
Introduction

The X-CUBE-WB05N expansion software package for STM32Cube runs on the STM32 and includes drivers for STM32WB05xN
Bluetooth® low energy network coprocessor device.

The expansion is built on STM32Cube software technology to ease portability across different STM32 microcontrollers.

The software comes with sample implementations of the drivers running on the X-NUCLEO-WB05KN1 when connected to a
NUCLEO-U575ZI-Q board.

 Related links
Visit the STM32Cube ecosystem web page on www.st.com for further information

Getting started with the X-CUBE-WB05N Bluetooth® Low Energy software
expansion for STM32Cube

UM3406

User manual

UM3406 - Rev 1 - October 2024
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/embedded-software/x-cube-wb05n
https://www.st.com/stm32cube
https://www.st.com/stm32cube
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1
https://www.st.com/en/evaluation-tools/nucleo-u575zi-q
https://www.st.com/stm32cube

1 Acronyms and abbreviations

Table 1. List of acronyms

Acronym Description

ACI Application controller interface

ATT Attribute protocol

Bluetooth LE Bluetooth low energy

BSP Board support package

BT Bluetooth

GAP Generic access profile

GATT Generic attribute profile

GUI Graphical user interface

HAL Hardware abstraction layer

HCI Host controller interface

IDE Integrated development environment

L2CAP Logical link control and adaptation protocol

LED Light emitting diode

LL Link layer

LPM Low power manager

MCU Micro controller unit

PCI Profile command interface

PHY Physical layer

SIG Special interest group

SM Security manager

SPI Serial peripheral interface

UUID Universally unique identifier

UM3406
Acronyms and abbreviations

UM3406 - Rev 1 page 2/29

2 X-CUBE-WB05N software expansion for STM32Cube

2.1 Overview
The X-CUBE-WB05N software package expands STM32Cube functionality and provides the Bluetooth Low
Energy connectivity.
The key features are:
• Complete middleware to build Bluetooth® low energy applications using STM32WB05xN devices.
• Easy portability across different MCU families, thanks to STM32Cube.
• Numerous examples to aid comprehension of Bluetooth connectivity applications.
• Package compatible with STM32CubeMX, can be downloaded from and installed directly into

STM32CubeMX.
• Free, user-friendly license terms.

2.1.1 Bluetooth® Low Energy
Bluetooth® Low Energy is a wireless personal area network technology designed and marketed by Bluetooth SIG.
It can be used to develop innovative applications in various fields such as fitness, security, and healthcare. These
applications can run on devices powered by coin-cell batteries, which can remain operational indefinitely without
draining the battery.

2.1.1.1 Operating modes
According to the Bluetooth standard specification (version 4.0 and above), Bluetooth classic and Bluetooth® Low
Energy can be supported on the same device (dual-mode, also called Bluetooth smart ready). Instead, a single-
mode (Bluetooth smart) device supports the Bluetooth® Low Energy protocol only.

UM3406
X-CUBE-WB05N software expansion for STM32Cube

UM3406 - Rev 1 page 3/29

https://www.st.com/en/embedded-software/x-cube-wb05n
https://www.st.com/stm32cube
https://www.st.com/stm32cube
https://www.st.com/STM32CubeMX
https://www.st.com/STM32CubeMX

2.1.1.2 Software partitioning
A typical Bluetooth LE system consists of:
• An LE controller, containing a physical layer (PHY) including the radio, a link layer (LL) and a standard host

controller interface (HCI).
• A host, containing an HCI and other higher protocol layers (e.g. L2CAP, SM, ATT/GATT and GAP)

Figure 1. Bluetooth LE protocol stack

The host can send HCI commands to control the LE controller. The HCI interface and the HCI commands are
standardized by the Bluetooth core specification (refer to the Bluetooth standard for further information).
The PHY layer ensures communication with the stack and data (bits) transmission over-the-air. Bluetooth LE
operates in the 2.4 GHz Industrial Scientific Medical (ISM) band and defines 40 radio frequency (RF) channels
with 2 MHz channel spacing.
In Bluetooth LE, when a device only needs to broadcast data, it transmits the data in advertising packets through
the advertising channels. Any device that transmits advertising packets is called an advertiser. Devices that aim
only at receiving data through the advertising channels are called scanners. Bidirectional data communication
between two devices requires them to connect to each other.
Bluetooth LE defines two device roles at the link layer (LL) for a created connection: the master and the slave.
These are the devices that act as initiator and advertiser during the connection creation, respectively.
The host controller interface (HCI) layer provides a standardized interface to enable communication between the
host and controller. In STM32WB05xN, this layer is implemented through the SPI and USART hardware interface.
In Bluetooth LE, the main goal of L2CAP is to multiplex the data of three higher layer protocols, ATT, SMP and
link layer control signaling, on top of a link layer connection.
The SM layer is responsible for pairing and key distribution and enables secure connection and data exchange
with another device.

