r ANS5393
,l life.augmented

Application note

LSM6DSRX: machine learning core

Introduction

This document provides information on the machine learning core feature available in the LSM6DSRX. The
machine learning processing capability allows moving some algorithms from the application processor to the
MEMS sensor, enabling consistent reduction of power consumption.

The machine learning processing capability is obtained through decision-tree logic. A decision tree is a
mathematical tool composed of a series of configurable nodes. Each node is characterized by an “if-then-else”
condition, where an input signal (represented by statistical parameters calculated from the sensor data) is
evaluated against a threshold.

The LSM6DSRX can be configured to run up to 8 decision trees simultaneously and independently. The decision
trees are stored in the device and generate results in the dedicated output registers.

The results of the decision tree can be read from the application processor at any time. Furthermore, there is the
possibility to generate an interrupt for every change in the result in the decision tree.

Figure 1. Machine learning core supervised approach

. . : . Operating
Machine Learning Core configuration

Capture data Label data Build decision tfree Embed decision tree Process new data
What « Accelerometer) « Filters) Classification) « DT implementation) + Real time test
 Gyroscope o Features ® Results

« External sensors

| Unicleo-GUI
Unico-GUI L .

Unicleo-GUI

Weka, RapidMiner, MATLAB, Python : Unico-GUI
'

;
:
:
:
HOW -------mmimmimeia ' * External tools for Build Decision Tree step: .
:
:
:
i

AN5393 - Rev 5 - April 2022 www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/lsm6dsrx?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5393

m ANS5393

Machine learning core in the LSM6DSRX

1 Machine learning core in the LSM6DSRX

The machine learning core (together with the finite state machine) is one of the main embedded features available
in the LSM6DSRX. It is composed of a set of configurable parameters and decision trees able to implement
algorithms in the sensor itself.

The kind of algorithms suitable for the machine learning core are those which can be implemented by following

an inductive approach, which involves searching patterns from observations. Some examples of algorithms which
follows this approach are: activity recognition, fitness activity recognition, motion intensity detection, vibration
intensity detection, carrying position recognition, context awareness, false-positive rejection, and so on.

The idea behind the machine learning core is to use the accelerometer, gyroscope and external sensor data
(readable through the I?C master interface) to compute a set of statistical parameters selectable by the user (such
as mean, variance, energy, peak, zero-crossing, and so on) in a defined time window. In addition to the sensor
input data, some new inputs can be defined by applying some configurable filters available in the device.

The machine learning core parameters are called “features” and can be used as input for a configurable decision
tree which can be stored in the device.

The decision tree which can be stored in the LSM6DSRX is a binary tree composed of a series of nodes. In each
node, a statistical parameter (feature) is evaluated against a threshold to establish the evolution in the next node.
When a leaf (one of the last nodes of the tree) is reached, the decision tree generates a result which is readable

through a dedicated device register.

Figure 2. Machine learning core in the LSM6DSRX

Magnitude
computation
Accelerometer data

Decision

Parameters

Gyroscope data

(Features) Trees
I12C -Master data

Filters

L) T

- ; - 1°C/SPI/MIPI I13C "
Configuration Registers «

Interface

The machine learning core output data rate can be configured among one of the four available rates from 12.5 to
104 Hz. The bits MLC_ODR in the embedded function register EMB_FUNC_ODR_CFG_C (60h) allow selecting
one of the four available rates as shown in the following table.

Table 1. Machine learning core output data rates

MLC_ODR bits in EMB_FUNC_ODR_CFG_C (60h) Machine learning core output data rate

00 125 Hz

01 26 Hz (default)
10 52 Hz

1 104 Hz

AN5393 - Rev 5 page 2/68

‘W ANS5393

Machine learning core in the LSM6DSRX

In order to implement the machine learning processing capability of the LSM6DSRX, it is necessary to use a
“supervised learning” approach which consists of:

. identifying some classes to be recognized;
. collecting multiple data logs for each class;

. performing some data analysis from the collected logs to learn a generic rule which allows mapping inputs
(data logs) to outputs (classes to be recognized).

In an activity recognition algorithm, for instance, the classes to be recognized might be: stationary, walking,
jogging, biking, driving, and so forth. Multiple data logs have to be acquired for every class, for example multiple
people performing the same activity.

The analysis on the collected data logs has the purpose of:

. defining the features to be used to correctly classify the different classes;

. defining the filters to be applied to the input data to improve the performance using the selected features;

. generating a dedicated decision tree able to recognize one of the different classes (mapping inputs to
outputs).

Once a decision tree has been defined, a configuration for the device can be generated by the software tool
provided by STMicroelectronics (described in Section 2 Machine learning core tools). The decision tree runs on
the device, minimizing the power consumption.

Going deeper in detail in the machine learning core feature inside the LSM6DSRX, it can be thought of as three
main blocks (Figure 3):

1. Sensor data
2. Computation block
3. Decision tree

Figure 3. Machine learning core blocks

Computation Decision

Gyroscope Features Results

Accelerometer > Filters > > Meta-classifier >

The first block, called “Sensor Data”, is composed of data coming from the accelerometer and gyroscope which
are built in the device, or from an additional external sensor which might be connected to the LSM6DSRX through
the I?°C master interface (sensor hub).

The machine learning core inputs defined in the first block are used in the second block, the “Computation Block”,
where filters and features can be applied. The features are statistical parameters computed from the input data
(or from the filtered data) in a defined time window, selectable by the user.

The features computed in the computation block are used as input for the third block of the machine learning
core. This block, called “Decision Tree”, includes the binary tree which evaluates the statistical parameters
computed from the input data. In the binary tree the statistical parameters are compared against certain
thresholds to generate results (in the example of the activity recognition described above, the results were:
stationary, walking, jogging, biking, and so on). The decision tree results might also be filtered by an optional filter
called "meta-classifier". The machine learning core results are the decision tree results which include the optional
meta-classifier.

AN5393 - Rev 5 page 3/68

AN5393
Machine learning core in the LSM6DSRX

3

The machine learning core memory is organized in a “dynamic” or “modular” way, in order to maximize the
number of computation blocks which can be configured in the device (filters, features, and so on). A dedicated
tool has been designed to generate the configuration of the LSM6DSRX, in order to automatically manage
memory usage. The tool is available in the Unico GUI and it is described later in Section 2 Machine learning core
tools.

The following sections explain in detail the three main blocks of the machine learning core in the LSM6DSRX
described in Figure 3.

AN5393 - Rev 5 page 4/68

m ANS5393

Inputs

1.1 Inputs

The LSM6DSRX works as a combo (accelerometer + gyroscope) sensor, generating acceleration and angular
rate output data. The 3-axis data of the acceleration and angular rate can be used as input for the machine
learning core. Figure 4 and Figure 5 show the inputs of the machine learning core block in the accelerometer and
gyroscope digital chains. The position of the machine learning core (MLC) block in the two digital chains is the
same for all four connection modes available in the LSM6DSRX.

Figure 4. MLC inputs (accelerometer)

MLC
FSM
LPF2_XL_EN USR_OFF_ON_OUT
> o J[o) HP-SLOPEXLEN
Digital NI
LP filter USER » 1
pr2 OFFSET
Digital > |1 USR_OFF_W
LP filter OFS_USR[7:0] o
LPF1 HPCF_XL[2:0]
— ADC j:Q,
Digital
ODR_XL[3:0] HP filter
A 4
001
010 SPI
e " . 12C
1 1 MIPI I3CSM
HPCF_XL[2:0]
/
SLOPE
> » 000
| FILTER
HPCF_XL[2:0]

AN5393 - Rev 5 page 5/68

‘,_l ANS5393

Inputs
Figure 5. MLC inputs (gyroscope)
—>) FIFO
HP_EN_G Digital
Jﬂ LPFLSELG p filter X
L4
LPF2
Digital > SPI
HP filter 1 Dlgltal : |2C
LP filter MIPI 13CSM
I: LPF1
—» ADC > 119 ODR_GI[3:0]
HPM[1:0]_G
[1:0]- FTYPE[2:0] —) MLC
—> FSM

The rate of the input data must be equal to or higher than the machine learning core data rate configurable
through the embedded function register EMB_FUNC_ODR_CFG_C (60h), as described in Table 1.

Example: In an activity recognition algorithm running at 26 Hz, the machine learning core ODR must be selected
at 26 Hz, while the sensor ODRs must be equal to or higher than 26 Hz.

The machine learning core uses the following unit conventions:
. Accelerometer data in [g]

. Gyroscope data in [rad/sec]

. External sensor data in [gauss] for a magnetometer

Since it is possible to connect an external sensor (for example, magnetometer) to the LSM6DSRX through the
sensor hub feature (mode 2), the data coming from an external sensor can also be used as input for machine
learning processing. In this case, the first six sensor hub bytes (two bytes per axis) are considered as input
for the MLC. In other words, the MLC directly takes as input the content of the LSMEDSRX registers from
SENSOR_HUB_1 (02h) to SENSOR_HUB_6 (07h).

When using an external sensor, the sensitivity of the external sensor has to be set through registers
MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h).

Example: For a magnetometer like the LIS2MDL, the sensitivity is 1.5 mG/LSB, which becomes 0.0015 G/LSB
after converting it to gauss, and becomes 1624h converted as HFP (half-precision floating point value for the
LSM6EDSRX sensitivity registers).

Sensitivity [nG/LSB] Sensitivity [G/LSB] Sensitivity HFP

1.5 mG/LSB 0.0015 G/LSB 1624h

Note: The half-precision floating-point format is expressed as:
SEEEEEFFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

AN5393 - Rev 5 page 6/68

m ANS5393

Inputs

The following procedure allows changing the conversion factor for the external magnetometer data:

1. Write 80h to register 01h /I Enable access to the embedded function registers

2. Write 40h to register 17h /I PAGE_RW (17h) = 40h: enable write transaction

3. Write 11h to register 02h /I PAGE_SEL (02h) = 11h

4. Write E8h to register 08h /I PAGE_ADDRESS (08h) = E8h

5. Write [LSB] conversion factor (LIS2MDL example, 24h) to register 09h

6. Write 11h to register 02h /I PAGE_SEL (02h) = 11h

7. Write E9h to register 08h /I PAGE_ADDRESS (08h) = ESh

8. Write [MSB] conversion factor (LIS2MDL example, 16h) to register 09h

9. Write 00h to register 17h /I PAGE_RW (17h) = 00h: disable read / write transaction
10. Write 00h to register 01h /I Disable access to the embedded function registers

The example of the procedure above to change the sensitivity for the external sensor is included in the
configuration generated by the machine learning core tool (described in Section 2 Machine learning core tools),
so the user just needs to set a sensitivity value in the GUI, which is translated in the register setting by the
software.

To summarize the machine learning core inputs:
. Accelerometer data conversion factor is automatically handled by the device.
. Gyroscope data conversion factor is automatically handled by the device.

. External sensor data conversion factor is not automatically handled by the device. A conversion factor must
be set by the user in order to make the machine learning core work with the correct unit of measurement.

An additional input available for all sensor data (accelerometer, gyroscope, and external sensor) is the norm.
From the 3-axis data the machine learning core (in the LSM6DSRX) internally computes the norm and the
squared norm. These two additional signals can be used as inputs for machine learning processing.

The norm and the squared norm of the input data are computed with the following formulas:
V=\/x2+yz+z2
V2 =x2 4 y2 + 272
Norm and squared norm data can be used in the decision trees in order to guarantee a high level of program
customization for the user.
Note: The data rate for MLC inputs is set through the MLC_ODR bits. If the sensor ODR is higher than MLC_ODR,
MLC automatically decimates the input data (without any additional filtering).

It is recommended to select MLC_ODR equal to the sensor ODR to avoid decimation of the MLC inputs. Selecting
MLC_ODR lower than the sensor ODR is also possible, but the different frequency response could lower the
accuracy of the MLC solution.

AN5393 - Rev 5 page 7/68

‘,_l ANS5393

Filters

1.2 Filters

The input data seen in the previous section can be filtered by different kinds of filters available in the machine
learning core logic. The basic element of the machine learning core filtering is a second order IIR filter, as shown
in Figure 1.

Note: The filters available in the MLC block are independent of any other filter available on the device (the filters
described in this section are illustrated in the MLC block of Figure 4 and Figure 5).

Figure 6. Filter basic element

H(2)
x(z) by (D) (a;=1) y(2) Gain y'(2)
Delay

1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: 1

1
1 b, -a 1

2

1 1
1 + 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
L3

The transfer function of the generic IR 2"d order filter is the following:

by +byz~ L+ b3z72
Hlz|= — —
1+apz ~+tazz

From Figure 1, the outputs can be defined as:

y(2) = H(z) - x(2)

¥'(2) = y(2) - Gain
To optimize memory usage, the machine learning core has default coefficients for the different kinds of filters
(high-pass, band-pass, IIR1, lIR2). The machine learning core tool helps in configuring the filter by asking for the
filter coefficients needed after selecting the kind of filter. The following table shows the default values and the
configurable values for the coefficients, depending on the filter type chosen. By setting different coefficients, it is
possible to tune the filter for the specific application.

Table 2. Filter coefficients

0 0 1

High-pass filter 0.5 -0.5 0

Band-pass filter 1 0 -1 Configurable = Configurable = Configurable
IIR1 filter Configurable = Configurable 0 Configurable 0 1
IIR2 filter Configurable = Configurable | Configurable = Configurable = Configurable 1

The filter coefficient values are expressed as half-precision floating-point format: SEEEEEFFFFFFFFFF (S: 1 sign
bit; E: 5 exponent bits; F: 10 fraction bits).

AN5393 - Rev 5 page 8/68

m ANS5393

Filters

1.2.1 Filter coefficients

The IIR filter coefficients can be computed with different tools, including Matlab, Octave and Python. In Matlab, for
instance, the following function can be used to generate coefficients for a low-pass filter:

[b, a] = butter(N,f cut / (ODR/2), 'low')

Where:
. N is the order of the IIR filter (1 for lIR1, 2 for 1IR2)
. f_cut is the cutoff frequency [Hz] of the filter
. ODR is the machine learning core data rate [Hz]
. ‘low’ (or ‘high’) is the kind of filter to be implemented (low-pass or high-pass)
Note: It is possible to configure a high-pass filter with the cutoff at half of the bandwidth (ODR/4) without inserting the
coefficients. The machine learning core has some pre-defined coefficients for this configuration.
The following function instead allows generating band-pass filter coefficients through Matlab:

[b,a] = butter(l, [f1 £2]/(ODR/2), 'bandpass')

Note: Since only a2, a3 and gain are configurable for a band-pass filter, the b vector should be normalized by setting
gain = b(1). Bandpass filters are generated as first-order filters in Matlab and Python.

Example:

b =[0.2929 0 -0.2929]; a = [1.0 -0.5858 0.4142];

can be written as b =[1 0 -1] and gain = 0.2929.

So the band-pass filter coefficients are:

a2 =-0.5858; a3 = 0.4142; gain = 0.2929.

The following table shows some examples of filter coefficients (most of them considering an ODR of 26 Hz).

When designing high-pass and band-pass IIR filters, consider the stability of the filters in half-precision floating
point. The resolution loss can cause some divergence in the signal if the filters are not very stable.

We recommend using first-order IIR filters when the cutoff frequency (normalized) is below 0.02 [2*f_cutoff/ODR]
or increasing the cutoff frequency.

AN5393 - Rev 5 page 9/68

m ANS5393

Filters

Table 3. Examples of filter coefficients

High-pass IIR1, f_cut = 1 Hz,

0.891725 -0.891725 - -0.783450 -
ODR = 26 Hz
High-pass IIR1, f_cut = 2 Hz,
0.802261 -0.802261 - -0.604521 - 1
ODR = 26 Hz
High-pass IIR1, f_cut = 5 Hz,
0.591628 -0.591628 - -0.183257 - 1
ODR = 26 Hz
High-pass IIR1, f_cut = 10 Hz,
0.274968 -0.274968 - 0.450063 - 1

ODR = 26 Hz
High-pass IIR2, f_cut = 1 Hz,
ODR =26 Hz

0.8428435 = -1.685687 | 0.8428435 @ -1.6608344 = 0.710540 1

High-pass IIR2, f_cut = 2 Hz,
ODR = 26 Hz

0.709560 -1.419120 0.709560 -1.332907 0.505334 1

High-pass IIR2, f_cut = 5 Hz,
0.4077295 | -0.815459 0.407730 -0.426937 0.203981 1

ODR =26 Hz
High-pass IIR2, f_cut = 10 Hz,
0.085605 -0.171209 0.085605 1.019146 0.361564 1
ODR =26 Hz
Low-pass IIR1, f_cut =1 Hz,
0.108275 0.108275 - -0.783450 - 1
ODR = 26 Hz
Low-pass IIR1, f_cut =2 Hz,
0.197739 0.197739 - -0.604521 - 1
ODR =26 Hz
Low-pass IIR1, f_cut =5 Hz,
0.408372 0.408372 - -0.183257 - 1
ODR =26 Hz
Low-pass IIR1, f_cut = 10 Hz,
0.725032 0.725032 - 0.450063 - 1

ODR =26 Hz

Low-pass IIR2, f_cut =1 Hz,
ODR =26 Hz

0.012426 0.024853 0.012426 -1.660834 0.710540 1

Low-pass IIR2, f_cut =2 Hz,
ODR =26 Hz

0.043107 0.086213 0.043107 -1.332907 0.505333 1

Low-pass IIR2, f_cut =5 Hz,
ODR =26 Hz

0.194261 0.388522 0.194261 -0.426937 0.203981 1

Low-pass IIR2, f_cut = 10 Hz,
0.595178 1.190355 0.595178 1.019146 0.361564 1

ODR =26 Hz
Band-pass [IR2, f1 = 1.5 Hz, f2 = 5 Hz,
0.310375 0 -0.310375 -1.069500 0.379250 1
ODR =26 Hz
Band-pass [IR2, f1 = 0.2 Hz, f2 =1 Hz,
0.0236 0 -0.0236 -1.9521 0.9528 1
ODR =100 Hz

AN5393 - Rev 5 page 10/68

‘,_l ANS5393

Features

1.3 Features

The features are the statistical parameters computed from the machine learning core inputs. The machine
learning core inputs which can be used for features computation are:

. the sensor input data which includes
- sensor data from the X, Y, Z axes (for example, Acc_X, Acc_Y, Acc_Z, Gyro_X, Gyro_Y, Gyro_2Z);
- external sensor data (for example, ExtSens_X, ExtSens_Y, ExtSens_Z);

- norm and squared norm signals of sensor / external sensor data (Acc_V, Acc_V2, Gyro_V, Gyro_V2,
ExtSens_V, Ext_Sens_V2);

. the filtered data (for example, high-pass on Acc_Z, band-pass on Acc_V2, and so forth).

