m UM3399

User manual

STM32CubeWiSE-RadioCodeGenerator software description

Introduction

This document describes the STM32CubeWiSE-RadioCodeGenerator (STM32CubeWiSEcg) SW package with the
STM32WL33 MRSUBG sequencer code generator.

STM32CubeWiSE-RadioCodeGenerator is a PC application that is used to build a flowgraph that defines which transceiver
actions to execute under which condition, using the MRSUBG sequencer driver.

STM32WL33 Sub-GHz radio contains this sequencer, which is a state-machine like mechanism which allows for autonomous
management of RF transfers, without any need for CPU intervention. If CPU intervention is required, interrupts can be defined.
Transceiver actions can be arranged in a flowgraph. In this document, the individual transceiver actions are referred to as
SeqActions.

However, source code is not the best representation for flowgraphs, since it conceals their logical and temporal structure.
STM32CubeWiSE-RadioCodeGenerator addresses this issue by providing a graphical method to build flowgraphs, and then
exporting the generated flowgraphs as C source code for integration into user applications.

The flowgraph definition is stored in the microcontroller RAM in the form of:

. A set of ActionConfiguration RAM tables, linked to each other using pointers. These pointers define the SegActions, that
is, the type of action (for example, transmission, reception, abort), as well as SeqAction-specific radio parameters and
conditions for action transmissions.

. A unique GlobalConfiguration RAM table. This defines the entry point of the flowgraph (the first SeqAction to execute), as
well as some default flag values and common radio parameters.

Radio parameters, which can be configured individually for each SegAction, are stored in one of the dynamic registers, whose
contents are part of the ActionConfiguration RAM table. Radio parameters that are fixed over the whole execution of the
flowgraph (unless they are modified during a CPU interrupt), are stored in static registers, whose contents are part of the
GlobalConfigurtion RAM table.

UM3399 - Rev 1 - November 2024 www.st.com

For further information contact your local STMicroelectronics sales office.

‘_ UM3399
,l General information

1 General information
1.1 Licensing
This document describes software that runs on the STM32WL33 Arm® Cortex ® -M0+ based microcontroller.
Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
arm
1.2 Related documents

Table 1. Document references

I

1] RM0511 STM32WL33xx Arm® based sub-GHz MCUs

UM3399 - Rev 1 page 2/22

‘_ UM3399
,’ Getting started

2 Getting started

This section describes all of the system requirements to run STM32CubeWiSE-RadioCodeGenerator. It also
details the software-package installation procedure.

2.1 System requirements
The STM32CubeWiSE-RadioCodeGenerator application has the following minimum requirements:
. PC with an Intel® or AMD® processor running the Microsoft® Windows 10 operating system
. At least 2 Gbytes of RAM
. USB ports
. Adobe Acrobat reader 6.0

2.2 STM32CubeWiSE-RadioCodeGenerator SW package setup
Perform tthe following steps:
1. Extract the content of the stm32wise-cgwin.zip file into a temporary directory.

2. Extract and launch the STM32CubeWiSE-RadioCodeGenerator_Vx.x.x.exe file and follow the on-screen
instructions.

23 STM32CubeWiSE-RadioCodeGenerator SW package files
The STM32CubeWiSE-RadioCodeGenerator SW package files are organized into the following folders:
. app: contains STM32CubeWiSE-RadioCodeGenerator.exe
. examples: this folder is organized into the following subfolders:

- code: this folder contains the flowgraphs example already exported as C code, ready to be injected
into an application project

- flowgraphs: this folder stores some examples scenario of autonomous MRSUBG sequencer
operations

Release notes and license files are located in the root folder.

UM3399 - Rev 1 page 3/22

m UM3399

STM32CubeWiSE-RadioCodeGenerator software description

3 STM32CubeWiSE-RadioCodeGenerator software description

This section describes the main functions of the STM32CubeWiSE-RadioCodeGenerator application. To run this
utility, click on the STM32CubeWiSE-RadioCodeGenerator icon.