UM3406
X-CUBE-WB05N software expansion for STM32Cube

UM3406 - Rev 1 page 4/29

At the highest level of the core Bluetooth LE stack, the GAP specifies device roles, modes and procedures for the
discovery of devices and services, the management of connection establishment and security. In addition, GAP
handles the initiation of security features. The Bluetooth LE GAP defines four roles with specific requirements on
the underlying controller: Broadcaster, Observer, Peripheral and Central.
The ATT protocol allows a device to expose certain pieces of data, known as attributes, to another device. The
ATT defines the communication between two devices playing the roles of server and client, respectively, on top of
a dedicated L2CAP channel. The server maintains a set of attributes. An attribute is a data structure that stores
the information managed by the GATT, the protocol that operates on top of the ATT. The client or server role is
determined by the GATT and is independent of the slave or master role.
The GATT defines a framework that uses the ATT for the discovery of services, and the exchange of
characteristics from one device to another. GATT specifies the structure of profiles. In Bluetooth LE, all pieces of
data that are being used by a profile or service are called characteristics. A characteristic is a set of data which
includes a value and properties.

2.1.1.3 Profiles and services
The Bluetooth LE protocol stack is used by the applications through its GAP and GATT profiles. The GAP profile
is used to initialize the stack and setup the connection with other devices. The GATT profile is a way of specifying
the transmission - sending and receiving - of short pieces of data known as attributes over a Bluetooth smart link.
All current Low Energy application profiles are based on GATT. The GATT profile allows the creation of profiles
and services within these application profiles.

Figure 2. Structure of a GATT-based profile

In this example, the profile is created with the following services:
• GAP service, which has to be always set up.
• Health thermometer service.
• Device information service.
Each service consists of a set of characteristics defining the service and the type of data it provides as part of the
service. In the above example, the health thermometer service contains the following characteristics:
• Temperature measurement.
• Temperature type.
• Intermediate temperature.
• Measurement interval.
Each characteristic details the data type and value, and is defined by attributes (at least, two for characteristic):
the main attribute (0x2803) and a value attribute that actually contains the data. The main attribute defines the
value attribute handle and UUID.

UM3406
X-CUBE-WB05N software expansion for STM32Cube

UM3406 - Rev 1 page 5/29

2.1.1.4 State machine

Figure 3. State machine during Bluetooth LE operations

During normal operation, a Bluetooth LE device can be in the following states:
• Standby: does not transmit or receive packets.
• Advertising: broadcasts advertisements in advertising channels. The device transmits advertising channel

packets and possibly listens and answers to, triggered by the advertising channel packets.
• Scanning: looks for advertisers. The device is listening for advertising channel packets from advertising

devices.
• Initiating: the device initiates connection to the advertiser and listens to advertising channel packets from

specific device(s) and responds to these packets to initiate a connection with another device.
• Connection: connection has been established and the device is transmitting or receiving:

– The initiator device plays the master role, that is, it communicates with the device in the slave role
and defines timings of transmission.

– The advertiser device plays the slave role, that is, it communicates with a single device in the master
role.

UM3406
X-CUBE-WB05N software expansion for STM32Cube

UM3406 - Rev 1 page 6/29

2.2 Architecture
This software is a fully compliant expansion for STM32Cube enabling development of applications using the
Bluetooth Low Energy connectivity.
The software is based on the hardware abstraction layer for the STM32 microcontroller, STM32CubeHAL. The
package extends STM32Cube by providing complete middleware for the Bluetooth Low Energy expansion board
and several sample applications.
The software layers used by the application software to access the STM32WB05xN module expansion board are:
• The STM32Cube HAL driver layer provides a simple, generic and multi-instance set of APIs (application
programming interfaces) to interact with the upper layers (application, libraries and stacks). It includes generic
and extension APIs and is based on a generic architecture which allows the layers built on it (such as the
middleware layer) to implement their functionalities without dependence on the specific hardware configuration of
a given Microcontroller Unit (MCU). This structure improves library code reusability and guarantees high
portability across other devices.
• The Board Support Package (BSP) layer provides supporting software for the peripherals on the STM32
Nucleo board, except for the MCU. It has a set of APIs to provide a programming interface for certain board-
specific peripherals (e.g. the LED, the user button etc.) and allow identification of the specific board version.

Figure 4. X-CUBE-WB05N software architecture

2.3 Folders

Figure 5. X-CUBE-WB05N package folder structure

UM3406
X-CUBE-WB05N software expansion for STM32Cube

UM3406 - Rev 1 page 7/29

https://www.st.com/stm32cube
https://www.st.com/stm32cube
https://www.st.com/en/product/BlueNRG-M2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3406
https://www.st.com/stm32nucleo
https://www.st.com/stm32nucleo

The following folders are included in the software package:
• Documentation: contains a compiled HTML file generated from the source code and detailed

documentation regarding the software components and APIs.
• Drivers: contains the HAL drivers, the board-specific drivers for each supported board or hardware

platform, including those for the on-board components and the CMSIS layer, which is a vendor-
independent hardware abstraction layer for the Cortex-M processor series.

