
Introduction

This document applies to the X-CUBE-CLASSB self-test library set for the STM32H7R7/7S7 microcontrollers that include an
Arm® Cortex®-M7 core. Order code X-CUBE-CLASSB-H7RS.

Safety has an essential role in electronic applications. The level of safety requirements for components is steadily increasing
and, manufacturers of electronic devices include many new technical solutions in their designs. Techniques for improving safety
are continuously evolving, and are regularly incorporated into updated versions of the safety standards.

The current safety recommendations and requirements are specified in worldwide standards issued by various authorities.
These include: the international electro-technical commission (IEC), Underwriters laboratories (UL), and the Canadian
standards association (CSA) authorities.

Compliance, verification, and certification are the focus of the certification institutes. These include: the German TUV and VDE
(mostly operating in Europe), and the UL and the CSA (targeting mainly the USA and Canadian markets).

Standards related to safety requirements have a very wide scope. These safety standards cover many areas such as:
classification, methodology, materials, mechanics, labeling, hardware, and software testing. Here, the target is just compliance
with the software requirements when testing programmable electronic components, which form a specific part of the safety
standards. These requirements are exceptionally subject of any change when a new upgrade of the standard is released. Also,
there is significant similarity across commonly oriented safety standards that concern the testing of generic parts of
microcontrollers, such as the CPU or memories.

The library presented in this document is based on a partial subset of testing modules developed and applied by ST to satisfy
the stringent IEC 61508 industrial safety standard requirements. These modules are adapted to fulfill the IEC 60730 standard
targeting household safety. That is why this new library adopts a different delivery format to that was used for previous releases.
This format is derived from the industrial safety library, which is currently delivered as a black box pre-compiled object with no
sources but with a clear outer interface definition. The advantage of this immutable solution is that it is compilation tool-chain
agnostic. It is also independent of any other firmware such as HAL, LL, or CMSIS layer. This solution prevents unexpected
compilation results when source code files previously verified on older versions of the library are re-compiled later by any newer
compiler version or combined with the latest firmware drivers. This is generally a common practice.

Table 1. Applicable product

Part number Order code

X-CUBE-CLASSB X-CUBE-CLASSB-H7RS

 STM32H7Rx/7Sx lines UL/CSA/IEC 60730-1/60335-1 self-test library user guide

UM3478

User manual

UM3478 - Rev 1 - February 2025
For further information, contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/x-cube-classb?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/x-cube-classb?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478

1 General information

1.1 Purpose and scope
This X-CUBE-CLASSB-H7RS expansion package provides application independent software to comply with the
UL/CSA/IEC 60730-1 safety standard. The UL/CSA/IEC 60730-1 safety standard targets the safety of automatic
electrical controls used in association with household equipment and similar electronic applications.
The main purpose of this software library is to facilitate and accelerate:
• user software development
• certification processes for applications which are subject to the associated requirements and certifications

Note: Arm is a registered trademark of Arm limited (or its subsidiaries) in the US and/or elsewhere.

The version of the application-independent software test library, self-test library, available in the X-CUBE-
CLASSB-H7RS expansion package (and associated to this manual), STL_Lib.a file, is V4.0.0.

1.2 Reference documents

[1] UM3266: STM32H7Rx/7Sx lines safety manual dedicated for applications targeting industrial safety

[2] AN4435: Guidelines for obtaining UL/CSA/IEC 60730-1/60335-1 Class B certification in any STM32 application dedicated
to older versions of this library

UM3478
General information

UM3478 - Rev 1 page 2/60

2 STM32Cube overview

2.1 What is STM32Cube?
STM32Cube is an STMicroelectronics original initiative to improve designer productivity significantly by reducing
development effort, time, and cost. STM32Cube covers the whole STM32 portfolio.
STM32Cube includes:
• A set of user-friendly software development tools to cover project development from conception to

realization, among which are:
– STM32CubeMX, a graphical software configuration tool that allows the automatic generation of

C initialization code using graphical wizards
– STM32CubeIDE, an all-in-one development tool with peripheral configuration, code generation, code

compilation, and debug features
– STM32CubeCLT, an all-in-one command-line development toolset with code compilation, board

programming, and debug features
– STM32CubeProgrammer (STM32CubeProg), a programming tool available in graphical and

command-line versions
– STM32CubeMonitor (STM32CubeMonitor, STM32CubeMonPwr, STM32CubeMonRF,

STM32CubeMonUCPD), powerful monitoring tools to fine-tune the behavior and performance of
STM32 applications in real time

• STM32Cube MCU and MPU Packages, comprehensive embedded-software platforms specific to each
microcontroller and microprocessor series (such as STM32CubeH7RS for the STM32H7R7/7S7), which
include:
– STM32Cube hardware abstraction layer (HAL), ensuring maximized portability across the STM32

portfolio
– STM32Cube low-layer APIs, ensuring the best performance and footprints with a high degree of user

control over hardware
– A consistent set of middleware components such as RTOS, FAT file system, TCP/IP, USB Host and

Device, USB PD, OpenBL, external memory loader and manager, and MCUbootRTOS, USB, and
graphics

– All embedded software utilities with full sets of peripheral and applicative examples
• STM32Cube Expansion Packages, which contain embedded software components that complement the

functionalities of the STM32Cube MCU and MPU Packages with:
– Middleware extensions and applicative layers
– Examples running on some specific STMicroelectronics development boards

2.2 How does this software complement STM32Cube?
The software expansion package extends STM32Cube by a middleware component to manage specific software-
based diagnostics.
The package provides a generic starting point to help a user to build and finalize application specific safety
solutions. It consists of:
• STL: the self-test library. This provides a binary and some source code to manage the execution of generic

safety tests for the microcontroller. The STL is a standalone unit, which runs independently from any
STM32 software. It collects the self-tests for generic components of the microcontroller.

• User application: This is an STL integration example based on a set of STM32Cube drivers extending the
STL by an application specific test. This part is delivered as full source code to be adapted or extended by
calling of additional application specific modules defined by end user. The example can be used for the
library testing including artificial failing support of all the provided modules.

UM3478
STM32Cube overview

UM3478 - Rev 1 page 3/60

https://www.st.com/stm32cube
https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/stm32cubeclt?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/stm32cubemonitor?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/stm32cubemonpwr?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/stm32cubemonrf?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/stm32cubemonucpd?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/embedded-software/stm32cube-mcu-mpu-packages.html
https://www.st.com/en/embedded-software/stm32cube-expansion-packages.html
https://www.st.com/stm32cube
https://www.st.com/stm32cube

3 STL overview

The STL is an application-independent software test library released by STMicroelectronics. The aim is to provide
the implementation of a relevant subset of safety mechanisms required by the "Class B" related safety standards
applicable to STM32H7R7/7S7 microcontrollers. The STL is an HAL / LL independent library, dedicated to these
microcontrollers. The STL is a compilation tool chain-agnostic, so any standard C-compiler can compile it.
The STL is an autonomous software. It executes, on application-demand, selected tests to detect hardware
issues, and reports the outcomes to the application.
The STL is delivered partly in object code (for the library itself) and partly in source code for the user interface
definitions and the user parameter settings.

3.1 Architecture overview
The STL implements tests required by UL/CSA/IEC 60730-1 for the Arm® Cortex®-M7 CPU core, and the volatile
and nonvolatile memories embedded in the product.
As shown in the figure below, a system architecture with an end-user application integrating the STL is composed
of:
• User application (indicated in light blue)
• User parameters (indicated in light blue)
• STL scheduler (indicated in yellow): directly accessible by the user application via user APIs (not going

through HAL / LL)
• STL internal test modules: called by the STL scheduler (not visible to the user application).
The STL status information returned to the user application at API level (summarized in Table 2) is:
• Function return value collects result of internal defensive programming checks.
• Test module result value stores the test result information. This partially corresponds to internal status of

the module (see Section 7.3: State machines).

Figure 1. STL architecture

STL User
parameters

STL
User
APIs

STL scheduler

Function return value
Test result value

User application

HAL/LL

STL
CPU Arm® core

test modules

STL
Program

integrity test
module

STL
SRAM

test module

STM32 microcontroller

Legend:
STL
User

UM3478
STL overview

UM3478 - Rev 1 page 4/60

The STL also allows the developer to use the artificial-failing feature. The developer can check the application
behavior by forcing the STL to return a requested test-result value. This feature is available through the specific
user API.

3.2 Supported products
The STL runs on the following microcontrollers :
• STM32H7S3xx
• STM32H7S7xx
• STM32H7R3xx
• STM32H7R7xx

UM3478
STL overview

UM3478 - Rev 1 page 5/60

4 STL description

This section describes basic information on the functionality and performance of the STL. The section also
summarizes restrictions and mandatory actions to be followed by the end user.

4.1 STL functional description
Some test modules can temporarily mask interrupts. For more details, refer to Section 4.2.5: STL interrupt
masking time and to Section 4.3.5: Interrupt management.

4.1.1 Scheduler principle
The scheduler is the API module needed by the user application to execute the STL.
The main scheduler:
• Must be initialized before being used
• Manages:

– The initialization and deinitialization of the applied test modules
– The configuration of the applied test modules
– The reset of the applied test modules.

• Controls the execution of an applied test sequence (API calls)
• Manages "artificial failing" used for user debug and integration tests.
• Ensures the integrity of critical internal data structures via their specific checksums.
The scheduler controls the execution of the following tests:
• CPU tests: no specific initialization or configuration procedures of the CPU test module are required before

any CPU test execution (see Section 7.2: User APIs and Figure 11).
• Program integrity tests operate on the content of the dedicated user configuration structures defining

subsets of the memory to be tested (see Section 7.1: User structures). These structures must be filled by
the end user and the content maintained during both configuration and execution of the program integrity
test. The test module initialization and configuration procedures are mandatory before any program
integrity test execution, see Section 7.2: User APIs and Figure 12.

• RAM memory tests operate on the content of the dedicated user configuration structures defining subsets
of the memory to be tested (see Section 7.1: User structures). These structures must be filled by the end
user and the content maintained during both configuration and execution of the RAM test. RAM test
module initialization and configuration procedures are mandatory before RAM test execution, see
Section 7.2: User APIs and Figure 13.

The STL, via the scheduler API, is called by the user in polling mode. The STL can be called under an interrupt
context, but reentrance is forbidden. In such cases, the STL behavior cannot be guaranteed.
The user application has to consider all the returned information from the STL, provided via a specific predefined
data structure collecting status information. See details in the following table.

UM3478
STL description

UM3478 - Rev 1 page 6/60

Table 2. STL return information

STL information Value Description

Function return value(1)

STL_OK Scheduler function successfully executed

STL_KO Scheduler defensive programming error (in this case the
test result is not relevant)

Test module result value(2)

STL_PASSED Test passed

STL_PARTIAL_PASSED
Used only for memory testing when the test passed, but
the end of memory configuration has not yet been
reached

STL_FAILED Hardware error detection by test module

STL_NOT_TESTED Test not executed

STL_ERROR Test module defensive programming error

1. Refer to STL_Status_t definition in Section 7.1: User structures.
2. See STL_TmSTatus_t in Section 7.1: User structures.

The user application repeatedly applies the call control scheme illustrated in the following figure to program a
sequence of API function calls and so handle the order of the test modules execution.

Figure 2. Single test control call architecture

D
T4

90
38

V2

STL

User
parameters

Run single testing

STL scheduler

Function return value
Test result for a single test

User application

HAL/LL

Legend:
STL

User

Scheduler and interrupts

The scheduler can be interrupted at any time.

4.1.2 CPU Arm® core tests
The STL includes the CPU test modules listed below, together with a generic description (for information only) of
the test capability:
• TM1L: implements a light pattern test of general-purpose registers
• TM7: implements the pattern and functional tests of both stack pointers: MSP, and PSP
• TMCB: implements test of the APSR status register.

Caution: The STL CPU tests are partitioned in separated test modules. This is not intended to allow partial execution of
the overall available CPU TMs. It is intended as a support feature to allow better CPU test scheduling in the
end‑user applications, for example timing constraints. By default, all available TMs are assumed to be executed.

UM3478
STL description

UM3478 - Rev 1 page 7/60

CPU Arm® core tests and interrupts

The CPU test modules are interruptible at any time. The TM7 one only applies masking interrupt during the
smallest data granularity time. Refer to Section 4.3.5: Interrupt management for detailed information on CPU TM7
interrupt management.

4.1.3 Program integrity tests

Principles

The purpose of program integrity tests is to test the integrity of the Arm® Cortex® M7 CPU program image stored
in SRAM, as read only memory.
The following structures must be respected to provide correct configuration of the program integrity test.
• Integrity area: a continuous area of read only code and read only data (see Figure 2). The STL manages

only one integrity area.
• Block: a continuous area of 4 bytes (INTEGRITY_BLOCK_SIZE), hard coded by STL.
• Section: a continuous area of 1024 bytes (INTEGRITY_SECTION_SIZE), hard coded by the STL. This has

no link with the SRAM memory physical sector. The memory is partitioned in sections. The first section
starts at the first address of the memory, and the following sections are contiguous with each other.
The user must ensure proper calculation and placement of the CRC checksum for each section that is to
be checked during the memory integrity test.