Figure 1. Main application window of STM32CubeWiSE-RadioCodeGenerator

&7 STM32CubeWiSE-RadioCodeGenerator

File Edit Help

C¥addadion [Ssave 5toad B Global Settings € Generate Code

Configuration: Basic | Configuraten:

| Enty point (R | command: TX i . Command:
|| Fecvency: 868.00 MEz i i | Freguency:

Data Rate: 38,40 KBaud s— Dat Fate:

Modulation: 2FSK Modulaton;

Control Flow Basic SubGHz Settings Advanced SubGHz Settings [_) Advanced Configuration
Current Action
Action Name: TransmitMessage (] Adtion times out after: 1 ¥ IS
NextAction1 Transition NextAction2 Transition
Adtion Name: WaltForACK Action Name: (not connected - terminate sequence)
Interval: 0 F s v Interval: 0 5 s v
Mask: TX_DONE Mask: Mever Match
Flags: [| SleepEn || ForceReload [B ForceClear Flags: [SleepEn [| ForceReload [| ForceClear

Comment / Description

Transmit message with databuffer contents and, when done, transition to WaitForACK state.

DT58550V1

After launching STM32CubeWiSE-RadioCodeGenerator, the main application window appears. It consists of:

. A global menu and toolbar
. The visual drag-and-drop representation of the flowgraph
. The SeqAction configuration section (only visible if a SegAction is currently being edited)

UM3399 - Rev 1

page 4/22

‘_ UM3399
,l STM32CubeWiSE-RadioCodeGenerator software description

3.1 Building a flowgraph

311 Basics
Flowgraphs are built in two steps:

1. Add SeqActions to the flowgraph. This can be done using the “Add Action” button in the toolbar, using the
global menu (Edit — Add Action) or with the “Ctrl+A” shortcut.

2. Connect SeqActions to the entry point and to each other by drawing action transition arrows.
The conditions under which these transitions occur are defined later (see Section 3.2.1: Control flow).

3.1.2 Navigating the flowgraph, dragging actions

By dragging the checkerboard background of the flowgraph with the mouse pointer (left click), the viewport on the
flowgraph can be adjusted. The mouse scroll wheel can be used to zoom in and out. Clicking anywhere on an
action (except for the output ports, the delete button and the edit button) to select an action. Actions can be
arranged in the flowgraph by dragging them with the left mouse button.

313 Adding action transitions

Figure 2. Drawing a transition for NextAction1

DT58551V1

As shown in Figure 2, each action has two “output port’, called NextAction1 (NA1) and NextAction2 (NA2), which
can be connected to SeqActions that are executed after the action has completed. For example, NextAction1
could be used to execute some action if the current action was successful and NextAction2 could be triggered in
case of failure.

To create an action transition, hover the mouse pointer over one of the output ports, press the left mouse button
and move the mouse pointer to drag a transition arrow. Move the mouse pointer over the input port on the left of
some other SeqAction and release the left mouse button to make the connection permanent. To remove an action
transition, just repeat the steps for creating an action transition, but release the left mouse button somewhere over
the checkerboard background.

If an output (NextAction1, NextAction2) is left unconnected, the sequencer terminates if this next action is
triggered.

Make sure to also connect the “Entry Point’ to some SeqAction’s input port. This SeqAction is the first to be
executed as soon as the sequencer is triggered.

UM3399 - Rev 1 page 5/22

‘_ UM3399
'l STM32CubeWiSE-RadioCodeGenerator software description

314 Editing and deleting actions

Figure 3. SegAction with edit button and delete button

Unnamed Action

Configuration: Basic
Command: NOP

DT58552V1

SeqActions can be edited by clicking on the pencil button on the top left of SeqAction. It can be deleted by clicking
on the red cross on the top right (see Figure 3). Deleting a SeqAction also removes any incoming and outgoing
action transitions.

3.2 SeqgAction configuration

SeqActions can be configured through a tabbed configuration interface accessible through the pencil button on
the top left of each action in the flowgraph. This interface essentially configures the contents of the
ActionConfiguration RAM table for the particular action, consisting of both control flow-related configuration
options as well as the dynamic register contents. The dynamic register contents can either be configured
manually with complete control over every register value (see Section 3.2.3: Advanced radio configuration) or
through a simplified interface (seeSection 3.2.2: Basic radio configuration). The simplified interface should be
sufficient for almost all use cases.

