item subject to claim with respect
to the clauses of IEC 61508 series of standards

COTS commercial off-the-shelf

CoU conditions of use

CPU central processing unit

CRC cyclic redundancy check

DC diagnostic coverage

Device depending on context, any single or all of the
silicon products

DMA direct memory access

DTI diagnostic test interval

End user individual person or company who
integrates Device in their application, such as an
electronic control board

EUC equipment under control

FIT failure in time

FMEA failure mode effect analysis

FMEDA failure mode effect diagnostic analysis

HD high-demand

HFT hardware fault tolerance

HW hardware

ITRS international technology roadmap for
semiconductors

LD low-demand

MCU microcontroller unit

MPU memory protection unit

MTBF mean time between failures

MTTFd mean time to dangerous failure

NDA non disclosure agreement

PEc computation processing elements

PEi input processing elements

PEo output processing elements

PEv voting processing element

PFD probability of dangerous failure on demand

PFH probability of failure per hour

PL performance level

PST process safety time

SFF safe failure fraction

SIL safety integrity level

SoC system on chip

VMONe voltage monitors

WDTe watchdog

 UM3266
Glossary

UM3266 - Rev 1 page 128/137

Contents

1 About this document .2
1.1 Purpose and scope . 2

1.2 Normative references . 2

1.3 Reference documents. 2

2 Device development process .3
3 Reference safety architecture .4

3.1 Safety architecture introduction . 4

3.2 Compliant item. 4
3.2.1 Definition of Compliant item . 4

3.2.2 Safety functions performed by Compliant item . 4

3.2.3 Reference safety architectures - 1oo1. 5

3.2.4 Reference safety architectures - 1oo2. 6

3.3 Safety analysis assumptions . 7
3.3.1 Safety requirement assumptions . 7

3.4 Electrical specifications and environment limits . 8

3.5 Systematic safety integrity . 9

3.6 Hardware and software diagnostics . 9

3.6.1 Arm® Cortex®-M7 CPU . 10

3.6.2 System bus architecture/BusMatrix . 17

3.6.3 Embedded SRAM . 18

3.6.4 Embedded flash memory . 24

3.6.5 External flash memory . 28

3.6.6 Memory cipher engine (MCE) . 32

3.6.7 Power controller (PWR) . 33

3.6.8 Reset and clock controller (RCC) . 36

3.6.9 System configuration, boot, and security (SBS) . 37

3.6.10 Clock recovery system (CRS) . 37

3.6.11 General-purpose input/output (GPIO) . 38

3.6.12 Debug system or peripheral control. 40

3.6.13 System configuration controller (SYSCFG) . 41

3.6.14 General purpose and high-performance direct memory access controller (GPDMA,
HPDMA) . 42

3.6.15 Chrom-Art Accelerator controller (DMA2D) . 44

3.6.16 Chrom-GRC™ , Neo-Chrom graphic processor, ICACHE (GFXMMU, GPU2D) 46

3.6.17 Extended interrupt and events controller (EXTI) . 47

3.6.18 Cyclic redundancy-check calculation unit (CRC) . 49

 UM3266
Contents

UM3266 - Rev 1 page 129/137

3.6.19 CORDIC co-processor (CORDIC) . 50

3.6.20 Filter math accelerator (FMAC) . 52

3.6.21 Flexible static memory controller (FSMC) . 54

3.6.22 Octo-SPI interface (OCTOSPI) . 56

3.6.23 Delay block (DLYB) . 57

3.6.24 Analog-to-digital converter (ADC) . 58

3.6.25 Digital temperature sensor (DTS) . 61

3.6.26 Voltage reference buffer (VREFBUF) . 61

3.6.27 Multi-function digital filter (MDF), Audio digital filter (ADF) . 62

3.6.28 Digital camera interface pixel pipeline (DCMIPP) . 64

3.6.29 Parallel synchronous slave interface (PSSI) . 64

3.6.30 LCD-TFT display controller (LTDC) . 66

3.6.31 JPEG codec (JPEG) . 67

3.6.32 HASH processor (HASH) . 68

3.6.33 On-the-fly decryption engine (OTFDEC) . 69

3.6.34 Public key accelerator (PKA). 71

3.6.35 True random number generator (RNG) . 72

3.6.36 Advanced encryption standard hardware accelerator/Secure AES coprocessor (AES/
SAES) . 73

3.6.37 Cryptographic processor (CRYP) . 75

3.6.38 Advanced-control/General-purpose/High resolution and low-power timers 76

3.6.39 Basic timers . 80

3.6.40 Independent and system window watchdogs (IWDG and WWDG). 81

3.6.41 Real-time clock module (RTC) . 82

3.6.42 Tamper and backup registers (TAMP) . 84

3.6.43 Inter-integrated circuit (I2C, I3C) . 84

3.6.44 Universal synchronous/asynchronous receiver/transmitter and low power universal
asynchronous receiver/transmitter (USART, UART, LPUART). 87