• Binary (named 'user program' in Figure 4): a continuous area of code provided by the compiler. It starts at
the beginning of a section. It usually ends with an incomplete section when the binary area size is not a
multiple of the section size. In all cases, the binary must be 32-bit aligned (see ST CRC tool information
below).

• Subset: a continuous area of contiguous sections defined by the user. The user application can define one
subset or several subsets. A subset has to be defined within a binary area. Its start address has to be
aligned with the beginning of a section. It can only include sections with the corresponding precalculated
CRC values. When the last section of a subset is the last part of the binary, the section may be incomplete.
The user application has to align the end of the subset with the end address of the binary area. If a set of
complete sections is tested exclusively, the subset end address has to be aligned with the end of the last-
tested section.
The subset is calculated as follows:
Subset size = K * INTEGRITY_SECTION_SIZE + L * INTEGRITY_BLOCK_SIZE
where:
– K is an integer ≥ 0.
– L is an integer, 0 ≤ L < (INTEGRITY_SECTION_SIZE / INTEGRITY_BLOCK_SIZE) when L > 0 the

last section of a binary is incomplete.
The user application defines single or multiple subsets as well as their associated test sequences.

The STL implements a test of the program integrity with the following principles (based on actual content of the
user configuration structures):
• Tests are performed on sections of one or more subsets defined by the user application.
• Tests are performed either in a row (one shot) or partially in a single atomic step for a number of sections

defined by the user application.
• Test results are based on a CRC comparison between the computed CRC value (calculated during test

execution) and an expected CRC value (calculated before software binary flashing).
The mandatory steps (for the user application) to perform program integrity tests are:
• Test initialization
• Configuration of one or more subsets
• Execution of the test.
Once all subsets are tested, the user needs to reset the program integrity test module to perform the test again.
In the case of an STL_ERROR / STL_FAILED test result, the test module is stuck at the failed memory subset. In
this case, deinitalize, initialize and reconfigure the program integrity test module test prior to running it again.

UM3478
STL description

UM3478 - Rev 1 page 8/60

Expected CRC precalculation

The program integrity test is based either on the embedded hardware CRC calculation unit or software CRC
computation algorithm, which is configurable by a flag. The default configuration is with the CRC hardware unit.
To use the software CRC, the flag STL_SW_CRC must be enabled as defined in step 3 in Section 5.5.2: Steps to
build an application from scratch. The CRC is a 32-bit CRC compliant with IEEE 802.3.
Part of the integrity area is reserved for the CRC dedicated area, the size of which depends on the integrity area
size. This area has a field format where each integrity area section has sufficient reserved space to store a 32-bit
CRC pattern. The user must ensure that valid CRC patterns are calculated and stored in the fields for all the
sections to be tested. This is shown in Figure 3.
One expected CRC value is precalculated for each contiguous section of a binary, from binary start to binary end.
This means that the number of testable sections depends on the binary size. Commonly, the binary area is not
aligned with the section size. In that case, the CRC check value of the last incomplete section is precalculated
and tested exclusively over the section part that overlays the binary area.

Preconditions:
• The user program areas have to start at the beginning of a section
• The boundaries of the user program areas must be 32-bit aligned.
• Depending on total memory size and on user program size, last program data and first CRC data may be

both stored in the same integrity area section (without any overlap). In that case, the CRC must be
computed on the user program data only, see example 3 in Figure 4.

ST CRC tool information

ST provides a CRC precalculation tool. This tool is available as a single feature inside the
STM32CubeProgrammer (see Section 6.2.2: CRC tool set-up), which automatically fills the binary with padding
bits (0x00 pattern) for a 32-bit alignment.

UM3478
STL description

UM3478 - Rev 1 page 9/60

Figure 3. Program integrity test: CRC principle

Integrity area

Section 1

Section 2

Section 3
...

CRC area
CRC1CRC2CRC3

CRC area

Program area

Integrity area section (1 Kbyte)

CRC area

CRC value (32-bit)

UM3478
STL description

UM3478 - Rev 1 page 10/60

Figure 4. Program integrity test: CRC use cases versus program areas

CRCs_2@ = CRC_START@ + (((User
Program 2 start @ -
INTEGRITY_AREA_START@)/(section
size))*4 bytes)

Empty integrity section

CRC area

Program
area

Integrity area section

INTEGRITY_AREA
_START@

INTEGRITY_
AREA_END@

CRC_START@

Example
1

Example
2

Example
3

Example
4

User programs always start
at the beginning of a section

User
program

User
program

User
program

User
program

3

User
program

2

User
program

1

CRCsCRCsCRCs CRCs CRCs
CRCs_1
CRCs_2
CRCs_3

User program

Pre-calculated CRCs

Color legend

Use case descriptions illustrated in Figure 4:
• Example 1: the user program starts at the INTEGRITY_AREA_START address, so CRCs are stored from

the CRC_START address.
• Example 2: the user program starts at the beginning of a section, but not at INTEGRITY_AREA_START.

The stored CRCs start at the right address of the CRC area.
• Example 3: the user program uses the full program area, so the last program data and the first CRC data

are both stored in the same memory section (without any overlap).
• Example 4: the user program is defined in three separated areas. This requires three separated areas for

the CRC data.
CRC start address computation:
• Real calculation:

CRC_START address = (uint32_t *)(INTEGRITY_AREA_END - 4 * (INTEGRITY_AREA_END + 1 -
INTEGRITY_AREA_START) /(INTEGRITY_SECTION_SIZE) + 1); with INTEGRITY_SECTION_SIZE =
1024

• Textual translation:
CRC_START = INTEGRITY_AREA_END - (CRC size in bytes) * (number of the memory sections) + 1

Program integrity test and interrupts

Program integrity TM is interruptible at any time.

4.1.4 RAM tests

Principles

The RAM test concerns the embedded SRAM memories of STM32H7R7/7S7.
The following structures must be respected to provide correct configuration of the RAM test.

UM3478
STL description

UM3478 - Rev 1 page 11/60

• Block: a continuous area of 16 bytes (RAM_BLOCK_SIZE), hard coded by the STL (no link with the
memory physical sectors).

• Section: a continuous area of 128 bytes (RAM_SECTION_SIZE), hard coded by the STL.
• Subset: a continuous area, with the size being a multiple of two blocks and with a 32-bit aligned start

address. A subset size is not necessarily a multiple of the section size, because the last part of a subset
can be less than one section.

• Subset size = N * RAM_SECTION_SIZE + 2 * M * RAM_BLOCK_SIZE,
where:
– N is an integer ≥ 0
– M is an integer 0 ≤ M < 4, when M > 0, the size of the subset is not aligned with multiple section size.
The user application defines single or multiple subsets as well as their associated test sequences.

The STL implements a RAM memory test with the following principles (based on actual content of the user
configuration structures):
• RAM tests are performed on RAM blocks defined by the user application
• RAM tests are performed either in a row (one shot), or partially in a single atomic step for a number of

sections defined by the user application
• The test implementation is based on the March C- algorithm
• RAM tests are performed on RAM content (not on DCache content)
The mandatory steps (for the user application) to perform RAM tests are:
• Initialization of RAM test
• Configuration of one or more RAM subsets
• Execution of the RAM test
Once all subsets are tested, the application must reset the RAM test module in order to perform the test again.
In the case of an STL_ERROR / STL_FAILED test result, the test module is stuck in the failed memory subset. In
this case, deinitialize, initialize and reconfigure the RAM prior to running the test again.

RAM test and interrupts

The RAM TM is interruptible at any time except during the execution of the smallest data granularity block as
defined in Section 4.2.5: STL interrupt masking time. This is when the STM32 interrupts and Cortex® exceptions
with configurable priority are temporarily masked by default. Refer to Section 4.3.5: Interrupt management for
detailed information on interrupt management during RAM March-C tests.

March C- test principle and memory backup principle

The RAM test is based on a March C- algorithm where memory is overwritten by specific patterns and then read
back in specific orders. Due to this principle, the RAM test must not be performed on the parts of the RAM area
storing program images otherwise, the overall software behavior becomes unpredictable. To restore the initial
memory content, a backup process is enabled and performed by default. The backup process can be optionally
disabled if it is not required. Refer to Section 4.3.8: RAM backup buffer for detailed information on the buffer
control and allocation.

UM3478
STL description

UM3478 - Rev 1 page 12/60

Figure 5. RAM test: usage

D
T4

90
50

V1

Available RAM for
subset configuration

RAM_END@

RAM_START@

RAM backup buffer (32 bytes)

4.2 STL performance data
The data is obtained with the following test set-up:
• STL library compilation details, described in Application: compilation process.
• Projects for performance tests are compiled with IAR Embedded Workbench® for Arm® (EWARM)

toolchain v9.20.1
• Compiled software configuration with:

– CPU clock set to 600 MHz
– Flash memory latency set to four seven states
– Flash prefetch enabled
– NUCLEO-H7S3L (MB1737 Rev B)

4.2.1 STL execution timings
A summary of the STL execution timings when an optimal default STL settings are applied is shown in the
following table. The measurements for each API are detailed in Section 9: STL: execution timing details.

UM3478
STL description

UM3478 - Rev 1 page 13/60

Table 3. STL execution timings, clock at 600 MHz, code executed from internal RAM

Tested
module Conditions Result in

μs

CPU TM1L, TM7, TMCB 6

Program
integrity

Default configuration (STL_SW_CRC not enabled)
1 Kbyte tested 6

10 Kbytes tested 45

STL_SW_CRC enabled
1 Kbyte tested 16

10 Kbytes tested 152

RAM
Default configuration (neither
STL_DISABLE_RAM_BCKUP_BUF, nor
STL_ENABLE_IT are enabled)

128 bytes tested 142

326 Kbytes tested 47171

4.2.2 STL code and data size
The STL code and data sizes are detailed in the following table.

Table 4. STL code size and data size (in bytes)

Configuration Module Flash memory
code

Flash memory
RO-data

R/W
data

STL_SW_CRC not enabled,
and
STL_DISABLE_RAM_BCKUP
_BUF not enabled

stl_user_param_template.o - 12 44

stl_util.o 286 8 8

STL_Lib.a 5206 1524 164

STL_SW_CRC enabled, and
STL_DISABLE_RAM_BCKUP
_BUF not enabled

stl_user_param_template.o - 12 44

stl_util.o 150 4 4

STL_Lib.a 5026 1524 164

4.2.3 STL stack usage
The minimum stack-available space required by the STL to execute available APIs, is 200 bytes.

4.2.4 STL heap usage
The STL never uses dynamic allocation, therefore the heap size is independent of the STL.

4.2.5 STL interrupt masking time
The STM32 interrupts, and Cortex® exceptions with configurable priority, are masked multiple times by the STL
during the execution of CPU TM7 and RAM tests. As shown in the following table, the maximum interrupt masking
time is obtained for a RAM test.

UM3478
STL description

UM3478 - Rev 1 page 14/60

Table 5. STL maximum interrupt masking information

Tested module Duration (max)
in μs Steps

RAM 121(1)

Each execution of STL_SCH_RunRamTM function performs a series of interrupt masking
during partial steps of the test at the following time durations:
• 121 μs for optional DCache disable
• 1 μs for backup buffer
• 1 μs for the first RAM block to be tested
• 1 μs for each middle RAM block to be tested(2)

• 1 μs for the last RAM block to be tested
• 45 μs for optional DCache enable

TM7 1 Masked twice for 1 μs

1. 1 if DCache is not enabled.
2. Number of RAM blocks (multiple of two RAM_BLOCK_SIZE is required) involved with each RAM test execution depends on

content of user structures (size of defined subset(s) versus atomic step – see Section 4.1.4: RAM tests)

4.2.6 Data cache performance impact
This section applies in cases where the DCache is enabled by the user.
By design, the STL performs a DCache flush each time the RAM test is invoked, so the related performance loss
is linked to the frequency of the atomic execution of the RAM test. This must be taken into account by the end
user to define the size of RAM to be tested in an atomic way.

4.3 STL user constraints
The end user needs to consider interference between the application and the STL. The consequences of ignoring
this are possible false STL error reporting, and/or application software execution issues. Application must respect
call convention in particular on register save and restore commonly.
Accordingly, to prevent any interference the application software and the STL integration must comply with each
constraint listed in this section.

4.3.1 Privileged-level
The CPU TM7 and the RAM TM must be executed with privileged level, in order to be able to modify certain core
registers (for example the PRIMASK register) else these TMs return STL_ERROR.

4.3.2 RCC resources
During STL execution, the RCC is configured to always provide a clock to the CRC hardware unit during STL
initialization and optionally during STL program integrity test module execution. This means that:
• when the STL returns, it restores the user RCC clock setting (enabled or disabled) for the CRC unit.
• the user application should be careful when configuring the RCC during STL execution by saving/restoring

the STL settings.

4.3.3 CRC resources
The STM32 CRC hardware unit is used during STL execution in two different cases:
• During execution of STL initialization (function STL_SCH_Init), the use of the CRC hardware unit in this

phase cannot be modified by the application software, so the STL_SW_CRC flag has no impact during
execution of the STL_SCH_Init function.