3.21 Control flow

The control flow tab (see Figure 4) contains some basic configuration options such as action name and action
timeout interval. The action name is not only used for display in the flowgraph, but is also carried over to the
generated source code.

Figure 4. SeqAction control flow configuration tab

Control Flow Basic SubGHz Settings Advanced SubGHz Settings D Advanced Configuration
Current Action
Action Name: i?rasmitMessqge | [] Action times out after: 1 =y
NextAction1 Transition NextAction2 Transition
Action Name: :Waﬂforaq(_ Action Name: (not connected - terminate sequence)
Interval: |0 :_ Hs > Interval: |0 : Hs
Mask: TX_DONE Mask: NeverMahm
Flags: [| SleepEn [| ForceReload ForceClear Flags: [| SleepEn [| ForceReload [| ForceClear

Comment | Deseription

ITrasmit message with databuffer contents, and when done, transition to WaitForACK state.

DT58553V1

UM3399 - Rev 1 page 6/22

m UM3399

STM32CubeWiSE-RadioCodeGenerator software description

Figure 5. Match mask selection for NextAction1, only one flag (TX_DONE) is selected here

&7 NextAction1: Mask Selection X
[] Never Match
MNextAction1Flags are set to never match, thus NextActioni is never executed.

[] Always Match

NextAction1Flags are set to zero, which makes them always match. NextAction1 is executed immediately.

Match if one of the following bits in SEQ_EVENT_STATUS s set:

TX_DONE] rx_oK [] Rx_TIMEOUT

[] RX_CRC_ERROR (] FAST_RX_TERM [] RXTIMER_STOP_CDT
["] sABORT_DONE] coMMAND_REIECTED [_] ¢S

[] PREAMBLE_VALID [] SYNC_VALID [] DATABUFFERO_USED

[] DATABUFFER1_USED [] RX_ALMOST_FULL_0 [] RX_ALMOST_FULL_1
[TX_ALMOST_EMPTY_0[| TX_ALMOST_EMPTY_1[] AHB_ACCESS_ERROR
[] HW_ANA_FAILURE [| RRM_CMD_START [| RRM_CMD_END

|:| SAFEASK_CALIB_DONE l:l AGC_CALIB_DONE
o

DT58554V1

The control flow tab (see Figure 4) contains some basic configuration options such as action name and action
timeout interval. The action name is not just used for display in the flowgraph, but also carried over to the
generated source code.

Most importantly, the control flow tab configures the condition on which a transition to NextAction1 / NextAction2
depends on as well as transition interval and flags. The transition condition can be configured by clicking on the
button labelled “...”, which makes the mask selection dialog shown in Figure 5 appear. The transition interval
modified the NextAction1Interval / NextAction2Interval property of the RAM table. Refer to the STM32WL33
reference manual [1] for more information on the meaning of this interval and the significance of the SleepEn /
ForceReload | ForceClear flags.

Furthermore, a short description of the SeqAction block can be added on this tab. This description is only used for
documentation purposes and carried over to the generated source code as a source code comment.

UM3399 - Rev 1 page 7/22

‘_ UM3399
'l STM32CubeWiSE-RadioCodeGenerator software description

3.2.2 Basic radio configuration
Figure 6. Basic SubGHz settings tab
Control Flow ~ Basic SubGHz Settings Advanced SubGHz Settings [Advanced Configuration
Command: | TX s PCKTLEN: 0 _:i

Radio settings Databuffer Thresholds ~ Timers FastRx T ¢y b Software Interrupts (RFSEQ _IRQ_ENABLE)