All the features are computed within a defined time window, which is also called “window length” since it is
expressed as the number of samples. The size of the window has to be determined by the user and is very
important for the machine learning processing, since all the statistical parameters in the decision tree are
evaluated in this time window. It is not a moving window, features are computed just once for every WL sample
(where WL is the size of the window).

The window length can have values from 1 to 255 samples. The choice of the window length value depends on
the MLC data rate (MLC_ODR bits in the embedded function register EMB_FUNC_ODR_CFG_C (60h)), which
introduces a latency for the generation of the machine learning core result, and in the specific application or
algorithm. In an activity recognition algorithm for instance, it can be decided to compute the features every 2 or 3
seconds, which means that considering sensors running at 26 Hz, the window length should be around 50 or 75
samples respectively.

Some of the feaures in the machine learning core require some additional parameters for the evaluation (for
example, an additional threshold). The following table shows all the features available in the machine learning
core including additional parameters.

Note: The maximum number of features which can be configured in the MLC is 63. Feature values are limited to the
range +65536.

Table 4. Features

MEAN -
VARIANCE -
ENERGY -
PEAK-TO-PEAK -

ZERO-CROSSING Threshold
POSITIVE ZERO-CROSSING Threshold
NEGATIVE ZERO-CROSSING Threshold

PEAK DETECTOR Threshold
POSITIVE PEAK DETECTOR Threshold
NEGATIVE PEAK DETECTOR Threshold

MINIMUM -
MAXIMUM -

AN5393 - Rev 5 page 11/68

m ANS5393

Features

1.3.1 Mean

The feature “Mean” computes the average of the selected input (/) in the defined time window (WL) with the
following formula:

1.3.2 Variance

The feature “Variance” computes the variance of the selected input (/) in the defined time window (WL) with the
following formula:

_ _ 2
Variance = 2}20 i Ikz — KV:LO i L
WL WL

133 Energy

The feature “Energy” computes the energy of the selected input (/) in the defined time window (WL) with the
following formula:

WL-1

Energy = Z I*
k=0

1.34 Peak-to-peak

The feature “Peak-to-peak” computes the maximum peak-to-peak value of the selected input in the defined time
window.

Figure 7. Peak-to-peak

A
\4

WL

AN5393 - Rev 5 page 12/68

‘_ AN5393
,l Features

1.3.5 Zero-crossing
The feature “Zero-crossing” computes the number of times the selected input crosses a certain threshold. This
internal threshold is defined as the sum between the average value computed in the previous window (feature
“Mean”) and hysteresis defined by the user.

Figure 8. Zero-crossing

Mean + Hysteresis

Mean

Mean - Hysteresis

\V4

WL, WL,

v

A
v

1.3.6 Positive zero-crossing
The feature “Positive zero-crossing” computes the number of times the selected input crosses a certain threshold.
This internal threshold is defined as the sum between the average value computed in the previous window
(feature “Mean”) and hysteresis defined by the user. Only the transitions with positive slopes are considered for

this feature.

Figure 9. Positive zero-crossing

/\ Mean + Hy
\j, Mean - Hy

WL 4 WL,

Y
\ 4

A

AN5393 - Rev 5 page 13/68

m ANS5393

Features

1.3.7 Negative zero-crossing

The feature “Negative zero-crossing’computes the number of times the selected input crosses a certain threshold.
This internal threshold is defined as the sum between the average value computed in the previous window
(feature “Mean”) and hysteresis defined by the user. Only the transitions with negative slopes are considered for

this feature.

Figure 10. Negative zero-crossing

Mean + Hysteresis

VAN ALY /
\J TV

WL WL,

Mean - Hysteresis

1.3.8 Peak detector
The feature “Peak detector’ counts the number of peaks (positive and negative) of the selected input in the
defined time window.
A threshold has to be defined by the user for this feature, and a buffer of three values is considered for the
evaluation. If the second value of the three values buffer is higher (or lower) than the other two values of a
selected threshold, the number of peaks is increased.
The buffer of three values considered for the computation of this feature is a moving buffer inside the time
window.
The following figure shows an example of the computation of this feature, where two peaks (one positive and
negative) have been detected in the time window.

Figure 11. Peak detector

~
/‘\ i Threshold
\ :

S Z
\a/ i Threshold

A4
WL

AN5393 - Rev 5 page 14/68

m ANS5393

Features

1.3.9 Positive peak detector

The feature “Positive peak detector’ counts the number of positive peaks of the selected input in the defined time
window.

A threshold has to be defined by the user for this feature, and a buffer of three values is considered for the
evaluation. If the second value of the three values buffer is higher than the other two values of a selected
threshold, the number of peaks is increased.

The buffer of three values considered for the computation of this feature is a moving buffer inside the time
window.

The following figure shows an example of the computation of this feature, where just one peak (positive) has been
detected in the time window.

Figure 12. Positive peak detector

~
/‘\ 1 Threshold
@ S

WL

1.3.10 Negative peak detector

The feature “Negative peak detector’ counts the number of negative peaks of the selected input in the defined
time window.

A threshold has to be defined by the user for this feature, and a buffer of three values is considered for the
evaluation. If the second value of the three values buffer is lower than the other two values of a selected
threshold, the number of peaks is increased.

The buffer of three values considered for the computation of this feature is a moving buffer inside the time
window.

The following figure shows an example of the computation of this feature, where just one peak (negative) has
been detected in the time window.

Figure 13. Negative peak detector

Vi
v

\cs/ 1 Threshold

A4
WL

AN5393 - Rev 5 page 15/68

m ANS5393

Features

1.3.11 Minimum
The feature “Minimum” computes the minimum value of the selected input in the defined time window.
The following figure shows an example of minimum in the time window.

Figure 14. Minimum

A
\4

WL

1.3.12 Maximum
The feature “Maximum” computes the maximum value of the selected input in the defined time window.
The following figure shows an example of maximum in the time window.

Figure 15. Maximum

A
A

WL

AN5393 - Rev 5 page 16/68

m ANS5393

Features

1.3.13 Selection of features

The selection of the features to be used for the machine learning core configuration depends on the specific
application.

Considering that the use of too many features may lead to overfitting and too large decision trees, it is
recommended to start first by selecting the four most common features:

. Mean

. Variance

. Energy

. Peak-to-peak

If the performance is not good with these features, and in order to improve the accuracy, other features can be
considered to better separate the classes.

Input data for the features calculation (from the accelerometer, gyroscope) and axes (for example, X, Y, Z, V)
have to be chosen according to the specific application as well. Some classes are strongly correlated with sensor
orientation (that is, applications which use the device carry position), so it is better to use individual axis (X, Y, Z).
Other classes (like walking) are independent of orientation, so it is better to use the norm (V or V2).

Sometimes the basic features (mean, variance, energy, and so forth) might not help in distinguishing the
dominating frequency, so embedded digital filters can be enabled to select a specific region of frequency. Using
the filtered signal, certain classes may be distinguished more precisely. For instance, if the user is walking, the
typical signal is around 1-2 Hz, while if the user is jogging, the typical signal is around 2.5-4 Hz.

The information contribution from a single feature can be evaluated by a measure of how much different classes
are separated (from one another). This analysis can be done in a graphical way, by plotting 1D/2D graphs as
described in the following examples.

AN5393 - Rev 5 page 17/68

m ANS5393

Features

1.3.13.1 Histogram of a single feature (1D plot)

The following figure shows a histogram of the computed values of a single feature for three different classes.
These three classes are reasonably separated, so an important level of information is expected with this feature.
For reference, the computed classification accuracy with this single feature is around 75%.

Figure 16. Distribution of single feature for three different classes

O class A
3500 I class B
[ldassC
30001 1
c
=
5 2500 1
=
-
@ 2000 |
=
< 1500
5
g
w 1000 |

500

8] 1 2 3 4 5
Feature range x class

AN5393 - Rev 5 page 18/68

m ANS5393

Features

1.3.13.2 Visualization of two features (2D plot)
The following figure shows a 2D plot related to a 2-class classification problem with the selection of two features:
. Feature 1 on the graph vertical axis
. Feature 2 on the graph horizontal axis
In this case, the strict separation between the two classes is evident:
. Class Ainred
. Class B in blue

A good information contribution can be obtained by combining the two features. For reference, the classification
accuracy obtained with this example is more than 95%.

Figure 17. Visualization of two features and two classes

5 * x #* |
% Class A ¥
Class B
4 1‘!#“ .g: |
3
P *% #,

Feature 1
(V3]
¥
%
]

LT —

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Feature 2

AN5393 - Rev 5 page 19/68

‘7 ANS5393

Features

1.3.13.3 Ranking of features

Different machine learning tools offer automated methods to order features in terms of the information
contribution. This form of output ranking is based on criteria/metrics such as correlation, information gain,
probabilistic distance, entropy and more. An example is given by Weka, which automatically handles the
calculations needed to generate optimal decision trees as indicated in the figure below.

Figure 18. Ranking from automated output tool

Attribute Evaluator
(—
[mﬂt:mlaﬂonmmhmml —
Search Method
etz ~
l Choose]|Ranker-T-1.?9?693134862315?E308-N-1
Attribute Selection Mode Attribute selection output
r sl & B
@ Use full training set Attribute Evaluator (supervised, Class (nominal): 13 class): :
(U Cross-validation Folds 10 Correlation Ranking Filter
Ranked attributes:
-~
EEEC 1 0.506 5 feat 5
4 0.4987 10 feat_l10
0.479 3 feat_3
I ETDEEEE i'—] 0.454 @ feac o
- 0.447 7 feat_7
Start | Stop 0.428 4 feat_4
Result list (right.click for options) 0.332 1 feav 1 h
Y 0.349 6§ feat_6
| 15:40:03 - Ranker + CorrelationAtriout 0.345 11 feat 11
0.326 12 feat_l2
0.21 2 feat_2
0.142 g feat & A
FAS J 7 -

Note that different features could share the same information contribution. This can be evaluated again by
visualizing the single feature or by checking the accuracy obtained with the subset of features taken one-by-one,
and together, as explained in previous sections.

A final consideration can be done on the number of features which have been selected. In general, the higher the
number of features selected:

. the higher the risk of overfitting
. the larger the size of the resulting decision tree

AN5393 - Rev 5 page 20/68

m ANS5393

Decision tree

1.4 Decision tree

The decision tree is the predictive model built from the training data which can be stored in the LSM6DSRX. The
training data are the data logs acquired for each class to be recognized (in the activity recognition example the
classes might be walking, jogging, driving, and so on).

The outputs of the computation blocks described in the previous sections are the inputs of the decision tree.
Each node of the decision tree contains a condition, where a feature is evaluated with a certain threshold. If the
condition is true, the next node in the true path is evaluated. If the condition is false, the next node in the false
path is evaluated. The status of the decision tree evolves node by node until a result is found. The result of the
decision tree is one of the classes defined at the beginning of the data collection.

Figure 19. Decision tree node

[Tree Example\

Typical node

Input Condition

\ True Path False Path

The decision tree generates a new result every time window (the parameter "window length" set by the user for
the computation of the features). Window length is expressed as a number of samples. The time window can be
obtained by dividing the number of samples by the data rate chosen for MLC (MLC_ODR):

Time window = Window length / MLC_ODR

For instance, selecting 104 samples for the window length and 104 Hz for the MLC data rate, the obtained time
window is:

Time window = 104 samples / 104 Hz = 1 second

The decision tree results can also be filtered by an additional (optional) filter called "meta-classifier", which is
described in Section 1.5 Meta-classifier.

The machine learning core results (decision tree results filtered or not filtered) are accessible through

dedicated registers in the embedded advanced features page 1 of the LSM6DSRX registers (as shown in

Table 5). These registers can be countinuously read (polled) to check the decision tree outputs. The register
MLC_STATUS_MAINPAGE (38h) contains the interrupt status bits of the 8 possible decision trees. These bits
are automatically set to 1 when the corresponding decision tree value changes. Furthermore, the interrupt status
signal generated using these bits can also be driven to the INT1 pin by setting the MLC_INT1 (ODh) register, or
to the INT2 pin by setting the MLC_INT2 (11h) register (Table 6). Using the interrupt signals, an MCU performing
other tasks or sleeping (to save power), can be awakened when the machine learning core result has changed.

The machine learning core interrupt signal is pulsed by default. The duration of the pulsed interrupt is defined by
the fastest ODR among the machine learning core, finite state machine and sensor ODRs:

interrupt pulse duration = 1 / max(MLC_ODR, FSM ODR, XL ODR, GYRO_ODR)

The machine learning core interrupt signal can also be set latched through the bit EMB_FUNC_LIR in the
embedded function register PAGE_RW (17h).

AN5393 - Rev 5 page 21/68

‘,_l ANS5393

Decision tree

Table 5. Decision tree results

MLCO_SRC (70h) Result of decision tree 1
MLC1_SRC (71h) Result of decision tree 2
MLC2_SRC (72h) Result of decision tree 3
MLC3_SRC (73h) Result of decision tree 4
MLC4_SRC (74h) Result of decision tree 5
MLC5_SRC (75h) Result of decision tree 6
MLC6_SRC (76h) Result of decision tree 7
MLC7_SRC (77h) Result of decision tree 8

Table 6. Decision tree interrupts

MLC_STATUS_MAINPAGE (38h) Contains interrupt status bits for changes in the decision tree result

MLC_STATUS (15h) Contains interrupt status bits for changes in the decision tree result
MLC_INT1 (0Dh) Allows routing of interrupt status bits for decision trees to INT1 pin(")
MLC_INT2 (11h) Allows routing of interrupt status bits for decision trees to INT2 pin(®)

1. Routing is established if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.
2. Routing is established if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

1.4.1 Decision tree limitations in the LSM6DSRX

The LSM6DSRX has limited resources for the machine learning core in terms of number of decision trees, size of
the trees, and number of decision tree results.

Up to 8 different decision trees can be stored in the LSM6DSRX, but the sum of the number of nodes for all the
decision trees must not exceed 512 (*). Every decision tree can have up to 256 results in the LSM6DSRX.

(*) This number might also be limited by the number of features and filters configured. In general, if using few
filters and features, there is no further limitation on the size of the decision tree. However, when using many filters
and features, the maximum number of nodes for the decision trees is slightly limited. For instance, if the number
of filters configured is 10 and the number of features configured is 50, the maximum number of nodes might be
reduced by 100. The tool informs the user of the available nodes for the decision tree.

The table below summarizes the limitations of the LSM6DSRX.

Table 7. Decision tree limitations in the LSM6DSRX

Maximum number of decision trees 8
Maximum number of nodes (total number for all the decision trees) 512 (%)
Maximum number of results per decision tree 256
Note: When using multiple decision trees, all the parameters described in the previous sections (inputs, filters, features
computed in the time window, the time window itself, and also the data rates) are common for all the decision
trees.

AN5393 - Rev 5 page 22/68

‘,_l ANS5393

Meta-classifier

1.5 Meta-classifier

A meta-classifier is a filter on the outputs of the decision tree. The meta-classifier uses some internal counters in
order to filter the decision tree outputs.

Decision tree outputs can be divided in subgroups (for example, similar classes can be managed in the same
subgroup). An internal counter is available for all the subgroups of the decision tree outputs. The counter for the
specific subgroup is increased when the result of the decision tree is one of the classes in the subgroup and it is
decreased otherwise. When the counter reaches a defined value, which is called “end counter” (set by the user),
the output of the machine learning core is updated. Values allowed for end counters are from 0 to 14.