• During execution of the program integrity test module, the application can choose between hardware and
software calculation of the CRC checksums by means of the STL_SW_CRC flag. By default, hardware
CRC is used (the STL_SW_CRC flag is disabled).

The use of hardware CRC means that:
• Before calling the STL, the user must save any specific CRC unit configuration. The user configuration has

to be restored after the STL execution.
• During the STL execution, the hardware unit is configured and used for STL needs (the user application

must save/restore the STL settings when using the unit while interrupting the STL execution).

UM3478
STL description

UM3478 - Rev 1 page 15/60

4.3.4 Bit Q and bits GE of APSR
CPU TMCB execution sets bit Q (DSP overflow and saturation flag) and clears bits GE of the APSR. The user
application must take this into account when using these bits.

4.3.5 Interrupt management

Escalation mechanism - Arm® Cortex® behavior reminder

When the STL disables STM32 interrupts, and Cortex® exceptions with configurable priority, remember that an
Arm® Cortex® escalation to HardFault might occur. In this case, the HardFault handler is called instead of the fault
handler.

Interrupt and CPU TM7

By default, the STM32 interrupts and Cortex® exceptions with configurable priority are temporarily masked during
the CPU TM7 execution within smallest data granularity (a few instruction blocks), except if the user application
activates the STL_ENABLE_IT compilation switch (see Section 5.5.2: Steps to build an application from scratch).
If the STL_ENABLE_IT flag is activated, the correct STL CPU TM7 behavior is not guaranteed. The end user is
responsible for managing interferences between the STL and its application software that could lead the STL to
generate false test error reporting or not to detect hardware failures.

Interrupt and RAM March C- tests

By default, the STM32 interrupts and Cortex® exceptions with configurable priority are masked during the RAM
March C- tests, except if the user application activates the STL_ENABLE_IT compilation switch (see
Section 5.5.2: Steps to build an application from scratch).
If the STL_ENABLE_IT flag is activated:
• The correct STL RAM test behavior is not guaranteed, as the application may overwrite the STL-tested

RAM content during its interrupt treatment. The end user is responsible for managing interferences
between the STL and its application software that could lead the STL to generate false RAM test error
reporting.

• The behavior of the user application software can be compromised. Wrong data may be read or used from
RAM locations that are being modified by the STL March C- test.

Interrupt and general purpose registers

During STL execution, the application must save and restore the general-purpose registers in the STM32 interrupt
and Cortex® exception with configurable priority service routine to ensure correct STL behavior and prevent any
false error reporting.

How STL masks the interrupts

To mask the interrupts, the STL sets the PRIMASK register bit to 1. Setting this bit to 1 boosts the current
execution priority to 0, preventing the activation of all exceptions with configurable priority. Thus when the current
execution priority is boosted to a particular value, all exceptions with a lower or equal priority are masked.

4.3.6 DMA
The application must manage the DMA to avoid unwanted accesses to the RAM bank during the STL March C-
test. In this case:
• DMA writes can disturb the STL test causing false error reporting
• DMA reads can return wrong data due to STL overwrites to DMA dedicated RAM sections.

4.3.7 Supported memories
The STL memory tests provided (Program integrity TM and RAM TM) must only be executed on STM32 internal
embedded memories. The STL library flow must be executed from the internal embedded memory only.

UM3478
STL description

UM3478 - Rev 1 page 16/60

The STM32H7Rx/7Sx lines includes an internal flash memory which contains very limited space. This space can
be used by the customer application and is subject to specific constraints. Therefore, the STM32H7Rx/7Sx lines
can be in principle considered a “flashless” device where the preferred location for the STL library execution is the
internal SRAM (refer to H7RS Load and Run mode).

Note: When the user considers execution of the library directly from the external flash memory, additional safety
measures should be implemented, as a different hardware path is used to handle the code flow and the memory
content integrity. It is suggested to consult the acceptability of this approach with the certification body. To note
that the library was tested and certified while being executed from internal RAM.

4.3.8 RAM backup buffer
The backup process is enabled by default during RAM tests to preserve the RAM content. The user must then
reserve a specific area for the RAM backup buffer at compilation time which must be allocated outside RAM
subset configuration. There is only one RAM backup buffer defined for the test. The RAM backup buffer area is
also tested by the March C- algorithm each time a RAM run test is called (prior to any subset defined by the user
is tested).
The backup process can be optionally disabled either permanently by activating the compilation switch
STL_DISABLE_RAM_BCKUP_BUF (see Section 5.5.2: Steps to build an application from scratch) or temporarily
suppressed by specific control sequence (see note below). In this case, it is the resposibilty of the end-user to
guarantee that the application software does not consume data destroyed by the March C- test. This option can
be used to speed up testing of those RAM areas where users do not need to preserve the memory content.

Note: For a temporary suppression of the RAM backup buffer, the user must follow a set sequence:
1. Change the STL_pRamTmBckUpBuf variable value to overwrite it by NULL, while keeping a backup of the

original value (default value stored by the STL).
2. The RAM test must then be restarted. To do so the user can use one of the APIs which force the RAM test

into either RAM_IDLE or RAM_INIT state (see state diagrams in Section 7.3: State machines) .
To remove the backup suppression, the user must perform the same steps as above while restoring the default
value of STL_pRamTmBckUpBuf to its original value and reinitialize the RAM test.

4.3.9 Program integrity TM
The user must ensure, through proper adaptation of the associated linker file, that the program integrity TM is
executed only on read only memory areas.
Naming for EWARM icf file:
• read only program memory areas
• read only data memory areas
Otherwise the program integrity TM may report an STL_FAILED or STL_ERROR status

4.3.10 Memory mapping
Due to the RAM test module and March C method design, the user must ensure that the RAM TM subsets do not
contain any program memory area. This must be done through a proper adaptation of the associated linker file
where read only program memory and read only data must be allocated separately at the .text section, which is
subject to Program integrity TM test exclusively. The read write memory is allocated at the .data section, which
is only subject to the functional March C test performed by RAM TM.
The examples below are for EWARM and STM32CubeIDE.

STM32CubeIDE .ld file adaptation example

.rodata :
{
……
} >ROM

EWARM .icf file adaptation example

place in ROM_region { readonly };

UM3478
STL description

UM3478 - Rev 1 page 17/60

4.3.11 Cortex M7 cache resources
The TM RAM tests the RAM content, but not the DCache content. To ensure this, in cases where the DCache is
enabled by the user, the TM RAM:
• Disables and cleans the DCache before performing the RAM test
• Invalidates and enables the DCache when the RAM test is complete (when the TM RAM returns)
• Performs the upper two atomic operations under disabled interrupt
The user must not enable the DCache during TM RAM execution, as the DCache must remain disabled during
this test execution.

4.3.12 Processor mode
The STL CPU TM7 must be executed in thread mode in order to set the active stack pointer to the process stack
pointer. If the STL is not executed in thread mode, the CPU TM7 returns STL_ERROR.

4.4 End-user integration tests
This section describes the mandatory tests to be executed by the end user during the verification phase. These
tests guarantee that the STL is correctly integrated in the application software.

4.4.1 Test 1: correct STL execution
The end user must use the expected function-return value and the expected test-module result value (see
Section 7.2: User APIs) to check that each planned diagnostic function has been correctly executed. This
concerns both the test modules execution and all their configuration actions.

4.4.2 Test 2: correct STL error-message processing
The end user must check that any error information produced by the STL function-return and test-module result
values is correctly interpreted as unexpected behavior, and correctly handled in its application software. Error
information refers to values different to the expected value, see Section 7.2: User APIs). During the verification,
the artificial-failing feature must be used to emulate the generation of incorrect test-module result values related to
associated individual software diagnostics, for each of the individual functions used.
This process cannot be considered as an exhaustive simulation of actual CPU failures on real devices but rather
a testing interface of the implemented APIs.

Note: In some circumstances, experts performing the safety assessment of final systems embedding the STL might
require exhaustive simulation to demonstrate STL capability to capture corruption of STM32 registers or
memories injected intentionally during debugging the STL code. To perform these tests is practically impossible
for any end user due to STL object delivery format. This specific testing was done for all the provided TMs
during the STL certification process and its passing is recorded at internal test reports and guaranteed by the
valid certificate issued for this ST firmware.

UM3478
STL description

UM3478 - Rev 1 page 18/60

5 Package description

This section details the X-CUBE-CLASSB-H7RS expansion package content and its correct use.

5.1 General description
X-CUBE-CLASSB-H7RS is a software expansion package for STM32H7R7/7S7 microcontrollers.
It provides a complete solution that helps end customers to build a safety application:
• An application-independent software test library is available:

– partly as object code: STL_Lib.a, the library itself
– partly as source file: stl_user_param_template.c and stl_util.c
– with three header files: stl_stm32_hw_config.h, stl_user_api.h, and stl_util.h

• A user application example, available as source code.
X-CUBE-CLASSB-H7RS has been ported on the products listed in Section 3.2: Supported products.
The software expansion package includes a sample application that the developer can use to start experimenting
with the code. It is provided as a zip archive containing both source code and library.
The following integrated development environments are supported:

• IAR Embedded Workbench® for Arm® (EWARM)
• Keil® microcontroller development kit (MDK-ARM)
• STM32CubeIDE.

5.2 Architecture
The components of the X-CUBE-CLASSB-H7RS expansion package are illustrated in Figure 6.

Figure 6. Software architecture overview

D
T4

90
51

V1

Drivers

CMSIS

Utilities

PC software

Middleware level

Self-test library (STL)

Application level

STL sample application

HW abstraction
layer (HAL)

Board support
package (BSP)

Legend:
STL
User

5.2.1 STM32Cube HAL
The HAL driver layer provides a simple, generic, multi-instance set of APIs (application programming interfaces)
to interact with the upper layers (application, libraries, and stacks).
It comprises generic and extension APIs. It is directly built around a generic architecture and allows the layers that
are built upon, such as the middleware layer, to implement their functionalities without dependencies on the
specific hardware configuration of a given microcontroller.
This structure improves the library code re-usability and guarantees an easy portability to other devices.

UM3478
Package description

UM3478 - Rev 1 page 19/60

5.2.2 Board support package (BSP)
The software package needs to support the peripherals on the STM32 boards, apart from the MCU. This software
is included in the board support package (BSP). This is a limited set of APIs that provides a programming
interface for some specific board components, such as the LED and the user button.

5.2.3 STL
A significant part of the STL, available at middleware level, is a black box that manages the software-based
diagnostic test. It is independent from the HAL, BSP, and CMSIS, even if the STL integration example relies on
some HAL drivers.

5.2.4 User application example
Reference projects provided in the example show how to integrate a possible sequence of the STL test module
calls into an application when adopting different IDEs, verify the returns of the APIs, and emulate their failure
responses artificially. Additionally, a specific module for testing the clock system by applying a monitoring method
compliant with the "Class B" standard requirements is included with a full source code to extend the available
library set. It demonstrates how the library can be extended by specific tests or modules entirely defined by the
end user.
The example also shows a possible way to differentiate between the overall initial startup test and the sequence
of partial tests performed periodically during application runtime.

5.2.5 STL integrity
The integrity of the STL content is ensured by hash SHA-256.

UM3478
Package description

UM3478 - Rev 1 page 20/60

5.3 Folder structure
A top-level view of the structure is shown in Figure 7.

Figure 7. Project file structure

D
T7

70
21

V1

BSP drivers for NUCLEO-H7S3L8
STM32H7RS CMSIS and HAL drivers

STL content with the library
object file and associated
headers and sources

STL integration example

x.y.z is an abstraction layer
for the version used

5.4 APIs

5.4.1 Compliance

Interface compliance

The library part of the STL, not delivered in source code, has been compiled with IAR Embedded Workbench® for
Arm v9.20.1. The compilation is done with --aeabi and --guard_calls compilation options to fulfill AEABI
compliance as described in “AEABI compliance” of the EWARM help section.

Safety guidelines

To fulfill the safety guidelines compliance as described in the IAR Embedded Workbench® safety guide (advice
2.1-1, 2.2-5, 2.4-1a and 5.4-3) and the Keil® safety manual (§4.9.2), the compliance is done with --strict, --
remarks, --require_prototypes and --no_unaligned_access compilation options.

UM3478
Package description

UM3478 - Rev 1 page 21/60

Library compliance

The library part of the STL (not delivered in source code) is compliant with C standard library ISO C99.
It has been compiled with the IAR™ option. Language C dialect = Standard C.

Arm® compiler C toolchain vendor/version independency

The STL user API refers only to the “uint32_t” and “enum” C types:
• “uint32_t” C type is a fixed type size of 32 bits according to C standard C99
• “enum” C type size, according to C standard C99, is defined by the implementation. It must be able to

represent the values of all the enumeration members. In the STL interface, the enum type values are
unsigned integers, smaller than or equal to (232 - 1). The user must ensure that the enum type value can
hold a 32-bit value.

