
Introduction

This document describes the STM32CubeWiSE-RadioCodeGenerator (STM32CubeWiSEcg) SW package with the
STM32WL33 MRSUBG sequencer code generator.

STM32CubeWiSE-RadioCodeGenerator is a PC application that is used to build a flowgraph that defines which transceiver
actions to execute under which condition, using the MRSUBG sequencer driver.

STM32WL33 Sub-GHz radio contains this sequencer, which is a state-machine like mechanism which allows for autonomous
management of RF transfers, without any need for CPU intervention. If CPU intervention is required, interrupts can be defined.
Transceiver actions can be arranged in a flowgraph. In this document, the individual transceiver actions are referred to as
SeqActions.

However, source code is not the best representation for flowgraphs, since it conceals their logical and temporal structure.
STM32CubeWiSE-RadioCodeGenerator addresses this issue by providing a graphical method to build flowgraphs, and then
exporting the generated flowgraphs as C source code for integration into user applications.

The flowgraph definition is stored in the microcontroller RAM in the form of:

• A set of ActionConfiguration RAM tables, linked to each other using pointers. These pointers define the SeqActions, that
is, the type of action (for example, transmission, reception, abort), as well as SeqAction-specific radio parameters and
conditions for action transmissions.

• A unique GlobalConfiguration RAM table. This defines the entry point of the flowgraph (the first SeqAction to execute), as
well as some default flag values and common radio parameters.

Radio parameters, which can be configured individually for each SeqAction, are stored in one of the dynamic registers, whose
contents are part of the ActionConfiguration RAM table. Radio parameters that are fixed over the whole execution of the
flowgraph (unless they are modified during a CPU interrupt), are stored in static registers, whose contents are part of the
GlobalConfigurtion RAM table.

STM32CubeWiSE-RadioCodeGenerator software description

UM3399

User manual

UM3399 - Rev 1 - November 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

1 General information

1.1 Licensing
This document describes software that runs on the STM32WL33 Arm® Cortex ® -M0+ based microcontroller.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.2 Related documents

Table 1. Document references

Number Reference Title

[1] RM0511 STM32WL33xx Arm® based sub-GHz MCUs

UM3399
General information

UM3399 - Rev 1 page 2/22

2 Getting started

This section describes all of the system requirements to run STM32CubeWiSE-RadioCodeGenerator. It also
details the software-package installation procedure.

2.1 System requirements
The STM32CubeWiSE-RadioCodeGenerator application has the following minimum requirements:

• PC with an Intel® or AMD® processor running the Microsoft® Windows 10 operating system
• At least 2 Gbytes of RAM
• USB ports
• Adobe Acrobat reader 6.0

2.2 STM32CubeWiSE-RadioCodeGenerator SW package setup
Perform tthe following steps:
1. Extract the content of the stm32wise-cgwin.zip file into a temporary directory.
2. Extract and launch the STM32CubeWiSE-RadioCodeGenerator_Vx.x.x.exe file and follow the on-screen

instructions.

2.3 STM32CubeWiSE-RadioCodeGenerator SW package files
The STM32CubeWiSE-RadioCodeGenerator SW package files are organized into the following folders:
• app: contains STM32CubeWiSE-RadioCodeGenerator.exe
• examples: this folder is organized into the following subfolders:

– code: this folder contains the flowgraphs example already exported as C code, ready to be injected
into an application project

– flowgraphs: this folder stores some examples scenario of autonomous MRSUBG sequencer
operations

Release notes and license files are located in the root folder.

UM3399
Getting started

UM3399 - Rev 1 page 3/22

3 STM32CubeWiSE-RadioCodeGenerator software description

This section describes the main functions of the STM32CubeWiSE-RadioCodeGenerator application. To run this
utility, click on the STM32CubeWiSE-RadioCodeGenerator icon.