Table 8. Meta-classifier example

oecioneresn A4 115 415155 |Al5 55 1a A A

Counter A
(End counter = 3) 1.2 3 23 21 01 0001 2 3
nd counter =

Counter B
(End counter = 4) 0001 01 2 3 2 3 45 4 3 2
nd counter =

Machine learning core result (including meta-classifier) x x A/AAA AAAAABIBBBA

The previous table shows the effect of filtering the decision tree outputs through a meta-classifier. The first line
of the table contains the outputs of the decision tree before the meta-classifier. Counter A and counter B are the
internal counters for the two decision tree results (“A” and “B”). In the activity recognition example, the result “A”
might be walking and the result “B” jogging. When the internal counter “A” reaches the value 3 (which is the end
counter for counter “A”), there is a transition to result “A”. When the internal counter “B” reaches value 4, there is
a transition to result “B”.

The purpose of the meta-classifier is to reduce the false positives, in order to avoid generating an output which is
still not stable, and to reduce the transitions on the decision tree result.

1.5.1 Meta-classifier limitations in the LSM6DSRX

The meta-classifier has a limited number of subgroups, 8 subgroups can be used in the LSM6DSRX. Similar
classes may need to be grouped in the same subgroup to use the meta-classifier.

Table 9. Meta-classifier limitations in the LSM6DSRX

T s

Maximum number of results per decision tree 256
Result subgroups for meta-classifier per decision tree 8
Note: Multiple meta-classifiers can be configured. One meta-classifier is available for any decision tree configured in

the machine learning core.

1.6 Finite state machine interface

The LSM6DSRX also provides a configurable finite state machine which is suitable for deductive algorithms and
in particular gesture recognition.

Finite state machines and decision trees can be combined to work together in order to enhance the accuracy of
motion detection.

The decision tree results generated by the machine learning core can be checked by the finite state machine
available in the LSMBDSRX; this is possible through the condition CHKDT (described in the application note
AN5389 LSM6DSRX: finite state machine).

AN5393 - Rev 5 page 23/68

‘,_l ANS5393

Machine learning core tools

2 Machine learning core tools

The machine learning core programmability in the device is allowed through a dedicated tool, available as an
extension of the Unico GUI.

2.1 Unico GUI

Unico is the graphical user interface for all the MEMS sensor demonstration boards available in the
STMicroelectronics portfolio. It has the possibility to interact with a motherboard based on the STM32
microcontroller (professional MEMS tool), which enables the communication between the MEMS sensor and
the PC GUI. Unico also has the possibility to run offline, without a motherboard connected to the PC.

Details of the professional MEMS tool board can be found on www.st.com at STEVAL-MKI109V3.
Unico GUI is available in three software packages for the three operating systems supported.
. Windows
- STSW-MKI109W
. Linux
- STSW-MKI109L
. Mac OS X
- STSW-MKI109M

Unico GUI allows visualization of sensor outputs in both graphical and numerical format and allows the user to
save or generally manage data coming from the device.

Unico allows access to the MEMS sensor registers, enabling fast prototyping of register setup and easy testing

of the configuration directly on the device. It is possible to save the current register configuration in a text file

(with .ucf extension) and load a configuration from an existing file. In this way, the sensor can be reprogrammed in
few seconds.

The machine learning core tool available in the Unico GUI abstracts the process of register configuration by
automatically generating configuration files for the device. The user just needs to set some parameters in the GUI
and by clicking a few buttons, the configuration file is already available. From these configuration files, the user
can create his own library of configurations for the device.

Since the machine learning approach requires the collection of data logs, they can be acquired through the
[Load/Save] tab of Unico (Figure 20). For the accelerometer, the checkbox [Acceleration] allows saving data in
[mg]. For the gyroscope, the checkbox [Angular rate] allows saving data in [dps].

Note: When logging data, the [Start] and [Stop] buttons (in the [Load/Save] tab of Unico) must be used properly
in order to avoid logging incorrect data at the beginning or at the end of the acquisition. For instance, when
logging a data pattern for the class "walking", the user should start walking before pressing the button [Start]
and stop walking after pressing the button [Stop]. It is important to select the correct ODR for data logging. If
the final MLC ODR (for example, 26 Hz) is already defined, it is recommended to use the same ODR for data
logging (ODR 26 Hz). If the MLC ODR is not defined, it is recommended to log the data at ODR 104 Hz (which
is the maximum ODR for MLC), and then downsample the data if needed. Depending on the algorithm to be
implemented, different data logs are needed (at least one per class to use the supervised machine learning
approach). It is recommended to have different data logs for each class (for example, 30 data logs per class) in
order to capture some diversity or variation which can be expected in the final application (for example, different
users, different tests, or different conditions).

If using Unico GUI offline (without connecting the motherboard to the PC), the user, who has already acquired the
data logs, can directly upload them to generate a machine learning core configuration.

AN5393 - Rev 5 page 24/68

https://www.st.com/en/product/steval-mki109v3?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5393
https://www.st.com/en/product/stsw-mki109w?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5393
https://www.st.com/en/product/stsw-mki109l?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5393
https://www.st.com/en/product/stsw-mki109m?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5393

m ANS5393

Unico GUI

Figure 20. Unico GUI

Unico = X
I Back | SelectPort: (COM3 ¥ Connect " Disconnect | P Start wistop ¥ Exit
l, Info Optons Regsters Regsters2 EmbeddedRegl EmbeddedReg2 Embedded AdvPage0 Embedded AdvPage 1 Sensor HubRegisters Load/Save
Bars
=
Plot Save Data
=)
- - Choose the file name: [srowse |
Interrupt !
" - Check the data you want to save: (Accelerometer) LsB [Acceleration [Angle Interrupt
cam
FsM (Gyroscape) 158 [Angular Rate
@ [Temperature 158 [] Temperature [C] DedisioniTree Results
FIFO
2 - Press Start for logging: [Start] [Stop]
FIFO
¢ -
& Load/Save Configuration
®
Indin.
% - Ciick Load for loading a configuration from a text fie: [Lond J
FFT
5} - Click Save for saving the current configuration to a text file: [B j
kit = STEVAL-MKI 197V1 (LSM6DSOX) Board = ProfiMEMSTool Firmware Version = V3.6.36 Unico Version = 9.8.0.0

The collected data logs can then be loaded in the machine learning core tool of Unico, available on the left side of
the GUI, by using the [Data Patterns] tab (Figure 21). An expected result must be assigned to each data pattern
loaded (for instance, in the activity recognition algorithm, the results might be: still, walking, jogging, and so on).
This assignment is also called "data labeling". The label has to be a set of characters including only letters and
numbers (no special characters and no spaces). It is also possible to load a group of data patterns (by multiple
selections in the folder where the files are located) and assign the label just once for all the files selected.

Figure 21. Machine learning core tool - data patterns

Machine Learning Core

? X
2
DataPatterns Configuration a
g
g
Load Data Pattern
|Cillogsfunving 2.5t] (Browse, J anced Ootions..
Current Data Pattern
Sample [#] Accx Accy Accz Gyrx GyrY Gyrz Extx Exty Extz A
879 -86 -220 1476 -43.1088 19.95 -11.9088 0 0 0
280 16 -186 1094 24.535 7.6125 0.41125 0 0 0
881 67 -216 882 39.9788 -9.03 10.955 o 0 0
882 -28 -141 869 23.0738 -8.7675 13.4225 0 0 0
883 -40 -66 807 23.2313 -0.42 14.1488 0 0 0
884 -24 -4 707 32.1125 8.54 11.9 0 0 [
< | »
Set Class (Labe): running| | € 10aD]
Data Patterns Loaded CLEAR.
Pattern [#] Samples [#] Result Location
0 910 still C:/logs/still_1.txt
1 429 still C:/logs/still_2.txt
2 1303 walking C
3 1265 walking C:,
4 1284 walking C:flogs/walking_3.b¢t
5 933 running C:/logs/running_1.b¢t

The unit of measurement for the data expected in the [Data Patterns] tab of the machine learning core tool are:
. [mg] (or alternatively [g]) for the accelerometer
. [dps] (or alternatively [mdps]) for the gyroscope

AN5393 - Rev §

page 25/68

m ANS5393

Unico GUI

The conversion from [mg] to [g] for the accelerometer, and [dps] to [rad/s] for the gyroscope, is automatically
managed internally by the machine learning core tool, to allow the machine learning core logic to work with the
correct data ([g] and [rad/s]). For the external sensor data, the user is required at a later stage in the configuration
to set the proper sensitivity.

In the configuration tab of the machine learning core tool (Figure 22), all the parameters of the machine learning
core (such as ODR, full scales, window length, filters, features, meta-classifier) can be configured. The tool allows
selecting multiple filters which can be applied to the raw data, and multiple features to be computed from the input
data or from the filtered data. The features computed are the attributes of the decision tree.

When the board is connected and the device already configured, the tool automatically suggests ODRs and full
scales (for accelerometer and gyroscope) according to the current device configuration.

Figure 22. Machine learning core tool - configuration

Machine Leaming Core ?

Data Patterns. Configuration

X

1004 2

Machine Learning Core i
Namber oF sampies for The window oF EETest: 52 i | =
Filter configuration
Configure one fiter: (End fiters e =l
Features

Festre: Varance [ACCV2 T Jenabied | =
Festre: Energy | e accx | Oenabled | [sgned [©)

Fesors: Energy [e accy | Oenabled | [sgned &)

Fesure: Energy [e accz | Denaled | [signed o) J
Fesowe: Energy | e accv | Menabled |

Festrss Energy | e accv2 | Oenabled |

Feswre: Peak to Peak | mp: acc x | Dlenabed | [signed [©)

Feawrs: Peak to Peak | 1w accy | Oenabed | [sgned &)

Feaure: Peak to Peak | o accz | Denabed | [sgred &)

Feswre: Peak to Peak | opa acc_v | [enabled |

The [Configuration] tab of the machine learning core tool generates an attribute-relation file (ARFF), which is the
starting point for the decision tree generation process. The decision tree can be generated by different machine
learning tools (Section 2.2).

Once the decision tree has been generated, it can be uploaded to the machine learning core tool in Unico to
complete the generation of the register configuration for the LSM6DSRX.

The Unico GUI, by accessing the sensor registers, can read the status of the decision tree outputs, visualize them
together with sensor data, and make it possible to log all the data (sensor outputs and decision tree outputs)
together in the same text file.

AN5393 - Rev 5 page 26/68

m N AN53_93

Decision tree generation

2.2 Decision tree generation

Unico (starting from version 9.8) is able to automatically generate the decision tree, as shown in the following

figure.

Two parameters can be fine-tuned when starting the decision tree generation in Unico:

. the maximum number of nodes, which can be set to make sure the generated tree can fit in the MLC
configuration;

. the confidence factor, for controlling decision tree pruning (by lowering this number, overfitting can be
reduced).

Figure 23. Decision tree generation in Unico

Machine Learning Core

Data Patterns Configuration

1001

Machine ing

L T— cm— =

Decision Tree #1 File - [Available nodes = 245]
Max number of nodes:

-l GENERATE o genrate 3 e ecion s

- Chick "Browse™ vomooftadﬁ‘efmtdeosonweeﬁle(e q. generated by external tooks)
Confidence factor:

i Dedision free name:

[rowse] [calogs/ST_decsion_tree_20200430_175930_003.txt | [one |

Decision tree info

F1_VAR_on_ACC_V <=0.0078125
F1_VAR_on_ACC_V <=0.00341797: stil (14.0)
F1_VAR_on_ACC_V > 000341797

| F2_ENERGY_on_ACC_V <= 64.25

| | F2_ENERGY_on_ACC_V <= 64.125 B
| | | F1_VAR_ on_ACC_V <= 0.00390625: still (1.0)

| | | F1_VAR on ACC_V >0.00390625: waking (1.0)

| | F2_ENERGY_on_ACC_V > 64.125: stil (3.0

| F2_ENERGY_on_ACC_V > 64.25: wulmg(qu)

1_VAR_on_ACC_V >0.0078125

F1_VAR_on_ACC_V <=0.0380859

| F2_ENERGY_on_ACC_V <= 68.4375: walking (51.0/6.0)

| F2_ENERGY_on_ACC_V > 68.4375: running (2.0)

F1_VAR_on_ACC_V > 0.0380859: running (17.0) =

e —————

(e) S - (we)

Besides Unico, there are other external machine learning tools able to generate decision trees and some of them
are supported by Unico.

One of the most frequently used tools is Weka, software developed by the University of Waikato (more details
about this software can be found in Appendix A). Other alternative tools are: RapidMiner (Appendix B), Matlab
(Appendix C), Python (Appendix D).

Weka is able to generate a decision tree starting from an attribute-relation file (ARFF). Through Weka it is
possible to evaluate which attributes are good for the decision tree, and different decision tree configurations

can be implemented by changing all the parameters available in Weka. Figure 24 and Figure 25 show the
[Preprocess] and [Classify] tabs of Weka which allow evaluating the attributes and generating the decision tree.

AN5393 - Rev 5 page 27/68

AN5393

Decision tree generation

Figure 24. Weka preprocess

| [Preprocess | classity | Cluster | Associate | Selectattnbutes | Visualize |

[Open file] | OpenURL. || OpenDB. || Generate | Undo L Edit || sawe |
Filter
r]
l Choose J|Nune H Apply J
‘Currem relation Selected
r A]
Relation: ActivityDataForProgram.. Aftributes: 15 Name: MEAN_on_ACC_X Type: Numeric

Instances: 6217 Sum of weights: 6217 Missing: 0 (0%) Distinct: 3243 Unigue: 1894 (30%)
Statistic Value
r 7| Minimum 0
Maximum 1.487
l All J l None J l Invert J l Pattern J Mean 0.47
StdDev 0384

Class: class (Nom) v|| visualize Al
|

2 [_| MEAN_on_ACC_Y
3] MEAN_on_ACC_Z
4[] MEAN_on_ACC_V2
5 [VAR_on_ACC_X]
6] VAR_on_ACC_Y
7 [] VAR on_ACC 7 v Fi::

]

Remove

Figure 25. Weka classify

[Preprocess | classity | Cluster | Associate | Select atibutes | visualize |

Choose |.MB.-C0.25-M1

Test options
[

Classifier outpul
f

() Use training sat
I} Bupplied tast set

VAR_om ACC W2 <= 0.018555: avill (&2.0)

VAR_on_ACC_ V2 » 0.018555

VAR_ega_RCC_V=2 <= 0.078125

| VAR_en_ACC X <= 0.000696: scill (5.0)

| VRAR_en _ACC_X > 0.000696

I | VAR om ACC ¥ <= 0.014343: walking (42.0/1.0)

I 1 VAR _on_RACC Y > 0.014343: scill (4.00

VAR_on_ROC_V-2 » 0.07E12%

ENERGY on_ ACC V2 <= 26.5
ABS (MEAN) s&n_RACC_X <= 0.049011
| WAR_sa_ROC_X <= 0.003302
| ! ABS (MEAN) _on_RCC_X <= 0.013E7: fascwalking (7.0/1.0)
|| ABS(MEAN)_on_RCC X > 0.01387: walking (12.0)
| VAR _on RCC X > 0.003302: fastwalking (31.0/2.0)

(®) Crossvalidation Folds
I} Percentage split

[More oplions...

[(Nom) class

Start

Resalt list {right-click for options)

16:47.04 - rees J48

]
1
1
]
1
1 ABS{MEAN) on RCC X > 0.0459011
1
1
I
1

ABS [MERM) _on_ACC_Z <= 0.937988

I FeakToPeak _on AOC_V <= 0.731934: walking (2.0)

| FPeakToPeak on ROC W > 0.731834: fastwallking (5.0)
RBS(MERM) _on_ACC_Z » 0.937388: walking (29.0)

EHERGY on ACC V=2 > B6.5: fastwalking (17.0/1.0)

Humber of Leaves = i1

Size of the tres : 21

%

Once the decision tree has been generated, it can be uploaded to the machine learning core tool in Unico, to
complete the generation of the register configuration for the LSM6DSRX.

AN5393 - Rev 5 page 28/68

m ANS5393

Configuration procedure

The machine learning core tool in Unico accepts as input the decision tree files in a textual format (.txt). The
textual file must contain the decision tree in the Weka J48 format (an example of a decision tree is shown in
Figure 26). From the Weka [Classifier output] (Figure 25), the decision tree has to be selected starting from the
first line (first node) or in the RapidMiner format (Appendix B). The last two rows (number of leaves and size of the
tree) are optional. The selected output from Weka has to be copied to a text file.