5.4.2 Dependency
The STL library calls the memset standard C library function.

Furthermore, the IAR™ EWARM toolchain compiler is used to compile the STL library. This compiler may, under
some circumstances, call the following standard C library functions: memcpy, memset, and memclr. This
behavior is intrinsic to the IAR™ EWARM toolchain compiler. It is not possible to disable or avoid it.
As a result, when linking the STL library the user must ensure that these standard C library functions are defined.
The user can use either the functions provided by the toolchain or the user ones.

5.4.3 Details
Detailed technical information about the available APIs can be found in Section 7.2: User APIs, where the
functions and parameters are described.

5.5 Application: compilation process

5.5.1 Steps to build a delivered STL example
The H7RS STL example project is based on the LRUN (Load and RUN) project template.
1. Install the ST CRC tool (see Section 6.2.2: CRC tool set-up) or other CRC tool that generate an adequate

structure necessary for proper execution of the program integrity test.
2. Project choice: Select a project example and open it.
3. Project build: Launch the build which compiles the binary and post build command invokes CRC tool to

calculate and allocate the CRC results. In case of error, check the CRC tool path. For details see
Section 5.5.2: Steps to build an application from scratch.

4. Load the compiled binary.
5. Execute.
Boot the board and check the result:

• LED toggles quickly and regularly: test result is as expected.
• LED toggles irregularly: there is an error.

If any test returns a failure result, the LED flashes once every 2 sec. If the STL detects a defense programming
error, the LED flashes once every 4 sec.
The FailSafe_Handler procedure is then called with a parameter keeping the identification code of the failed
module

Note: The codes definitions are given in the stl_user_api.h file, in the case of a defensive programing failure, the
DEF_PROG_OFFSET is added to the module code. User can adapt or extend the set of definitions applied by
the STL example there.

UM3478
Package description

UM3478 - Rev 1 page 22/60

5.5.2 Steps to build an application from scratch
To build an application from scratch, follow the steps listed below:
1. Create new application project with a suitable directory structure and with all the appropriate packages. Use

STM32CubeMX tool to make it automatically.
2. If any automated include options of the STL in the project is not supported by the STM32CubeMX tool, copy

and paste the content of the ...Middleware\ST\STM32_Safety_STL directory from the delivered STL
example into the application project directories structure. Refer to Section 5.3: Folder structure. In this case,
modify the project setting manually while following the next steps:
– Add all the STL source files located at the Src directory into the project.
– Assign the Inc directory as an additional include path to be listed in the project settings.
– Force the linker to include the library object file located at the Lib directory as an additional library.

Note: This second step is necessary only when no automatic including option is supported by the CubeMX tool
else it is fully performed by the tool - then there is no need for any manual intervention as described above -
user can leave them out and continue by Step 3

3. If needed, add the next optional preprocessor compilation switches at project settings:
– Option to enable STL_DISABLE_RAM_BCKUP_BUF, if the RAM backup buffer is not used (in this case

the RAM data of the tested subsets are destroyed). If not activated, the RAM backup buffer is used by
default. In such cases, the "backup_buffer_section" section must be defined in the linker scatter file.

– Option to enable STL_SW_CRC: this is where the user application selects the software CRC . If not
activated, the hardware CRC calculation is used by default.

– Option to enable STL_ENABLE_IT: this is where the user application enables the STM32 interrupts
during the CPU TM7, and RAM test. If not activated, the interrupts are masked during these tests. See
Section 4.3.5: Interrupt management and Section 4.1.4: RAM tests.

4. Check the integrity area size configuration.
It is mandatory to set the correct range of the memory for the project at stl_user_param_template.c file.
Update the STL_INTEGRITY_AREA_END_ADDR there especially to ensure coherency with the associated
linker scatter file and the CRC tool script (see step 6.).

5. Develop the user STL flow control. It is done by implementing the proper sequence of API calls repeated at
periodical cycles, as required by the defined safety task.
It is mandatory to ensure a proper filling of all the associated user structures to control the memory tests and
apply a correct check of the STL return information. Refer to Section 7: STL: User APIs and state machines.

6. Apply the CRC tool to build the CRC area content necessary for the CRC calculation. Refer to
Section 6.2.2: CRC tool set-up.
Execute a proper command line of the STM32CubeProgrammer. This can be done automatically within the
compilation process by invoking the IDE post build feature action as seen in Figure 8 and Figure 9.

Note: STM32CubeProgrammer supports check sum computation on the single compact area only. To ensure the
integrity of the ISR vector table content, the vector table can be either relocated from its default location in
retention RAM to SRAM where the rest of the code is stored or the user should apply some other
mechanism of integrity check of this separate area content. The ISR table remapping is applied at the STL
integration example. For more details see readme file in the project directory.

7. Compile, load, and execute the binary.
Artificial failing APIs can be used to debug a correct behavior of the programmed STL flow if the STL detects a
hardware failure.

UM3478
Package description

UM3478 - Rev 1 page 23/60

Figure 8. IAR™ post-build actions screenshot

D
T7

70
22

V1

Figure 9. CRC tool command line

D
T7

70
23

V1

STM32_Programmer_CLI.exe --sl "$PROJ_DIR$\STM32H7S3L8-Nucleo\Exe\
Project.out” 0x24072000

Executable tool name

Mandatory option

Compiled binary path

ROM start @

ROM end @ + 1

Section size-
Mandatory value

0x4000x24050000

Binary conversion command line

The following list provides the specific command lines for converting compiled projects to IAR Embedded
Workbench®, Keil®, and STM32CubeIDE binary format.

• IAR Embedded Workbench® for Arm® (EWARM):
– ielftool "$PROJ_DIR$\STM32H7S3L8-Nucleo\Exe\STM32H7S3L8-Nucleo.out" --bin"$PROJ_DIR$

\STM32H7S3L8-Nucleo\Exe\STM32H7S3L8-Nucleo.bin"
• Keil® microcontroller development kit (MDK-ARM):

– fromelf --bincombined -o "$H@H.bin" "$H@H.axf"
• STM32CubeIDE:

– arm-none-eabi-objcopy -O binary "${BuildArtifactFileBaseName}.elf" "$
{BuildArtifactFileBaseName}.bin"

UM3478
Package description

UM3478 - Rev 1 page 24/60

6 Hardware and software environment setup

6.1 Hardware setup
The STM32 Nucleo boards provide an affordable and flexible way for users to try out new ideas and build
prototypes with any STM32 microcontroller lines. The ARDUINO® connectivity support and ST morpho headers
make it easy to expand the functionality of the STM32 Nucleo open development platform with a wide choice of
specialized expansion boards. The STM32 Nucleo board does not require any separate probe as it integrates the
ST-LINK/V2-1 debugger/programmer. The STM32 Nucleo boards comes with the STM32 comprehensive
software HAL library together with various packaged-software examples.
Details about the STM32 Nucleo boards are available from the http://www.st.com/stm32nucleo web page.

Figure 10. STM32 Nucleo board example

The following components are needed:
• NUCLEO-H7S3L (MB1737 Rev B) development board
• USB type C to Mini B USB cable to connect the development board to the PC.

6.2 Software setup
This section lists the minimum requirements for the developer to set up the SDK, to run the sample scenario, and
to customize applications.

6.2.1 Development tool-chains and compilers
Select one of the IDEs supported by the STM32Cube software expansion package.
Read the system requirements and setup information provided by the selected IDE provider.
Check the projects Release_Notes.html file inside the release package, and refer to the chapter IDE compatibility,
if it exists.

UM3478
Hardware and software environment setup

UM3478 - Rev 1 page 25/60

6.2.2 CRC tool set-up
ST provides a CRC tool, available as a single feature inside the STM32CubeProgrammer, used for program
integrity testing. Other CRC tools can be used, provided they fulfill the requirements detailed in Expected CRC
precalculation.
Tool installation procedure:
1. Select STM32CubeProgrammer on the dedicated web page available on www.st.com
2. Install the package.
The easiest way is to add the tool path in the environment variable (computer administration rights are required).
If not, the path must be added directly in the project for compilation, in the post-build option.

UM3478
Hardware and software environment setup

UM3478 - Rev 1 page 26/60

http://www.st.com

7 STL: User APIs and state machines

7.1 User structures
The structures are defined in stl_user_api.h. It is forbidden to change the content of this file.
Structures detailed hereafter are copies of the stl_user_api.h content:

typedef enum
{
 STL_OK = STL_OK_DEF, /* Scheduler function successfully executed */
 STL_KO = STL_KO_DEF /* Scheduler function unsuccessfully executed
 (defensive programming error, checksum error). In this case
 the STL_TmStatus_t values are not relevant */
} STL_Status_t; /* Type for the status return value of the STL function execution */

typedef enum
{
 STL_PASSED = STL_PASSED_DEF, /* Test passed. For Integrity/RAM, test is passed and end of
 configuration is also reached */
 STL_PARTIAL_PASSED = STL_PARTIAL_PASSED_DEF, /* Used only for RAM and Integrity testing.
 Test passed, But end of Integrity/RAM
 configuration not yet reached */
 STL_FAILED = STL_FAILED_DEF, /* Hardware error detection by Test Module */
 STL_NOT_TESTED = STL_NOT_TESTED_DEF, /* Initial value after a SW init, SW config,
 SW reset, SW de-init or value when Test Module
 not executed */
 STL_ERROR = STL_ERROR_DEF /* Test Module unsuccessfully executed (defensive programing
 check failed) */
} STL_TmStatus_t; /* Type for the result of a Test Module */

typedef enum
{
 STL_CPU_TM1L_IDX = 0U, /* CPU Arm Core Test Module 1L index */
 STL_CPU_TM7_IDX, /* CPU Arm Core Test Module 7 index */
 STL_CPU_TMCB_IDX, /* CPU Arm Core Test Module Class B index */
 STL_CPU_TM_MAX /* Number of CPU Arm Core Test Modules */
} STL_CpuTmxIndex_t; /* Type for index of CPU Arm Core Test
 Modules */

typedef struct STL_MemSubset_struct
{
 uint32_t StartAddr; /* start address of Integrity or RAM memory subset */
 uint32_t EndAddr; /* end address of Integrity or RAM memory subset */

 struct STL_MemSubset_struct *pNext; /* pointer to the next Integrity or RAM memory subset
 - to be set to NULL for the last subset */
} STL_MemSubset_t; /* Type used to define Integrity
 or RAM subsets to test */

typedef struct
{
 STL_MemSubset_t *pSubset; /* Pointer to the Integrity or RAM subsets to test */
 uint32_t NumSectionsAtomic; /* Number of Integrity or RAM sections to be tested
 during an atomic test */
} STL_MemConfig_t; /* Type used to fully define Integrity or RAM test configuration */

typedef struct
{
 STL_TmStatus_t aCpuTmStatus[STL_CPU_TM_MAX]; /* Array of forced status value
 for CPU Test Modules */
 STL_TmStatus_t IntegrityTmStatus; /* Forced status value for Integrity Test Module */
 STL_TmStatus_t RamTmStatus; /* Forced status value for RAM Test Module */
} STL_ArtifFailingConfig_t; /* Type used to force Test Modules status to a specific
 value for each STL Test Module */

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 27/60

7.2 User APIs
The following APIs are declared in the file stl_user_api.h. It is forbidden to change the content of this file.

Caution: For pointers defined by the user application and used as STL API parameters, the user application must set
valid pointers, maintain pointer availability, and check the pointer integrity. The STL does not copy the pointer
content, and accesses directly to the memory addresses defined by the application.
This applies during the overall STL execution. For example, the pointers to access the content of structures that
keep the configuration of the memory tests must be maintained. They are still used by the STL_SCH_run_xxx
functions, even if they are not always part of the input parameter list when an API associated with these tests is
called.
For more details about proper API sequence calls see Section 7.3: State machines and Section 8: Test
examples.

7.2.1 Common API
The following sections present details on common APIs.

7.2.1.1 STL_SCH_Init
Description: initializes the scheduler. It can be used at any time to reinitialize the scheduler (it resets all tests).
Declaration: STL_Status_t STL_SCH_Init(void).

Table 6. STL_SCH_Init input information

Allowed states Parameters

CPU TMx: all

Integrity TM: all

RAM TM: all

-

Table 7. STL_SCH_Init output information

STL_Status_t return value
Returned state

Value Comments

STL_OK Function successfully executed

CPU TMx: CPU_TMx_CONFIGURED

Integrity TM: INTEGRITY_IDLE

RAM TM: RAM_IDLE

STL_KO
Source of defensive programming error:
• STL internal data corrupted

No state change

Additional information: there is no specific CPU initialization function for CPU test modules.

Note: This function uses hardware CRC as explained in Section 4.3.3: CRC resources.

7.2.2 CPU Arm® core testing APIs

7.2.2.1 STL_SCH_RunCpuTMx
Description: runs one of the CPU test modules.
Declaration: STL_Status_t STL_SCH_RunCpuTMx(STL_TmStatus_t *pSingleTmStatus) where TMx
can be one of TM1L, TM7 or TMCB.