Figure 1. Main application window of STM32CubeWiSE-RadioCodeGenerator

D
T5

85
50

V1

After launching STM32CubeWiSE-RadioCodeGenerator, the main application window appears. It consists of:
• A global menu and toolbar
• The visual drag-and-drop representation of the flowgraph
• The SeqAction configuration section (only visible if a SeqAction is currently being edited)

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 4/22

3.1 Building a flowgraph

3.1.1 Basics
Flowgraphs are built in two steps:
1. Add SeqActions to the flowgraph. This can be done using the “Add Action” button in the toolbar, using the

global menu (Edit → Add Action) or with the “Ctrl+A” shortcut.
2. Connect SeqActions to the entry point and to each other by drawing action transition arrows.
The conditions under which these transitions occur are defined later (see Section 3.2.1: Control flow).

3.1.2 Navigating the flowgraph, dragging actions
By dragging the checkerboard background of the flowgraph with the mouse pointer (left click), the viewport on the
flowgraph can be adjusted. The mouse scroll wheel can be used to zoom in and out. Clicking anywhere on an
action (except for the output ports, the delete button and the edit button) to select an action. Actions can be
arranged in the flowgraph by dragging them with the left mouse button.

3.1.3 Adding action transitions

Figure 2. Drawing a transition for NextAction1

D
T5

85
51

V1

As shown in Figure 2, each action has two “output port”, called NextAction1 (NA1) and NextAction2 (NA2), which
can be connected to SeqActions that are executed after the action has completed. For example, NextAction1
could be used to execute some action if the current action was successful and NextAction2 could be triggered in
case of failure.
To create an action transition, hover the mouse pointer over one of the output ports, press the left mouse button
and move the mouse pointer to drag a transition arrow. Move the mouse pointer over the input port on the left of
some other SeqAction and release the left mouse button to make the connection permanent. To remove an action
transition, just repeat the steps for creating an action transition, but release the left mouse button somewhere over
the checkerboard background.
If an output (NextAction1, NextAction2) is left unconnected, the sequencer terminates if this next action is
triggered.
Make sure to also connect the “Entry Point” to some SeqAction’s input port. This SeqAction is the first to be
executed as soon as the sequencer is triggered.

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 5/22

3.1.4 Editing and deleting actions

Figure 3. SeqAction with edit button and delete button

D
T5

85
52

V1

SeqActions can be edited by clicking on the pencil button on the top left of SeqAction. It can be deleted by clicking
on the red cross on the top right (see Figure 3). Deleting a SeqAction also removes any incoming and outgoing
action transitions.

3.2 SeqAction configuration
SeqActions can be configured through a tabbed configuration interface accessible through the pencil button on
the top left of each action in the flowgraph. This interface essentially configures the contents of the
ActionConfiguration RAM table for the particular action, consisting of both control flow-related configuration
options as well as the dynamic register contents. The dynamic register contents can either be configured
manually with complete control over every register value (see Section 3.2.3: Advanced radio configuration) or
through a simplified interface (seeSection 3.2.2: Basic radio configuration). The simplified interface should be
sufficient for almost all use cases.

3.2.1 Control flow
The control flow tab (see Figure 4) contains some basic configuration options such as action name and action
timeout interval. The action name is not only used for display in the flowgraph, but is also carried over to the
generated source code.

Figure 4. SeqAction control flow configuration tab
D

T5
85

53
V1

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 6/22

Figure 5. Match mask selection for NextAction1, only one flag (TX_DONE) is selected here

D
T5

85
54

V1

The control flow tab (see Figure 4) contains some basic configuration options such as action name and action
timeout interval. The action name is not just used for display in the flowgraph, but also carried over to the
generated source code.
Most importantly, the control flow tab configures the condition on which a transition to NextAction1 / NextAction2
depends on as well as transition interval and flags. The transition condition can be configured by clicking on the
button labelled “...”, which makes the mask selection dialog shown in Figure 5 appear. The transition interval
modified the NextAction1Interval / NextAction2Interval property of the RAM table. Refer to the STM32WL33
reference manual [1] for more information on the meaning of this interval and the significance of the SleepEn /
ForceReload / ForceClear flags.
Furthermore, a short description of the SeqAction block can be added on this tab. This description is only used for
documentation purposes and carried over to the generated source code as a source code comment.