T T : [™_pone [rx_oK] Rx_TIMEOUT
Symbol | Value tnd [JRX_CRCERROR [] FASTRX.TERM [RXTIMER_STOP_CDT
Frequency base f. |ses0 ~ MHz [_] sABORT_DONE [] commanp_relecTeD] cs
[PREAMBLE_VALID [] SYNC_VALID] DATABUFFERD_USED
Data rate DR |12 . ksps ["] DATABUFFER1_USED [] RX_ALMOST_FULL_0 [] RX_ALMOST_FULL_1
[T%_ALMOST_EMPTY_0 [| TX_ALMOST_EMPTY_1[_| AHB_ACCESS_ERROR
Frequency deviation foer |12 ¥ kHz [Hw_ana_FAILURE [] sEQ L] RRM_cMD_START
[_] RRM_CMD_END [_] SAFEASK_CALIB_DONE [_] AGC_CALIB_DONE
| Channel filter CHF |100 ¥ kHz
Modulation mod 2FSK ¥

DT58555V1

The basic radio configuration tab can be subdivided into three parts:

1. A section at the top where two of the most important parameters of any action are configured: the command to
execute (TX, RX, NOP, SABORT, and so on) and, if applicable, the length of the packet to transfer.

2. A section on the left where the actual radio parameters such as: carrier frequency, data rate, modulation
properties, data buffer thresholds and timers are configured.

3. A section on the right where the CPU interrupts can be individually enabled. An interrupt handler is generated
for each of the ticked interrupts. This basically configures the contents of the RFSEQ_IRQ_ENABLE register.

Refer to the STM32WL33 reference manual [1] for the meaning of the various radio parameters.

3.23 Advanced radio configuration

Figure 7. Advanced radio configuration tab

Control Flow Basic SubGhz Settings Advanced SubGHz Settings Advanced Configuration
Address Name Value Reset Permissions Description
> 0x49000520 ADDITIONAL C.. 0x38800 0x00038800 read-write ADDITIONAL_CTRL register
> 0x49000528 COMMAND 0x0 0x00000000 read-write COMMAND register
> 0x49000518 DATABUFFER_THR 0x0 0x00000000 read-write DATABUFFER_THR register
> 0x49000524 FAST RX_TIMER 0x0 0x00000000 read-write FAST_RX_TIMER register
> 0x49000504 MODO_CONFIG 0x83A93 0x00083a93 read-write MODO_CONFIG register
> 0x49000508 MOD1_CONFIG 0x400435 0x00400435 read-write MOD1_CONFIG register
> 0x49000500 PCKTLEN_CONFIG 0x14 0x00000014 read-write PCKTLEN_CONFIG register
* x4900051c RFSEQ_IRQ_EN... 0x0 0x00000000 read-write RFSEQ_IRQ_ENABLE register
> 0x49000514 RX_TIMER 0x0 0x00000000 read-write RX_TIMER register
> 0x4900050c SYNTH_FREQ 0x4851615 0x04851615 read-write SYNTH_FREQ register
> 0x49000510 VCO_CAL CONF... 0x400088 0x00400088 read-write VCO_CAL CONFIG register

Expand

DT58556V1

If the configuration options exposed through the basic radio configuration tab (Section 3.2.2: Basic radio
configuration) are insufficient, the advanced STM32WL3x radio configuration tab allows the setting of arbitrary
dynamic register contents. The advanced configuration tab is enabled by ticking the Advanced Configuration
checkbox to the top right of the tabbed configuration interface.

It is not possible to use both basic and advanced configuration at the same time, the user must select one or the
other. However, it is of course also possible to manually edit the generated source code afterwards and to add
potentially missing configuration options.

UM3399 - Rev 1 page 8/22

m UM3399

STM32CubeWiSE-RadioCodeGenerator software description

3.3 Global configuration dialog

Figure 8. Global project settings dialog with example values

&7 Global Project Settings ? K

Only some limited functionality can be configured through this dialog. To exploit the full functionality of your
device, please edit the generated source code manually.