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 28/60

Table 8. STL_SCH_RunCpuTMx input information

Allowed states
Parameters

Value Comments

CPU_TMx_CONFIGURED *pSingleTmStatus See Caution

Table 9. STL_SCH_RunCpuTMx output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed

STL_PASSED -

CPU_TMx_CONFIGURED

STL_FAILED -

STL_ERROR

Source of defensive
programming error:
• STL internal data

corrupted
• Software is not

executed with
privileged level for CPU
TM7

• Software is not
executed in thread
mode for CPU TM7

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus = NULL
• STL internal data corrupted

Not relevant Value must not be used No state change

7.2.3 Program integrity testing APIs

7.2.3.1 STL_SCH_InitIntegrity
Description: initializes program integrity test.
Declaration: STL_Status_t STL_SCH_InitIntegrity(STL_TmStatus_t *pSingleTmStatus)

Table 10. STL_SCH_InitIntegrity input information

Allowed states
Parameters

Value Comments

INTEGRITY_IDLE

INTEGRITY_INIT

INTEGRITY_CONFIGURED

*pSingleTmStatus Caution

Table 11. STL_SCH_InitIntegrity output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed STL_NOT_TESTED - INTEGRITY_INIT

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus = NULL
• STL internal data corrupted

Not relevant Value must not be
used No state change

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 29/60

7.2.3.2 STL_SCH_ConfigureIntegrity
Description: configures the program integrity test.
Declaration: STL_Status_t STL_SCH_ConfigureIntegrity(STL_TmStatus_t *pSingleTmStatus,
STL_MemConfig_t *pIntegrityConfig)

Table 12. STL_SCH_ConfigureIntegrity input information

Allowed states
Parameter

Value Comments

INTEGRITY_INIT

*pSingleTmStatus See Caution

*pIntegrityConfig

Pointer to the program integrity configuration. See Caution.

Field Comments

*pSubset

• Pointer to program integrity subset. See
Caution

• A section cannot overlap with the CRC
area

Field Comments

StartAddr

• Start subset address
in bytes

• Cannot be lower
than
INTEGRITY_AREA_
START and higher
than CRC_START
address

EndAddr

• End subset address
in bytes

• Cannot be lower
than
INTEGRITY_AREA_
START and higher
than CRC_START
address

• Needs to be higher
than StartAddr

*pNext

• Pointer to next
program integrity
subset. See Caution

• Must be set to NULL
for the last subset

NumSectionsAtomic

• Number of program integrity sections to
be tested during an atomic test

• Set to 1, as minimum (one section per
test)

• If the value is higher than the number of
sections in all subsets, all program
integrity subsets are tested in one pass

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 30/60

Table 13. STL_SCH_ConfigureIntegrity output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed

STL_NOT_TESTED - INTEGRITY_CONFIGURED

STL_ERROR

Possible source of
defensive programming
error:
• State not allowed
• Wrong

configuration
detected

• STL internal data
corrupted

No state change

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus =

NULL
• pIntegrityConfig =

NULL
• STL internal data corrupted

Not relevant Value must not be used No state change

Additional information: in the case of a return value set to STL_KO or *pSingleTmStatus set to STL_ERROR,
the program integrity configuration is not applied.

7.2.3.3 STL_SCH_RunIntegrityTM
Description: runs program integrity test.
Declaration: STL_Status_t STL_SCH_RunIntegrityTM(STL_TmStatus_t *pSingleTmStatus)

Table 14. STL_SCH_RunIntegrityTM input information

Allowed states
Parameters

Value Comments

INTEGRITY_CONFIGURED *pSingleTmStatus See Caution

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 31/60

Table 15. STL_SCH_RunIntegrityTM output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed

STL_PASSED - INTEGRITY_CONFIGURED

STL_PARTIAL_PASSED - INTEGRITY_CONFIGURED

STL_FAILED - INTEGRITY_CONFIGURED

STL_NOT_TESTED All subsets are already
tested INTEGRITY_CONFIGURED

STL_ERROR

Possible source of
defensive programming
error:
• State not

allowed
• Configuration

corrupted
• STL internal data

corrupted

No state change

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus =

NULL
• STL internal data

corrupted

Not relevant Value must not be used No state change

7.2.3.4 STL_SCH_ResetIntegrity
Description: resets program integrity test.
Declaration: STL_Status_t STL_SCH_ResetIntegrity(STL_TmStatus_t *pSingleTmStatus)

Table 16. STL_SCH_ResetIntegrity input information

Allowed states
Parameters

Value Comments

INTEGRITY_CONFIGURED *pSingleTmStatus See Caution

Table 17. STL_SCH_ResetIntegrity output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed

STL_NOT_TESTED Configuration successfully
applied INTEGRITY_CONFIGURED

STL_ERROR

Possible source of
defensive programming
error:
• State not allowed
• Configuration

corrupted
• STL internal data

corrupted

No state change

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus =

NULL
• STL internal data corrupted

Not relevant Value must not be used No state change

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 32/60

Additional information
• Once all subsets are tested, the user needs to reset the test module to perform the program integrity test

again.
• In the case of a return value set to STL_KO or *pSingleTmStatus set to STL_ERROR, the program

integrity reset is not applied.

7.2.3.5 STL_SCH_DeInitIntegrity
Description: deinitializes program integrity test.
Declaration: STL_Status_t STL_SCH_DeInitIntegrity(STL_TmStatus_t *pSingleTmStatus)

Table 18. STL_SCH_DeInitIntegrity input information

Allowed states
Parameters

Value Comments

INTEGRITY_IDLE

INTEGRITY_INIT

INTEGRITY_CONFIGURED

*pSingleTmStatus See Caution

Table 19. STL_SCH_DeInitIntegrity output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed STL_NOT_TESTED - INTEGRITY_IDLE

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus = NULL
• STL internal data corrupted

Not relevant Value must not be
used No state change

7.2.4 RAM testing APIs

7.2.4.1 STL_SCH_InitRam
Description: initializes the RAM test.
Declaration: STL_Status_t STL_SCH_InitRam(STL_TmStatus_t *pSingleTmStatus).

Table 20. STL_SCH_InitRam input information

Allowed states
Parameters

Value Comments

RAM_IDLE

RAM_INIT

RAM_CONFIGURED

*pSingleTmStatus See Caution

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 33/60

Table 21. STL_SCH_InitRam output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed STL_NOT_TESTED - RAM_INIT

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus = NULL
• STL internal data corrupted

Not relevant Value must not be
used No state change

7.2.4.2 STL_Status_t STL_SCH_ConfigureRam
Description: Description: configures the RAM test.
Declaration: STL_Status_t STL_SCH_ConfigureRam(STL_TmStatus_t *pSingleTmStatus,
STL_MemConfig_t *pRamConfig)

Table 22. STL_SCH_ConfigureRam input information

Allowed states
Parameter

Value Comments

RAM_INIT

*pSingleTmStatus See Caution

*pRamConfig

This pointer contains the RAM configuration. See Caution

Field Comments

*pSubset

• Pointer to RAM subset. See Caution
• A subset cannot overlap with the RAM

backup buffer if defined

Field Comments

StartAddr

• Start subset address in
bytes

• Start address must be 32-
bit aligned

• RAM subset must be
inside RAM area

• Cannot be lower than
RAM_START and higher
than RAM_END address

EndAddr

• End subset address in
bytes

• Higher than StartAddr
• Cannot be lower than

RAM_START and higher
than RAM_END address

• Subset size (EndAddr–
StartAddr) needs to be
multiple of 2 *
RAM_BLOCK_SIZE, 32
bytes

*pNext
• Pointer to next RAM

subset. See Caution
• Must be set to NULL for

the last subset

NumSectionsAtomic

• Number of RAM sections to be tested during
an atomic test

• Set to 1, as minimum (one section per test)
• If the value is higher than the number of

sections in all subsets, all RAM subsets are
tested in one pass

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 34/60

Table 23. STL_SCH_ConfigureRam output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed

STL_NOT_TESTED - RAM_CONFIGURED

STL_ERROR

Possible source of
defensive
programming error:
• State not

allowed
• Wrong

configuration
detected

• STL internal
data corrupted

No state change

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus = NULL
• pRamConfig = NULL
• STL internal data corrupted

Not relevant Value must not be
used No state change

Additional information: in the case of a return value set to STL_KO or *pSingleTmStatus set to STL_ERROR,
the RAM configuration is not applied.

7.2.4.3 STL_SCH_RunRamTM
Description: runs the RAM test.
Declaration: STL_Status_t STL_SCH_RunRamTM(STL_TmStatus_t *pSingleTmStatus)

Table 24. STL_SCH_RunRamTM input information

Allowed states
Parameters

Value Comments

RAM_CONFIGURED *pSingleTmStatus See Caution

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 35/60

Table 25. STL_SCH_RunRamTM output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed

STL_PASSED - RAM_CONFIGURED

STL_PARTIAL_PASS
ED - RAM_CONFIGURED

STL_FAILED - RAM_CONFIGURED

STL_NOT_TESTED All subsets are
already tested RAM_CONFIGURED

STL_ERROR

Possible source of
defensive
programming error:
• State not

allowed
• Configuration

corrupted
• STL internal

data corrupted

No state change

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus = NULL
• STL internal data corrupted

Not relevant Value must not be
used No state change

7.2.4.4 STL_Status_t STL_SCH_ResetRam
Description: resets the RAM test.
Declaration: STL_Status_t STL_SCH_ResetRam(STL_TmStatus_t *pSingleTmStatus)

Table 26. STL_SCH_ResetRam input information

Allowed states
Parameters

Value Comments

RAM_CONFIGURED *pSingleTmStatus See Caution

Table 27. STL_SCH_ResetRam output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed

STL_NOT_TESTED Configuration
successfully applied RAM_CONFIGURED

STL_ERROR

Possible source of
defensive
programming error:
• State not

allowed
• Configuration

corrupted
• STL internal

data corrupted

No state change

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus = NULL
• STL internal data corrupted

Not relevant Value must not be
used No state change

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 36/60

Additional information
• Once all subsets are tested, the user needs to reset the test module to perform the RAM test again.
• In the case of a return value set to STL_KO or *pSingleTmStatus set to STL_ERROR, the RAM reset is

not applied.

7.2.4.5 STL_SCH_DeInitRam
Description: deinitializes the RAM test.
Declaration: STL_Status_t STL_SCH_DeInitRam(STL_TmStatus_t *pSingleTmStatus)

Table 28. STL_SCH_DeInitRam input information

Allowed states
Parameters

Value Comments

RAM_IDLE

RAM_INIT

RAM_CONFIGURED

*pSingleTmStatus See Caution

Table 29. STL_SCH_DeInitRam output information

STL_Status_t return value *pSingleTmStatus output
Returned state

Value Comments Value Comments

STL_OK Function successfully executed STL_NOT_TESTED - RAM_IDLE

STL_KO

Possible source of defensive
programming error:
• pSingleTmStatus = NULL
• STL internal data corrupted

Not relevant Value must not be
used No state change

7.2.5 Artificial-failing APIs

7.2.5.1 STL_SCH_StartArtifFailing
Description: sets artificial-failing configuration and starts artificial-failing feature.
Declaration: STL_Status_t STL_SCH_StartArtifFailing(const STL_ArtifFailingConfig_t
*pArtifFailingConfig)

Table 30. STL_SCH_StartArtifFailing input information

Allowed states
Parameters

Value Comments

CPU TMx:
• CPU_TMx_CONFIGURED

Integrity TM:
• INTEGRITY_IDLE
• INTEGRITY_INIT
• INTEGRITY_CONFIGURED

RAM TM
• RAM_IDLE
• RAM_INIT
• RAM_CONFIGURED

*pArtifFailingConfig No state change

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 37/60

Table 31. STL_SCH_StartArtifFailing output information

STL_Status_t
return value Comments Output Comments

STL_OK Function successfully executed

No output parameter No state change
STL_KO

Possible source of defensive programming error:
• pArtifFailingConfig = NULL
• configured values are not set for each test

module
• STL internal data corrupted

Additional information: All the following API calls are executed normally except if the STL_Status_t return value is
set to STL_OK, the test module status (*pSingleTmStatus, *pTmListStatus) is forced to a configured value.