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 7/22

3.2.2 Basic radio configuration

Figure 6. Basic SubGHz settings tab

D
T5

85
55

V1

The basic radio configuration tab can be subdivided into three parts:
1. A section at the top where two of the most important parameters of any action are configured: the command to

execute (TX, RX, NOP, SABORT, and so on) and, if applicable, the length of the packet to transfer.
2. A section on the left where the actual radio parameters such as: carrier frequency, data rate, modulation

properties, data buffer thresholds and timers are configured.
3. A section on the right where the CPU interrupts can be individually enabled. An interrupt handler is generated

for each of the ticked interrupts. This basically configures the contents of the RFSEQ_IRQ_ENABLE register.
Refer to the STM32WL33 reference manual [1] for the meaning of the various radio parameters.

3.2.3 Advanced radio configuration

Figure 7. Advanced radio configuration tab

D
T5

85
56

V1

If the configuration options exposed through the basic radio configuration tab (Section 3.2.2: Basic radio
configuration) are insufficient, the advanced STM32WL3x radio configuration tab allows the setting of arbitrary
dynamic register contents. The advanced configuration tab is enabled by ticking the Advanced Configuration
checkbox to the top right of the tabbed configuration interface.
It is not possible to use both basic and advanced configuration at the same time, the user must select one or the
other. However, it is of course also possible to manually edit the generated source code afterwards and to add
potentially missing configuration options.

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 8/22

3.3 Global configuration dialog

Figure 8. Global project settings dialog with example values

D
T5

85
57

V1

The “Global Project Settings” dialog can be accessed through the “Global Settings” toolbar button. The dialog
contains both configuration options for the static register contents as well as additional project settings. Note that
only a small fraction of static register configuration options can be configured through this dialog. These options
are only provided to speed up application prototyping applications with STM32CubeWiSE-RadioCodeGenerator.
It is usually expected that the static register contents are set up in the application’s manually-written source code.
The meaning of the other project settings is explained in the dialog itself.
Additional C code that is inserted just before creating the Global Configuration RAM table from the static register
contents may also be provided. This field may be used to set up static register values which are inaccessible
through the provided static register configuration mask.

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 9/22

3.4 Code generation
The flowgraph can be translated into a complete project C source code by pressing the Generate Code button in
the toolbar. The generated project folder does not contain project files for IAR, Keil®, or GCC. These files must be
added manually to the STMWL3x project.
This is the generated project folder structure:
• Project folder

– inc
◦ SequencerFlowgraph.h: header file for SequencerFlowgraph.c, static. Do not edit this.
◦ stm32wl3x_hal_conf.h: STM32WL3x HAL configuration file, static.

– src
◦ SequencerFlowgraph.c: flowgraph definition. This is the important file that uses the sequencer

driver to define the global-configuration and action-configuration RAM tables. Autogenerated,
do not edit.

◦ main.c: Project main file that demonstrates how to load and apply the flow-graph definition.
Static, modify this as needed.

To edit main.c or stm32wl3x_hal_conf.h, select overwrite behavior Keep in the project settings. This way, only
SequencerFlowgraph.c gets overwritten.

3.5 How to import generated code into a CubeMX example
To import a project generated by STM32CubeWiSE-RadioCodeGenerator into a CubeMX example
(MRSUBG_Skeleton), it is necessary to follow the following steps:
1. Open the folder contained the files generated by STM32CubeWiSE-RadioCodeGenerator and copy “Inc” and

“Src” folders.
2. Paste the two folders on “MRSUBG_Skeleton” folder overwriting the two already present.
3. Open “MRSUBG_Skeleton” project in one of the following IDEs:

– EWARM
– MDK-ARM
– STM32CubeIDE

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 10/22

4. Inside the “MRSUBG_Skeleton” project, add “SequencerFlowghraph.c” file:
– For an EWARM project, the path to add the file is the following: MRSUBG_Skeleton\Application\User

Figure 9. EWARM project

D
T5

85
61

V1

– For an MDK-ARM project, the path to add the file is the following: MRSUBG_Skeleton\Application/User

Figure 10. MDK-ARM project

D
T5

85
62

V1

– For an STM32CubeIDE project, the path to add the file is the same:
MRSUBG_Skeleton\Application\User

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 11/22

Figure 11. STM32CubeIDE project

D
T5

85
63

V1

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 12/22

5. Inside the MRSUBG_Skeleton project, add stm32wl3x_hal_uart.c and stm32wl3x_hal_uart_ex.c files to the
following path: MRSUBG_Skeleton\Drivers\STM32WL3x_HAL_Driver. The path is the same for all IDEs. The
two files are located on Firmware\Drivers\STM32WL3x_HAL_Driver\Src.