3.6.45 Serial peripheral interface (SPI) . 90

3.6.46 Serial audio interface (SAI) . 92

3.6.47 SPDIF receiver interface (SPDIFRX) . 94

3.6.48 Management data input/output (MDIOS). 95

3.6.49 Secure digital input/output MultiMediaCard interface (SDMMC) . 97

3.6.50 Controller area network (FDCAN) . 98

3.6.51 USB on-the-go full-speed, USB on-the-go high-speed (OTG_FS, OTG_HS) 101

3.6.52 USB Type-C® / USB Power Delivery interface (UCPD) . 103

3.6.53 Ethernet (ETH): media access control (MAC) with DMA controller 105

3.6.54 Extended-SPI interface (XSPI), XSPI I/O manager (XSPIM) . 106

3.6.55 HDMI-CEC (CEC) . 107

 UM3266
Contents

UM3266 - Rev 1 page 130/137

3.6.56 Graphic timer (GFXTIM) . 108

3.6.57 Disable and periodic cross-check of unintentional activation of unused peripherals 109

3.6.58 System . 110

3.7 Conditions of use. 111

4 Safety results. 120
4.1 Random hardware failure safety results .120

4.1.1 Safety analysis result customization . 120

4.1.2 General requirements for freedom from interferences (FFI) . 121

4.1.3 Notes on multiple-fault scenario . 122

4.2 Analysis of dependent failures. .122
4.2.1 Power supply . 122

4.2.2 Clock. 122

4.2.3 DMA . 123

4.2.4 Internal temperature . 123

5 List of evidences . 124
Appendix A X-CUBE-STL self-test software library . 125
Revision history . 127
Glossary . 128

 UM3266
Contents

UM3266 - Rev 1 page 131/137

List of tables
Table 1. Document sections versus IEC 61508-2 Annex D safety requirements . 2
Table 2. SS1 and SS2 safe state details . 8
Table 3. CPU_SM_0. 10
Table 4. CPU_SM_1. 11
Table 5. CPU_SM_2. 12
Table 6. CPU_SM_3. 12
Table 7. CPU_SM_4. 13
Table 8. CPU_SM_5. 14
Table 9. CPU_SM_6. 14
Table 10. CPU_SM_7. 15
Table 11. CPU_SM_9. 15
Table 12. CPU_SM_10 . 16
Table 13. MPU_SM_0 . 16
Table 14. MPU_SM_1 . 17
Table 15. BUS_SM_0. 17
Table 16. BUS_SM_1. 18
Table 17. RAM_SM_0 . 18
Table 18. RAM_SM_2 . 19
Table 19. RAM_SM_3 . 20
Table 20. RAM_SM_4 . 21
Table 21. RAM_SM_5 . 21
Table 22. RAM_SM_6 . 22
Table 23. RAM_SM_7 . 22
Table 24. RAM_SM_8 . 23
Table 25. RAM_SM_10. 23
Table 26. FLASH_SM_0 . 24
Table 27. FLASH_SM_1 . 25
Table 28. FLASH_SM_2 . 25
Table 29. FLASH_SM_3 . 26
Table 30. FLASH_SM_4 . 26
Table 31. FLASH_SM_6 . 27
Table 32. FLASH_SM_7 . 27
Table 33. FLASH_SM_8 . 28
Table 34. FLASH_SM_9 . 28
Table 35. EXTMEM_SM_0 . 29
Table 36. EXTMEM_SM_1 . 29
Table 37. EXTMEM_SM_2 . 30
Table 38. EXTMEM_SM_4 . 30
Table 39. EXTMEM_SM_6 . 31
Table 40. EXTMEM_SM_9 . 31
Table 41. MCE_SM_0 . 32
Table 42. MCE_SM_1 . 32
Table 43. MCE_SM_2 . 33
Table 44. VSUP_SM_0. 33
Table 45. VSUP_SM_1. 34
Table 46. VSUP_SM_2. 34
Table 47. VSUP_SM_3. 35
Table 48. VSUP_SM_5. 35
Table 49. CLK_SM_0 . 36
Table 50. CLK_SM_1 . 36
Table 51. CLK_SM_2 . 37
Table 52. CLK_SM_3 . 37
Table 53. GPIO_SM_0 . 38