Figure 26. Decision tree format

Eile Edit Format View Help

WAR_on_ACC_wA2 <= 0.018555: still (62.0)
VAR_ON_ACC_WA2 = 0.0LE555
VAR_ON_ACC_VA2 == 0,078125
VAR_ON_ACC_X <= 0.000696: still (5.0)
VAR_on_AacCC_x = 0.000696
| VAR_ON_ACC_Y <= 0.014343: walking (43.0/1.0)
| VAR_ONn_ACC_Y > 0.014343: still (3.0)
VAR_ON_ACC_WA2 = 0.078125
ENERGY_ON_ACC_WAZ2 <= 86.5
| ABS(MEAN)_on_ACC_X <= 0.049011
| VAR_ON_ACC_X <= 0.003302
| | ABS(MEAN)_ONn_ACC_X <= 0.01387: fastwalking (7.0/1.0)

| | ABS({MEAN)_on_ACC_X > 0.01387: walking (12.0)

| VAR_ON_ACC_X > 0.003302: fastwalking (31.0/2.0)

ABS{MEAN)_on_ACC_¥ > 0.049011

| ABS(MEAN)_on_ACC_Z <= 0.937988

| | PeakToPeak_on_ACC_V <= 0.731934: walki nE 2.0)
i

| | PeakToPeak_on_ACC_V > 0.731934: fastwalki
| ABS(MEAN)_on_ACC_Z > 0,937988: walking (29.0)
ENERGY_ON_ACC_WA2 > 86.5: fastwalking (17.0/1.0)

ng (5.0}

Number of Leaves 11

size of the tree : 21

If the decision tree has been generated from a different tool, the format must be converted to the Weka J48 format
(or to the RapidMiner format) in order to allow the machine learning core tool in Unico to read the decision tree
correctly.

2.3 Configuration procedure

Figure 27 shows the whole procedure of the machine learning processing, from the data patterns to the
generation of a register setting for the device (LSMEDSRX).

As seen in Section 2.1 Unico GUI, the data patterns can be acquired in the [Load/Save] tab of the Unico GUI.
If this is not possible or if the user wants to use some different data patterns, they can still be uploaded in the
machine learning core tool of Unico, with a few limitations:

. Every data pattern has to start with a header line, containing the unit of measurement of the data
- A_X[mg]lA_Y [mg] A_Z [mg] G_X [dps] G_Y [dps] G_Z [dps]
. The data after the header line must be separated by “tab” or “space”.

. The order of sensors in the file columns must be accelerometer data (if available), gyroscope data (if
available), external sensor data (if available).

. The order of the axes in the columns of any sensor is X, Y, Z.

AN5393 - Rev 5 page 29/68

m ANS5393

Configuration procedure

Figure 27. Configuration procedure

Log files
(data patterns)

Acquire data patterns

Load data patterns in the
tool, assigning expected
results (labeling)

Configure filters and
features to be used

External tools supported

Attributes file
(.ARFF)

Build the decision tree
(using Unico or external
tools)

=
g
g
@
3
g
g.
«Q
g
@
g
g
g
=3
g

Decision tree file
(-txt)

Load the decision tree to
the tool and assign results
and meta-classifier

Generate a configuration
file for the device

&
4
4
®

Reglster Configuration

(-ucf)

Opening the machine learning core tool available in Unico, the data patterns, acquired in the format described
above, can be loaded assigning the expected result for each data log (as shown in the following figure).

Figure 28. Assigning a result to a data pattern

Machine Learning Core ? X
5 =
DataPatterns Configuration o
g
=
Load Data Pattern
Crmpares e P e)
Current Data Pattern
Sample [#] AccX AccY AccZ GyrX GyrY GyrZ ExtX Exty ExZ 4
879 -86 -220 1476 -43.1988 19.95 -11.9088 0 0 0
880 16 -186 1094 24.535 7.6125 0.41125 0 0 0
881 67 -216 882 39.9788 -9.03 10.955 0 0 0
882 -28 -141 869 23.0738 -8.7675 13.4225 0 0 0
883 -40 -66 807 23.2313 -0.42 14.1488 0 0 0
884 -24 -4 707 32.1125 8.54 119 0 0 0 -
«| | »
Set Glass (Label): [rureingl] (L0AD)
Data Patterns Loaded CLEAR.
Pattern [#] Samples [#] Result Location
0 910 still C:/logs/still_1.bxt
1 429 still C:/logs/still_2.btt
2 1303 walking C:/logs/walking_1.txt
3 1265 walking gs/walking_2.bd¢
4 1284 walking walking_3.txt
5 933 running C:/logs/running_1.bt

AN5393 - Rev 5 page 30/68

m ANS5393

Configuration procedure

When all the data patterns have been loaded, the machine learning core parameters can be configured through
the [Configuration] tab. These parameters are ODR, full scales, number of decision trees, window length, filters,
features, and so on (as shown in Figure 29, Figure 30, Figure 31, Figure 32).

Figure 29. Configuration of machine learning core

Machine Learning Core

DataPatterns Configuration E
o
g
Machine Learning C 2
Select the device: [LsmeDsOX | -
Machine Learning Core ODR
Select the internal data rate for the Machine Learning Core: (2512 ~]
Inputs
Select the Machine Learning Core inputs: (Accelerometer only |
Accelerometer
Full scale: 29 -|
ODR: 2%z -
Decision trees
Number of dedision trees: [1 j]
|
(e) I (e)
Figure 30. Configuration of filters
Window length
Number of samples for the window of interest: (64 |
Filter configuration
Configure one fiter: (P Accw |
Filter configuration
Configure one fiter: (6P Acct) -
=

Figure 31. Configuration of features

Features

Featwre: Variance [TneaACCV [MEnabled | -
Festwre: Variance [e acc_v2 | Oenabled |

Feswre: Variance | e fiterbFFonaccv | [JEnabled | J
Feswrs: Energy [e accx | Oenabled | [signed)

Feste: Energy [o accy | Oenabled | [Asigned »]

Fesre: Energy | o accz | Denabled | [signed ®

Festre: Energy [e Accv | MEnabled |

Festwe: Energy [e acc_v2 | Oenabled |

Feswe: Energy | met fiterDFFonaccY | [JEnabled |

Feswee: Peak to Peak [g acc x | Oenabled | M signed)

Y

AN5393 - Rev 5 page 31/68

m ANS5393

Configuration procedure

Figure 32. ARFF generation

Fesurs: Peak to Peak [et accx

Enabled | Signed @ J

Save ARFF file

e e (N

Multiple filters and multiple features can be chosen. The GUI iteratively asks for another filter until the parameter
[End filter configuration] is chosen (Figure 30). All the available features can be easily selected using the
checkboxes (Figure 31).

Once all the features have been configured, the machine learning core tool in Unico generates an ARFF file
(Figure 32), which is the file containing all the features computed from the training data. Figure 33 shows an
example of an ARFF file generated by the machine learning core tool in Unico.

Unico has a built-in tool for decision tree generation which internally uses the ARFF file to generate a decision
tree, however, the ARFF file can also be used in external tools (for instance Weka). The decision tree generated
with the external tool can be imported in Unico.

In some cases, the user must adapt the ARFF file to the file format required by other external tools for decision
tree generation, and also the decision tree must be compatible with the format described in Section 2.2 Decision
tree generation. For more information about the external tools supported, please see the appendix sections.

Figure 33. ARFF file

fe fde Sewch Veew ncodmg Langusge Sepngs Took Maoo Bum Phegin iindow | x
ciEHE s Sl d MR ot BRI HMEIROHC | B = EDHE

Heaschat G|
1 @relaios "ML

! Qavtribuce ASS(HEAN) _co_ACC_]
4 attribuce ABS(MEAN) oo ACCY mumeric
& Bantribuce ARS(MEAN) on_AC I wameric
& Battribube A3S(HERN) on
7 Battribute A33(VAR)_ce_ALC X someric
Battribute A53(VRR) co ASC Y susesic
Battribute A53(VAR) 52 RCC I sumesic
Barrribuce AS3(VRR) o -
farrribuce AR (EMERDY| Y
fartribuce ARS(ENERSY) _on_rfilter BF_om ACC V-2 mumeric
13 Bactribuce ARS(ENERSY) _on_filver IIRZ om ACC V-I numeric
14 Mattribute ABS{ZeroCross]_on_filter BF_ca_ACT_V=I numeric
1% Battribute ABS(IesoTresa)_on_filtes IIRZ_so_MOC V1 numeric
Battribute 133 (PeskToPeak)_sn ACC V sometic
Battribute clasa {Staticossy, Walking, Joguing, Biking)

[EN

00082403, D.GBELE, 1.OLES, 10330, 4.1723%e-6,
00059967, ©.0025404, 101465, 1.03613, 2.02656e-0%,
000603207, 0.03957F, 101465, 1.00223, 4,64916e-06,

BidTe=06, O.00E43554, 0.0107T4Z3, 80.25, 0.585835, 73,75, &, 1, 0.004€488, Sratvionary
3%e-06, 0.006835584, 0.00BTESOE, 79.87%, 0.0004TGM, TO.87S, 0, O, 0.010T422, Statisasry
¥e-06, 0.000976562, 0.004E8281, BO.JTS, 0.000771523, ®0.625, O, &, 0.013713, Scationary
243 0.00559235, 0.04006%6, 1.0127, 1.03516, 3.039B4e-0€, 7.8253%e-06, 0.007R125, 0.005B5534, B0, ©0.00043273, 80, O, @, 0.01265%), Scaciomary
24 0.CO61BT44, C.0292151, 1.01562, 1.03418, J.45707e-04, B.50307e-06, 0.000976562, 0, B0.2%, 0.000636101, #0.062%, ©, 0. 0.0044484, Stationary
35 0.00530624, 0.0304RE, 1.0166, 1.0333, 4.0531de-o, l-'N! 06, ©.06193313, 0.0009TEM, BO.1873, 0.000090053, ©9.1i%, O, . 0.01I6H3, Steticoary
0.0089127E, C.0292TEL, 1.0166, 1.03418, 3.4954 e 9000976382, 0, B0.3%, 0.000770348, 80.937%, O, 0, 0.0134933, Staticoasy
0.00541306, C.039367T, 1.01468, 1.0312%, 3.27 S, O, 0.00097€5€2, TH.$A7Y, 0.CC0E4ITST, 20, O, O, 0.013671%, Staticsasy
850675964, 0.03RBONS, 1.01562, 1.0361%, 1 e=05, 5.0029T3E8, 0.00TRIBEH, BO.3LIS, O.DIEANETS, £5.5, 8, 8, G.010T43I, Sravicoary
0.00554276, 0.0393066, 1.01465, 1.03125, 3 06, 6.6TS72e=-06, 0.0009TESE2, 0.0D09TESE2, TH.3375, 0.000419617, #0.0625, 0. 0, 0.0107422, Starissary
0.00521741, 0.0394287, 1.01367, 1.03213, €.19 0%, 1.04%04e-05, 0.00292596%, 0.00195312, BO.12%, 0.DDOE775EE, 8005, 0, ©, 0.0126%5), Staticsary
OOE0535Z, 0.0397X¥S, 1.013¥7, 1.03613, 2.5034e-08, 1 de~-05, 0.00976562, 0.006E355d, B0.061S, 0.000453725, 80, O, O, 0.01074Z2, Staciomary
0537109, ©.039083, 1.0127, 1.0361), Z.06102¢-08, & 0.00278506, 0.005855)8, B0.12%, 0.00D463€25, BO.0425, 0, @, 0.0136719, Scationary
0.00651169, 0.0394582, 1.0146%, 0332, 2.26490e-06, «G0292969, 0.00195312, B0.2%, 0.000424 %, 0, O, 0.0117108, STaticsaTy
0.0038746, C.0JETETI, 1.01367, 1.0333, 3.6350Re-04, 9.33674e-07, 0.0039063%, 0.00353849, B0.J02%, O 351, £0.87%, O, 0, 0.01TI781, Steticmary
0.00414837, C.028ETRE, 1.01367, 1.03613, 3.993%1e-04, T.63193%e-0&, O.00400251, O,000TE04, TE.EAVY, 0.000Q47003, 20,875, O, 0, 0.0107432, Staticoany
0. 00430860, 0. 08930€d, 1.01468, 1.03233, 3.19908e-0d, B.5830%e-0d, O.0009T4843, 0.0030424, , 0.000837803, &0.18%8, &, O, 0.0134943, Sraricoary
1 1.04199, €.8373%-08, 2.86102 na, 0, 0. 475, 0, 0, 0.0126953, Sraricaasy
e 0, 0, 0.011T188, Szavicsary
T O, 0.0L1€353, Sraticnary
1. unns S LLELE LS Ci 1 SS'HC 05 &, GCI\‘B?GSSR 0.00252369, B a6’ &1.5625, &, 0, 0.0117188, Stationary
1.0195%, 1.04004, €.4373e-0F, 2.09944e-06, 0.000976562, 0.006B353, BD. $'1§ 0 0367, #1.1875, @, 0, 0.00974562, Stationary
1B5E, 1.04199, 7.15256e-06, 2.164%0e-06, 0.00090625, 0.006E)5M, El, 0.0005078)2, 81.107%, 0, 0, @.0L464E4, Jaclomary
2051, 1.00613, &.8373e-06, 2.26450e-06, O.COMNBIR1, G.006825%4, 01.062%, 0.00003235%, B1.87%, O, @, 0.0117i84, Staticaary
1.04004, %.96046e-04, 1.1900%e-06, O, 0.00683534, BO.TH, 0.00045839%, B1.13%, 0, O, 0.0117288, Scaticmary
1.04199, €. 4373e-04, I.900d3e-06, O.009204, O.004BE3E1, £1.1873, 0.0001e8d, &1.7Y, 0, 8.013671%, Izecicsacy -

length : 4215755l : 31380 Lm:l Cel:15 Sal:0]0 Windown (CRLF) UTF-E NS

00143588,
2.0138016,
v 0145565,

Before generating or loading the decision tree, Unico also asks for the result values associated to each class
recognized by the decision tree. These values are used as possible values for the MLCx_SRC registers.

AN5393 - Rev 5 page 32/68

m ANS5393

Configuration procedure

Figure 34. Configuration of results and decision tree

Machine Learing Core

DataPatterns Configuration

1001 D

Machine Learning Col

Decision Tree #1 Results
Insert the resuit values [from 0 to 15] for dedision tree #1:

still walking running
() (CH)
Decision Tree #1 File - [Available nodes = 245]
Max number of nodes:
- Click "GENERATE" to generate a new decision tree
- Click "Browse" to import a different dedision tree file (e.g. generated by external tools)
Confidence factor:
_ Decision tree name:
([Bome]| | fort \

The last step of the configuration process is to configure the [Meta-classifier], which is the optional filter for the
generation of the decision tree results. After that, the tool is ready to generate a configuration for the device
(Figure 35).

Figure 35. Meta-classifier and device configuration

Machine Leaming Core

DataPatterns Configuration

001 DT

Machine Learning Core configuration

Degision tree info

F1_VAR_on_ACC_V <=0.0078125
F1_VAR_on_ACC_V <= 0.00341797: still (14.0)
F1_VAR_on_ACC_V >0.00341797
| F2_ENERGY_on_ACC_V <=64.25
| | F2_ENERGY on_ACC_V <=64.125
| | | F1_VAR_on_ACC_V <=0.00390625: stil (1.0)
| | | F1_VAR_on_ACC_V > 0.00390625: walking (1.0)
| | F2_ENERGY_on_ACC_V > 64.125: still (3.0)

I F

|

|

I

|

|

I

I | 2

| 2_ENERGY_on_ACC_V > 64.25: walking (4.0)
F1_VAR_on_ACC_V >0.0078125
|

I

|

I

1_VAR on_ACC_V <= 0.0380859

2_ENERGY_on_ACC_V > 68.4375: running (2.0)
1_VAR_on_ACC_V > 0.0380855: running (17.0) &

Meta-classifier
Insert the end counter values for the dedision tree (sllowed values from 0 to 14):

#1: 2 #3
stil walking running
() (]
Save G File (uch)
e jonFiePath: | J(Browse]

Kl

AN5393 - Rev 5 page 33/68

m ANS5393

Configuration procedure

Once the MLC configuration has been completed, Unico allows loading the .ucf file generated to directly program
the device. The loading feature is available in the [Load/Save] tab of the Unico main window (Figure 37).
Alternatively, at the end of the MLC configuration a checkbox allows directly loading the configuration created on
the device as shown in Figure 36.

Figure 36. Creation of configuration file

Information x

Configuration File created:

C:/Example/4_LSM6DSOX _configuration.ucf
Load configuration on STEVAL-MKI197V1 (LSM&6DSOX)

OK I

Figure 37. Unico load configuration

Load /Save Configuration
- Click Load for loading a configuration from a text file: [o]]
- Click Save for saving the current configuration to a text file: [J

When the device is programmed, the machine learning core results can be monitored in the [Data] window
of Unico (Figure 38) or in one of the registers tabs containing the machine learning core source registers
(Figure 39).

The .ucf file generated by Unico can also be used for integrating the generated MLC configuration in other
platforms and software (for example, AlgoBuilder, Unicleo, SensorTile.box, and so on).

From the .ucf file it is also possible to convert the sequence of values to a header file (.h) to be imported in
any C project (for example, driver, firmware, and so on): Unico allows .h file generation (from .ucf files) through
the "C code generation" dedicated tool in the options tab of the Unico main window. An example of using the
generated .h file in a standard C driver is available in [STMems_Standard_C_drivers repository] on GitHub.