Project Qutput Path: |\tmp\ijr|:t | Iil

Static Register Configuration Project Settings

= Coce Indentaton

Databuffer 0 Contents (ASCII) |5TMi|:meIe|:tr[mir5 | Indude stdio.h
Databuffer 1 Contents (ASCII) |STMi|:roeIectmni|:5 | Overwrite Behavior
TX Mode |T)(_NORMAL i | Timeout Behavior
RX Mode |RX*N0RMAL e | Flowgraph definition includes stdio.h
PA Drive Mode |PA_DRV_TX_HP - | and reports sequencer state via printf.
PA Drive Power (dBm) min 35::?:;22 %I:hf‘:eleir,ﬂijnegtuz[i}:g;m

main.c, with templates.
CS RSSI Threshold (dBm) |-139 3] P

When ActionTimeout occurs, the
sequencer is terminated.

Additional C Code for Static Register Initialization

/* No additional manual static register initialization code */

DT58557V1

The “Global Project Settings” dialog can be accessed through the “Global Settings” toolbar button. The dialog
contains both configuration options for the static register contents as well as additional project settings. Note that
only a small fraction of static register configuration options can be configured through this dialog. These options
are only provided to speed up application prototyping applications with STM32CubeWiSE-RadioCodeGenerator.
It is usually expected that the static register contents are set up in the application’s manually-written source code.
The meaning of the other project settings is explained in the dialog itself.

Additional C code that is inserted just before creating the Global Configuration RAM table from the static register
contents may also be provided. This field may be used to set up static register values which are inaccessible
through the provided static register configuration mask.

UM3399 - Rev 1 page 9/22

‘_ UM3399
'l STM32CubeWiSE-RadioCodeGenerator software description

3.4 Code generation

The flowgraph can be translated into a complete project C source code by pressing the Generate Code button in
the toolbar. The generated project folder does not contain project files for IAR, Keil®, or GCC. These files must be
added manually to the STMWL3x project.

This is the generated project folder structure:

. Project folder
- inc
° SequencerFlowgraph.h: header file for SequencerFlowgraph.c, static. Do not edit this.
° stm32wi3x_hal_conf.h: STM32WL3x HAL configuration file, static.
- src
° SequencerFlowgraph.c: flowgraph definition. This is the important file that uses the sequencer
driver to define the global-configuration and action-configuration RAM tables. Autogenerated,
do not edit.

° main.c: Project main file that demonstrates how to load and apply the flow-graph definition.
Static, modify this as needed.

To edit main.c or stm32wlI3x_hal_conf.h, select overwrite behavior Keep in the project settings. This way, only
SequencerFlowgraph.c gets overwritten.

3.5 How to import generated code into a CubeMX example

To import a project generated by STM32CubeWiSE-RadioCodeGenerator into a CubeMX example
(MRSUBG_Skeleton), it is necessary to follow the following steps:

1. Open the folder contained the files generated by STM32CubeWiSE-RadioCodeGenerator and copy “/nc” and
“Src” folders.

2. Paste the two folders on “MRSUBG _Skeleton” folder overwriting the two already present.
3. Open “MRSUBG_Skeleton” project in one of the following IDEs:

- EWARM

- MDK-ARM

- STM32CubelDE

UM3399 - Rev 1 page 10/22

‘_ UM3399
'l STM32CubeWiSE-RadioCodeGenerator software description

4. Inside the “MRSUBG_Skeleton” project, add “SequencerFlowghraph.c” file:
- For an EWARM project, the path to add the file is the following: MRSUBG _Skeleton\Application\User

Figure 9. EWARM project

IM

MRSUBG_Skeleton -

Files O
- @MRSUBG_Skeleton - MRSUBG_Skeleton *
—1 M Application
) i EWARM
|) startup_stm32widhocs
L5 s User
E) main.c
—{ B) SequencerFlowgraph.c |
) strn 32wl 3x_hal_msp.c
B stm32widx_itc

g

DT58561V1

- For an MDK-ARM project, the path to add the file is the following: MRSUBG_ Skeleton\Application/User

Figure 10. MDK-ARM project

Project A
= “% Project: MRSUBG_Skeleton
E &5 MRSUBG_Skeleton
@ 3 Application/MDK-ARM
=i Application/User
@& _] main.c
@) stm32widx_it.c
@] stm32widx_hal_msp.c
[B] SequencerFlowgraph.c]