• Middlewares: libraries and protocols related to host software and applications to interface the
STM32WB05xN controller.

• Projects: contains some sample applications, showing how to use the STM32WB05xN devices, for the
NUCLEO-U575ZI-Q platform with three development environments, IAR Embedded Workbench for ARM,
RealView Microcontroller Development Kit (MDK-ARM) and STM32CubeIDE.

2.4 APIs
Detailed technical information about the APIs available to the user can be found in the compiled HTML file
"X_CUBE_WB05N.chm" in the "Documentation" folder of the software package, where all the functions and
parameters are fully described.

2.5 Sample application description
Several sample applications using the X-NUCLEO-WB05KN1 expansion board with a NUCLEO-U575ZI-Q board
are provided in the “Projects” directory. Ready to be built projects are available for multiple IDEs.
These applications are included in the package to provide the users with examples showing how to use the
STM32WB05xN library APIs. Each sample application folder contains a readme.txt file describing the application
and how to use it.
The functions to be called when creating an application using the STM32WB05xN are listed in the X-CUBE-
WB05N/Documentation/X-CUBE-WB05N.chm file.

UM3406
X-CUBE-WB05N software expansion for STM32Cube

UM3406 - Rev 1 page 8/29

https://www.st.com/en/evaluation-tools/nucleo-u575zi-q
https://www.st.com/stm32cubeide
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1
https://www.st.com/en/evaluation-tools/nucleo-u575zi-q

3 X-CUBE-WB05N software package for STM32WB05xN

3.1 STM32WB05xN overview
The X-CUBE-WB05N software package contains drivers for the STM32WB05xN ultra low power (ULP) network
coprocessor device for Bluetooth® low energy applications.
The STM32WB05xN comes pre-programmed with a production-ready and certified Bluetooth LE stack image.
STMicroelectronics Bluetooth LE stack is stored into the on-chip non-volatile Flash memory and can be easily
upgraded via SPI, UART interface or through the dedicated STM32Cube software tools.
The STM32WB05xN is an ultra-low-power Bluetooth® Low Energy wireless network coprocessor addressing
standard Bluetooth® LE protocol. Interface with external micro controller can be achieved through SPI and
USART. It embeds STMicroelectronics’s state-of-the-art 2.4 GHz radio IPs, optimized for ultra-low-power
consumption and excellent radio performance, for unparalleled battery lifetime. It is compliant with Bluetooth Low
Energy SIG core specification version 5.4.
The STM32WB05xN embeds a Arm® Cortex®-M0+ microcontroller that can operate up to 64 MHz.
The STM32WB05xN features standard and advanced communication interfaces:
1x SPI
1x USART
The STM32WB05xN operates in the -40 to +105 °C temperature range from a 1.7 V to 3.6 V power supply. A
comprehensive set of power-saving modes enables the design of low-power applications.
The STM32WB05xN integrates a high efficiency SMPS step-down converter and an integrated PDR circuitry with
a fixed threshold that generates a device reset when the VDD drops under 1.65 V.
The device can be emulated using the STM32WB05xN mounted on the X-NUCLEO-WB05KN1 expansion board.

3.2 STM32WB05xN binary images
Two types of binary images are available in X-CUBE-WB05N/Utilities folder for configuring the STM32WB05xN as
a Bluetooth LE network coprocessor (UART and SPI mode):
1. Location + Essential configuration.
2. HCI Controller only configuration.
The following table describes the main supported Bluetooth LE features.

Table 2. Bluetooth LE stack supported features

Location + Essential configuration HCI Controller only configuration

Central & Peripheral role x x

Controller Privacy x x

Secure Connections x -

Data length extension x x

LE Coded Phy and LE 2M PHY x x

Extended Advertising x x

Direction Finding x x

Periodic Advertising x x

Power Control - x

Channel Classification - x

Connection subrating - x

Note: • x : feature is supported.
• -: features is not supported.

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 9/29

https://www.st.com/en/embedded-software/x-cube-wb05n
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1

The Maximum number of simultaneously radio tasks supported on the two binary images is described on the
following table:

Table 3. Bluetooth LE maximum number of simultaneously radio tasks

Value

Maximum number of simultaneously
radio tasks Location + Essential configuration HCI Controller only configuration

3 6

Appendix
The STM32WB05xN provides a hardware interface to external microcontroller based on two very common
protocols:
• SPI slave protocol with interrupt signal
• UART
The pins dedicated to the UART interface are:
• PB0 (UART RX)
• PA1 (UART TX)
The pins dedicated to the SPI interface are:
• PB3 (SPI CLOCK)
• PA11 (SPI MOSI)
• PA8 (SPI MISO)
• PA9 (SPI CS)
• PA10 (SPI IRQ)

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 10/29

3.3 How to emulate the STM32WB05xN device with X-NUCLEO-WB05KN1
To emulate the STM32WB05xN device, the STM32WB05xN DTM firmware image contained in the X-CUBE-
WB05N software package must be loaded onto the STM32WB05xN device mounted on the X-NUCLEO-
WB05KN1 expansion board. This operation can be performed using a standard ST-LINK/V3 debugger and
following the procedure below.