AN5393 - Rev 5 page 34/68

https://github.com/STMicroelectronics/STMems_Standard_C_drivers/blob/master/lsm6dsox_STdC/example/lsm6dsox_mlc.c

‘,_l ANS5393

Configuration procedure

Figure 38. Unico data window

Data read from the Accelerometer

Gyroscope:

Data read from the Gyroscope

Figure 39. Unico - machine learning core source registers

MLCO_SRC (7oh) | 01 [Resd | wree | Defauk |
MLC1_SRC (71h) | 00 [Resd | wree | Defauk |
MLC2_SRC (72h) | 00 [Resd | wree | Defauk |
MLC3_SRC (73h) | 00 [Resd | wree | efauk |
MLC4_SRC (7ah) | 00 [Resd J wree | Defauk |
MLC5_SRC (7sh) | 00 [Resd J wree | efauk |
MLC6_SRC (76h) | 00 [Resd | wree | efauk |
MLC7_SRC (77) [00 | Resd | wrie | Defeut |

AN5393 - Rev 5 page 35/68

m ANS5393

Decision tree examples

3 Decision tree examples

This section describes some examples of a decision tree which can be loaded in the LSM6DSRX.

3.1 Vibration monitoring

The decision tree in the following figure shows a simple example of vibration monitoring. Three different levels of
vibrations are recognized (vibration1, vibration2, vibration3) using a simple decision tree with just one feature, the
peak-to-peak feature in the accelerometer squared norm input (p2p_accNorm2).

The vibration monitoring example runs at 26 Hz, computing features in a window of 16 samples. The current
consumption of the LSM6DSRX is around 171 pA at 1.8 V. Turning off the machine learning core, the current
consumption of the LSM6DSRX would be around 170 pA, so the additional current consumption of the machine
learning core is just 1 pA.

Figure 40. Vibration monitoring decision tree

T —
DecisionTreeVibrati =

File Edit Format View Help

p2p_accNorm2 == 0.03: vibrationl -
2p_accNorm2 > 0.03

? p2p_accNorm2 <= 1.5: wvibration2

| p2p_accNorm2 = 1.5: vibration3

Number of Leaves : 3

Size of the tree : 5

AN5393 - Rev 5 page 36/68

m ANS5393

Motion intensity

3.2 Motion intensity

The decision tree in the following figure shows a simple example of motion intensity implemented using just the
feature “variance” in the accelerometer norm. Eight different intensity levels are recognized by this decision tree.

The configuration for motion intensity described in this example runs at 12.5 Hz, computing features in a

window of 39 samples. The current consumption of the LSM6DSRX is around 171 pA at 1.8 V. Turning off

the programmable sensor, the current consumption of the LSM6DSRX would be around 170 pA, so the additional
current consumption of the machine learning core is just 1 pA.

Figure 41. Motion intensity decision tree

r e
_ | dec_tree.txt - Notepad E@g

File Edit Format View Help

module_variance == 0.009: Intensity_0 -
module_wvariance = 0.009

module_variance <= 0.013671875: Intensity_1
module_variance > 0.013671875

module_variance == 0.0234375: Intensity_2
module_variance = 0.0234375

module_variance <= 0.033203125: Intensity_3
module_variance = 0.033203125

| module_variance == 0.078125: Intensity_4
module_variance > 0.078125

| module_variance == 0.1640625: Intensity_5
| module_wvariance = 0.1640625

| | module_variance <= 0.3125: Intensity_6
| | module_variance > 0.3125: Intensity_7

Number of Leaves : B

Size of the tree : 15

3.3 6D position recognition

The LSM6DSRX already has a 6D position recognition algorithm embedded in the device. The example described
in this section shows just a different implementation using a decision tree.

The six different positions (Figure 42) can be easily recognized by a simple decision tree (Figure 43) using the
following features:

. meanx_abs: mean of the accelerometer X axis (unsigned)
. meany_abs: mean of the accelerometer Y axis (unsigned)
. meanz_abs: mean of the accelerometer Z axis (unsigned)
. meanx_s: mean of the accelerometer X axis (signed)
. meany_s: mean of the accelerometer Y axis (signed)
. meanz_s: mean of the accelerometer Z axis (signed)

The configuration for 6D position recognition described in this example runs at 26 Hz, computing features in a
window of 16 samples. The current consumption of the LSM6DSRX is around 172 pA at 1.8 V. Turning off the
machine learning core, the current consumption of the LSM6DSRX would be around 170 pA, so just 2 pA is the
additional current consumption of the machine learning core.

AN5393 - Rev 5 page 37/68

m ANS5393

6D position recognition

Figure 42. 6D positions
/.
-
(a) (b

/v

I

z I

Figure 43. 6D decision tree

E six_d.txt - Motepad Eléu

File Edit Format Wiew Help

fmeanx_abs <= 0.3 -
meany_abs <= 0.3

| meanz_s <= 0.3: zdw

| meanz_s > 0.3: zup
meany_abs > 0.3

meanz_abs == 0.3

| meany_s <= 0.3: ydw
| meany_s > 0.3: yup
meanz_abs > 0.3 : others
meanx_abs > 0.3

meanz_abs == 0.3

meany_abs <= 0.3

| meanx_s <= 0.3 : xdw
| meanx_s > 0.3: xup
meany_abs > 0.3 : others
meanz_abs > 0.3: others

Number of Leaves : g9

Size of the tree : 17

AN5393 - Rev 5 page 38/68

‘,_l ANS5393

Activity recognition for smartphone applications

3.4 Activity recognition for smartphone applications

The activity recognition algorithm described in this example is intended for smartphone applications, since all the
data logs collected for this purpose have been acquired with a smartphone carried in the user pocket. Hundreds
of data logs have been acquired from different people, since different people walk or run in different ways which

increases the complexity of the algorithm.

A small subset of all the possible activities has been selected in order to improve the accuracy of the recognition
algorithm. The subset of activities recognized in this example are: stationary, walking, jogging and biking.

Four features have been used (mean, variance, peak-to-peak, zero-crossing), and two different filters have been
applied to the accelerometer input data. The following table shows the activity recognition configuration.

Table 10. Activity recognition for smartphone configuration

Configuration Accelerometer, 26 Hz ODR, 4 g full scale

Window length 75 samples (around 3 seconds)
Band-pass on accelerometer norm
Filters
IIR2 on accelometer squared norm
Mean
Variance
Features
Peak-to-peak
Zero-crossing
Stationary (0)

Walking (1)
Outputs
Jogging (4)

Biking (8)
0 for stationary and walking
Meta-classifier 1 for jogging

4 for biking

Figure 44 shows the decision tree generated by Weka. The cross-validation results of Weka (Figure 45) show that
96.7% of the instances have been classified in the correct way.

The configuration for the activity recognition example runs at 26 Hz, computing features in a window of 75
samples. The current consumption of the LSM6DSRX is around 174 pA at 1.8 V. Turning off the machine learning
core, the current consumption of the LSM6DSRX would be around 170 pA, so the additional current consumption
of the machine learning core is just 4 pA.

AN5393 - Rev 5 page 39/68

m ANS5393

Activity recognition for smartphone applications

Figure 44. Activity recognition for smartphone decision tree

[&f e ichele ferraina\Doc \Prag

File Edit Search View Encoding Lenguage Settings Tools Macro Run Plugins Window 2 X
COERLGGRI4Bh el fy s BR SIEIEHED 0 EDEGE I
Bldecreest 8 |

RBS(VAR) on ACC V-2 <= 0.032227 -
ABS(VAR) on ACC V-2 <= 0.01269§ m
2BS (ENEREY) _on_filter BP_on_ACC V-2 <= 0.023254: Statiomary (6920.0/17.0)
BBS (ENERGY) on filter BP on ACC V~2 > 0.023254

ABS(MEAN) on ACC V-2 <= 0.54482¢

| ABS(ENERCY) on_filter_IIRZ_on ACC_V-Z <= 64_8125: Biking (26.0)

| ABS(ENERGY) on filter IIRZ on ACC V-2 > 4.8125: Walking (8.0)
ABS (MEAN) on ACC V-2 > 0.344824
1
1
1
1
1
1

2BS(ZeroCross)_en_filter_IIRZ_on ACC_V-2 <= 11: Stationary (2393_0/103.0)
RBS(ZeroCross)_on filter IIRZ on ACC V-2 > 11

| ABS(MEAN) on ACC V-2 <= 0.953023: Walking (13.0)

| ABS(MEAN)_on ACC_V-2 > 0.535023

| | RBS{VAR) on ACC V-2 <= 0.01123: Staticnary (27.0/1.0)

| | ABS{VAR)_on ACC V~2 > 0.01123: Biking (6.0)

ABS(VAR) _on ACC_V~Z > 0.012635

BBS (ENERGY) on filter IIRZ om ACC V"2 <= 75.125

ABS (ZeroCross)_on_filter_ IIRZ_on ACC_V-2 <=

2BS(MEAN) _on_ACC V-2 <= 0.35752: Walking (25.0/2.0)

ABS (MEAN) on ACC V~2 > 0.95752

ABS (PeakToPesk)_on ACC V <= 0.371094

| ABS(VAR)_on_ACC V-2 <= 0.01£113

| | ABS{ZeroCross) on filter IIRZ on ACC V~2 <= 7: Stationary (8.0/1.0)
| | ABS(ZeroCross)_on_filter IIRZ om ACC V-2 > 7: Biking (6.0}
RES (VAR)_on_ACC_V-Z > 0.016118: Biking (32.0)

m

z 2BS (PeskToPesk) on ACC V > 0.371034
z | ABS(VAER)_on ACC_V-Z <= 0.025391: Stationary (33.0/1.0)
2 | ABS(VAR) on ACC V-2 > 0_025331
z8 || ABS(MEAN) om ACC V~Z <= 0.87753%: Staticmary (7.0/3.0)
z3 ||| ABS(MEAN) on_ACC_V~Z > 0.977533: Biking (16.0)
30 2BS(ZeroCross)_on_filter_IIRZ_on BCC V-2 > 8
31 | ABS(ENERGY] on filter BR on ACC V~Z <= 0.427734: Walking (152.0/5.0
3z | ABS(ENERGY) on_filter BE_on ACC_V~Z > 0.427734
33 | | RBS(ENEREY) on_ACC_V- 74: Bilking (22.0/1.0)
34 | | RBS(ENERGY) on ACC V-2 > 74
s | | | RBS(ENERGY) on filter BE on ACC_V-Z <= 0.525351: Walking (9.0)
36 | | | BBS{ENERGY) on filter_ BP on ACC_V-Z > 0_5253%1: Stationary (7.0/3.0)
37 ABS (ENERGY) on filter IIRZ on ACC V~Z > 75.125
RBS(MEAN) on ACC V-2 <= 1.13867
3s ABS (SNERGY) _on_filter BP_on ACC_V-2 <= 0.072448: Stationary (61.0)
40 ABS(ENERGY) on filter BE on ACC V-2 > 0.072443
a1 ABS (VAR)_on_RCC_V-Z <= 0.021573
az | ABS(MEAN) on_ACC V-2 <= 0_993164: Biking (13.0/1.0)
43 | ABS(MERN) on ACC V-2 > 0.393164
4 | | ABS(SNERGY)_on_filtver_ IIRZ_on ACC_V-Z <= 50.625
I e | | | RBS(ZeroCross)_om_filter_IIRZ_on_ACC V*Z <= §
46 I 11 | ABS(VAER) on ACC V-Z <= 0.018555
a7 I 1 1 | | ABS(INERGY) on filver BD on ACC_V~Z <= 0.078523: Biking (5.0)
a8 I 1 1 | | ABS(ENERGY) on_filter_BP_on ACC_V~Z > 0.073523
49 I 1 1 1 1 | 3ABS(ENERGY] on filter B on ACC V-2 <= 0.23536Z: Stationary (20.0)
0 I 1 1 I | | 1ABS(ENERGY) on_filter BP on ACC_V~Z > 0.235562: Biking (7.0/3.0)
51 I 1 1 | 2BS(VAR)_on BCC_V-Z > 0.018555: Biking (11.0/1.0)
sz |1 | 2BS(ZeroCross) on filter IIRZ om ACC V-Z >
53 |1 | | RBS(ENERGY) on_filter_IIRZ on ACC_V~Z <= 77.5625
54 I 1 1 | | ABS(QMEAN)_om_ACC_V~Z <= 0.838047: Stationary (£.0)
55 I 1 11| ABS(MEAN) on ACC V~Z > 0.398047: Biking (10.0/1.0)
s | I | | 3BS(ENERGY) on_filter IIR2 on_ACC_V-Z > 77_5625: Stationary (132.0/23.0)
I I
I I
| I
I I
I I
| I
I I
I I
|

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
‘| |
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I

57 ABS (ENEREY) _on_filter_IIRZ_on ACC_V~2Z > S0.625
s8 | RBS(PeakTcPeak) on RCC V <= 0.323102
59 | | 2BS(ENERGY)_on_filter IIRZ_on ACC V-2 <= 92.75: Biking (25.0)
&0 | | R2BS(ENERGY) on_filter_IIR2Z_on_ACC_V-2 > 9275
61 I | | ABS(ENERGY) on filver BF on ACC V-2 0.230527
& I | | | 2BS(PeakToFesk)_on ACC_V <= 0.313824: Stationary (18.0)
| &= I | | | 2BS(PeakToPezk)_on BCC_V > 0.313824: Biking (5.0)
| == I | | ABS(ENERGY) on filter BF on ACC V-2 > 0.230527: Biking (20.0/Z.0)
& | | 2BS(PeakToPesk)_on ACC_V » 0.323102: Stationary (12.0)
& ABS (VAR) _om_ACC V-2 > 0.021873
| & | ABS(PeskToPeak) on ACC V <= 0.352533: Biking (54.0/6.0)
| &= | BBS(PeakToPeak)_on_ACC V > 0.352535
&3 | | ABS(MEAN) on_ACC_V~2 <= 106348
70 I I | RBS(ENERGY) on ACC V-2 <= 24.337%
Ml 71 I I 1 | R2BS(ENERGY)_on_filter_IIR2_on_ACC_V-~2 <= 84.125
f[| 7= | I I | | ABS (MEAN) _on_ACC_V~Z <= 1_0253%
73 | 1 1 | | | ABS(ENERGY) on filter BF on ACC V-2 <= 0.184337: Staticnary (7.0) 2
text file length : 19,828 lines: 256 Ln:1 Col:1 Sel:0]0 Windows (CRLF) UTF-8 INS J

AN5393 - Rev 5 page 40/68

ANS5393

Activity recognition for smartphone applications

3

Figure 45. Weka cross-validation

=== Stratified cross-validation ===

=== Summary =—=

Correctly Classified Instances 30331 96.7311 %
Incorrectly Classified Instances 1025 3.2689 %
Kappa statistic 0.9421

Mean absolute error 0.0296

Root mean sgquared error 0.1202

Relative absclute error 10.4519 %

Root relative sguared errcr 31.9379 %

Total Number of Instances 31356

=== Detailed Accuracy By Class =—=

TF Rate FP Rate FPrecision Recall F-Measure MCC ROC Rrea PRC Area Class

0.975 0.011 0.978 0.4975 0.978 0.965 0.987 0.9582 Stationary

0.989 0.028 0.979 0.989 0.984 0.982 0.990 0.988 Walking

0.9688 0.000 0.995 0.966 0.980 0.980 0.989 0.988 Jogging

0.769 0.014 0.815 0.789 0.791 0.775 0.944 0.763 Biking
Weighted Awg. 0.987 0.021 0.9687 0.967 0.987 0.950 0.98% 0.971

=== Confusicn Matrix ===

a b c d <-- classified as
9738 33 [u] 212 | & = Staticnary
12 17&&5 & 187 | b = Walking
1] 38 1151 4 | c = Jogging

225 310 a 1777 | d = Biking

AN5393 - Rev 5 page 41/68

m ANS5393

Gym activity recognition

3.5 Gym activity recognition

Gym activity recognition is intended as a fitness example for a wearable device, like a smartwatch or a
wristband. To implement this algorithm with a decision tree, all the data logs have been acquired using the
device (LSM6DSRX) mounted on a wristband.

The inputs of two sensors have been used (accelerometer and gyroscope at 104 Hz data rate) and six different
features computed in a window of 208 samples (mean, variance, peak-to-peak, min, max, zero-crossing), as
shown in Table 11.

The decision tree in Figure 46 generated by Weka allows recognizing five different gym activities including bicep
curls, jumping jacks, lateral raises, push-ups, squats.

The configuration for the gym activity recognition described in this example runs at 104 Hz, computing features in
a window of 208 samples. The current consumption of the LSM6DSRX is around 563 pA at 1.8 V. Turning off the
machine learning core, the current consumption of the LSM6DSRX (with accelerometer and gyroscope at 104 Hz)
would be around 550 pA, so 13 pA is the additional current consumption of the machine learning core for this
algorithm.