 UM3266
List of tables

UM3266 - Rev 1 page 132/137

Table 54. GPIO_SM_1 . 38
Table 55. GPIO_SM_2 . 39
Table 56. GPIO_SM_3 . 39
Table 57. DBG_SM_0. 40
Table 58. LOCK_SM_0. 40
Table 59. SYSCFG_SM_0 . 41
Table 60. DIAG_SM_0 . 41
Table 61. DMA_SM_0 . 42
Table 62. DMA_SM_1 . 42
Table 63. DMA_SM_2 . 43
Table 64. DMA_SM_3 . 43
Table 65. DMA_SM_4 . 44
Table 66. DMA2D_SM_0 . 44
Table 67. DMA2D_SM_1 . 45
Table 68. DMA2D_SM_2 . 45
Table 69. GFX_SM_0. 46
Table 70. NVIC_SM_0 . 47
Table 71. NVIC_SM_1 . 48
Table 72. NVIC_SM_2 . 49
Table 73. CRC_SM_0. 49
Table 74. CORD_SM_0 . 50
Table 75. CORD_SM_1 . 50
Table 76. CORD_SM_2 . 51
Table 77. CORD_SM_3 . 51
Table 78. FMAC_SM_0 . 52
Table 79. FMAC_SM_1 . 52
Table 80. FMAC_SM_2 . 53
Table 81. FMAC_SM_3 . 53
Table 82. FSMC_SM_0 . 54
Table 83. FSMC_SM_1 . 54
Table 84. FSMC_SM_2 . 55
Table 85. FSMC_SM_3 . 55
Table 86. QSPI_SM_0 . 56
Table 87. QSPI_SM_1 . 56
Table 88. QSPI_SM_2 . 57
Table 89. DLB_SM_0 . 57
Table 90. ADC_SM_0. 58
Table 91. ADC_SM_1. 58
Table 92. ADC_SM_2. 59
Table 93. ADC_SM_3. 60
Table 94. ADC_SM_4. 60
Table 95. DTS_SM_0 . 61
Table 96. VREF_SM_0 . 61
Table 97. VREF_SM_1 . 62
Table 98. MDF_SM_0. 62
Table 99. MDF_SM_1. 62
Table 100. MDF_SM_2. 63
Table 101. DCMI_SM_0 . 64
Table 102. DCMI_SM_1 . 64
Table 103. PSSI_SM_0 . 64
Table 104. PSSI_SM_1 . 65
Table 105. LCD_SM_0 . 66
Table 106. LCD_SM_1 . 66
Table 107. JPEG_SM_0 . 67
Table 108. JPEG_SM_1 . 67

 UM3266
List of tables

UM3266 - Rev 1 page 133/137

Table 109. JPEG_SM_2 . 68
Table 110. HASH_SM_0. 68
Table 111. HASH_SM_1. 69
Table 112. OTFDEC_SM_0 . 69
Table 113. OTFDEC_SM_1 . 70
Table 114. OTFDEC_SM_2 . 70
Table 115. OTFDEC_SM_3 . 71
Table 116. PKA_SM_0 . 71
Table 117. PKA_SM_1 . 71
Table 118. RNG_SM_0 . 72
Table 119. RNG_SM_1 . 73
Table 120. AES_SM_0 . 73
Table 121. AES_SM_1 . 74
Table 122. AES_SM_2 . 74
Table 123. CRYP_SM_0. 75
Table 124. CRYP_SM_1. 75
Table 125. CRYP_SM_2. 76
Table 126. ATIM_SM_0 . 76
Table 127. ATIM_SM_1 . 77
Table 128. ATIM_SM_2 . 78
Table 129. ATIM_SM_3 . 79
Table 130. ATIM_SM_4 . 79
Table 131. GTIM_SM_0 . 80
Table 132. GTIM_SM_1 . 80
Table 133. WDG_SM_0 . 81
Table 134. WDG_SM_1 . 81
Table 135. RTC_SM_0 . 82
Table 136. RTC_SM_1 . 82
Table 137. RTC_SM_2 . 83
Table 138. RTC_SM_3 . 83
Table 139. TAMP_SM_0. 84
Table 140. IIC_SM_0 . 84
Table 141. IIC_SM_1 . 85
Table 142. IIC_SM_2 . 85
Table 143. IIC_SM_3 . 86
Table 144. IIC_SM_4 . 86
Table 145. UART_SM_0. 87
Table 146. UART_SM_1. 87
Table 147. UART_SM_2. 88
Table 148. UART_SM_3. 89
Table 149. SPI_SM_0 . 90
Table 150. SPI_SM_1 . 90
Table 151. SPI_SM_2 . 91
Table 152. SPI_SM_3 . 91
Table 153. SPI_SM_4 . 92
Table 154. SAI_SM_0 . 92
Table 155. SAI_SM_1 . 93
Table 156. SAI_SM_2 . 93
Table 157. SPDF_SM_0 . 94
Table 158. SPDF_SM_1 . 94
Table 159. SPDF_SM_2 . 95
Table 160. MDIO_SM_0 . 95
Table 161. MDIO_SM_1 . 95
Table 162. MDIO_SM_2 . 96
Table 163. SDIO_SM_0 . 97