7.2.5.2 STL_SCH_StopArtifFailing
Description: stops the artificial-failing feature.
Declaration: STL_Status_t STL_SCH_StopArtifFailing(void)

Table 32. STL_SCH_StopArtifFailing input information

Allowed states
Parameters

Value Comments

CPU TMx:
• CPU_TMx_CONFIGURED

Integrity TM:
• INTEGRITY_IDLE
• INTEGRITY_INIT
• INTEGRITY_CONFIGURED

RAM TM
• RAM_IDLE
• RAM_INIT
• RAM_CONFIGURED

No input parameter No state change

Table 33. STL_SCH_StopArtifFailing output information

STL_Status_t return value Comments Output Comments

STL_OK Function successfully executed

No output
parameter No state change

STL_KO
Possible source of defensive
programming error:
• STL internal data corrupted

7.3 State machines
Each CPU test module has its own state machine diagram linked to the CPU test APIs.

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 38/60

CPU test APIs

Figure 11. State machine diagram - CPU test APIs

D
T6

99
47

V1

SCH_IDLE

STL_SCH_Init()

SW reset

STL_SCH_RunCpuTMx()

Return of STL_SCH_RunCpuTMx()

STL_SCH_Init()

CPU_TMx_
RUNNING

CPU_TMx_C
ONFIGURED

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 39/60

Program integrity test APIs

Figure 12. State machine diagram - program integrity test APIs

STL_SCH_InitIntegrity()

STL_SCH_InitIntegrity() STL_SCH_ConfigureIntegrity()

STL_SCH_RunIntegrityTM()

STL_SCH_DeInitIntegrity()

STL_SCH_InitIntegrity()

STL_SCH_DeInitIntegrity()

STL_SCH_DeInitIntegrity()

STL_SCH_ResetIntegrity()(1)

STL_SCH_Init()

SCH_IDLE

SW reset
Return of STL_SCH_RunIntegrityTM()

STL_SCH_Init()

STL_SCH_Init()

STL_SCH_Init()

INTEGRITY_IDLE
INTEGRITY_INIT

INTEGRITY_
RUNNING

INTEGRITY_
CONFIGURED

Note (1): Once all subsets are tested, the user needs to reset the program integrity test module to perform the test again.

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 40/60

RAM test APIs

Figure 13. State machine diagram - RAM test APIs

D
T6

99
49

V1

STL_SCH_InitRam()

STL_SCH_InitRam()
STL_SCH_ConfigureRam()

STL_SCH_RunRamTM()

STL_SCH_DeInitRam()

STL_SCH_InitRam()

STL_SCH_DeInitRam()

STL_SCH_DeInitRam()

STL_SCH_ResetRam()(1)

STL_SCH_Init()

SCH_IDLE

SW reset
Return of STL_SCH_RunRamTM()

STL_SCH_Init()

STL_SCH_Init()

STL_SCH_Init()

RAM_IDLE
RAM_INIT

RAM_
RUNNING

RAM_
CONFIGURED

Note (1): Once all subsets are tested, the user needs to reset the RAM test module to perform the test again.

7.4 API usage and sequencing
The user application must:
• Maintain the availability and integrity of pointers passed as parameters during the tests. The STL does not

copy the pointer content, and accesses directly the memory addresses defined by the application.
• Check the status of function return value (STL_Status_t), before checking the test result

(STL_TmStatus_t or STL_TmListStatus_t). See the example in the delivered applications.
The APIs run independently of each other and therefore can be called in any order.
Only APIs dedicated to the configuration and initialization of the memories tests must be called before any
execution of these tests is applied. See Section 7.3: State machines for more details.
The test flow is simplified, all the tests are now executed from C-code. All the modules are common and suitable
for both startup and runtime testing. Differentiation between startup and runtime tests can be performed by proper
sequencing and configuration of test modules. After application reset, common practice is to perform a full initial
sequence including the complete set of tests executed over all the memory areas before the application starts.
This sequence is defined in following order:
1. All the CPU tests
2. Complete tests of nonvolatile memory integrity
3. Functional test overall for the available space of volatile memories including the area especially dedicated to

the stack

Note: Temporarily suppressing of the memory content backup can be applied to speed up initial testing of huge
RAM areas where user does not need to preserve the memory content during this test. For more details see
Section 4.3.8: RAM backup buffer. Functional test is not executed over areas containing program code and
data when the code is executed from RAM.

4. Specific customer tests

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 41/60

Later, at runtime, the order of the tests can be changed and executed in more relaxed way. The memory regions
under tests can be reduced. The test process can even be dynamically modified with prior focus on those areas
where the most recently executed safety related code and data are stored. This is especially the case when
considering factors like:
• Available application process safety time
• System overall performance
• Concrete status of the application

7.5 User parameters
In addition to parameters set directly inside the APIs, there are few parameters to be customized in the
stl_user_param_template.c file. They are located in the code, with the following comments:

/* customisable */

Extract from stl_user_param_template.c:

/* INTEGRITY configuration */
#define STL_INTEGRITY_AREA_START_ADDR (0x24050000UL) /* customizable */
#if defined (STM32H7S3xx)
#define STL_INTEGRITY_AREA_END_ADDR (0x24071FFFUL) /* customizable */ /* 2 Mbytes */
#else
#error "please add your device ROM end address"
#endif

The customization depends upon the STM32 product and the user choice.
/* TM RAM Backup Buffer configuration */
…..
/* User shall locate the buffer in RAM */
/* The RAM backup buffer is placed in "backup_buffer_section". */
/* "backup_buffer_section" section is defined in scatter file */

The customizing depends on the user choice.
The remaining user parameters are defined by flags, and can be checked in the following files:
• stl_user_param_template.c: use of RAM backup buffer or not
• stl_util.c: use of software or hardware CRC computation
• stl_stm32_hw_config.h: if CRC hardware is used, choose the right CRC IP configuration according to

the STM32 device
Refer to Section 5.5.2: Steps to build an application from scratch for the flag configuration check.

UM3478
STL: User APIs and state machines

UM3478 - Rev 1 page 42/60

8 Test examples

Figure 14 shows an example of a possible sequence of STL API calls through the STL scheduler and returned
information provided by STL (refer to Figure 1 and Table 2).

Figure 14. Test flow example

D
T7

24
80

V1

User

STL_OK

STL_SCH

STL_OK

STL_SCH_ConfigureIntegrity (*p_SingleTmStatus,
*pIntegrityConfig)

STL_SCH_InitIntegrity (*p_SingleTmStatus)

STL_SCH_RunCpuTM1L (*p_SingleTmStatus)

STL_SCH_InitRam (*p_SingleTmStatus)

STL_SCH_ConfigureRam (*p_SingleTmStatus, *pRamConfig)

STL_SCH_RunCpuTMCB (*p_SingleTmStatus)

STL_OK

STL_RunIntegrity (*p_SingleTmStatus)

STL_OK

pSingleTmStatus =
STL_ PASSED

pSingleTmStatus =
STL_PASSED

pSingleTmStatus =
STL_NOT_TESTED

STL_SCH_Init

STL_OK

STL_OK

STL_OK

STL_OK

pSingleTmStatus =
STL_NOT_TESTED

pSingleTmStatus =
STL_NOT_TESTED

pSingleTmStatus =
STL_NOT_TESTED

pSingleTmStatus =
STL_ PASSED

STL_SCH_RunRam (*p_SingleTmStatus)

STL_SCH_InitIntegrity (*p_SingleTmStatus)

STL_SCH_InitRam (*p_SingleTmStatus)

STL_SCH_DeInitIntegrity (*p_SingleTmStatus)

STL_SCH_DeInitRam (*p_SingleTmStatus)

pSingleTmStatus =
STL_PARTIAL_PASSED

pSingleTmStatus =
STL_NOT_TESTED

pSingleTmStatus =
STL_NOT_TESTED

pSingleTmStatus =
STL_NOT_TESTED

STL_OK

STL_OK

STL_OK

STL_OK

STL_OK

*pIntegrityConfig: Program integrity subsets tested in one shot

*pRamConfig: RAMsubsets tested in two shots

STL_SCH_RunRam (*p_SingleTmStatus)

STL_OK
pSingleTmStatus =

STL_PASSED

pSingleTmStatus =
STL_NOT_TESTED

Test status
Legend:

UM3478
Test examples

UM3478 - Rev 1 page 43/60

Figure 15 shows a detailed example of program integrity test flow handling:
• Use of two program integrity subsets
• Use of functions

– STL_SCH_RunIntegrity → only the program integrity test module is executed
– STL_SCH_ResetIntegrity

• Function return value
• Program integrity test module result value: pSingleTmStatus → in this case, it contains the result of the

program integrity test
Figure 16 shows a detailed example of RAM test flow handling:
• Use of two RAM subsets
• Use of functions:

– STL_SCH_RunRAM → only the RAM test module is executed
– STL_SCH_ResetRam

• Function return value
• RAM test module result value: pSingleTmStatus → in this case, it contains the result of the RAM

memory test

UM3478
Test examples

UM3478 - Rev 1 page 44/60

Figure 15. Program integrity test flow example

MemoryK
se

ct
io

ns

Last subsetFirst subset
K

se
ct

io
ns

K
se

ct
io

ns

K
se

ct
io

ns

K
se

ct
io

ns
...

ST
L_

O
K

ST
L_

SC
H

_R
un

In
te

gr
ity

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

O
K

ST
L_

O
K

ST
L_

O
K

ST
L_

O
K

ST
L_

O
K

User

STL

ST
L_

SC
H

_R
un

In
te

gr
ity

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

SC
H

_R
un

In
te

gr
ity

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

SC
H

_R
un

In
te

gr
ity

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

SC
H

_R
un

In
te

gr
ity

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

SC
H

_R
un

In
te

gr
ity

(*
pS

in
gl

eT
m

St
at

us
)

*pSingleTmStatus =
STL_PARTIAL_PASSED

*pSingleTmStatus
= STL_PASSED

*pSingleTmStatus =
STL_NOT_TESTED

...

In
te

gr
ity

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

In
te

gr
ity

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

In
te

gr
ity

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

In
te

gr
ity

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r...

In
te

gr
ity

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r...

In
it

ST
L

In
it

an
d

co
nf

ig
ur

e
in

te
gr

ity
 m

em
or

y

ST
L_

O
K

ST
L_

SC
H

_R
un

In
te

gr
ity

(*
pS

in
gl

eT
m

St
at

us
)

In
te

gr
ity

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

ST
L_

O
K

ST
L_

SC
H

_R
es

et
In

te
gr

ity
(*

pS
in

gl
eT

m
St

at
us

)

In
te

gr
ity

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

In
te

gr
ity

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

... ...

... ...

*pSingleTmStatus =
STL_PARTIAL_PASSED

*pSingleTmStatus =
STL_PARTIAL_PASSED

*pSingleTmStatus =
STL_PARTIAL_PASSED

*pSingleTmStatus =
STL_NOT_TESTED

*pSingleTmStatus =
STL_PARTIAL_PASSED

Test status
Legend:

Main scheduler
Integrity tests module

U
M

3478 - R
ev 1

page 45/60

U
M

3478
Test exam

ples

Figure 16. RAM test flow example

RAMN
 s

ec
tio

ns
Last subsetFirst subset

N
 s

ec
tio

ns

N
 s

ec
tio

ns

N
 s

ec
tio

ns

N
 s

ec
tio

ns

...

ST
L_

O
K

ST
L_

SC
H

_R
un

R
am

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

O
K

ST
L_

O
K

ST
L_

O
K

ST
L_

O
K

ST
L_

O
K

User

STL

ST
L_

SC
H

_R
un

R
am

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

SC
H

_R
un

R
am

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

SC
H

_R
un

R
am

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

SC
H

_R
un

R
am

(*
pS

in
gl

eT
m

St
at

us
)

ST
L_

SC
H

_R
un

R
am

(*
pS

in
gl

eT
m

St
at

us
)

*pSingleTmStatus =
STL_PARTIAL_PASSED

*pSingleTmStatus
= STL_PASSED

*pSingleTmStatus =
STL_NOT_TESTED

...

R
AM

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

R
AM

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

R
AM

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

R
AM

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r...

R
AM

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
Sc

he
du

le
r...

In
it

ST
L

In
it

an
d

co
nf

ig
ur

e
R

AM

ST
L_

O
K

ST
L_

SC
H

_R
un

R
am

(*
pS

in
gl

eT
m

St
at

us
)

R
AM

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

ST
L_

O
K

ST
L_

SC
H

_R
es

et
R

am
(*

pS
in

gl
eT

m
St

at
us

)

R
AM

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

R
AM

 te
st

s
m

od
ul

e

M
ai

n
sc

he
du

le
r

M
ai

n
sc

he
du

le
r

*pSingleTmStatus =
STL_PARTIAL_PASSED

... ...

... ...

*pSingleTmStatus =
STL_PARTIAL_PASSED

*pSingleTmStatus =
STL_PARTIAL_PASSED

*pSingleTmStatus =
STL_PARTIAL_PASSED

*pSingleTmStatus =
STL_NOT_TESTED

Test status
Legend:

Main scheduler
RAM tests module

U
M

3478 - R
ev 1

page 46/60

U
M

3478
Test exam

ples

9 STL: execution timing details

The data in the following table is obtained with the test set-up described in Section 4.2: STL performance data

Table 34. Integration tests

Test
Duration (in μs)

Tested memory
Hardware CRC Software CRC

STL_SCH_InitIntegrity <1 <1 -

STL_SCH_ConfigureIntegrity 1 1 -

STL_SCH_RunIntegrity 45 152 10240 bytes tested

STL_SCH_InitRam <1 <1 -

STL_SCH_ConfigureRam 1 1 -

STL_SCH_RunRam 47171 47171 326624 bytes tested

STL_SCH_RunCpuTM1L 3 3 -

STL_SCH_RunCpuTM7 2 2 -

STL_SCH_RunCpuTMCB 2 2 -

UM3478
STL: execution timing details

UM3478 - Rev 1 page 47/60

10 Application-specific tests not included in ST firmware self-test
library

The user must focus on all the remaining required tests covering application specific MCU parts not included in
the ST firmware library:
• Test of analog parts (ADC/DAC, multiplexer)
• Test of digital I/O
• External addressing
• External communication
• Timing and interrupts
• System clock frequency measurement.