DT58562V1

- For an STM32CubelDE project, the path to add the file is the same:
MRSUBG_Skeleton\Application\User

UM3399 - Rev 1 page 11/22

‘,_l UM3399

STM32CubeWiSE-RadioCodeGenerator software description

Figure 11. STM32CubelDE project

‘& Project Explorer = BE®Y7T =D
~ [MRSUBG_Skeleton (in STM32CubelDE)
» & Binaries
» @l Includes
v & Application
= Startup
v & User
I& main.c

> [iﬁ SequencerfFlowgraph.c]
& strm32wl3x_hal_msp.c
& strn32wl3x_it.c

o syscalls.c
[sysmem.c

DT58563V1

UM3399 - Rev 1 page 12/22

‘_ UM3399
'l STM32CubeWiSE-RadioCodeGenerator software description

5. Inside the MRSUBG_Skeleton project, add stm32wi3x_hal_uart.c and stm32wI3x_hal_uart_ex.c files to the
following path: MRSUBG _Skeleton\Drivers\STM32WL3x_HAL_Driver. The path is the same for all IDEs. The
two files are located on Firmware\Drivers\STM32WL3x_HAL_Driver\Src.

Figure 12. Drivers folder for EWARM project

MRASUBG_Skeleton

Files o

| L& Bsm3awidite
= il Doc

) ol Drivers

| = WBSP

| |-z i CMSIS

| | “mB system_stm32widxc

| L5 ol STM32WL3x_HAL_Driver

| 3 B stm32wi3_hal.c

| —) stm32wi3x_hal_cortexc

| @ B stm32wiix_hal_dmac

| 3 B stm32wiBh_hal_flash.c

| 32 B stm32wib_hal_flash_exc
| @ B stm32wi3x_hal_gpio.c

| 2 B stm32wiB_hal_mrsubg.c
| 2 B stm32wih_hal_pwr.c

| — B stm32wi3x_hal_pwr_exc

| L@ B stm32wib_hal_rece

| 3 B stm32wiB_hal_rcc_exc

| — B stm32wi3x_hal_tim.c

| 8 B stm32wib_hal_tim_exc

| [H3 B stm32wi3x_hal_uartc]
| L3 B stm32wi3x_hal_uart_exc
| 5) stm32widx_ll_utils.c

DT58564V1

UM3399 - Rev 1 page 13/22

Lys

UM3399

STM32CubeWiSE-RadioCodeGenerator software description

6. To use COM features, stm32wlI3x_nucleo_contf.h file, located on Firmware\Projects\NUCLEO-
WL33CC\Examples\MRSUBG\MRSUBG_Skeleton\Inc, must be modified setting USE_BSP_COM_FEATURE
and USE_COM_LOG to 1U:

Figure 13. stm32wlI3x_nucleo_conf.h file

3@ | /* Usage of nucleo board */

31 #define USE_NUCLEO 64 v

32

33 | /* Usage of COM feature */

34 #define USE_BSP_COM_FEATURE &u

35 | #define USE_COM_LOG au

36

37 | /¥ Button interrupt priorities ¥/

38 | #define BSP_B1_IT PRIORITY @x@FUL /¥ Default is Lowest priority level */

39 | #define BSP_B2_IT PRIORITY @x@FUL /¥ Default is Lowest priority level %/

49 | #define BSP_B3 IT PRIORITY @xBFUL /* Default is lowest priority Llevel */ >

41 8
8
a

7. Copy the following code into “stm32wi3x_it.c”, located in MRSUBG _Skeleton\Application\User.

Figure 14. Application section for EWARM project

Workspace v 03X
MRSUBG_Skeleton

Files o

- @ MRSUBG_Skeleton - MRSUBG_Skeleton v

1 Wl Application
| = EEWARM
I | B) startup_stm32wi3xcs

DT58566V1

/*** Q@brief This function handles MRSUBG interrupt. */
void MRSUBG_IRQHandler (void)
{

/* USER CODE BEGIN MRSUBG IRQn 0 */
/* USER CODE END MRSUBG IRQn 0 */
HAL MRSubG IRQHandler () ;

/* USER CODE BEGIN MRSUBG IRQn 1 */

/* USER CODE END MRSUBG IRQn 1 */

UM3399 - Rev 1 page 14/22

‘_ UM3399
,l STM32CubeWiSE-RadioCodeGenerator software description

3.6 Flowgraph examples

Four example flowgraphs are provided alongside the source code. These examples may be loaded into
STM32CubeWiSE-RadioCodeGenerator by clicking the “Load” button in the toolbar.