Step 1. Connect the X-NUCLEO-WB05KN1 CN8 pins and the ST-LINK/V3 pins as per the following table and
figure.ùin

Table 4. Jumper connection between X-NUCLEO-WB05KN1 and ST-LINK/V3 MB1440B

Pin name CN8 pin N. ST-LINK/V3 MB1440B CN6 pin N.

VDD 1 1

SWTCK 2 2

GND 3 3

SWDIO 4 4

RST 5 5

Figure 6. X-NUCLEO-WB05KN1 connected to ST-LINK/V3

Step 2. Download and unpack the X-CUBE-WB05N containing the STM32WB05xN firmware image.

Step 3. Download and install the STM32CubeProg (v2.17.0 or later only).

Step 4. Connect the ST-LINK/V3 debugger to your PC.

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 11/29

https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1
https://www.st.com/en/development-tools/stlink-v3set
https://www.st.com/en/embedded-software/x-cube-wb05n
https://www.st.com/en/development-tools/stm32cubeprog
https://www.st.com/en/development-tools/stlink-v3set

Step 5. Open the STM32CubeProgrammer (STM32CubeProg) and:
Step 5a. Select the STlink-V3SET SWD probe and select Connect icon.

Figure 7. STM32CubeProgrammer - Connect

Step 5b. Erase the STM32WB05xN Flash memory from [Erase Flash Memory]>[Full Chip Erase].

Figure 8. STM32CubeProgrammer - Mass Erase

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 12/29

https://www.st.com/en/development-tools/stm32cubeprog

Step 6. Load the DTM firmware contained in the X-CUBE-WB05N/Utilities/
DTM_Location_Essentials_Configurations and press the [Start Programming] button.

Figure 9. STM32CubeProgrammer - Program

The image flashed on the STM32WB05xN device can be used with the X-CUBE-WB05N software
package.

3.4 How to restore the STM32WB05xN firmware image
To restore the STM32WB05xN firmware image on the STM32WB05xN device:

Step 1. Download and install X-CUBE-WB05N and STM32CubeProg.

Step 2. Open the STM32CubeProgrammer (STM32CubeProg).

Step 3. Erase the STM32WB05xN Flash memory. Refer section 3.2 of this document for steps.

Step 4. Load the DTM_UART_WITH_UPDATER.hex firmware contained in the X-CUBE-WB05N installation
folder:
– X-CUBE-WB05N\Utilities\DTM_Location_Essentials_Configurations).

3.5 SPI Protocol for Network Coprocessor
This document outlines the main specification for the SPI protocol to be used in the STM32WB05xN network
coprocessor configuration. The document content is valid for STM32WB05xN device.
The specification aims at achieving the following targets:
• Power efficient
• Code efficient
• Fast data transfer

3.5.1 SPI protocol hardware details
The SPI port requires five pins:
• SPI CLK
• SPI MOSI
• SPI MISO
• SPI CS
• SPI IRQ

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 13/29

https://www.st.com/en/embedded-software/x-cube-wb05n
https://www.st.com/en/embedded-software/x-cube-wb05n
https://www.st.com/en/development-tools/stm32cubeprog
https://www.st.com/en/development-tools/stm32cubeprog
https://www.st.com/en/embedded-software/x-cube-wb05n

The maximum SPI baud rate supported is 6 MHz. The timing diagram adopted is CPOL 1 and CPHA 1, which
means data are captured on the SPI clock's rising edge and data is output on a rising edge. The SPI CS also acts
as a wake up pin for the STM32WB05xN, so that if the SPI CS pin is low (external microcontroller select the
STM32WB05xN for communication) the STM32WB05xN is woken up if it was asleep. The STM32WB05xN
notifies event pending to the external microcontroller through the SPI IRQ pin. If the SPI IRQ pin is high, the
STM32WB05xN has at least an event for the external microcontroller.

Table 5. STM32WB05xN SPI lines

Pin function Pin name Pin number Information

SPI CLK PB3 5 SPI clock signal

SPI MOSI PA11 12 SPI controller output completer input signal

SPI MISO PA8 9 SPI controller input completer output signal

SPI CS PA9 10 SPI chip select signal/wake up signal

SPI IRQ PA10 11 SPI IRQ request for event pending signal

3.5.2 SPI communication protocol
To communicate with the STM32WB05xN, the data on the SPI bus must be formatted as described in this section.
An SPI transaction is defined from a rising edge of the SPI CS signal to the next rising edge of the SPI CS signal.
Each SPI transaction must contain only one data frame. Each data frame should contain at least 5 bytes of
header, and may have from 0 to N bytes of data.