Table 11. Configuration for gym activity recognition

Configuration Accelerometer, 104 Hz ODR, 4 g full scale

Gyroscope, 104 Hz ODR, 2000 dps full scale
Window length 208 samples (around 2 seconds)
Mean
Variance
Peak-to-peak
Features
Min
Max
Zero-crossing
No activity (0)
Bicep curls (4)
Jumping jacks (5)
Outputs
Lateral raises (6)
Push-ups (7)
Squats (8)
0 for no activity

Meta-classifier
2 for all the other outputs

AN5393 - Rev 5 page 42/68

‘,_l ANS5393

Summary of examples

Figure 46. Gym activity recognition decision tree

File Edit Format WView Help

MEAN_ON_ACC_Z <= 0.155976
MEAN_ON_ACC_Z <= 0.0731812
ABS(PeakToPeak)_on_ACC_Z == 0.561523: no_activity
ABS(PeakToPeak)_on_aCC_Z > 0.561523
ABS(PeakToPeak)_on_ACC_X <= 0.98291: no_activity
ABs(PeakToPeak)_on_ACC_X > 0.98291
ABS(PeakToPeak) _on_GY_Y == 3.07227: no_activity
ABS(PeakToPeak)_on_GY_Y > 3.07227
| ABS(PeakToPeak)_on_GY_¥ <= 12.0
| | ABs(PeakToPeak)_on_GY_X <= 7.55469
| | | ABS(PeakToPeak)_on_GY_Z <= 6.21094: bicep_curls
I | | ABS(PeakToPeak)_on_GY_Z > 6.21094: no_activity
|

| ABs(PeakToPeak)_on_GY_X > 7.55469: no_activity
ABS(PeakToPeak)_on_GY_Y > 12.0: no_activity
MEAN_on_ACC_Z = 0.0731812: no_activity
MEAN_on_aCC_Z > 0.155976
MEAN_ON_ACC_Z <= 0.864257
ABs(PeakToPeak)_on_ACC_Z <= 0.465088: no_activity
ABS(PeakToPeak)_on_ACC_Z = 0.465088
ABS(PeakToPeak)_on_ACC_X == 0.696289: no_activity
ABS(PeakToPeak)_on_aCC_x > 0.696289
ABs(PeakToPeak)_on_GY_Y <= 2.07617: no_activity
ABS(PeakToPeak) _on_GY_Y = 2.07617
ABS(PeakToPeak)_on_GY_Y <= 8.0
| ABs(PeakToPeak)_on_GY_X <= 7.13281
| | ABs(PeakToPeak)_on_GY_Z <= 3.05273: lateral_raises
| | ABS(PeakToPeak)_on_GY_Z = 3.05273: no_activity
] ABS(PeakToPeak)_on_GY_X > 7.13281: no_activity
ABS(PeakToPeak)_on_GY_Y > 8.0: no_activity
MEAN_ON_ACC_Z = 0. 864257
ABS(PeakToPeak)_on ACC_Z == 0.461426: no_activity
ABS(PeakToPeak)_on_aCC_Z7 > 0.461426
ABs(PeakToPeak)_on_ACC_Z <= 2.4
| ABs(PeakToPeak)_on_aCC_y <= 1.2207
] | ABS(PeakToPeak)_on_ACC_X <= 1.03809: squats

3.6 Summary of examples

The following table shows a summary of all the examples described in this document in order to show the
typical current consumption of the machine learning core in the LSM6DSRX for different configurations. The main

contributors are the machine learning core ODR (which might be different from the sensor ODRs), the number of
decision trees configured, and the number of nodes (of each decision tree).

Table 12. Summary of examples

Algorithm MLC_ODR Number of Number of nodes MLC additional current
decision trees consumption

Vibration monitoring 26 Hz 1 pA
Motion intensity 12.5 Hz 1 7 1A
6D position recognition 26 Hz 1 8 2 pA
Acti\{ity recognition for smartphone 26 Hz 1 126 4uA
applications

Gym activity recognition 104 Hz 1 19 13 A

AN5393 - Rev 5 page 43/68

ANS5393

Weka

AN5393 - Rev §

Appendix A Weka

Weka is free software developed at the University of Waikato, New Zealand. It cointains a collection of
visualization tools and algorithms for data analysis and predictive modeling, together with graphical user
interfaces for easy access to these functions.

Weka is one of the most popular machine learning tools for decision tree generation. This section contains some
details about this external software, additional details can be found at the links below:

. Weka download

. Weka website

. Weka user guide

All of Weka’s techniques are predicated on the assumption that the data is available as one flat file or relation,
where each data point is described by a fixed number of attributes.

An ARFF (attribute-relation file format) file is an ASCII text file that describes a list of instances sharing a set

of attributes. The ARFF files have two distinct sections, as shown in Figure 47: a header section containing the
attributes (features, classes), and a data section containing all the feature values together with the corresponding
class to be associated to that set of features.

Figure 47. ARFF example

m:ﬁs—mhmu—,mw—prmumsmmmz [
JEHE s iSRRI Me BRI SIEIROL = =R R

[e o 3

Brelamion "ML
farTribune ABS(HEAN) co ACT]
= o

Battribuce ABS (MEAN} oo _AC z TG

Battribuce ASS(VAR) om ACC_X somesic

Battribute ASS(VRAR) ¢ ACC Y sumazie

5 Batrribure ASS(VAR) e ACC I sumesie

10 Battribue ABS(VAR) e ACC_V-I mumesis

Barrribure ABS{ENERSY| sm MOC V2 museris

fattribote ABS(ENERSY) on_filter BF_on ACC_V-2 mmeric
Battribuce ABS(ENERGY) on_filter TIRZ_ce ACC_V*Z museric
Battribute ABS{ZeroCross)_on_filter BE_sa_ACT_V*2
Battribute ABS(ZTeroTroaa) _on_filter_IIRd_oo_A0T_V'1 numeric
Battribute ASS(FeakTofrak) _on MCC Y memeric

Battribure class {Staticoary, Malking, Jeguing, Biring)

pasza

0.0054403, 0030625, 1.01465, L.03906, 4.17233e=06, 1.B147e=06, 0.00683594, 0.010742F, #0.25, 0.585932, 73.75, 0, 1, 0.014€484, Stationary

000976562, 0.0D482281, B0.375, 0. 1523, $0.625, O, 0, 0.0136719, Staticnary

Ta62339e-06, 9.0070125, 0.005B5534, BO, 000043273, 40, 0, %, 0.0126%5, Scacicuary

0. 00618744, ©.0092181, 1. B.5307e-06, 0.000976862, 0, $0.25, 0.000434101, #0.062%, O, 0, 0.0L46484, Staticoary

0.06530624, ©.0394582, 1. (853674006, 0.00193312, 0.000576342, B0.1875, 0.005390033, #9.12%, O, 0, 0.0126933, Staticoaxy

0.005913TE, ©.0392T63, 1.0366, L.03418, J.40540e-06, T.6IRIRE-06, 0.CO0RTEEI, 0. B0.33, 0.009TI0HMR, $3.9973, 9, G, 0.0036933, Steticoesy

0.00841306, ©.0393671, l.nnns. Loz, <04, =08, O, 0.00DBTS42, TH.$375, O.COCHMNTET, @0, 0. 9, 0.0136TM9, Seaviceary

. 1.0286F, 1.03613, 1.8 S0409RTE, 885, 8, 8, 0.0I8TMEY, Svaviseary

» 102465, 1.03125, 3§ ccuuml
2677

0.00609207, ©.039978, 1.01465, L.
059339235, ©.0400696, 1.

4le-05, 000203866, O.0B3RINEN. 803135, &
572e-06, 0.0009TESEL, 0.000XI6562, TH.HITS,
T + 1.0136T, 1.03223, &.1 304e=05, 0.00292969, 0.001553132, B0.11S, 0. 5, 0, 0, 0.0126953, Sracicsary
5382, 0.0067335, 10027, L.036L3, 2.50Me-0f, L.0ASAe-05, O0O9TESER, 0.00GEISS, BO.DEZS, 0. na'\iwus 4, 0, 9.0107422, Stationary

0.59537109, 5.035083, 1.0137, 1.03613, Z.16102¢-6, 6.6757Ie-06, 0.0Q87HS06, 0.005E5314, BO.1Z5, 0.0D0KEHZS, BO. 0.0136719, Scaticnary
0.GGESL16Y, 0.03S45RZ, 1.0146H, 1.0302, 2.26480e-0F, 1.535M0e-03, O, 7

0.00887463, ©.087573, 1.01367, 1.0332, 3.435Bbe-04, 9.53674e-07, O,

0.00416837, 0.0388TH4, 1.0136T, 1.03613, 3.09351e-04,
000430969, C.0393006, 103465, 103535, 3.15905e-04, B.583
55074408, SBL48163, L.G2051, L0418, £.43786-24, 2.BEY
0.0L8SS4T, 0.014183, 1.01953, 1.04004, T.84781e-0, 15073 . . 0. .625, 0. “0117188, Searscmasy

B0.0625, 0, O, 0-0107422, Staciesary

0.0185699, 0.0035422, 1.01B55, 1.03711, 5.72205e-06, 4.T6NN7e-07, . 953, Staticnary
40 0.087L05, O_0LASSEN, 1.01953, 1.0NG0K, 5.4NISME-0F, 1.G61936-D6, 0.0009TESEL, 0.DDIRINES, BO.ATS, n 5625, 0, 0, 0.0117188, Stavionary
1 0.0LE7I7E, 0.01435EE, 1.01953, 1.04004, €.4373e-06, 3.058{de-06, 0.000976562, 0.006RISH, BO.EN s 1875, 9, 0, D.DUST4562, Stationary
42 0.ERSA9E, D.0130016, L.O1EEE, N.04199, T.15356e-06, 1.26490e-06, 0.009062%, 0.006EHHM, B L Oy Dy GuOL4E4E4, 3
43 0.0L88141, 00045565, 1.02051, L.0J6LY, €.4NT3e-0F, 3.26490e-06, 0.CONSEIEL, 0.00GEXIM, B1 n 0001435, 1475, 4, 8, 0.0117 s, sun coaTy
40814831, 0.0L01213, 1.01883, 104004, 30604004, 1100000, O, 0.006E3IM. BO.TH, 0.000ABEINS, 1139, O, O O0.0LITIE. Seats
45 0.0079171, 0.060076, 1.01853, L.06100, €.4373e-04, 2.BE01Me-04, 0.0CI9IPER, ©.004ERINL, €1.187%, 000034, 81.7H, O, 0, e.m;n. 8, a-.ug-_.q -
Normal et file length : 4,205,755 lanes ; 31380 tm:l Col:d3 Sel: 0|0 ‘Windicws (CRLF) UTF-8 L
—_—

page 44/68

https://www.cs.waikato.ac.nz/ml/weka/downloading.html
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf

m ANS5393

Weka

Figure 48. Weka GUI Chooser

Program Visualization Tools Help

Applications

W E KA Explorer

The University
of Waikato

\ Experimenter J

Waikato Envircnment for Knowledge Analysis
Version 3.8.1
{c) 1999 - 2016
The University of Waikato
Hamilton, New Fealand

Waorkbench J

Simple CLI J

| |
) [KnowledgeFlow J

|

l

When launching Weka, the [Weka GUI Chooser] window appears (Figure 48), and the [Explorer] section,
selectable through the first button, is the Weka main user interface.

When selecting the Weka [Explorer] a new interface appears (Figure 49). Several tabs are available in the
[Explorer] interface:

. The [Preprocess] tab has facilities for importing data.

. The [Classify] tab allows applying classification and regression algorithms to the dataset in order to estimate
accuracy of the resulting predictive model and to visualize erroneous predictions.

. The [Cluster] tab gives access to the clustering techniques in Weka.

. The [Associate] tab provides access to association rule learners that attempt to identify all important
interrelationships between attributes in the data.

. The [Select attributes] tab provides algorithms for identifying the most predictive attributes in a dataset.
. The [Visualize] tab shows a scatter plot matrix.

In this appendix section, only the [Preprocess] and [Classify] tabs are described.

The [Preprocess] tab is shown in Figure 49, it allows loading an ARFF file from the [Open file] button.

AN5393 - Rev 5 page 45/68

ANS5393

,l Weka

Figure 49. Weka Explorer

Preprocess || Classify | Cluster | Associate | Select atiributes | Visualize

[Openfile.. Jl Open URL... Jl OpenDB... Jl Generate... J

Filter
—
| [Choose J|Nune

Current relation Selected attribute

Relation: Mone Attributes: MNone Mame: Mone
| Instances: None Sum of weights: None | Missing: Mone Distinct: Mone

1

Type: Mone
Unigque: Mone

Mone Pattern

| "] l Visualize All J

Status

Welcome to the Weka Explorer

When the ARFF file has been loaded, the [Preprocess] tab shows all the attributes (features and classes) of the
imported ARFF file. The attributes can be visualized in a graphical way and the user can select the attributes to

be used for the classification.

page 46/68

AN5393 - Rev §

‘W ANS5393

Weka

Figure 50. Weka Explorer - Attributes

[Openfile...]l Open URL... Jl OpenDB... Jl Generate... J

Filter
-

[Choose J|Nune

Current relation
-

Selected attribute
1\ r

Relation: ProgrammableSensor Aftributes: 3 Mame: ABS(VAR)_on_ACC_V Type: Mumeric
Instances: 264 Sum of weights: 264 Missing: 0 (0%) Distinct: 77 Unique: 60 (23%)

Attributes Statistic Value
-

Minimum 0
Maximum 0.596

Mean 0.059
StdDev 0.138

Invert Jl Pattern J

4 Class: class (Mom ¥ || Visualize All
2 [_] ABS(PeakToPeak)_on_ACC_V l () |]l J
3 [class

After choosing the attributes, a classifier can be configured in the [Classify] tab of Weka [Explorer] (Figure 51).

There are many classifiers available in Weka: by choosing the classifier [J48] (under [trees]) a decision tree can
be generated (Figure 52).

AN5393 - Rev §

page 47/68

‘,_l ANS5393

Weka

Figure 51. Weka Classify

[Preprocess TCJa.ssiﬂr T Cluster T Associate T Select attributes T Visualize]
rClassilier

v [E weka

\ v E classifiers

r'@ » ([bayes
Lo ﬁ'funcﬁons

> [ey

Lo ﬁ‘ meta

Lo [ﬁ‘ misc

Lo [ﬁ‘ rules

v [Etrees
DecisionStump
HoeffdingTree

LMT

RandomForest
RandomTree
[/ REPTree

Figure 52. Weka Classify J48

[Preprocess TCJa.ssiﬂr T Cluster T Associate T Select attributes T Visualize]
rClassilier

| Choose J|.J4s-c 0.25-M 2

Test options: Classifier output
r r

~

I Use training set J48 pruned tree
() Supplied test set Set...
(®) Cross-validation Folds 10

(_) Percentage split % B6

l More options...

{ (Mom) class l' J

Start Stop

Result list {right-click for options)
-

Time taken to build model: 0.01 seconds

ELS

AN5393 - Rev 5 page 48/68

‘,_l ANS5393

Weka

Many parameters can be changed in the classifier section (Figure 53), and different decision trees can be
generated by clicking the [Start] button (see Figure 52).

Figure 53. Weka J48 classifier parameters

weka.classifiers trees. J48

About

-
Class for generating a pruned or unpruned C4. More

| Capabilifies |

batchSize

binarySplits

collapseTree

confidenceFactor

debug

doMotCheckCapabilities

doMotMakeSplitPointActualvalue

minkNumOBj

numDecimalPlaces

numFolds

reducedErrorPruning

savelnstanceData

seed

subtreeRaising

unpruned

uselLaplace

useMDLcorrection

J { J l Cancel

AN5393 - Rev 5 page 49/68

‘,_l ANS5393

Weka

All the decision trees generated can be easily compared in terms of:
. Number of nodes

Since the decision tree generated by the J48 algorithm in Weka is a binary tree, the number of nodes can be
obtained by subtracting one from the parameter "Number of Leaves" which appears in the first row just after
the decision tree (see Figure 54. Correctly classified instances). It is also possible to visualize the decision tree
graphically by right-clicking on the [Result list] section on the left part of the tool (where all the models created
can be easily compared).

. Correctly classified instances

It is an estimate of the accuracy of the model created. The result of the model is compared to the result provided
by the labels. Figure 54. Correctly classified instances shows the correctly classified instances of an activity
recognition model.

. Confusion matrix

An NxN table that summarizes how successful the classification model predictions were, that is, the correlation
between the label and the model classification. One axis of a confusion matrix is the label that the model
predicted, and the other axis is the actual label.

Figure 54. Correctly classified instances

Preprocess | Classify | Cluster | Associate | Select aftributes | Visualize

Classifier

|_cnoose J‘Jurcnzarm |

Test options Classifier output
(SRS I I | | 335(ZeroCross)_on filter BF on ACC V-2 > 24 £
O suppliedtestset Set I 11 1 | RBS(MEAN) on ACC Z <= 0.062927: Walking (4.0)

— I 11 1 | RBS(MEAN) on ACC Z > 0.062927: Jogging (3.0)
@ Crossaligation Folds 10 | | | RBS(ENERGY) on_filter BF_on ACC_V~2 > 392.25: Jogging (5.0)
O Percentagespit. % 66 || A3S(ZeroCross)_om_filver BE_on ACC_V~Z > 27: Jogging (813.0/1.0)
A Nuamber of Leaves : 198
. | size of the tree : 395
(Nom) class i
— Time taken to build model: 3.13 seconds
Start Stop
Result list (right-click for options) === Stratified cross-validation ===
| | === Sumary =—
co g - f
-

Status

oK Log | g X0

Figure 55. Confusion matrix shows an example of a confusion matrix for an activity recognition algorithm with four
classes (stationary, walking, jogging, biking).