3.6.1 AutoACK_RX

Figure 15. AutoACK_RX example

TrasmitACK

DT58559V1

The Auto-ACK demo illustrates how two STM32WL33 devices can automatically talk to each other with minimal
CPU intervention, with the help of the sequencer hardware.

This flowgraph implements the behavior (Auto-Transmit-ACK) of device A. In device A, the sequencer is initialized
in a receiving state (WaitForMessage), in which it waits for a message to arrive.

Once a valid message arrives, the sequencer automatically transitions into an transmit state (TransmitACK), in
which an ACK packet is sent as a response, without CPU intervention. Once this is finished, the sequencer is
reset into its initial WaitForMessage state.

This flowgraph implements the same behavior as the MRSUBG_SequencerAutoAck _Rx example from the
Examples\MRSUBG folder of the STM32Cube WL3 Software package. If AutoACK_RX is flashed on one device,
A, and AutoACK_TX is flashed on some device, B, the two devices send messages back and forth, as in a ping-
pong game.

UM3399 - Rev 1 page 15/22

ﬁ UM3399

STM32CubeWiSE-RadioCodeGenerator software description

3.6.2 AutoACK_TX

Figure 16. AutoACK_TX example

Confiouration: Basic | Confiquration: Basic
[Entry Point (ISR, Command: RX : B Command: RELOAD_RY_TIM
£ Freauency: B868.00 MHz Frequency: 868.00 MHz
Data Rate: 20.00 KBaud ——— Data Rate: 20.00 KBaud

Modulation: 2FSK Modulation: 2FSK

DT58567V1

The "Auto-ACK" demo illustrates how two STM32WL33 devices can automatically talk to each other with minimal
CPU intervention with the help of the sequencer hardware.

This flowgraph implements the behavior ("Auto-Wait-for-ACK") of device B. In device B, the sequencer is
initialized in a transmitting state (TransmitMessage), in which it transmits a message. Once the transmission is
finished, it auomatically transitions into a receiving state where it waits for an acknowledgement from device A
(WaitForACK). Once a valid acknowledgement arrives, the sequencer is reset into its initial TransmitMessage
state and the whole process starts again. In case no ACK is received within 4 seconds, a timeout is triggered and
the sequencer returns to state TransmitMessage anyway.

This flowgraph implements the same behavior as the “MRSUBG _SequencerAutoAck_Tx” example from the
Examples\MRSUBG folder of the STM32Cube WL3 Software package. If AutoACK_RX is flashed on one device,
A, and AutoACK_TX is flashed on some other device, B, the two devices send messages back and forth, as in a
ping-pong game.

3.6.3 Listen before talk (LBT)

Figure 17. Listen before talk example

DT58568V1

This example is taken from the STM32WL33 reference manual [1]. Refer to that manual for further details of this
example.

UM3399 - Rev 1 page 16/22

UM3399

STM32CubeWiSE-RadioCodeGenerator software description

Sniff mode

Confiquration:
Command:

Entry Point (58

Freauency:
Data Rate:
Modulation:

Figure 18. Sniff mode example

Basic

868.00 MHz
20.00 KBaud
2FSK

Configuration:
RX 3 X ~ Command:
4 Frequency:

Data Rate:
Maodulation:

Basic
RELOAD_RX_TIMI
868.00 MHz
20.00 KBaud
2FSK

NAL (3

NA2

This example is taken from the STM32WL33 reference manual [1]. Refer to that manual for further details of this

example.