 UM3266
List of tables

UM3266 - Rev 1 page 134/137

Table 164. SDIO_SM_1 . 97
Table 165. SDIO_SM_2 . 98
Table 166. CAN_SM_0. 98
Table 167. CAN_SM_1. 99
Table 168. CAN_SM_2. 100
Table 169. USB_SM_0. 101
Table 170. USB_SM_1. 101
Table 171. USB_SM_2. 102
Table 172. USB_SM_3. 102
Table 173. UCPD_SM_0 . 103
Table 174. UCPD_SM_1 . 103
Table 175. UCPD_SM_2 . 104
Table 176. UCPD_SM_3 . 104
Table 177. ETH_SM_0 . 105
Table 178. ETH_SM_1 . 105
Table 179. ETH_SM_2 . 106
Table 180. XSPI_SM_0 . 106
Table 181. HDMI_SM_0 . 107
Table 182. HDMI_SM_1 . 107
Table 183. HDMI_SM_2 . 108
Table 184. FFI_SM_0. 109
Table 185. FFI_SM_1. 109
Table 186. DUAL_SM_0 .110
Table 187. List of safety recommendations .111
Table 188. Overall achievable safety integrity levels . 120
Table 189. List of general requirements for FFI . 121
Table 190. Document revision history . 127

 UM3266
List of tables

UM3266 - Rev 1 page 135/137

List of figures
Figure 1. STMicroelectronics product development process . 3
Figure 2. STM32 as Compliant item . 4
Figure 3. 1oo1 reference architecture . 5
Figure 4. 1oo2 reference architecture . 6
Figure 5. Allocation and target for STM32 PST . 7
Figure 6. STL architecture . 125

 UM3266
List of figures

UM3266 - Rev 1 page 136/137

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics International NV and its affiliates (“ST”) reserve the right to make changes corrections, enhancements, modifications, and improvements to
ST products and/or to this document any time without notice.

This document is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this
document solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this document may not be
used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any
action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this document shall not be
construed as an admission, acknowledgment or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or
any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not
promise that this document is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information
contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental,
punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this document.

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of
sale in place at the time of order acknowledgment, including, without limitation, the warranty provisions thereunder.

In that respect, note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and
conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for
any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is
granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

 UM3266

UM3266 - Rev 1 page 137/137

http://www.st.com/trademarks

	 UM3266
	1 About this document
	1.1 Purpose and scope
	1.2 Normative references
	1.3 Reference documents

	2 Device development process
	3 Reference safety architecture
	3.1 Safety architecture introduction
	3.2 Compliant item
	3.2.1 Definition of Compliant item
	3.2.2 Safety functions performed by Compliant item
	3.2.3 Reference safety architectures - 1oo1
	3.2.4 Reference safety architectures - 1oo2