Figure 55. Confusion matrix

[Preprocess TCIa.ssify T Cluster Tﬁssociate TSeIect attributes T Visualize]

Classifier
E

| choose J|J4B-C 0.25-M2

Test options Classifier output
(1 Usetraining set " r

() Supplied test set Set...

— === Confusion Matrix ===
(®) Cross-validation Folds 10

o

a b c d <-— classified as
9852 20 a 144 | a = Staticnary
l More options... | 20 17907 16 a0 | b = Walking

3 19 1070 [c = Jogging
126 111 0 1883 | d = Biking

() Percentage split % 66

(Mom) class

Status
-

OK

AN5393 - Rev 5 page 50/68

m ANS5393

RapidMiner

Appendix B RapidMiner

RapidMiner is a data science software platform which provides an integrated environment for data preparation,

machine learning, deep learning, text mining, and predictive analytics. It is used for business and commercial

applications as well as for research, education, training, rapid prototyping, and application development and

supports all steps of the machine learning process including data preparation, results visualization, model

validation and optimization.

This appendix describes the process to generate a decision tree starting from an ARFF file, using RapidMiner

Studio. A simple example of a hand-washing detection algorithm is considered for this purpose. After opening

RapidMiner Studio, the main steps are the following:

1. Add the [Open File] operator from the [Operators] window on the left, and drag the operator to the blank
[Process] window as shown in Figure 56.

2. Double-click the [Open File] operator to choose the ARFF file to be loaded.

3. Find the [Read ARFF] operator and drag it to the [Process] window. Then connect the [Read ARFF]
operator to the [Open File] operator as shown in Figure 57.

4. Find the [Set Role] operator and drag it to the [Process] window. Then, double-click the [Set Role] operator
and type the attribute name and target role in the [Parameters] window as shown in Figure 58.

5. Find the [Decision Tree] operator and set the corresponding parameters as shown in Figure 59. You also
need to connect the [Decision Tree] operator to [res].

6. Click the [Run] button (blue triangle icon) in the upper left section of RapidMiner Studio.

7. After the [Run] button has been clicked, the [Results] tab shows the decision tree generated, in terms of
[Graph] (Figure 60) and [Description].

8. Inthe [Description] section of the decision tree generated (Figure 61) you need to copy the decision tree to
a text file, which can be imported in the MLC tool in Unico.

Figure 56. RapidMiner Studio - Open File

]} <new process*> — RapidMiner Studio Trial 92001 @ SCZCWL6602 o]
File Edit Process View Connections Cloud Seftings Extensions Help
N || - H - b - . Views Design Results TurboPrep More ¥ 2| anstudio v
Repository Process Parameters Help
& Import Data = © Process 0% 0 P 2 | % @ E Data Editor
A EEER OC BER &
» [Samples
» Hoe
» Bl Local Repository (nhunhis inp re

» Bl Temporary Repository (nhunhia)
» Cloud Repository (disconnected)

Open File

3 fil

Operators

Open File x
~ [Utility (1)
« 79 Files (1)

OpenFile

<] >

Leverage the Wisdom of Crowds to get operator recommendations based on your process

design!

@@ Gelmore operators from the « Activate Wisdom of Growds
Maikeipisce Drag&Drop an Example Set from the repository or...

AN5393 - Rev 5 page 51/68

ANS5393

RapidMiner

3

Figure 57. RapidMiner Studio - Read ARFF

File Edit Process \iew Connections Cloud Seftings Exensions Help

; H | :r‘ H = |’ = . views: [P Degn Results TuboPrep | More ¥ ‘ ,O‘ AIIS‘Iudiov‘

Repository X Process | Help X

| @ Import Dala | Ev| @ process 100% 0 P L 4 a @ E |Pilirrleien
[' Data Editor X

» 7 samples . ocess 1
» Boe EEE® O
» Bl Local Repository nnunniz) | | e
» B Temporary Repository (hur
» . Cloud Repository (gisconnact

X
wa (]

Open File Read ARFF

s

Operators X

Read Arf x

- = Data Access (1)
* = Files (1)
w ™ Read (1)
%, Read ARFF

Leverage the Wisdom of Crowds to get operator recommendations based on your process design!

@ Selmore operalors fom Activale Wisdom of Crowds |
the M | ¢ Drag&Drop an Example ...

Figure 58. RapidMiner Studio - Set Role

II S =l
Ee EO Pocess Yew Comedions Chug Sefings Edensions Help

1| |- - B Wiiws Desin Resuts Twrta Fren ke Wl J’J_ sudo v |
Repastory Process Dista Editor © Parameters © Hilp
[+ L e @ Process WP L L G | R
b I Sameies A atinbse same e -|m
':“’ taegetrote tabal .|
» I Lozl Rozasitsr oo
¥ I Temporany Rsositeny - st acitonal roies T Emusun. o

R

Open File Read ARFF Set Role |

i 3

Dperators.
Daciion x

- B Moseang 51
3 Precicine i)
* [Trees (B)
+ Bcisien Tree
+ Rangom Farest
| Gradest Beosied Trees
Jios
J Daciskn Sumg.
4 Bvcisien Trow lbstocty)
. Ducisien Tree (Welght Sased)

. Fandom Tres

L & show sdanced caramaters.
o Achaate Vs dom of Crowds. o Ch0DI COMODIE (92001)

@ ittt Geaons Ve D MARSIGIACE

AN5393 - Rev 5 page 52/68

ANS5393

RapidMiner

3

Figure 59. RapidMiner Studio - Decision Tree operator

=M - N r— Desun Resuts Turta Frep Aty Wl P| masuds v
Repository Process DsaEdtor Parametes * Help
© myanoaa v © precess wuP PP W T w | Owekalre
T A cterion pain_rasy »|m
»Hoe
» 0 Lot Rogasnsny e Open File Read ARFF Set Rale Decision Tree — e .
| m & o wxa E el L moa R] ampa prusing]
:‘ : o) e
v v S| comtonnce ot ®
v wp |
Vi /| sepiy progeuning ®
minimal gan on it
misimal leat soe 2 5
Oparatars
Dacision x
- B Modeling (E)
= 2 Progcive)
= 153 Traus (B
. Bedskn Tren
. Rangom Farest
| Gradiest Beastea Traes
o3
J Teaskn Sumg
. ecisken Trow lticas)
. Deaskn Free ngnt-8aes)
| Ransom Teea
v
< L | >
L e
Y o ctats Wisgom of Crowss I now saanced caramaters.
——r— - T . ——

ww Comnecions Chug Sefings

B Eot Broce:

=l (> . PN e p— P e~ ||
Resut History J Tres DeckionTree) [T——
Zoam v
A PR
Gragh
Tiea -

|
1
:

sas samm war sam

AN5393 - Rev 5 page 53/68

ANS5393

RapidMiner

3

Figure 61. RapidMiner Studio - Decision Tree description

File Edit Process Yiew Conneclions Cloud Seftings Exensions Help

= [[T .
| ‘ Bs | H - | = ‘ . Views: Design Resuts Turbo Prep | Auto Model £ anstdio v ‘
Result Histary . Tree (Decision Tree) X Repository X
| | =
| € Import Data [=~ |
7\ Tree
& » 7 Samples
2P VAR_om_RCC_Z > 0.281 » 3 o8
ENERGY_on GY Z > 142.688: others {others=58, washing_hand=1} .
ENERGY_on_GY_Z = 142.688 - » Bl Local Repository nnunhia)
MEAN en_ACC X » -0.325 » Il Temporary Repository (nhunhis)
MEAN on ACC Z > 0.607: others {others=5, washing_hand=0} » Cloud Repository (sisconnected)

Description MEAN on ACC Z =< 0.607

MERN on_ACC ¥ > 0.261

ZeroCross on GY ¥ > 5

| ENERGY on_GY Z > 118.187

I | PeakToPeak_on ACC_Y > 2.642: others {others=2,
1 1 PeakToPeak on ACC Y = 2.642: washing_hand {oth¢
} ENERGY on GY Z = 118.187

| | VAR_on_RCC Y > 0.696

] I 1 PeakToPeak on GY V > 1.178: washing_hand {¢
I

I

2

Annotations

1 1 PeakToPeak on _GY V =< 1.178: others [others:
| VAR _on_ACC_Y < 0.696: washing_hand {others=d, ¢
eroCross on_GY Y 5 5: others {others=2, washing hand={
MERN on ACC Y =< 0.261: others {others=3, washing hand=0}
MEAN on_ACC X = -0.325: others {others=24, washing hand=0}
VAR_on_ACC_Z =< 0.281
I
I
1

MAX on ACC_X > 2.5%4
MIN_on_ACC_Z > -0.378: washing_hand {others=0, washing hand=3}

I
| __MIN on ACC Z = -0.378: others {others=2, washing hand=0} e
[}

AN5393 - Rev 5 page 54/68

m ANS5393

Matlab

Appendix C Matlab

Decision trees for the machine learning core can be generated with Matlab. Dedicated scripts for Matlab are
available at Matlab.

After importing all the scripts in the Matlab workspace, the function [Generate_DecisionTree()] should be called,
specifying two file names (an .arff file containing the features computed by the machine learning core tool in Unico
and a .txt file which contains the decision tree generated):

filename_ARFF = ‘features.arff’;
filename_dectree = ‘decision_tree.txt’;
Generate_DecisionTree(filename_ARFF, filename_dectree);

More details can be found in the README.md file available contained in the [matlab] folder of the GitHub
repository.

AN5393 - Rev 5 page 55/68

https://github.com/STMicroelectronics/STMems_Machine_Learning_Core/tree/master/tools/matlab

ANS5393

Python

3

Appendix D Python

Decision trees for the machine learning core can be generated with Python through the the “scikit’ package.

Python scripts are available at Python both as a Jupyter notebook (*.ipynb) and as a common Python script
(*.py). More details can be found in the README.md file available contained in the [python] folder of the GitHub
repository.

AN5393 - Rev 5 page 56/68

https://github.com/STMicroelectronics/STMems_Machine_Learning_Core/tree/master/tools/python

AN5393
Glossary

Appendix E Glossary

This section contains a glossary of terms used in machine learning. Most of the terms have been taken from
https://developers.google.com/machine-learning/glossary/.

ARFF

Attribute/feature

Binary
classification

Class

Classification
model

Classification
threshold

Class-imbalanced
dataset

Clipping

Confusion matrix

Cross-validation

Data analysis

Data augmentation

Data set or dataset
Decision boundary

Decision threshold

Decision tree
Discrete feature

Discriminative
model

An ARFF (attribute-relation file format) file is an ASCII text file that describes a list of instances sharing
a set of attributes. ARFF files were developed by the Machine Learning Project at the Department of
Computer Science of The University of Waikato for use with the Weka machine learning software.

An attribute is an aspect of an instance (for example, temperature, humidity). Attributes are often called
features in machine learning. A special attribute is the class label that defines the class this instance
belongs to (required for supervised learning).

A type of classification task that outputs one of two mutually exclusive classes. For example, a machine
learning model that evaluates email messages and outputs either "spam" or "not spam" is a binary
classifier.

One of a set of enumerated target values for a label. For example, in a binary classification model
that detects spam, the two classes are spam and not spam. In a multi-class classification model that
identifies dog breeds, the classes would be poodle, beagle, pug, and so on.

A type of machine learning model for distinguishing among two or more discrete classes. For example,
a natural language processing classification model could determine whether an input sentence was in
French, Spanish, or Italian.

A scalar-value criterion that is applied to a model's predicted score in order to separate the positive
class from the negative class. Used when mapping logistic regression results to binary classification. For
example, consider a logistic regression model that determines the probability of a given email message
being spam. If the classification threshold is 0.9, then logistic regression values above 0.9 are classified
as spam and those below 0.9 are classified as not spam.

A binary classification problem in which the labels for the two classes have significantly different
frequencies. For example, a disease dataset in which 0.0001 of examples have positive labels and
0.9999 have negative labels is a class-imbalanced problem, but a football game predictor in which 0.51
of examples label one team winning and 0.49 label the other team winning is not a class-imbalanced
problem.

A technique for handling outliers. Specifically, reducing feature values that are greater than a set
maximum value down to that maximum value. Also, increasing feature values that are less than a
specific minimum value up to that minimum value.

An NxN table that summarizes how successful the classification model predictions were; that is, the
correlation between the label and the model classification. One axis of a confusion matrix is the label that
the model predicted, and the other axis is the actual label.

A mechanism for estimating how well a model generalizes to new data by testing the model against one
or more non-overlapping data subsets withheld from the training set.

Obtaining an understanding of data by considering samples, measurement, and visualization. Data
analysis can be particularly useful when a dataset is first received, before one builds the first model. It is
also crucial in understanding experiments and debugging problems with the system.

Artificially boosting the range and number of training examples by transforming existing examples to
create additional examples. For example, suppose images are one of your features, but your dataset
doesn't contain enough image examples for the model to learn useful associations. Ideally, you'd add
enough labeled images to your dataset to enable your model to train properly. If that's not possible, data
augmentation can rotate, stretch, and reflect each image to produce many variants of the original picture,
possibly yielding enough labeled data to enable excellent training.

A collection of examples.

The separator between classes learned by a model in a binary class or multi-class classification
problems.

Synonym for classification threshold.
A model represented as a sequence of branching statements.

A feature with a finite set of possible values. For example, a feature whose values may only be animal,
vegetable, or mineral is a discrete (or categorical) feature. Contrast with continuous feature.

A model that predicts labels from a set of one or more features. More formally, discriminative models
define the conditional probability of an output given the features and weights.

AN5393 - Rev 5 page 57/68

https://developers.google.com/machine-learning/glossary/

‘,_l ANS5393

Glossary

Overloaded term that can mean either of the following:
. Reducing the amount of information in a feature in order to train a model more efficiently.

. Training on a disproportionately low percentage of over-represented class examples in order to
improve model training on under-represented classes.

Downsampling

A model that is trained online in a continuously updating fashion. That is, data is continuously entering

Dynamic model the model.

One row of a dataset. An example contains one or more features and possibly a label. See also labeled

Example
P example and unlabeled example.

An example in which the model mistakenly predicted the negative class. For example, the model inferred
that a particular email message was not spam (the negative class), but that email message actually was
spam.

False negative
(FN)

An example in which the model mistakenly predicted the positive class. For example, the model inferred
False positive (FP) ' that a particular email message was spam (the positive class), but that email message was actually not
spam.

False positive rate | The x-axis in an ROC curve. The false positive rate is defined as follows:

(FPR) False positive rate = false positives / (false positives + true negatives)
Feature An input variable used in making predictions.
The process of determining which features might be useful in training a model, and then converting raw
Fea.ture) data from log files and other sources into said features.
engineering

Feature engineering is sometimes called feature extraction.

Overloaded term having either of the following definitions:

) . Retrieving intermediate feature representations calculated by an unsupervised or pre-trained
Feature extraction . .
model for use in another model as input.
. Synonym for feature engineering.

The group of features your machine learning model trains on. For example, postal code, property size,

Feature set and property condition might comprise a simple feature set for a model that predicts housing prices.

Refers to your model's ability to make correct predictions on new, previously unseen data as opposed to

Generalization the data used to train the model.

The correct answer. Reality. Since reality is often subjective, expert raters typically are the proxy for

Ground truth ground truth.

Heuristic A quick solution to a problem, which may or may not be the best solution.
Imbalanced dataset Synonym for class-imbalanced dataset.

Data drawn from a distribution that doesn't change, and where each value drawn doesn't depend

on values that have been drawn previously. An i.i.d. is the ideal gas of machine learning—a useful
mathematical construct but almost never exactly found in the real world. For example, the distribution of
visitors to a web page may be i.i.d. over a brief window of time; that is, the distribution doesn't change
during that brief window and one person's visit is generally independent of another's visit. However, if
you expand that window of time, seasonal differences in the web page's visitors may appear.

Independently
and identically
distributed (i.i.d)

In machine learning, often refers to the process of making predictions by applying the trained model to
Interference unlabeled examples. In statistics, inference refers to the process of fitting the parameters of a distribution
conditioned on some observed data.

Instance Synonym for example.

The degree to which a model's predictions can be readily explained. Deep models are often non-
Interpretability interpretable; that is, a deep model's different layers can be hard to decipher. By contrast, linear
regression models and wide models are typically far more interpretable.

J48 An open source Java implementation of the C4.5 algorithm

In supervised learning, the "answer" or "result" portion of an example. Each example in a labeled dataset
consists of one or more features and a label. For instance, in a housing dataset, the features might
Label include the number of bedrooms, the number of bathrooms, and the age of the house, while the label
might be the house's price. In a spam detection dataset, the features might include the subject line, the
sender, and the email message itself, while the label would probably be either "spam" or "not spam."

Linear regression ' A type of regression model that outputs a continuous value from a linear combination of input features.