Figure 10. Generic SPI transaction

The Figure 10 shows a generic SPI transaction, the list of steps is as follow:
1. The external microcontroller lowers the SPI CS signal to start the communication.
2. The STM32WB05xN raises the SPI IRQ signal to indicate that it is ready for communication. The time t1

changes according to the state of the STM32WB05xN. This time t1 can include wake up of the
STM32WB05xN and preparation of the header part of the frame.

3. The external microcontroller must wait for the SPI IRQ signal to become high and then start to transfer the five
bytes of the header that include the control field with the intended operation. In addition, the external
microcontroller read five bytes from the STM32WB05xN, which includes information about the actual size of
the read buffer and of the write buffer.

4. The external microcontroller, after checking the 5 bytes of header, will perform data transaction.
5. The STM32WB05xN will lower SPI IRQ signal after the five bytes header are transferred.
6. The external microcontroller waits for the SPI IRQ is low before raise the SPI CS signal to mark the end of the

communication.
Some important notes are:
• Setting the SPI CS signal low will wake up STM32WB05xN if the device is asleep.
• If the SPI IRQ signal is low before setting the SPI CS signal low, this means the STM32WB05xN has no

data events for the external uc, so the read buffer size is zero (RBUF=0).
• The time t1 is the time between wake-up (point a in Figure 10) and the STM32WB05xN being ready to

perform the SPI transaction (point b in Figure 10). The time t1 ranges from minimal value (the
STM32WB05xN already awake when the SPI CS is asserted), to a maximum value that involves wake-up
sequence and software boot.

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 14/29

• Even if there are events pending after the completion of the transaction, the SPI IRQ signal will go low to
allow the STM32WB05xN updating the five bytes header an rearming the SPI for next transaction (after
this delay the SPI IRQ signal will go high again if events are pending).

• The SPI CS signal marks the beginning and end of the transaction.
• The SPI CS high marks the end of the transaction and must be set to high only when IRQ line is low.
• The gap between the header and the data is not mandatory, but it is normally required by the external

microcontroller to process the header and check if there is enough space in the buffers to perform the
wanted transaction.

• When the SPI IRQ signal is high, the five bytes header are locked and cannot be modified by
STM32WB05xN firmware.

Figure 11. SPI header format

• The header of the external microcontroller (the SPI master) is on the MOSI line, which is composed by one
control byte (CTRL) and four bytes 0x00. CTRL field can have only the value of 0x0A (SPI write) or 0x0B
(SPI read). The STM32WB05xN returns the header on the MISO line at the same time. When the
STM32WB05xN asserts the SPI IRQ signal, it is ready. Otherwise, the STM32WB05xN is still not initialized.
External microcontroller must wait for the IRQ line to become high and perform a five bytes transaction.
The 5 bytes in the MISO line gives one byte of starting frame, two bytes with the size of the write buffer
(WBUF) and two bytes with the size of the read buffer (RBUF). The endianness for WBUF and RBUF is
LSB first. The value in WBUF means how many bytes the master can write to the STM32WB05xN. The
value in RBUF means how many bytes in the STM32WB05xN are waiting to be read by the external uc.
Read transaction

• A read transaction is performed when the STM32WB05xN raises the SPI IRQ line before the SPI CS signal
is lowered by the external uc.

Figure 12. SPI Read transaction

• In this case, the SPI IRQ signal is high indicating the STM32WB05xN is awake and ready to perform the
SPI transaction, after a hardware dependent setup time t2, typical value is 1.5 us. The transaction will be
performed as follow:

1. An event has been generated by the STM32WB05xN (point a in Figure 12)
2. The external microcontroller lowers the SPI CS signal to initiate a transaction (point b in Figure 12)
3. Since the SPI IRQ signal is high, the external microcontroller initiates a data transfer after t2. The external

microcontroller will transfer five bytes as follows [0x0B, XX, XX, XX, XX]. The WBUF and RBUF sizes are read
from the SPI MISO signal.

4. The external microcontroller will perform the read data transaction for RBUF bytes. (Note: if RBUF is 0, this is
an unexpected condition since the STM32WB05xN indicates that data is available, in any case the transaction
needs to be completed by reading no bytes).

5. The STM32WB05xN will lower SPI IRQ signal after the five bytes header are transferred.
6. The external microcontroller will raise the SPI CS signal to mark the end of the transaction.
Write transaction

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 15/29

• A write transaction is performed by the external microcontroller to send a command to the STM32WB05xN.
The STM32WB05xN can be awake or sleeping when the SPI CS signal is lowered by the external uc. The
assertion of the SPI CS signal will wake up the STM32WB05xN, if asleep.