UM3399 - Rev 1 page 17/22

‘_ UM3399
'l STM32CubeWiSE-RadioCodeGenerator software description

Revision history

Table 2. Document revision history

21-Nov-2024 1 Initial release.

UM3399 - Rev 1 page 18/22

‘_ UM3399
,’ Contents

Contents
1 General information i i 2
1.1 LiCENSING . .ot 2
1.2 Related documents e 2
2 Getting startedoo i i ittt ia e a e i e, 3
2.1 System reqUIrEmMENtS 3
2.2 STM32CubeWiSE-RadioCodeGenerator SW package setup. 3
2.3 STM32CubeWiSE-RadioCodeGenerator SW packagefiles 3
3 STM32CubeWiSE-RadioCodeGenerator software description....................... 4
3.1 Building a flowgrapho 5
311 BasiCS 5
3.1.2 Navigating the flowgraph, dragging actions. 5
3.1.3 Adding action transitions 5
314 Editing and deleting actions 6
3.2 SeqAction configuration 6
3.21 Control flow. . . . 6
3.2.2 Basic radio configuration. 8
3.2.3 Advanced radio configuration 8
3.3 Global configuration dialog. 9
34 Code generation e 10
3.5 How to import generated code into a CubeMX example 10
3.6 Flowgraph examples. e 15
3.6.1 AUIOACK _RX . 15
3.6.2 AUIOACK TX. L 16
3.6.3 Listen before talk (LBT).ot e 16
3.64 SniffMode. 17
ReVISION NiStOry i i i ettt eata s ana s nanasennnaaannnnns 18

UM3399 - Rev 1 page 19/22

‘,_l UM3399

List of tables

List of tables

Table 1. Document references 2
Table 2. Document revision history 18

UM3399 - Rev 1 page 20/22

‘_ UM3399
,’ List of figures

List of figures

Figure 1. Main application window of STM32CubeWiSE-RadioCodeGenerator. 4
Figure 2. Drawing a transition for NextAction1 5
Figure 3. SegAction with edit button and delete button L 6
Figure 4. SegAction control flow configurationtab. 6
Figure 5. Match mask selection for NextAction1, only one flag (TX_DONE) is selected here. 7
Figure 6. Basic SubGHz settings tab. 8
Figure 7. Advanced radio configuration tab 8
Figure 8. Global project settings dialog with example values 9
Figure 9. EWARM project . . . o 11
Figure 10. MDK-ARM Project. oo e 11
Figure 11. STM32CUbelDE project. o e 12
Figure 12. Drivers folder for EWARM project 13
Figure 13. stm32wI3x_nucleo_conf.hfile. 14
Figure 14. Application section for EWARM project 14
Figure 15, AUutoACK _RX example 15
Figure 16. AUtOACK _TX example. e 16
Figure 17. Listen before talk example 16
Figure 18. Sniff mode example 17

UM3399 - Rev 1 page 21/22

‘,_l UM3399

IMPORTANT NOTICE — READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics — All rights reserved

UM3399 - Rev 1 page 22/22

http://www.st.com/trademarks

	UM3399
	1 General information
	1.1 Licensing
	1.2 Related documents

	2 Getting started
	2.1 System requirements
	2.2 STM32CubeWiSE-RadioCodeGenerator SW package setup
	2.3 STM32CubeWiSE-RadioCodeGenerator SW package files

	3 STM32CubeWiSE-RadioCodeGenerator software description
	3.1 Building a flowgraph
	3.1.1 Basics
	3.1.2 Navigating the flowgraph, dragging actions
	3.1.3 Adding action transitions
	3.1.4 Editing and deleting actions

	3.2 SeqAction configuration
	3.2.1 Control flow
	3.2.2 Basic radio configuration
	3.2.3 Advanced radio configuration

	3.3 Global configuration dialog
	3.4 Code generation
	3.5 How to import generated code into a CubeMX example
	3.6 Flowgraph examples
	3.6.1 AutoACK_RX
	3.6.2 AutoACK_TX
	3.6.3 Listen before talk (LBT)
	3.6.4 Sniff mode

	Revision history