AN5393 - Rev 5 page 58/68

AN5393
Glossary

Machine learning

Majority class

Matplotlib

Minority class

ML

Model training

Multi-class
classification

Multinomial
classification

Negative class

Neural network

Node
(decision tree)

Noise

Normalization

Numerical data

Outliers

Overfitting

Parameter

Performance

Positive class

A program or system that builds (trains) a predictive model from input data. The system uses the learned
model to make useful predictions from new (never-before-seen) data drawn from the same distribution
as the one used to train the model. Machine learning also refers to the field of study concerned with
these programs or systems.

The more common label in a class-imbalanced dataset. For example, given a dataset containing 99%
non-spam labels and 1% spam labels, the non-spam labels are the majority class.

An open-source Python 2D plotting library. matplotlib helps you visualize different aspects of machine
learning.

The less common label in a class-imbalanced dataset. For example, given a dataset containing 99%
non-spam labels and 1% spam labels, the spam labels are the minority class.

Abbreviation for machine learning.
The process of determining the best model.

Classification problems that distinguish among more than two classes. For example, there are
approximately 128 species of maple trees, so a model that categorized maple tree species would be
multi-class. Conversely, a model that divided emails into only two categories (spam and not spam) would
be a binary classification model.

Synonym for multi-class classification.

In binary classification, one class is termed positive and the other is termed negative. The positive class
is the thing we're looking for and the negative class is the other possibility. For example, the negative
class in a medical test might be "not tumor." The negative class in an email classifier might be "not
spam." See also positive class.

A model that, taking inspiration from the brain, is composed of layers (at least one of which is hidden)
consisting of simple connected units or neurons followed by nonlinearities.

A "test" on an attribute.

Broadly speaking, anything that obscures the signal in a dataset. Noise can be introduced into data in a
variety of ways. For example:

. Human raters make mistakes in labeling.
. Humans and instruments mis-record or omit feature values.
The process of converting an actual range of values into a standard range of values, typically -1 to +1 or

0 to 1. For example, suppose the natural range of a certain feature is 800 to 6,000. Through subtraction
and division, you can normalize those values into the range -1 to +1.

See also scaling.
Features represented as integers or real-valued numbers.

Values distant from most other values. In machine learning, any of the following are outliers:
. Weights with high absolute values.

. Predicted values relatively far away from the actual values.

. Input data whose values are more than roughly 3 standard deviations from the mean.
Outliers often cause problems in model training. Clipping is one way of managing outliers.

Creating a model that matches the training data so closely that the model fails to make correct
predictions on new data.

A variable of a model that the ML system trains on its own.

Overloaded term with the following meanings:
. The traditional meaning within software engineering. Namely: How fast (or efficiently) does this
piece of software run?

. The meaning within ML. Here, performance answers the following question: How correct is this
model? That is, how good are the model's predictions?

In binary classification, the two possible classes are labeled as positive and negative. The positive
outcome is the thing we're testing for. (Admittedly, we're simultaneously testing for both outcomes, but
play along.) For example, the positive class in a medical test might be "tumor." The positive class in an
email classifier might be "spam."

Contrast with negative class.

AN5393 - Rev 5 page 59/68

AN5393
Glossary

Precision

Prediction

Pre-trained model

Proxy labels

Rater

Recall

Regression model

Reinforcement
learning

Representation

ROC curve

Scaling

Scikit-learn

Scoring

Semi-supervised
learning

Sequence model

Serving

Static model

Stationarity

Supervised
machine learning

Target
Training

Training set

A metric for classification models. Precision identifies the frequency with which a model was correct
when predicting the positive class. That is:

Precision = true positives / (true positives + false positives)

A model's output when provided with an input example.

Models or model components that have been already been trained.
Data used to approximate labels not directly available in a dataset.

For example, suppose you want “is it raining?” to be a Boolean label for your dataset, but the dataset
doesn't contain rain data. If photographs are available, you might establish pictures of people carrying
umbrellas as a proxy label for “is it raining”? However, proxy labels may distort results. For example, in
some places, it may be more common to carry umbrellas to protect against sun than the rain.

A human who provides labels in examples. Sometimes called an "annotator."

A metric for classification models that answers the following question:

“Out of all the possible positive labels, how many did the model correctly identify?”
That is:

Recall = true positives / (true positives + false negatives)

A type of model that outputs continuous (typically, floating-point) values. Compare with classification
models, which output discrete values, such as "day lily" or "tiger lily."

A machine learning approach to maximize an ultimate reward through feedback (rewards and
punishments) after a sequence of actions. For example, the ultimate reward of most games is victory.
Reinforcement learning systems can become expert at playing complex games by evaluating sequences
of previous game moves that ultimately led to wins and sequences that ultimately led to losses.

The process of mapping data to useful features.
ROC = receiver operating characteristic
A curve of true positive rate vs. false positive rate at different classification thresholds.

A commonly used practice in feature engineering to tame a feature's range of values to match the range
of other features in the dataset. For example, suppose that you want all floating-point features in the
dataset to have a range of 0 to 1. Given a particular feature's range of 0 to 500, you could scale that
feature by dividing each value by 500.

See also normalization.
A popular open-source ML platform. See www.scikit-learn.org.

The part of a recommendation system that provides a value or ranking for each item produced by the
candidate generation phase.

Training a model on data where some of the training examples have labels but others don’t. One
technique for semi-supervised learning is to infer labels for the unlabeled examples, and then to train on
the inferred labels to create a new model. Semi-supervised learning can be useful if labels are expensive
to obtain but unlabeled examples are plentiful.

A model whose inputs have a sequential dependence. For example, predicting the next video watched
from a sequence of previously watched videos.

A synonym for inferring.
A model that is trained offline.

A property of data in a dataset, in which the data distribution stays constant across one or more
dimensions. Most commonly, that dimension is time, meaning that data exhibiting stationarity doesn't
change over time. For example, data that exhibits stationarity doesn't change from September to
December.

Training a model from input data and its corresponding labels. Supervised machine learning is
analogous to a student learning a subject by studying a set of questions and their corresponding
answers. After mastering the mapping between questions and answers, the student can then provide
answers to new (never-before-seen) questions on the same topic.

Compare with unsupervised machine learning.
Synonym for label.
The process of determining the ideal parameters comprising a model.

The subset of the dataset used to train a model.

AN5393 - Rev 5 page 60/68

m ANS5393

Glossary

Contrast with validation set and test set.

An example in which the model correctly predicted the negative class. For example, the model inferred

True negative (TN) that a particular email message was not spam, and that email message really was not spam.

An example in which the model correctly predicted the positive class. For example, the model inferred

True positive (TP) that a particular email message was spam, and that email message really was spam.

Synonym for recall. That is:

;F_Fl;%;))osmve rate True positive rate = true positives / (true positives + false negatives)

True positive rate is the y-axis in an ROC curve.

Producing a model with poor predictive ability because the model hasn't captured the complexity of the
training data. Many problems can cause underfitting, including:

. . Training on the wrong set of features.
Underfitting . Training for too few epochs or at too low a learning rate.
. Training with too high a regularization rate.
. Providing too few hidden layers in a deep neural network.

An example that contains features but no label. Unlabeled examples are the input to inference. In

Unlabeled example . h . ; : L
semi-supervised and unsupervised learning, unlabeled examples are used during training.

Training a model to find patterns in a dataset, typically an unlabeled dataset.

The most common use of unsupervised machine learning is to cluster data into groups of similar
examples. For example, an unsupervised machine learning algorithm can cluster songs together based
on various properties of the music. The resulting clusters can become an input to other machine learning
) algorithms (for example, to a music recommendation service). Clustering can be helpful in domains
Unsupervised where true labels are hard to obtain. For example, in domains such as anti-abuse and fraud, clusters can
machine learning help humans better understand the data.

Another example of unsupervised machine learning is principal component analysis (PCA). For example,
applying PCA on a dataset containing the contents of millions of shopping carts might reveal that
shopping carts containing lemons frequently also contain antacids.

Compare with supervised machine learning.

A process used, as part of training, to evaluate the quality of a machine learning model using the
o validation set. Because the validation set is disjoint from the training set, validation helps ensure that the
Validation model’'s performance generalizes beyond the training set.

Contrast with test set.
A subset of the dataset—disjoint from the training set—used in validation.

Validation set
Contrast with training set and test set.

A collection of machine learning algorithms for data mining tasks. It contains tools for data preparation,

Weka o . - o LS . .
classification, regression, clustering, association rules mining, and visualization.

AN5393 - Rev 5 page 61/68

m ANS5393

Revision history

Table 13. Document revision history

03-Oct-2019 1 Initial release
Updated Figure 1. Machine Learning Core supervised approach
Updated Section 1.1 Inputs
Updated Section 1.2 Filters
Updated Section 1.3 Features
Updated Section 1.3.13 Selection of features
Added Section 1.3.13.1 Histogram of a single feature (1D plot)
05-Aug-2020 2 Added Section 1.3.13.2 Visualization of two features (2D plot)
Added Section 1.3.13.3 Ranking of features
Updated Section 1.5 Meta-classifier
Updated Section 2.1 Unico GUI
Updated Section 2.2 Decision tree generation
Updated Section 2.3 Configuration procedure
Updated Section Appendix A Weka
Updated Section 1.1 Inputs
13-Apr-2021 3 Updated maximum number of features in Section 1.3 Features
Updated Table 6. Decision tree interrupts
Added Note to Section 1.1 Inputs

Updated Section 1.2.1 Filter coefficients, Section 1.3 Features and

15-Feb-2022 4
Section 1.4 Decision tree
Minor textual updates
22-Apr-2022 5 Updated Figure 4. MLC inputs (accelerometer) and Figure 5. MLC inputs

(gyroscope)

AN5393 - Rev 5 page 62/68

m ANS5393

Contents

Contents
1 Machine learning core in the LSM6DSRX...........ccoiiiiiiiiiiii i iiiiieieees 2
1.1 DU .« . e e e 5
1.2 B OIS o 8
1.21 Filter coefficients 9
1.3 Features 11
1.3.1 AN, . . 12
1.3.2 VaraNCE . . .o 12
1.3.3 ENergy . .o 12
1.34 Peak-to-peak. 12
1.3.5 ZErO-CrOSSING .« o o v ittt et e e e e 13
1.3.6 POSItive Zero-CroSSiNg oo oo 13
1.3.7 Negative Zero-CroSSiNgt 14
1.3.8 Peak detector 14
1.3.9 Positive peak detector. 15
1.3.10 Negative peak detector. e 15
1341 MINIMUM . L 16
1312 Maximum .o 16
1.313 Selectionof features 17
1.4 DeCiSION trEe . . oo 21
141 Decision tree limitations in the LSM6DSRX. 22
1.5 Meta-classifier 23
1.5.1 Meta-classifier limitations in the LSM6DSRX 23
1.6 Finite state machine interface 23
2 Machine learning core tools. i i i 24
21 UniCo GULL . .o 24
2.2 Decision tree generation e 27
2.3 Configuration procedure. i 29
3 Decisiontree examples ..ot ittt e e 36
3.1 Vibration monitoring 36
3.2 Motion INtENSItY 37
3.3 6D position recognition. 37
3.4 Activity recognition for smartphone applications 39
3.5 Gym activity recognition 42
3.6 Summary of eXamples 43
AppendiX A WeKa . ..ottt i ettt et i a et 44

AN5393 - Rev 5 page 63/68

m ANS5393

Contents
Appendix B RapidMINer . ..o i it iei et tata s naa e a s 51
Appendix C Matlab ...t i it e it iata s aa s i s 55
Appendix D Python. i it 56
AppendiX E GloSSary....cuiiiitiiii i iiaie i tanessaasssennnassanansssnnsnssnnsnnrnnns 57
ReVISiON RiStOory i it 62
List of tables ... it i 65
IS o T U] =Y 66

AN5393 - Rev 5 page 64/68

m ANS5393

List of tables
List of tables
Table 1. Machine learning core output datarates 2
Table 2. Filter coefficients 8
Table 3. Examples of filter coefficients 10
Table 4. Features. e 11
Table 5. Decisiontree resulls. 22
Table 6. Decision tree infermupts. 22
Table 7. Decision tree limitations in the LSMBDSRX 22
Table 8. Meta-classifier example 23
Table 9. Meta-classifier limitations in the LSMBDSRX 23
Table 10. Activity recognition for smartphone configuration 39
Table 11. Configuration for gym activity recognition 42
Table 12. Summary of examples 43
Table 13. Documentrevision history 62

AN5393 - Rev 5 page 65/68

m ANS5393

List of figures

List of figures

Figure 1. Machine learning core supervised approach. 1
Figure 2. Machine learning core in the LSMBDSRX. 2
Figure 3. Machine learning core blocks 3
Figure 4. MLC inputs (accelerometer) 5
Figure 5. MLC iNpUES (QYTOSCOPE). . . o . o ot et e e e e e e e e e e 6
Figure 6. Filter basic element. 8
Figure 7. Peak-to-peak 12
Figure 8. ZEIO-CTOSSING .+« ¢ o v o e e e e e e e e e e 13
Figure 9. POSItive Zero-CroSSiNgo 13
Figure 10. Negative Zero-CroSSiNg oot e 14
Figure 11, Peak detector. e 14
Figure 12. Positive peak detector e e e 15
Figure 13. Negative peak detector 15
Figure 14. Minimum 16
Figure 15, Maximum. 16
Figure 16. Distribution of single feature for three differentclasses. 18
Figure 17. Visualization of two features and two classes 19
Figure 18. Ranking from automated output tool 20
Figure 19. DecCisiontree NOAe 21
Figure 20. Unico GUI 25
Figure 21. Machine learning core tool - data patterns L 25
Figure 22. Machine learning core tool - configuration 26
Figure 23. Decision tree generation in UNiCO 27
Figure 24. WeEKa PreprOCESS . . . o ottt et e e e e e 28
Figure 25. Weka Classify 28
Figure 26. Decisiontree format 29
Figure 27. Configuration procedure 30
Figure 28. Assigningaresulttoadatapattern. 30
Figure 29. Configuration of machine learning core 31
Figure 30. Configuration of flters 31
Figure 31. Configuration of features 31
Figure 32. ARFF generation 32
Figure 33. ARFF file 32
Figure 34. Configuration of results and decisiontree. 33
Figure 35. Meta-classifier and device configuration. 33
Figure 36. Creation of configuration file. 34
Figure 37. Unico load configuration 34
Figure 38. Unicodata Wwindow 35
Figure 39. Unico - machine learning core source registers. 35
Figure 40. Vibration monitoring decision tree 36
Figure 41. Motion intensity decision tree 37
Figure 42. BD PoSitioNS o o 38
Figure 43. BD deCision tree e e e 38
Figure 44. Activity recognition for smartphone decisiontree. 40
Figure 45. Weka cross-validation e e e 41
Figure 46. Gym activity recognition decision tree 43
Figure 47. ARFF example 44
Figure 48. Weka GUI ChOOSEr. oo e e e e 45
Figure 49. Weka EXPlOrero 46
Figure 50. Weka Explorer - Attributes 47
Figure 51. Weka Classify 48
Figure 52. Weka Classify JA48 48
Figure 53. Weka J48 classifier parameters 49

AN5393 - Rev 5 page 66/68

m ANS5393

List of figures

Figure 54. Correctly classified inStances 50
Figure 55. Confusion MatriX. 50
Figure 56. RapidMiner Studio - Open File 51
Figure 57. RapidMiner Studio - Read ARFF 52
Figure 58. RapidMiner Studio - Set Role 52
Figure 59. RapidMiner Studio - Decision Tree operator 53
Figure 60. RapidMiner Studio - Decision Tree graph 53
Figure 61. RapidMiner Studio - Decision Tree description 54

AN5393 - Rev 5 page 67/68

m ANS5393

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics — All rights reserved

AN5393 - Rev 5 page 68/68

http://www.st.com/trademarks

	 Introduction
	1 Machine learning core in the LSM6DSRX
	1.1 Inputs
	1.2 Filters
	1.2.1 Filter coefficients

	1.3 Features
	1.3.1 Mean
	1.3.2 Variance
	1.3.3 Energy
	1.3.4 Peak-to-peak
	1.3.5 Zero-crossing
	1.3.6 Positive zero-crossing
	1.3.7 Negative zero-crossing
	1.3.8 Peak detector
	1.3.9 Positive peak detector
	1.3.10 Negative peak detector
	1.3.11 Minimum
	1.3.12 Maximum
	1.3.13 Selection of features
	1.3.13.1 Histogram of a single feature (1D plot)
	1.3.13.2 Visualization of two features (2D plot)
	1.3.13.3 Ranking of features

	1.4 Decision tree
	1.4.1 Decision tree limitations in the LSM6DSRX

	1.5 Meta-classifier
	1.5.1 Meta-classifier limitations in the LSM6DSRX

	1.6 Finite state machine interface

	2 Machine learning core tools
	2.1 Unico GUI
	2.2 Decision tree generation
	2.3 Configuration procedure

	3 Decision tree examples
	3.1 Vibration monitoring
	3.2 Motion intensity
	3.3 6D position recognition
	3.4 Activity recognition for smartphone applications
	3.5 Gym activity recognition
	3.6 Summary of examples

	Appendix A Weka
	Appendix B RapidMiner
	Appendix C Matlab
	Appendix D Python
	Appendix E Glossary
	 Revision history
	Contents
	List of tables
	List of figures