Figure 13. SPI Write transaction

• The transaction will be performed as follow:
1. The external microcontroller lowers the SPI CS signal to initiate a transaction.
2. The STM32WB05xN raises the SPI IRQ signal to indicate that is ready with t1 >= 0.
3. The external microcontroller waits for SPI IRQ signal to become high and starts a transfer of five bytes

sending the code of the intended operation and reading the read buffer and write buffer size. The external
microcontroller will transfer five bytes as follows [0x0A, XX, XX, XX, XX]. The WBUF and RBUF values are
sampled in the SPI MISO signal.

4. The STM32WB05xN will lower the SPI IRQ after the five bytes header are transferred.
5. The external microcontroller checks whether the WBUF allows sending the command. If yes, it will perform the

data transaction, otherwise the external microcontroller must wait.
6. The external microcontroller will wait for the SPI IRQ signal to be low before closing the communication.
7. The external microcontroller will raise the SPI CS to mark the end of the transaction.
Error transaction
• This section list the STM32WB05xN firmware behavior when some error transactions are performed:
1. Incomplete header transaction (0 to 4): the STM32WB05xN ignores the transaction.
2. The external microcontroller does not wait for the SPI IRQ signal low before raising the SPI CS signal: the

STM32WB05xN will low the SPI IRQ signal when the SPI CS signal is high.
3. The external microcontroller does not wait for the SPI IRQ signal high before starting SPI clock: the result is

acquisition of corrupted data both master and slave side.
4. Incomplete read transaction: the master loses the event.
5. Incomplete write transaction: the STM32WB05xN will store the bytes written by the external uc. During the

next write operation, the STM32WB05xN will get the new bytes trying to get a complete frame according
Bluetooth protocol.

6. Two commands in a row without reading event for command: the STM32WB05xN will parse the two
commands and then it will generate the corresponding events.

SPI state machine
• Here after the description of the STM32WB05xN SPI state machine.

Table 6. STM32WB05xN SPI state machine states

State Description Input Output Next State

Init Boot/transient state.
Hardware initialization - IRQ=0 Configured

Configured
Ready to transfer
information, 5 bytes
header frozen

CS = 0 IRQ=1 Waiting Header

CS = 1

Event Pending = 0
IRQ=0 Sleep

CS = 1

Event Pending = 1
IRQ=1 Configured

Sleep Sleep state with almost
all logic off.

CS = 1

Event Pending = 0
IRQ=0 Sleep

CS = 1 IRQ=0 Configured

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 16/29

State Description Input Output Next State

Sleep Sleep state with almost
all logic off.

Event Pending = 1

CS = 0 IRQ=0 Configured

Waiting_Header
Receiving 5 bytes
header from SPI
master

CS = 0 IRQ=1
When 5 bytes are
received goes to
Header_Received

CS = 1 IRQ=1 Transaction_Complete

Header_Received 5 bytes header
received

CS = 0 IRQ=0 Waiting_Data

CS = 1 IRQ=0 Transaction_Complete

Waiting_Data Receiving payload
CS = 0 IRQ=0 Waiting_Data

nCS = 1 IRQ=0 Transaction_Complete

Transaction_Complete Transitional nCS = 1 IRQ=0 Configured

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 17/29

Figure 14. SPI protocol state machine

External microcontroller behavior
• The external microcontroller must act as follows according to the information from the STM32WB05xN:

– SPI IRQ signal
– information from header frame WBUF and RBUF

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 18/29

Figure 15. Expected microcontroller SPI protocol state machine

Waveform acquisition

Figure 16. HCI_READ_LOCAL_VERSION_INFORMATION SPI waveform

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 19/29

Figure 17. HCI_READ_LOCAL_VERSION_INFORMATION SPI waveform zoom

Figure 18. HCI_COMMAND_COMPLETE_EVENT SPI waveform

3.6 Building a new project without using STM32CubeMX
It is strongly recommended to use STM32CubeMX to create new projects as it helps the user to avoid setting
project configurations like file paths, folder structure, pin, and clock initialization etc. Still, if a user needs to start
with a new project without using STM32CubeMX, refer to the below guide as a reference:
1. Create a new project in the selected IDE–EWARM/MDK-ARM/STM32CubeIDE
2. Select the STM32 device part number on which the application will RUN
3. Add required files at the project location.

a. Drivers
i. CMSIS
ii. STM32xx_HAL_Driver

b. IDE startup file – startup_stm32xx.s
c. Middleware
d. Application

4. In the IDE link these files path to the project. For more details, refer to the respective IDE’s user manual.
5. Compile the project

UM3406
X-CUBE-WB05N software package for STM32WB05xN

UM3406 - Rev 1 page 20/29

4 System setup guide

4.1 Hardware description

4.1.1 STM32 Nucleo
STM32 Nucleo development boards provide an affordable and flexible way for users to test solutions and build
prototypes with any STM32 microcontroller line.
The Arduino™ connectivity support and ST morpho connectors make it easy to expand the functionality of the
STM32 Nucleo open development platform with a wide range of specialized expansion boards to choose from.
The STM32 Nucleo board does not require separate probes as it integrates the ST-LINK/V3 debugger/
programmer.
The STM32 Nucleo board comes with the comprehensive STM32 software HAL library together with various
packaged software examples for different IDEs (IAR EWARM, Keil MDK-ARM, STM32CubeIDE, mbed and GCC/
LLVM).
All STM32 Nucleo users have free access to the mbed online resources (compiler, C/C++ SDK and developer
community) at www.mbed.org to easily build complete applications.