Figure 12. Drivers folder for EWARM project

D
T5

85
64

V1

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 13/22

6. To use COM features, stm32wl3x_nucleo_conf.h file, located on Firmware\Projects\NUCLEO-
WL33CC\Examples\MRSUBG\MRSUBG_Skeleton\Inc, must be modified setting USE_BSP_COM_FEATURE
and USE_COM_LOG to 1U:

Figure 13. stm32wl3x_nucleo_conf.h file

D
T5

85
65

V1

7. Copy the following code into “stm32wl3x_it.c”, located in MRSUBG_Skeleton\Application\User.

Figure 14. Application section for EWARM project

D
T5

85
66

V1

/*** @brief This function handles MRSUBG interrupt. */
void MRSUBG_IRQHandler(void)
{
 /* USER CODE BEGIN MRSUBG_IRQn 0 */

 /* USER CODE END MRSUBG_IRQn 0 */
 HAL_MRSubG_IRQHandler();
 /* USER CODE BEGIN MRSUBG_IRQn 1 */

 /* USER CODE END MRSUBG_IRQn 1 */
}

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 14/22

3.6 Flowgraph examples
Four example flowgraphs are provided alongside the source code. These examples may be loaded into
STM32CubeWiSE-RadioCodeGenerator by clicking the “Load” button in the toolbar.

3.6.1 AutoACK_RX

Figure 15. AutoACK_RX example

D
T5

85
59

V1

The Auto-ACK demo illustrates how two STM32WL33 devices can automatically talk to each other with minimal
CPU intervention, with the help of the sequencer hardware.
This flowgraph implements the behavior (Auto-Transmit-ACK) of device A. In device A, the sequencer is initialized
in a receiving state (WaitForMessage), in which it waits for a message to arrive.
Once a valid message arrives, the sequencer automatically transitions into an transmit state (TransmitACK), in
which an ACK packet is sent as a response, without CPU intervention. Once this is finished, the sequencer is
reset into its initial WaitForMessage state.
This flowgraph implements the same behavior as the MRSUBG_SequencerAutoAck_Rx example from the
Examples\MRSUBG folder of the STM32Cube WL3 Software package. If AutoACK_RX is flashed on one device,
A, and AutoACK_TX is flashed on some device, B, the two devices send messages back and forth, as in a ping-
pong game.

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 15/22

3.6.2 AutoACK_TX

Figure 16. AutoACK_TX example

D
T5

85
67

V1

The "Auto-ACK" demo illustrates how two STM32WL33 devices can automatically talk to each other with minimal
CPU intervention with the help of the sequencer hardware.
This flowgraph implements the behavior ("Auto-Wait-for-ACK") of device B. In device B, the sequencer is
initialized in a transmitting state (TransmitMessage), in which it transmits a message. Once the transmission is
finished, it auomatically transitions into a receiving state where it waits for an acknowledgement from device A
(WaitForACK). Once a valid acknowledgement arrives, the sequencer is reset into its initial TransmitMessage
state and the whole process starts again. In case no ACK is received within 4 seconds, a timeout is triggered and
the sequencer returns to state TransmitMessage anyway.
This flowgraph implements the same behavior as the “MRSUBG_SequencerAutoAck_Tx” example from the
Examples\MRSUBG folder of the STM32Cube WL3 Software package. If AutoACK_RX is flashed on one device,
A, and AutoACK_TX is flashed on some other device, B, the two devices send messages back and forth, as in a
ping-pong game.

3.6.3 Listen before talk (LBT)

Figure 17. Listen before talk example
D

T5
85

68
V1

This example is taken from the STM32WL33 reference manual [1]. Refer to that manual for further details of this
example.