Note: The clock frequency measurement is not an integrated part of the STL package. The clock testing module
is provided as full source format within STL integration example to demonstrate the capability of
implementing additional user defined testing modules which can be included at the STL flow. For more
details refer to Section 10.5: Extension capabilities STL library.

A valid solution for these components is strongly dependent on application and device-peripheral capability. The
application must follow as precisely as possible the suggested testing principles from the very early stages of its
design.
Very often this method leads to redundancy at both hardware and software levels.
Hardware methods can be based on:
• Multiplication of inputs and/or outputs
• Reference point measurement
• Loop-back read control at analog or digital outputs such as DAC, PWM, GPIO
• Configuration protection.
Software methods can be based on:
• Repetition in time, multiple acquisitions, multiple checks, decisions, or calculations made at different times

or performed by different methods
• Data redundancy (data copies, parity check, error correction/detection codes, checksum, protocol)
• Plausibility check (valid range, valid combination, expected change, or trend)
• Periodicity and occurrence checks (flow and occurrence in time controls)
• Periodic checks of correct configuration (for example, read back the configuration registers).

10.1 Analog signals
Measured values must be checked for consistency and verified by measurements performed on other redundant
channels. Free channels can be used for reading some reference voltages with testing of analog multiplexers
used in the application. The internal reference voltage must also be checked.
Some STM32 microcontroller devices feature two (or even three) independent ADC blocks. To ensure the
reliability of the results, perform several conversions on the same channel using two different ADC blocks for
security reasons. The results can be obtained using either:
• Multiple acquisitions from one channel
• Compare redundant channels followed by an averaging operation.
Here are some tips for testing the functionality of analog parts at STM32 microcontroller devices.

UM3478
Application-specific tests not included in ST firmware self-test library

UM3478 - Rev 1 page 48/60

ADC input pin disconnection

The ADC input pin disconnection can be tested by applying additional signal source on the tested pin.
• Some STM32 microcontroller devices feature internal pull-down or pull-up resistor activation facilities on

the analog input. They can also feature a free pin with DAC functionality or a digital GPIO output. Any one
of these pins can be used as a known reference input to the ADC.

• Some STM32 microcontroller devices feature a routing interface. This interface can be used for internal
connection between pins to make:
– testing loop-back
– additional signal injection
– duplicate measurement at some other independent channel.

Note: The user must prevent any critical voltage injection into an analog pin. This can happen when digital and analog
signals are combined and different power levels are applied to analog and digital parts (VDD > VDDA).

Internal reference voltage and temperature sensor (VBAT for some devices)

• Ratio between these signals can be verified within the allowed ranges.
• Additional testing can be performed where the VDD voltage is known.

ADC clock

Measurement of the ADC conversion time (by timers) can be used to test the independent ADC clock
functionality.

DAC output functionality

Free ADC channels can be used to check if the DAC output channel is working correctly.
The routing interface can be used when connecting the ADC input channel and the DAC output channel.

Comparator functionality

Comparison between known voltage and DAC output or internal reference voltage can be used for testing
comparator output on another comparator input.
Analog signal disconnection can be tested by pull-down or pull-up activation on a tested pin and comparing this
signal with the DAC voltage as reference on another comparator input.

Operational amplifier

Functionality can be tested forcing (or measuring) a known analog signal to the operational amplifier (OPAMP)
input pin, and internally measuring the output voltage with the ADC. The input signal to the OPAMP can be also
measured by ADC (on another channel).

10.2 Digital I/Os
Class B tests must detect any malfunction on digital I/Os, too. It could be covered by plausibility checks together
with some other application parts. For example, change of an analog signal from the temperature sensor must be
checked when heating/cooling digital control is switched on/off. Selected port bits can be locked by applying the
correct lock sequence to the lock bit in the GPIOx_LCKR register. This action prevents unexpected changes to
the port configuration. Reconfiguration is only possible at the next reset sequence in this case. In addition, the bit
banding feature can be used for atomic manipulation of the SRAM and peripheral registers.

10.3 Interrupts
Occurrence in time and periodicity of events must be checked. Different methods can be used; one of them uses
a set of incremental counters where every interrupt event increments a specific counter. The values in the
counters are then cross-checked periodically with other independent time bases. The number of events occurred
within the last period depends upon the application requirements.
The configuration lock feature can be used to secure the timer register settings with three levels controlled by the
TIMx_BDTR register. Unused interrupt vectors must be diverted into a common error handler. Polling is preferable
for non-safety relevant tasks if possible to simplify an application interrupt scheme.

UM3478
Application-specific tests not included in ST firmware self-test library

UM3478 - Rev 1 page 49/60

10.4 Communication
Data exchange during communication sessions must be checked while including redundant information in the
data packets. Parity, sync signals, CRC check sums, block repetition, or protocol numbering can be used for this
purpose. Robust application software protocol stacks like TCP/IP give higher level of protection, if necessary.
Periodicity and occurrence in time of the communication events together with protocol error signals has to be
checked permanently.
The user can find more information and methods in product-dedicated safety manuals.

10.5 Extension capabilities STL library
This framework version features a significantly easier and more flexible implementation than the previous
versions of this STL library (see Section 1.2: Reference documents) which allows for an easier extension. Even
with the new applied format, the framework keeps the same set of self-testing methods to comply with the IEC
60730 standard which are already implemented by previous versions of the library:
• Test of registers at CPU TMs
• 32-bit CRC calculation compatible with STM32 HW CRC unit at Program integrity TM
• March C test respecting physical address order of the RAM TM
• Timer triggered by LSI to check system clock frequency of the clock TM defined at STL integration example
The main improvements of the new framework version are:
• Module oriented
• Supports partial testing
• Based on configuration and parametrizing structures
• No differentiation between startup and runtime test modules
• CRC calculation support based on a format provided by the STM32CubeProgrammer command-line

feature
• Pre-compiled and fixed object code format of key generic modules
• No dependency of the generic modules execution on drivers or compilers
• Error handling includes reporting of defensive programing results
• Artificial failure control feature to verify the proper integration of the modules with no need for additional

instrumentation code
• Easy extension by additional application specific modules.
An example of an additional specific test module implementation is available in the firmware package integration
example. A specific test module based on the cross check measurement method of two independent clock
sources is delivered as open source format together with the firmware package integration example. This module
must be adapted by the end user to take into account specific dependencies on the configuration of the applied
clock system.
This module uses the same measurement principle already applied in previous versions of the library. The
hardware used for the frequency comparison must initially be configured (Channel 1 of TIM16 triggered by LSI) to
invoke clock measurement before the associated API is called. This hardware configuration is done at the end of
STL_Init() procedure in the main.c file. The API is written to use interface compatibility with the regular APIs
integrated in the STL so the same format is applied in its declaration:
STL_Status_t STL_SCH_RunClockTest(STL_TmStatus_t *pSingleTmStatus)

The parameter that is passed during this function call acts as a pointer to the clock module measurement status,
and the function itself provides a STL_KO vs STL_OK return status as well as do the regular STL modules if
defensive programing fails. If the clock measurement hardware is active and the new period value updated by the
last measurement cycle (set to 8 consecutive LSI periods) is found at the expected interval (defined by macros
CLK_LimitLow and CLK_LimitHigh), the module measurement status value is changed into STL_PASSED. If
not it is set to STL_FAILED as per the regular API modules. This is also the case when artificial failing of the
module is invoked.
In a similar way, the user can integrate the following modules. For example, any stack hardening techniques like
stack boundary area check or implementing watchdog testing and servicing is no longer included at this new
package by default. The source code of these tests is available in older versions of this library see [2]. Refer to [1]
for additional information about the commonly recognized safety methods that are not specifically required by the
household standard. They may be useful to improve the user application robustness.

UM3478
Application-specific tests not included in ST firmware self-test library

UM3478 - Rev 1 page 50/60

11 Compliance with IEC, UL, and CSA standards

The pivotal IEC standards are IEC 60730-1 and IEC 60335-1, harmonized with UL/CSA 60730-1 and UL/CSA
60335-1 starting from the 4th edition. Previous UL/CSA editions use references to the UL1998 standard in
addition.
The standards are updated at regular intervals. The range of all the regulations collected in the standards is very
large; the sections that concern the requirements for software self-tests of generic parts of microcontrollers is very
specific. In most cases, the provided updates do not impact these specific parts of the standard at all. Therefore,
an obsolete certification can still comply and stay valid for newer editions of the standard.
The relevant detailed conditions required are defined in:
• Annexes Q and R of the IEC 60335-1 norm
• Annex H of the IEC 60730-1 norm.
Three classes are defined by the IEC 60730-1:2010 H.2.22 they are:
• Class A: control functions that are not intended to be relied upon for the safety of the application.
• Class B: control functions that are intended to prevent an unsafe state of the controlled equipment. Failure

of the control function does not directly lead to a hazardous situation.
• Class C: control functions that are intended to prevent special hazards such as explosion or which failure

could directly cause a hazard in the appliance.
For a programmable electronic component applying a safety protection function, the IEC 60335-1 standard
requires incorporation of software measures to control fault and error conditions specified in tables R.1 and R.2:
• Table R.1 summarizes general conditions comparable with requirements given for Class B level
• Table R.2 summarizes specific conditions comparable with requirements given for Class C level.
Requirements for Class B level software, which is the subject of this user manual, are defined to prevent hazards
if another fault occurs elsewhere in the appliance. In this case, the self-test software is run on the appliance after
a failure. An accidental software fault occurring during a safety-critical routine execution does not necessarily
result in a hazard due to another applied redundant software procedure or hardware protection function required
at this level.
There is no such hardware protection required in Class C level counting that whatever fault at safety-critical
software can result in a potential hazard. To comply with this level, more robust testing is required than the one
usually applicable to standard industrial microcontrollers like the STM32. An acceptable solution usually leads to
the implementation of specific hardware redundancy at system level, like dual channel structures.
For more information on more stringent test methods, refer to the industrial documentation [1].
IEC 60730-1 defines the set of applicable architectures acceptable for the design of Class B control functions:
• Single channel with functional test. A single CPU executes the software control functions as required. A

functional test is performed as the software starts. It guarantees that all critical features work properly.
• Single channel with periodic self-test. A single CPU executes the software control functions. Embedded

periodic tests check the various critical functions of the system without impacting the performance of the
planned control tasks.

• Dual channel (homogeneous or diverse) with comparison. The software is designed to execute control
functions (identically or differently) on two independent CPUs. Both CPUs compare internal signals for fault
detection when executing any safety-critical task.

Note: This structure is recognized to comply with Class C level also. A common principle is that whatever
method complies with Class C automatically complies with Class B.

An overview of the methods applied by STL and their references to the standards are listed on the table below.
The STL is focused on generic components of the microcontroller reused at all applications. The test of the other
parts is under the end-user responsibility as their testing is mostly application specific and can be achieved
effectively at the planning stage of the system design. Refer to Section 10: Application-specific tests not included
in ST firmware self-test library for more information on how to handle these application-specific tests.

UM3478
Compliance with IEC, UL, and CSA standards

UM3478 - Rev 1 page 51/60

Table 35. IEC 60335-1 components covered by the X-CUBE-CLASSB library by methods recognized by IEC-60730-1

Component of Table R.1 (IEC
60335-1: Annex R) Class B

References to
IEC 60730-1:

Annex H)
Fault/error Safety method applied

at X-CUBE-CLASSB Note

1. CPU

1.1 CPU registers X

H.2.16.5

H.2.16.6

H.2.19.6

Stuck at
Periodic run of the STL
TM1L, TM7, and TMCB

CPU test modules

Combination of functional and
pattern tests of the CPU

registers,(general-purpose R0-
R12, special-purpose main and

process stack pointers R13,
program status APSR and

CONTROL registers)(1)

1.2 Instruction
decoding and

execution
N/A Not required for Class B

1.3 Program
counter X H.2.18.10.2

H.2.18.10.4 Stuck at N/A
End-user responsibility

Logical and time slot program
sequence monitoring,

implementation of watchdogs

1.4 Addressing N/A Not required for Class B

1.5 Data path
instruction
decoding

N/A Not required for Class B

2. Interrupt handling and execution X
H.2.18.10.4

H2.18.18

No interrupt
or too

frequent
interrupts

Handshake of results is
applied at the interrupt
associated with a clock

cross-check
measurement module

End-user responsibility for the
other interrupts implemented at

application

3. Clock X H.2.18.10.1
H.2.18.10.4

Wrong
frequency

Periodic run of clock
cross-check module.