UM3406
System setup guide

UM3406 - Rev 1 page 21/29

https://www.st.com/stm32nucleo
https://www.st.com/stm32nucleo
https://www.st.com/en/development-tools/stlink-v3set
https://www.st.com/stm32nucleo
https://www.st.com/stm32cubeide
https://www.st.com/stm32nucleo

Figure 19. STM32 Nucleo board

Information regarding the STM32 Nucleo board is available at www.st.com/stm32nucleo

4.1.2 X-NUCLEO-WB05KN1 expansion board
The X-NUCLEO-WB05KN1 expansion board provides Bluetooth® Low Energy connectivity for developer
applications and can be plugged into an STM32 Nucleo development board (for example NUCLEO-U575ZI-Q)
through its ARDUINO® Uno V3 connectors.
The expansion board features Bluetooth® v5.4 compliant and FCC‑certified STM32WB05KN. This SoC manages
the complete Bluetooth® Low Energy stack and protocols on its Arm® Cortex®‑M0+ core and programmable
flash memory.
STM32WB05KN supports central and peripheral modes and increased transfer rates with data length extension
(DLE).
X-NUCLEO-WB05KN1 interfaces with the STM32 Nucleo microcontroller via UART (default) with and without
hardware flow control. Full duplex SPI with an interrupt line is also available. The firmware loaded on the module
defines the host interface and, to modify it, simply changes the firmware without modifying the hardware.

UM3406
System setup guide

UM3406 - Rev 1 page 22/29

http://www.st.com/stm32nucleo
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1

Table 7. Boards description for X-NUCLEO-WB05KN1

Order Code Board References Description

X-NUCLEO-WB05KN1
MB2160 ARDUINO® interface board

MB2032 MCU RF Mini Board

Figure 20. X-NUCLEO-WB05KN1 Bluetooth LE expansion board

Information about the X-NUCLEO-WB05KN1 expansion board is available at http://www.st.com/x-nucleo.

4.2 Software description
The following software components are required in order to establish a suitable development environment for
creating applications for the STM32 Nucleo equipped with the Bluetooth LE expansion board:
• X-CUBE-WB05N: an STM32Cube expansion for sensor application development. The X-CUBE-WB05N

firmware and associated documentation is available on www.st.com..
• Development toolchain and compiler. The STM32Cube expansion software supports the three following

environments:
– IAR Embedded Workbench for ARM® (EWARM) toolchain + ST-LINK.
– RealView Microcontroller Development Kit (MDK-ARM) toolchain + ST-LINK.
– STM32CubeIDE + ST-LINK.

4.3 Hardware setup
The following hardware components are required:
1. One STM32 Nucleo development platform (suggested order code: NUCLEO-U575ZI-Q).
2. One STM32WB05xN module expansion board setup MB2160 and MB2032 (order code: X-NUCLEO-

WB05KN1).
3. One USB type A to micro-B USB cable to connect the STM32 Nucleo to a PC.

UM3406
System setup guide

UM3406 - Rev 1 page 23/29

https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1.html
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1
http://www.st.com/x-nucleo
https://www.st.com/stm32nucleo
https://www.st.com/en/embedded-software/x-cube-wb05n
https://www.st.com/stm32cube
https://www.st.com/en/embedded-software/x-cube-wb05n
http://www.st.com/
https://www.st.com/stm32cube
https://www.st.com/stm32cubeide
https://www.st.com/stm32nucleo
https://www.st.com/en/evaluation-tools/nucleo-u575zi-q
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1
https://www.st.com/stm32nucleo

4.4 Nucleo and Bluetooth LE expansion board setup
The STM32 Nucleo board integrates the STLINK/V2-1, STLINK-V3E or STLINK-V3EC debugger/programmer.
The X-NUCLEO-WB05KN1 expansion board can be easily connected to the STM32 Nucleo motherboard through
the Arduino UNO R3 extension connector. The STM32WB05xN communicates with the STM32 microcontroller,
hosted on the STM32 Nucleo development board, through an SPI or USART link available on the Arduino UNO
R3 connector.

Figure 21. X-NUCLEO-WB05KN1 expansion board

UM3406
System setup guide

UM3406 - Rev 1 page 24/29

https://www.st.com/stm32nucleo
https://www.st.com/en/evaluation-tools/x-nucleo-wb05kn1
https://www.st.com/stm32nucleo
https://www.st.com/stm32nucleo

Revision history

Table 8. Document revision history

Date Revision Changes

21-Oct-2024 1 Initial release.