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 16/22

3.6.4 Sniff mode

Figure 18. Sniff mode example

This example is taken from the STM32WL33 reference manual [1]. Refer to that manual for further details of this
example.

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 17/22

Revision history

Table 2. Document revision history

Date Version Changes

21-Nov-2024 1 Initial release.

UM3399
STM32CubeWiSE-RadioCodeGenerator software description

UM3399 - Rev 1 page 18/22

Contents

1 General information .2
1.1 Licensing . 2

1.2 Related documents . 2

2 Getting started .3
2.1 System requirements . 3

2.2 STM32CubeWiSE-RadioCodeGenerator SW package setup . 3

2.3 STM32CubeWiSE-RadioCodeGenerator SW package files . 3

3 STM32CubeWiSE-RadioCodeGenerator software description. .4
3.1 Building a flowgraph . 5

3.1.1 Basics . 5

3.1.2 Navigating the flowgraph, dragging actions. 5

3.1.3 Adding action transitions . 5

3.1.4 Editing and deleting actions . 6

3.2 SeqAction configuration . 6
3.2.1 Control flow. 6

3.2.2 Basic radio configuration. 8

3.2.3 Advanced radio configuration . 8

3.3 Global configuration dialog. 9

3.4 Code generation . 10

3.5 How to import generated code into a CubeMX example . 10

3.6 Flowgraph examples. 15
3.6.1 AutoACK_RX . 15

3.6.2 AutoACK_TX. 16

3.6.3 Listen before talk (LBT). 16

3.6.4 Sniff mode. 17

Revision history .18

UM3399
Contents

UM3399 - Rev 1 page 19/22

List of tables
Table 1. Document references . 2
Table 2. Document revision history . 18

UM3399
List of tables

UM3399 - Rev 1 page 20/22

List of figures
Figure 1. Main application window of STM32CubeWiSE-RadioCodeGenerator. 4
Figure 2. Drawing a transition for NextAction1 . 5
Figure 3. SeqAction with edit button and delete button . 6
Figure 4. SeqAction control flow configuration tab. 6
Figure 5. Match mask selection for NextAction1, only one flag (TX_DONE) is selected here. 7
Figure 6. Basic SubGHz settings tab. 8
Figure 7. Advanced radio configuration tab . 8
Figure 8. Global project settings dialog with example values . 9
Figure 9. EWARM project . 11
Figure 10. MDK-ARM project . 11
Figure 11. STM32CubeIDE project . 12
Figure 12. Drivers folder for EWARM project . 13
Figure 13. stm32wl3x_nucleo_conf.h file . 14
Figure 14. Application section for EWARM project . 14
Figure 15. AutoACK_RX example . 15
Figure 16. AutoACK_TX example. 16
Figure 17. Listen before talk example . 16
Figure 18. Sniff mode example . 17

UM3399
List of figures

UM3399 - Rev 1 page 21/22

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

UM3399

UM3399 - Rev 1 page 22/22

http://www.st.com/trademarks

	UM3399
	1 General information
	1.1 Licensing
	1.2 Related documents

	2 Getting started
	2.1 System requirements
	2.2 STM32CubeWiSE-RadioCodeGenerator SW package setup
	2.3 STM32CubeWiSE-RadioCodeGenerator SW package files

	3 STM32CubeWiSE-RadioCodeGenerator software description
	3.1 Building a flowgraph
	3.1.1 Basics
	3.1.2 Navigating the flowgraph, dragging actions
	3.1.3 Adding action transitions
	3.1.4 Editing and deleting actions

	3.2 SeqAction configuration
	3.2.1 Control flow
	3.2.2 Basic radio configuration
	3.2.3 Advanced radio configuration

	3.3 Global configuration dialog
	3.4 Code generation
	3.5 How to import generated code into a CubeMX example
	3.6 Flowgraph examples
	3.6.1 AutoACK_RX
	3.6.2 AutoACK_TX
	3.6.3 Listen before talk (LBT)
	3.6.4 Sniff mode

	Revision history