Added at open source
format as a user specific

test module within the
firmware integration

example

Clock cross-check measurement
done between two independent
clock sources (system clock and

LSI)

4. Memory

4.1 Invariable
memory X

H.2.19.3.1
H.2.19.3.2
H.2.19.8.2

All single bit
faults

Periodic execution of the
STL Program integrity TM

test module

ECC enable under end-user
responsibility(2)

4.2. Variable
memory X H.2.19.6

H.2.19.8.2 DC fault Periodic execution of the
STL RamTM test module

ECC or parity enable under end-
user responsibility(2)

4.3 Addressing
(relevant for
variable and

invariable
memory)

X H.2.19.8.2 Stuck at - Tested indirectly by execution of
the applied memory test

modules

ECC enable under end-user
responsibility(2)5. Internal

data path

5.1 Data X H.2.19.8.2 Stuck at -

5.2 Addressing X H.2.19.8.2 Wrong
address -

6. External communication X - - N/A
End-user responsibility -

7. I/O periphery X - - N/A
End-user responsibility -

8. Monitoring devices and
comparators N/A Not required for Class B

9. Custom chips X - - N/A -

1. CPU registers R14 (LR) and R15 (PC) are tested indirectly via defensive programming methods.
2. For availability and functionality of concrete embedded hardware safety feature, refer to the product user and safety manual.

UM3478
Compliance with IEC, UL, and CSA standards

UM3478 - Rev 1 page 52/60

https://www.st.com/en/product/x-cube-classb?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478
https://www.st.com/en/product/x-cube-classb?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478

Revision history

Table 36. Document revision history

Date Version Changes

19-Feb-2025 1 Initial release.

UM3478

UM3478 - Rev 1 page 53/60

Glossary
 ADC analog to digital converter

AEABI Arm® embedded application binary interface

API application programing interface

APSR CPU status register

BSP board support package

Class B
middle level of regulations targeting safety for home
appliances (UL/CSA/IEC 60730-1/60335-1)

CMSIS common microcontroller software interface
standard

CPU central processing unit

CRC cyclic redundancy check

DAC digital to analog conveter

DCache data cache

FPU floating-point unit

GPIO general purpose input output

HAL hardware abstraction level

ICache instruction cache

IDE integrated development environment

LL low layer

MCU microcontroller unit

MPU memory protection unit

MSP main stack pointer

OPAMP operational amplifier

PSP process stack pointer

PWM pulse width modulation

RAM random access memory

SDK software development kit

STL self-test library

TM test module

UM3478
Glossary

UM3478 - Rev 1 page 54/60

Contents

1 General information .2
1.1 Purpose and scope . 2

1.2 Reference documents. 2

2 STM32Cube overview. .3
2.1 What is STM32Cube?. 3

2.2 How does this software complement STM32Cube? . 3

3 STL overview .4
3.1 Architecture overview . 4

3.2 Supported products. 5

4 STL description. .6
4.1 STL functional description . 6

4.1.1 Scheduler principle . 6

4.1.2 CPU Arm® core tests . 7

4.1.3 Program integrity tests . 8

4.1.4 RAM tests . 11

4.2 STL performance data . 13
4.2.1 STL execution timings. 13

4.2.2 STL code and data size . 14

4.2.3 STL stack usage . 14

4.2.4 STL heap usage . 14

4.2.5 STL interrupt masking time . 14

4.2.6 Data cache performance impact . 15

4.3 STL user constraints . 15
4.3.1 Privileged-level . 15

4.3.2 RCC resources . 15

4.3.3 CRC resources . 15

4.3.4 Bit Q and bits GE of APSR . 16

4.3.5 Interrupt management. 16

4.3.6 DMA . 16

4.3.7 Supported memories. 16

4.3.8 RAM backup buffer . 17

4.3.9 Program integrity TM. 17

4.3.10 Memory mapping . 17

4.3.11 Cortex M7 cache resources . 18

4.3.12 Processor mode . 18

UM3478
Contents

UM3478 - Rev 1 page 55/60

4.4 End-user integration tests . 18
4.4.1 Test 1: correct STL execution . 18

4.4.2 Test 2: correct STL error-message processing . 18

5 Package description .19
5.1 General description. 19

5.2 Architecture . 19
5.2.1 STM32Cube HAL . 19

5.2.2 Board support package (BSP). 20

5.2.3 STL . 20

5.2.4 User application example . 20

5.2.5 STL integrity . 20

5.3 Folder structure . 21

5.4 APIs . 21
5.4.1 Compliance. 21

5.4.2 Dependency . 22

5.4.3 Details. 22

5.5 Application: compilation process . 22
5.5.1 Steps to build a delivered STL example . 22

5.5.2 Steps to build an application from scratch . 23

6 Hardware and software environment setup. .25
6.1 Hardware setup . 25

6.2 Software setup. 25
6.2.1 Development tool-chains and compilers . 25

6.2.2 CRC tool set-up . 26

7 STL: User APIs and state machines .27
7.1 User structures . 27

7.2 User APIs . 28
7.2.1 Common API. 28

7.2.2 CPU Arm® core testing APIs. 28

7.2.3 Program integrity testing APIs. 29

7.2.4 RAM testing APIs . 33

7.2.5 Artificial-failing APIs . 37

7.3 State machines . 38

7.4 API usage and sequencing . 41

7.5 User parameters . 42

8 Test examples .43
9 STL: execution timing details .47

UM3478
Contents

UM3478 - Rev 1 page 56/60

10 Application-specific tests not included in ST firmware self-test library48
10.1 Analog signals . 48

10.2 Digital I/Os . 49

10.3 Interrupts . 49

10.4 Communication . 50

10.5 Extension capabilities STL library . 50

11 Compliance with IEC, UL, and CSA standards .51
Revision history .53
Glossary .54
List of tables .58
List of figures. .59

UM3478
Contents

UM3478 - Rev 1 page 57/60

List of tables
Table 1. Applicable product . 1
Table 2. STL return information . 7
Table 3. STL execution timings, clock at 600 MHz, code executed from internal RAM . 14
Table 4. STL code size and data size (in bytes) . 14
Table 5. STL maximum interrupt masking information . 15
Table 6. STL_SCH_Init input information. 28
Table 7. STL_SCH_Init output information . 28
Table 8. STL_SCH_RunCpuTMx input information . 29
Table 9. STL_SCH_RunCpuTMx output information . 29
Table 10. STL_SCH_InitIntegrity input information . 29
Table 11. STL_SCH_InitIntegrity output information . 29
Table 12. STL_SCH_ConfigureIntegrity input information . 30
Table 13. STL_SCH_ConfigureIntegrity output information . 31
Table 14. STL_SCH_RunIntegrityTM input information . 31
Table 15. STL_SCH_RunIntegrityTM output information . 32
Table 16. STL_SCH_ResetIntegrity input information . 32
Table 17. STL_SCH_ResetIntegrity output information . 32
Table 18. STL_SCH_DeInitIntegrity input information . 33
Table 19. STL_SCH_DeInitIntegrity output information . 33
Table 20. STL_SCH_InitRam input information . 33
Table 21. STL_SCH_InitRam output information . 34
Table 22. STL_SCH_ConfigureRam input information. 34
Table 23. STL_SCH_ConfigureRam output information. 35
Table 24. STL_SCH_RunRamTM input information . 35
Table 25. STL_SCH_RunRamTM output information . 36
Table 26. STL_SCH_ResetRam input information . 36
Table 27. STL_SCH_ResetRam output information . 36
Table 28. STL_SCH_DeInitRam input information . 37
Table 29. STL_SCH_DeInitRam output information . 37
Table 30. STL_SCH_StartArtifFailing input information . 37
Table 31. STL_SCH_StartArtifFailing output information . 38
Table 32. STL_SCH_StopArtifFailing input information . 38
Table 33. STL_SCH_StopArtifFailing output information . 38
Table 34. Integration tests . 47
Table 35. IEC 60335-1 components covered by the X-CUBE-CLASSB library by methods recognized by IEC-60730-1 52
Table 36. Document revision history . 53

UM3478
List of tables

UM3478 - Rev 1 page 58/60

https://www.st.com/en/product/x-cube-classb?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3478

List of figures
Figure 1. STL architecture . 4
Figure 2. Single test control call architecture . 7
Figure 3. Program integrity test: CRC principle . 10
Figure 4. Program integrity test: CRC use cases versus program areas. 11
Figure 5. RAM test: usage . 13
Figure 6. Software architecture overview . 19
Figure 7. Project file structure . 21
Figure 8. IAR™ post-build actions screenshot. 24
Figure 9. CRC tool command line . 24
Figure 10. STM32 Nucleo board example . 25
Figure 11. State machine diagram - CPU test APIs. 39
Figure 12. State machine diagram - program integrity test APIs . 40
Figure 13. State machine diagram - RAM test APIs . 41
Figure 14. Test flow example . 43
Figure 15. Program integrity test flow example . 45
Figure 16. RAM test flow example . 46

UM3478
List of figures

UM3478 - Rev 1 page 59/60

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics International NV and its affiliates (“ST”) reserve the right to make changes corrections, enhancements, modifications, and improvements to
ST products and/or to this document any time without notice.

This document is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this
document solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this document may not be
used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any
action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this document shall not be
construed as an admission, acknowledgment or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or
any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not
promise that this document is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information
contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental,
punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this document.

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of
sale in place at the time of order acknowledgment, including, without limitation, the warranty provisions thereunder.

In that respect, note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and
conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for
any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is
granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

UM3478

UM3478 - Rev 1 page 60/60

http://www.st.com/trademarks

	UM3478
	Introduction
	1 General information
	1.1 Purpose and scope
	1.2 Reference documents

	2 STM32Cube overview
	2.1 What is STM32Cube?
	2.2 How does this software complement STM32Cube?

	3 STL overview
	3.1 Architecture overview
	3.2 Supported products

	4 STL description
	4.1 STL functional description
	4.1.1 Scheduler principle
	4.1.2 CPU Arm® core tests
	4.1.3 Program integrity tests
	4.1.4 RAM tests

	4.2 STL performance data
	4.2.1 STL execution timings
	4.2.2 STL code and data size
	4.2.3 STL stack usage
	4.2.4 STL heap usage
	4.2.5 STL interrupt masking time
	4.2.6 Data cache performance impact

	4.3 STL user constraints
	4.3.1 Privileged-level
	4.3.2 RCC resources
	4.3.3 CRC resources
	4.3.4 Bit Q and bits GE of APSR
	4.3.5 Interrupt management
	4.3.6 DMA
	4.3.7 Supported memories
	4.3.8 RAM backup buffer
	4.3.9 Program integrity TM
	4.3.10 Memory mapping
	4.3.11 Cortex M7 cache resources
	4.3.12 Processor mode

	4.4 End-user integration tests
	4.4.1 Test 1: correct STL execution
	4.4.2 Test 2: correct STL error-message processing

	5 Package description
	5.1 General description
	5.2 Architecture
	5.2.1 STM32Cube HAL
	5.2.2 Board support package (BSP)
	5.2.3 STL
	5.2.4 User application example
	5.2.5 STL integrity

	5.3 Folder structure
	5.4 APIs
	5.4.1 Compliance
	5.4.2 Dependency
	5.4.3 Details

	5.5 Application: compilation process
	5.5.1 Steps to build a delivered STL example
	5.5.2 Steps to build an application from scratch

	6 Hardware and software environment setup
	6.1 Hardware setup
	6.2 Software setup
	6.2.1 Development tool-chains and compilers
	6.2.2 CRC tool set-up

	7 STL: User APIs and state machines
	7.1 User structures
	7.2 User APIs
	7.2.1 Common API
	7.2.1.1 STL_SCH_Init

	7.2.2 CPU Arm® core testing APIs
	7.2.2.1 STL_SCH_RunCpuTMx

	7.2.3 Program integrity testing APIs
	7.2.3.1 STL_SCH_InitIntegrity
	7.2.3.2 STL_SCH_ConfigureIntegrity
	7.2.3.3 STL_SCH_RunIntegrityTM
	7.2.3.4 STL_SCH_ResetIntegrity
	7.2.3.5 STL_SCH_DeInitIntegrity

	7.2.4 RAM testing APIs
	7.2.4.1 STL_SCH_InitRam
	7.2.4.2 STL_Status_t STL_SCH_ConfigureRam
	7.2.4.3 STL_SCH_RunRamTM
	7.2.4.4 STL_Status_t STL_SCH_ResetRam
	7.2.4.5 STL_SCH_DeInitRam

	7.2.5 Artificial-failing APIs
	7.2.5.1 STL_SCH_StartArtifFailing
	7.2.5.2 STL_SCH_StopArtifFailing

	7.3 State machines
	7.4 API usage and sequencing
	7.5 User parameters

	8 Test examples
	9 STL: execution timing details
	10 Application-specific tests not included in ST firmware self-test library
	10.1 Analog signals
	10.2 Digital I/Os
	10.3 Interrupts
	10.4 Communication
	10.5 Extension capabilities STL library

	11 Compliance with IEC, UL, and CSA standards
	Revision history
	Glossary
	ADC
	AEABI
	API
	APSR
	BSP
	Class B
	CMSIS
	CPU
	CRC
	DAC
	DCache
	FPU
	GPIO
	HAL
	ICache
	IDE
	LL
	MCU
	MPU
	MSP
	OPAMP
	PSP
	PWM
	RAM
	SDK
	STL
	TM

	Contents
	List of tables
	List of figures