	3.3 Safety analysis assumptions
	3.3.1 Safety requirement assumptions

	3.4 Electrical specifications and environment limits
	3.5 Systematic safety integrity
	3.6 Hardware and software diagnostics
	3.6.1 Arm® Cortex®-M7 CPU
	3.6.2 System bus architecture/BusMatrix
	3.6.3 Embedded SRAM
	3.6.4 Embedded flash memory
	3.6.5 External flash memory
	3.6.6 Memory cipher engine (MCE)
	3.6.7 Power controller (PWR)
	3.6.8 Reset and clock controller (RCC)
	3.6.9 System configuration, boot, and security (SBS)
	3.6.10 Clock recovery system (CRS)
	3.6.11 General-purpose input/output (GPIO)
	3.6.12 Debug system or peripheral control
	3.6.13 System configuration controller (SYSCFG)
	3.6.14 General purpose and high-performance direct memory access controller (GPDMA, HPDMA)
	3.6.15 Chrom-Art Accelerator controller (DMA2D)
	3.6.16 Chrom-GRC™ , Neo-Chrom graphic processor, ICACHE (GFXMMU, GPU2D)
	3.6.17 Extended interrupt and events controller (EXTI)
	3.6.18 Cyclic redundancy-check calculation unit (CRC)
	3.6.19 CORDIC co-processor (CORDIC)
	3.6.20 Filter math accelerator (FMAC)
	3.6.21 Flexible static memory controller (FSMC)
	3.6.22 Octo-SPI interface (OCTOSPI)
	3.6.23 Delay block (DLYB)
	3.6.24 Analog-to-digital converter (ADC)
	3.6.25 Digital temperature sensor (DTS)
	3.6.26 Voltage reference buffer (VREFBUF)
	3.6.27 Multi-function digital filter (MDF), Audio digital filter (ADF)
	3.6.28 Digital camera interface pixel pipeline (DCMIPP)
	3.6.29 Parallel synchronous slave interface (PSSI)
	3.6.30 LCD-TFT display controller (LTDC)
	3.6.31 JPEG codec (JPEG)
	3.6.32 HASH processor (HASH)
	3.6.33 On-the-fly decryption engine (OTFDEC)
	3.6.34 Public key accelerator (PKA)
	3.6.35 True random number generator (RNG)
	3.6.36 Advanced encryption standard hardware accelerator/Secure AES coprocessor (AES/SAES)
	3.6.37 Cryptographic processor (CRYP)
	3.6.38 Advanced-control/General-purpose/High resolution and low-power timers
	3.6.39 Basic timers
	3.6.40 Independent and system window watchdogs (IWDG and WWDG)
	3.6.41 Real-time clock module (RTC)
	3.6.42 Tamper and backup registers (TAMP)
	3.6.43 Inter-integrated circuit (I2C, I3C)
	3.6.44 Universal synchronous/asynchronous receiver/transmitter and low power universal asynchronous receiver/transmitter (USART, UART, LPUART)
	3.6.45 Serial peripheral interface (SPI)
	3.6.46 Serial audio interface (SAI)
	3.6.47 SPDIF receiver interface (SPDIFRX)
	3.6.48 Management data input/output (MDIOS)
	3.6.49 Secure digital input/output MultiMediaCard interface (SDMMC)
	3.6.50 Controller area network (FDCAN)
	3.6.51 USB on-the-go full-speed, USB on-the-go high-speed (OTG_FS, OTG_HS)
	3.6.52 USB Type-C® / USB Power Delivery interface (UCPD)
	3.6.53 Ethernet (ETH): media access control (MAC) with DMA controller
	3.6.54 Extended-SPI interface (XSPI), XSPI I/O manager (XSPIM)
	3.6.55 HDMI-CEC (CEC)
	3.6.56 Graphic timer (GFXTIM)
	3.6.57 Disable and periodic cross-check of unintentional activation of unused peripherals
	3.6.58 System

	3.7 Conditions of use

	4 Safety results
	4.1 Random hardware failure safety results
	4.1.1 Safety analysis result customization
	4.1.2 General requirements for freedom from interferences (FFI)
	4.1.3 Notes on multiple-fault scenario

	4.2 Analysis of dependent failures
	4.2.1 Power supply
	4.2.2 Clock
	4.2.3 DMA
	4.2.4 Internal temperature

	5 List of evidences
	Appendix A X-CUBE-STL self-test software library
	Revision history
	Glossary
	Application software
	ASR
	CCF
	CM
	Compliant item
	COTS
	CoU
	CPU
	CRC
	DC
	Device
	DMA
	DTI
	End user
	EUC
	FIT
	FMEA
	FMEDA
	HD
	HFT
	HW
	ITRS
	LD
	MCU
	MPU
	MTBF
	MTTFd
	NDA
	PEc
	PEi
	PEo
	PEv
	PFD
	PFH
	PL
	PST
	SFF
	SIL
	SoC
	VMONe
	WDTe