UM3406

UM3406 - Rev 1 page 25/29

Contents

1 Acronyms and abbreviations .2
2 X-CUBE-WB05N software expansion for STM32Cube .3

2.1 Overview . 3
2.1.1 Bluetooth® Low Energy . 3

2.2 Architecture . 7

2.3 Folders . 7

2.4 APIs . 8

2.5 Sample application description . 8

3 X-CUBE-WB05N software package for STM32WB05xN. .9
3.1 STM32WB05xN overview . 9

3.2 STM32WB05xN binary images . 9

3.3 How to emulate the STM32WB05xN device with X-NUCLEO-WB05KN1 11

3.4 How to restore the STM32WB05xN firmware image . 13

3.5 SPI Protocol for Network Coprocessor . 13
3.5.1 SPI protocol hardware details . 13

3.5.2 SPI communication protocol . 14

3.6 Building a new project without using STM32CubeMX . 20

4 System setup guide. .21
4.1 Hardware description . 21

4.1.1 STM32 Nucleo . 21

4.1.2 X-NUCLEO-WB05KN1 expansion board. 22

4.2 Software description . 23

4.3 Hardware setup . 23

4.4 Nucleo and Bluetooth LE expansion board setup . 24

Revision history .25
List of tables .27
List of figures. .28

UM3406
Contents

UM3406 - Rev 1 page 26/29

List of tables
Table 1. List of acronyms . 2
Table 2. Bluetooth LE stack supported features . 9
Table 3. Bluetooth LE maximum number of simultaneously radio tasks . 10
Table 4. Jumper connection between X-NUCLEO-WB05KN1 and ST-LINK/V3 MB1440B . 11
Table 5. STM32WB05xN SPI lines . 14
Table 6. STM32WB05xN SPI state machine states. 16
Table 7. Boards description for X-NUCLEO-WB05KN1 . 23
Table 8. Document revision history . 25

UM3406
List of tables

UM3406 - Rev 1 page 27/29

List of figures
Figure 1. Bluetooth LE protocol stack . 4
Figure 2. Structure of a GATT-based profile . 5
Figure 3. State machine during Bluetooth LE operations . 6
Figure 4. X-CUBE-WB05N software architecture . 7
Figure 5. X-CUBE-WB05N package folder structure . 7
Figure 6. X-NUCLEO-WB05KN1 connected to ST-LINK/V3 . 11
Figure 7. STM32CubeProgrammer - Connect . 12
Figure 8. STM32CubeProgrammer - Mass Erase . 12
Figure 9. STM32CubeProgrammer - Program . 13
Figure 10. Generic SPI transaction . 14
Figure 11. SPI header format. 15
Figure 12. SPI Read transaction . 15
Figure 13. SPI Write transaction. 16
Figure 14. SPI protocol state machine. 18
Figure 15. Expected microcontroller SPI protocol state machine. 19
Figure 16. HCI_READ_LOCAL_VERSION_INFORMATION SPI waveform . 19
Figure 17. HCI_READ_LOCAL_VERSION_INFORMATION SPI waveform zoom . 20
Figure 18. HCI_COMMAND_COMPLETE_EVENT SPI waveform . 20
Figure 19. STM32 Nucleo board . 22
Figure 20. X-NUCLEO-WB05KN1 Bluetooth LE expansion board . 23
Figure 21. X-NUCLEO-WB05KN1 expansion board . 24

UM3406
List of figures

UM3406 - Rev 1 page 28/29

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

UM3406

UM3406 - Rev 1 page 29/29

http://www.st.com/trademarks

	UM3406
	Introduction
	1 Acronyms and abbreviations
	2 X-CUBE-WB05N software expansion for STM32Cube
	2.1 Overview
	2.1.1 Bluetooth® Low Energy
	2.1.1.1 Operating modes
	2.1.1.2 Software partitioning
	2.1.1.3 Profiles and services
	2.1.1.4 State machine

	2.2 Architecture
	2.3 Folders
	2.4 APIs
	2.5 Sample application description

	3 X-CUBE-WB05N software package for STM32WB05xN
	3.1 STM32WB05xN overview
	3.2 STM32WB05xN binary images
	3.3 How to emulate the STM32WB05xN device with X-NUCLEO-WB05KN1
	3.4 How to restore the STM32WB05xN firmware image
	3.5 SPI Protocol for Network Coprocessor
	3.5.1 SPI protocol hardware details
	3.5.2 SPI communication protocol

	3.6 Building a new project without using STM32CubeMX

	4 System setup guide
	4.1 Hardware description
	4.1.1 STM32 Nucleo
	4.1.2 X-NUCLEO-WB05KN1 expansion board

	4.2 Software description
	4.3 Hardware setup
	4.4 Nucleo and Bluetooth LE expansion board setup

	Revision history
	Contents
	List of tables
	List of figures

